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We provide a simple proof, as well as several generalizations, of a recent result by Davis and Suh, characterizing a class of continuous submartingales and supermartingales that can be expressed in terms of a squared Brownian motion and of some appropriate powers of its maximum. Our techniques involve elementary stochastic calculus, as well as the Doob-Meyer decomposition of continuous submartingales. These results can be used to obtain an explicit expression of the constants appearing in the Burkholder-Davis-Gundy inequalities. A connection with some balayage formulae is also established.

Introduction

Let W = {W t : t ≥ 0} be a standard Brownian motion initialized at zero, set W * t = max s≤t |W s | and write F W t = σ {W u : u ≤ t}, t ≥ 0. In [START_REF] Davis | On Burkholder's supermartingales[END_REF], Davis and Suh proved the following result.

Theorem 1 ([3, Th. 1.1]) For every p > 0 and every c ∈ R, set

Y t = Y t (c, p) = (W * t ) p-2 W 2 t -t + c (W * t ) p , t > 0, (1) 
Y 0 (c, p) = Y 0 = 0.

1. For every p ∈ (0, 2], the process Y t is a F W t -submartingale if, and only if, c ≥ 2-p p .

2. For every p ∈ [2, +∞), the process Y t is a F W t -supermartingale if, and only if, c ≤ 2-p p .

As pointed out in [3, p. 314] and in Section 4 below, part 1 of Theorem 1 can be used to derive explicit expressions of the constants appearing in the Burkholder-Davis-Gundy (BDG) inequalities (see [START_REF] Burkholder | Distribution function inequalities for martingales[END_REF], or [5, Ch. IV, §4]). The proof of Theorem 1 given in [START_REF] Davis | On Burkholder's supermartingales[END_REF] uses several delicate estimates related to a class of Brownian hitting times: such an approach can be seen as a ramification of the discrete-time techniques developed in [START_REF] Burkholder | The best constant in the Davis inequality for the expectation of of the martingale square function[END_REF]. In particular, in [START_REF] Davis | On Burkholder's supermartingales[END_REF] it is observed that the submartingale (or supermartingale) characterization of Y t (c, p) basically relies on the properties of the random subset of [0, +∞) composed of the instants t where |W t | = W * t . The aim of this note is to bring this last connection into further light, by providing an elementary proof of Theorem 1, based on a direct application of Itô formula and on an appropriate version of the Doob-Meyer decomposition of submartingales. We will see that our techniques lead naturally to some substantial generalizations (see Theorem 4 below).

The rest of the paper is organized as follows. In Section 2 we state and prove a general result involving a class of stochastic processes that are functions of a positive submartingale and of a monotone transformation of its maximum. In Section 3 we focus once again on the Brownian setting, and establish a generalization of Theorem 1. Section 4 deals with an application of the previous results to (strong) BDG inequalities. Finally, in Section 5 we provide an explicit connection with some classic balayage formulae for continuous-time semimartingales (see e.g. [START_REF] Yor | Sur le balayage des semi-martingales continues[END_REF]).

All the objects appearing in the subsequent sections are defined on a common probability space (Ω, A, P).

A general result

Throughout this section, F = {F t : t ≥ 0} stands for a filtration satisfying the usual conditions. We will write X = {X t : t ≥ 0} to indicate a continuous F t -submartingale issued from zero and such that P {X t ≥ 0, ∀t} = 1. We will suppose that the Doob-Meyer decomposition of X (see for instance [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]Th. 1.4.14]) is of the type X t = M t + A t , t ≥ 0, where M is a square-integrable continuous F t -martingale issued from zero, and A is an increasing (integrable) natural process. We assume that A 0 = M 0 = 0; the symbol M = { M t : t ≥ 0} stands for the quadratic variation of M . We note X * t = max s≤t X s , and we also suppose that P {X * t > 0} = 1 for every t > 0. The following result is a an extension of Theorem 1.

Theorem 2 Fix ε > 0.

1. Suppose that the function φ : (0, +∞) → R is of class C 1 , non-increasing, and such that

E[ T ε φ (X * s ) 2 d M s ] < +∞, (2) 
for every T > ε. For every x ≥ z > 0, we set

Φ (x, z) = - x z yφ ′ (y) dy; (3) 
then, for every α ≥ 1 the process

Z ε (φ, α; t) = φ (X * t ) (X t -A t ) + αΦ (X * t , X * ε ) , t ≥ ε, (4) 
is a F t -submartingale on [ε, +∞).

2. Suppose that the function φ : (0, +∞) → R is of class C 1 , non-decreasing and such that (2) holds for every T > ε. Define Φ (•, •) according to (3), and Z ε (φ, α; t) according to (4). Then, for every

α ≥ 1 the process Z ε (φ, α; t) is a F t -supermartingale on [ε, +∞).
Remarks. (i) Note that the function φ (y) (and φ ′ (y)) need not be defined at y = 0.

(ii) In Section 3, where we will focus on the Brownian setting, we will exhibit specific examples where the condition α ≥ 1 is necessary and sufficient to have that the process Z ε (α, φ; t) is a submartingale (when φ is non-increasing) or a supermartingale (when φ is non-decreasing).

Proof of Theorem 2. (Proof of Point 1.) Observe first that, since M t = X t -A t is a continuous martingale, X * is non-decreasing and φ is differentiable, then a standard application of Itô formula gives that

φ (X * t ) (X t -A t ) -φ (X * ε ) (X ε -A ε ) = φ (X * t ) M t -φ (X * ε ) M ε = t ε φ(X * s )dM s + t ε (X s -A s ) φ ′ (X * s ) dX * s . (5) 
The assumptions in the statement imply that the application M ε,t := t ε φ(X * s )dM s is a continuous square integrable F t -martingale on [ε, +∞). Moreover, the continuity of X implies that the support of the random measure dX * t (on [0, +∞)) is contained in the (random) set {t ≥ 0 :

X t = X * t }, thus yielding that t ε (X s -A s ) φ ′ (X * s ) dX * s = t ε (X * s -A s ) φ ′ (X * s ) dX * s = - t ε A s φ ′ (X * s ) dX * s -Φ (X * t , X * ε ) ,
where Φ is defined in (3). As a consequence,

Z ε (φ, α; t) = M ε,t + t ε (-A s φ ′ (X * s ))dX * s + (α -1) Φ (X * t , X * ε ) . ( 6 
)
Now observe that the application t → Φ (X * t , X * ε ) is non-decreasing (a.s.-P), and also that, by assumption, -A s φ ′ (X * s ) ≥ 0 for every s > 0. This entails immediately that Z ε (φ, α; t) is a F t -submartingale for every α ≥ 1.

(Proof of Point 2.) By using exactly the same line of reasoning as in the proof of Point 1., we obtain that

Z ε (φ, α; t) = t ε φ(X * s )dM s + t ε (-A s φ ′ (X * s ))dX * s + (α -1) Φ (X * t , X * ε ) . (7) 
Since ( 2) is in order, we deduce that t →

t ε φ(X * s )dM s is a continuous (square-integrable) F t -martingale on [ε, +∞). Moreover, -A s φ ′ (X *
s ) ≤ 0 for every s > 0, and we also have that

t → Φ (X * t , X * ε ) is a.s. decreasing. This implies that Z ε (φ, α; t) is a F t -supermartingale for every α ≥ 1.
The next result allows to characterize the nature of the process Z appearing in (4) on the whole positive axis. Its proof can be immediately deduced from formulae (6) (for Part 1) and (7) (for Part 2).

Proposition 3 Let the assumptions and notation of this section prevail.

1. Consider a decreasing function φ : (0, +∞) → R verifying the assumptions of Part 1 of Theorem 2 and such that

Φ (x, 0) := - x 0 yφ ′ (y) dy is finite ∀x > 0. ( 8 
)
Assume moreover that

E[ T 0 φ (X * s ) 2 d M s ] < +∞, (9) 
and also

φ (X * ε ) M ε = φ (X * ε ) (X ε -A ε ) converges to zero in L 1 (P) , as ε ↓ 0, (10) Φ (X * t , 0) ∈ L 1 (P) . (11) 
Then, for every α ≥ 1 the process

Z (φ, α; t) = 0 for t = 0 φ (X * t ) (X t -A t ) + αΦ (X * t , 0) for t > 0 , ( 12 
)
is a F t -submartingale.

2. Consider an increasing function φ : (0, +∞) → R as in Part 2 of Theorem 2 and such that assumptions (8)-(11) are satisfied. Then, for every α ≥ 1 the process Z (φ, α; t) appearing in ( 12) is a F t -supermartingale.

Remarks. (i) A direct application of the Cauchy-Schwarz inequality shows that a sufficient condition to have (10) is the following:

lim ε↓0 E φ (X * ε ) 2 × E M 2 ε = lim ε↓0 E φ (X * ε ) 2 × E [ M ε ] = 0 (13) 
(observe that lim ε↓0 E M 2 ε = 0, since M 0 = 0 by assumption). In other words, when (13) is verified the quantity E M 2 ε 'takes care' of the possible explosion of ε → E φ (X * ε ) 2 near zero.

(ii) Let φ be non-increasing or non-decreasing on (0, +∞), and suppose that φ satisfies the assumptions of Theorem 2 and Proposition 3. Then, the process t → t 0 φ(X * s )dM s is a continuous square-integrable F W t -martingale. Moreover, for any choice of α ∈ R, the process Z (φ, α; t), t ≥ 0, defined in ( 12) is a semimartingale, with canonical decomposition given by

Z (φ, α; t) = t 0 φ(X * s )dM s + t 0 ((α -1)X * s -A s ) φ ′ (X * s ) dX * s .

A generalization of Theorem 1

The forthcoming Theorem 4 is a generalization of Theorem 1. Recall the notation: W is a standard Brownian motion issued from zero,

W * t = max s≤t |W s | and F W t = σ {W u : u ≤ t}.
We also set for every m ≥ 1, every p > 0 and every c ∈ R:

J t = J t (m, c, p) = (W * t ) p-m [|W t | m -A m,t ] + c (W * t ) p , t > 0, (14) 
J 0 (m, c, p) = J 0 = 0, where t → A m,t is the increasing natural process in the Doob-Meyer decomposition of the F W t -submartingale t → |W t | m . Of course, J t (2, c, p) = Y t (c, p), as defined in [START_REF] Burkholder | Distribution function inequalities for martingales[END_REF].

Theorem 4 Under the above notation:

1. For every p ∈ (0, m], the process J t is a F W t -submartingale if, and only if, c ≥ m-p p .

2. For every p ∈ [m, +∞), the process J t is a F W t -supermartingale if, and only if, c ≤ m-p p .

Proof. Recall first the following two facts: (i) W * t law = √ tW * 1 (by scaling), and (ii) there exists η > 0 such that E exp(η (W * 1 ) -2 ) < +∞ (this can be deduced e.g. from [5, Ch. II, Exercice 3.10]), so that the random variable (W * 1 ) -1 has finite moments of all orders. Note also that the conclusions of both Point 1 and Point 2 are trivial in the case where p = m. In the rest of the proof we will therefore assume that p = m.

To prove Point 1, we shall apply Theorem 2 and Proposition 3 in the following framework:

X t = |W t | m and φ (x) = x p-m m = x p m -1 . In this case, the martingale M t = |W t | m -A m,t is such that M t = m 2 t 0 W 2m-2 s ds, t ≥ 0, and Φ (x, z) = - x z yφ ′ (y) dy = -p m -1 x z y p m -1 dy = m-p p x p m -z p m . Also, for every T > ε > 0 E[ T ε φ (X * s ) 2 d M s ] = m 2 E[ T ε (W * s ) 2p-2m W 2m-2 s ds] ≤ m 2 E[ T ε (W * s ) 2p-2 ds] = m 2 E[ (W * 1 ) 2p-2 ] T ε s p 2 -1 ds, (15) 
so that φ verifies ( 2) and (9). Relations ( 8) and ( 11) are trivially satisfied. To see that (10) holds, use the relations

E {|φ (X * ε ) (X ε -A ε )|} = E{ (W * ε ) p-m [|W ε | m -A m,ε ] } = E (W * ε ) p-m M ε ≤ E (W * ε ) 2p-2m 1/2 E { M ε } 1/2 = mE W 2m-2 1 1/2 E (W * 1 ) 2p-2m 1/2 ε p 2 -m 2 ε 0 s m-1 ds 1/2 → 0, as ε ↓ 0.
From Point 1 of Proposition 3, we therefore deduce that the process Z (t) defined as Z (0) = 0 and, for t > 0,

Z (t) = φ ((W * t ) m ) [|W t | m -A m,t ] + αΦ ((W * t ) m , 0) (16) = (W * t ) p-m [|W t | m -A m,t ] + α m -p p (W * t ) p , ( 17 
)
is a F W t -submartingale for every α ≥ 1. By writing c = α m-p p in the previous expression, and by using the fact that m-p p ≥ 0 by assumption, we deduce immediately that J t (m, c; p) is a submartingale for every c ≥ m-p p . Now suppose c < m-p p . One can use formulae ( 6), ( 16) and ( 17) to prove that

J t (m, c; p) = t 0 φ(X * s )dM s + t 0 [-A m,s φ ′ ((W * s ) m )]d(W * s ) m + (α -1) Φ ((W * t ) m , 0) = t 0 (W * s ) p-m dM s + p m -1 t 0 [(1 -α) (W * s ) m -A m,s ](W * s ) p-2m d(W * s ) m ,
where 1 -α = 1 -pc/(m -p) > 0. Note that t 0 (W * s ) p-m dM s is a square-integrable martingale, due to (15). To conclude that, in this case, J t (m, c; p) cannot be a submartingale (nor a supermartingale), it is sufficient to observe that (for every m ≥ 1 and every α < 1) the paths of the finite variation process

t → t 0 [(1 -α) (W * s ) m -A m,s ](W * s ) p-2m d(W * s ) m
are neither non-decreasing nor non-increasing, with P-probability one.

To prove Point 2, one can argue in exactly the same way, and use Point 2 of Proposition 3 to obtain that the process Z (t) defined as Z (0) = 0 and, for t > 0,

Z (t) = (W * t ) p-m [|W t | m -A m,t ] + α m -p p (W * t )
p is a F W t -supermartingale for every α ≥ 1. By writing once again c = α m-p p in the previous expression, and since m-p p ≤ 0, we immediately deduce that J t (m, c; p) is a supermartingale for every c ≤ m-p p . One can show that J t (m, c; p) cannot be a supermartingale, whenever c > m-p p , by using arguments analogous to those displayed in the last part of the proof of Point 1.

The following result is obtained by specializing Theorem 4 to the case m = 1 (via Tanaka's formula).

Corollary 5 Denote by {ℓ t : t ≥ 0} the local time at zero of the Brownian motion W . Then, the process 

J t (p) = (W * t ) p-1 [|W t | -ℓ t ] + c (W * t ) p , t > 0, J 0 (p) = 0, is such that: (i) for p ∈ (0, 1], J t (p) is a F W t -

Burkholder-Davis-Gundy (BDG) inequalities

We reproduce an argument taken from [3, p. 314], showing that the first part of Theorem 4 can be used to obtain a strong version of the BDG inequalities (see e.g. [5, Ch. IV, §4]). Fix p ∈ (0, 2) and define c = (2 -p)/p = 2/p -1. Since, according to the first part of Theorem 4, Y t = Y t (c, p) is a F W t -submartingale starting from zero, we deduce that, for every bounded and strictly positive F W t -stopping time τ , one has E(Y τ ) ≥ 0. In particular, this yields

E τ (W * τ ) 2-p ≤ 2 p E ((W * τ ) p ) . (18) 
Formula (18), combined with an appropriate use of Hölder's inequality, entails finally that, for 0 < p < 2,

E τ p 2 ≤ 2 p E ((W * τ ) p ) p 2 [E ((W * τ ) p )] 2-p 2 = 2 p p 2 E ((W * τ ) p ) . ( 19 
)
Of course, relation (19) extends to general stopping times τ (not necessarily bounded) by monotone convergence (via the increasing sequence {τ ∧ n : n ≥ 1}).

Remark. Let {A n : n ≥ 0} be a discrete filtration of the reference σ-field A, and consider a A nadapted sequence of measurable random elements {f n : n ≥ 0} with values in a Banach space B. We assume that f n is a martingale, i.e. that, for every n,

E [f n -f n-1 | A n-1 ] = E [d n | A n-1 ] = 0, where d n := f n -f n-1 . We note S n (f ) = n k=0 |d k | 2 and f * n = sup 0≤m≤n |f m | ,
and write S (f ) and f * , respectively, to indicate the pointwise limits of S n (f ) and f * n , as n → +∞. In [START_REF] Burkholder | The best constant in the Davis inequality for the expectation of of the martingale square function[END_REF], D.L. Burkholder proved that

E (S (f )) ≤ √ 3E (f * ) , (20) 
where √ 3 is the best possible constant, in the sense that for every η ∈ (0, √ 3) there exists a Banach spacevalued martingale f (η) such that E S f (η) > ηE f * (η) . As observed in [3], Burkholder's inequality (20) should be compared with (19) for p = 1, which yields the relation E τ 1/2 ≤ √ 2E(W * τ ) for every stopping time τ . This shows that in such a framework, involving uniquely continuous martingales, the constant √ 3 is no longer optimal.

Balayage

Keep the assumptions and notation of Section 2 and Theorem 2, fix ε > 0 and consider a finite variation function ψ : (0, +∞) → R. In this section we focus on the formula

ψ (X * t ) (X t -A t ) -ψ (X * ε ) (X ε -A ε ) = t ε ψ(X * s )d (X s -A s ) + t ε (X * s -A s ) dψ(X * s ), (21) 
where ε > 0. Note that by choosing ψ = φ in (21), where φ ∈ C 1 is monotone, one recovers formula (5), which was crucial in the proof Theorem 2. We shall now show that (21) can be obtained by means of the balayage formulae proved in [START_REF] Yor | Sur le balayage des semi-martingales continues[END_REF].

To see this, let U = {U t : t ≥ 0} be a continuous F t -semimartingale issued from zero. For every t > 0 we define the random time σ (t) = sup {s < t :

U s = 0} . ( 22 
)
The following result is a particular case of [START_REF] Yor | Sur le balayage des semi-martingales continues[END_REF]Th. 1].

Proposition 6 (Balayage Formula) Consider a stochastic process {K t : t > 0} such that the restriction {K t : t ≥ ε} is locally bounded and F t -predictable on [ε, +∞) for every ε > 0. Then, for every fixed ε > 0, the process K σ(t) , t ≥ ε, is locally bounded and F t -predictable, and moreover

U t K σ(t) = U ε K σ(ε) + t ε K σ(s) dU s . (23) 
To see how (21) can be recovered from (23), set U t = X t -X * t and K t = ψ (X * t ). Then, K t = K σ(t) = ψ(X * σ(t) ) by construction, where σ (t) is defined as in ( 22). As a consequence, (23) gives

ψ (X * t ) (X t -X * t ) = ψ (X * ε ) (X ε -X * ε ) + t ε ψ(X * s )d (X s -X * s ) .
Finally, a standard integration by parts applied to ψ (X * t ) (X * t -A t ) yields

ψ (X * t ) (X t -A t ) = ψ (X * t ) (X t -X * t ) + ψ (X * t ) (X * t -A t ) = ψ (X * ε ) (X ε -X * ε ) + t ε ψ(X * s )d (X s -X * s ) +ψ (X * ε ) (X * ε -A ε ) + t ε ψ(X * s )d (X * s -A s ) + t ε (X * s -A s ) dψ (X * s ) ,
which is equivalent to (21).
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