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S U M M A R Y
We study numerically an extensive set of dynamo models in rotating spherical shells, varying all
relevant control parameters by at least two orders of magnitude. Convection is driven by a fixed
temperature contrast between rigid boundaries. There are two distinct classes of solutions with
strong and weak dipole contributions to the magnetic field, respectively. Non-dipolar dynamos
are found when inertia plays a significant role in the force balance. In the dipolar regime the
critical magnetic Reynolds number for self-sustained dynamos is of order 50, independent of
the magnetic Prandtl number Pm. However, dynamos at low Pm exist only at sufficiently low
Ekman number E. For dynamos in the dipolar regime we attempt to establish scaling laws that fit
our numerical results. Assuming that diffusive effects do not play a primary role, we introduce
non-dimensional parameters that are independent of any diffusivity. These are a modified
Rayleigh number based on heat (or buoyancy) flux Ra∗

Q , the Rossby number Ro measuring
the flow velocity, the Lorentz number Lo measuring magnetic field strength, and a modified
Nusselt number Nu∗ for the advected heat flow. To first approximation, all our dynamo results
can be collapsed into simple power-law dependencies on the modified Rayleigh number, with
approximate exponents of 2/5, 1/2 and 1/3 for the Rossby number, modified Nusselt number
and Lorentz number, respectively. Residual dependencies on the parameters related to diffusion
(E, Pm, Prandtl number Pr) are weak. Our scaling laws are in agreement with the assumption
that the magnetic field strength is controlled by the available power and not necessarily by
a force balance. The Elsasser number �, which is the conventional measure for the ratio of
Lorentz force to Coriolis force, is found to vary widely. We try to assess the relative importance
of the various forces by studying sources and sinks of enstrophy (squared vorticity). In general
Coriolis and buoyancy forces are of the same order, inertia and viscous forces make smaller
and variable contributions, and the Lorentz force is highly variable. Ignoring a possible weak
dependence on the Prandtl numbers or the Ekman number, a surprising prediction is that the
magnetic field strength is independent both of conductivity and of rotation rate and is basically
controlled by the buoyancy flux. Estimating the buoyancy flux in the Earth’s core using our
Rossby number scaling and a typical velocity inferred from geomagnetic secular variations,
we predict a small growth rate and old age of the inner core and obtain a reasonable magnetic
field strength of order 1 mT inside the core. From the observed heat flow in Jupiter, we predict
an internal field of 8 mT, in agreement with Jupiter’s external field being 10 times stronger
than that of the Earth.

Key words: convection, core flow, dynamo theory, geomagnetic field, inner core, planetology.

1 I N T RO D U C T I O N

In the past 10 yr numerical models of convection-driven dy-

namos in rotating spherical shells have been successful in re-

producing the main properties of the geomagnetic field, includ-

ing the dipole dominance and approximate dipole strength, de-

tails of the field morphology at the outer boundary of the dy-

namo region, secular variation of the magnetic field and stochas-

tic dipole reversals resembling those seen in the paleomagnetic

record (Kageyama et al. 1995; Glatzmaier & Roberts 1995a,b;

Kuang & Bloxham 1997; Christensen et al. 1998; Busse et al. 1998;

Christensen et al. 1999; Kuang & Bloxham 1999; Takahashi

et al. 2005). Dynamo models have been used to investigate

the possible field generation mechanism in the Earth’s core
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(Olson et al. 1999; Ishihara & Kida 2002), the influence of

lower mantle heterogeneity on magnetic field properties (Glatz-

maier et al. 1999; Bloxham 2000a,b; Olson & Christensen 2002;

Bloxham 2002; Christensen & Olson 2003; Kutzner & Christensen

2004) and the generation of planetary magnetic fields that differ in

geometry (Uranus, Neptune) or strength (Mercury) from the Earth’s

field (Stanley & Bloxham 2004; Stanley et al. 2005).

However, for practical reasons the values of some of the control

parameters in the dynamo models differ strongly from planetary

values. In particular, the Ekman number that measures the relative

importance of viscous forces to Coriolis forces is typically five to

ten orders of magnitude too large, depending on whether molecu-

lar or ‘turbulent’ viscosities are assumed, and the magnetic Prandtl

number, the ratio of viscosity to magnetic diffusivity, is six orders of

magnitude larger than the appropriate value for liquid iron. There-

fore, it remains doubtful if the flow regime in the numerical models

is basically the same as in planetary cores or if the agreement with

the Earth’s magnetic field is rather fortuitous.

One way to assess the relevance of the dynamo models is to

determine how their characteristic properties depend on the con-

trol parameters. Systematic parameter studies have been started by

Christensen et al. (1999), Grote et al. (2000) and Simitev & Busse

(2005). The main aim of these studies has been to determine in which

parts of the parameter space dynamo solutions exist and what their

fundamental magnetic field geometry is. The results show an influ-

ence of the mechanical boundary conditions and the mode of driving

convection. For rigid boundaries and a strong source of buoyancy

at the inner core boundary, the magnetic field outside the fluid shell

is dominated by the axial dipole component at moderately super-

critical values of the Rayleigh number, but is small scaled with a

weak dipole component at strongly supercritical values (Kutzner

& Christensen 2002). With stress-free boundaries and/or a strong

component of driving by volumetric heat sources, dipole-dominated

solutions give way to a non-dipolar magnetic fields (quadrupolar,

small scaled or magnetic fields restricted to one hemisphere), in par-

ticular at lower values of the magnetic Prandtl number (Grote et al.
1999, 2000; Kutzner & Christensen 2000; Simitev & Busse 2005).

Christensen et al. (1999) found that the minimum value of the mag-

netic Prandtl number at which dynamo solutions exist depends on

the Ekman number. Dynamos at low, that is, more realistic, values of

the magnetic Prandtl number are found only at low enough Ekman

number, which makes their study computationally very demanding.

The next step toward understanding the dynamo process and to

ascertain if the numerical models can be applied to planetary condi-

tions is to derive scaling laws that relate characteristic properties of

the dynamo solutions to the control parameters. Before, such scaling

laws have been suggested on the basis of physical reasoning with lit-

tle or no reference to actual dynamo solutions (e.g. Stevenson 1979;

Starchenko & Jones 2002). Finding scaling laws for the magnetohy-

drodynamic dynamo problem is a particularly difficult task, because

it is governed by at least four relevant control parameters and be-

cause the relative importance of the various forces on the flow (iner-

tia, Coriolis force, Lorentz force, viscosity, buoyancy) may change

over the accessible parameter range, which could prevent a unique

scaling relation. For flow in planetary cores it is usually assumed

that inertia and in particular viscosity play a negligible role and that

the primary forces balance is between Coriolis force, Lorentz force,

buoyancy and pressure gradient forces (magnetostrophic or MAC

balance). A systematic numerical study of non-magnetic convection

in a rotating shell with stress-free boundaries (Christensen 2002) has

suggested that a regime in which viscous forces become unimpor-

tant can actually be approached with the present-day computational

means and asymptotic scaling laws have been derived for the limit of

small Ekman number. With the Lorentz force lacking, inertia retains

an important role to balance the Coriolis forces in this case (Aubert

et al. 2001). A first step in finding scaling laws from numerical dy-

namo solutions has been made by Christensen & Tilgner (2004),

who derived a relation between the magnetic dissipation time, de-

scribing the rate at which magnetic energy is destroyed by Ohmic

dissipation, and the magnetic Reynolds number, a measure for the

flow velocity in terms of shell thickness and magnetic diffusion time.

Based on the numerical results alone Christensen & Tilgner (2004)

could not exclude a weak additional dependence on the magnetic

Prandtl number, but by using results from the Karlsruhe laboratory

dynamo experiment (Stieglitz & Müller 2001; Müller et al. 2004)

they concluded that this dependency is absent or vanishes at small

values of the magnetic Prandtl number. Aubert (2005) studied the

zonal flow velocity in non-magnetic convection and in dynamos and

found distinct scaling laws that indicate a different balance of forces

in the two cases. In the dynamo case both viscosity and inertia were

found to be unimportant, suggesting that at least the zonal flow is

in a magnetostrophic balance.

In this paper we use an extensive set of numerical dynamo re-

sults in order to derive scalings for the mean flow velocity, the heat

transport and the magnetic field strength. We restrict the analysis to

dynamos that generate a dipole-dominated magnetic field.

2 G OV E R N I N G E Q UAT I O N S A N D

N O N - D I M E N S I O N A L PA R A M E T E R S

For numerical modelling the equations of convection-driven mag-

netohydrodynamic flow and electromagnetic induction in an

electrically conducting, rotating spherical shell are usually cast

into non-dimensional form. However, different schemes for non-

dimensionalization are possible. Conventionally, time is scaled by

some diffusion time, where the choice is between viscous, ther-

mal or magnetic diffusivity. Based on the hypothesis that diffusive

processes do not play a primary role, in contrast to the effects of

rotation, we follow the path introduced by Christensen (2002) and

Aubert (2005) and select the inverse rotation frequency �−1 of the

shell as the basic timescale. Length scale is the shell thickness D,

the non-hydrostatic pressure � is scaled by ρ�2D2, where ρ is the

density, and the scale for temperature is �T , the imposed tempera-

ture difference between the isothermal inner boundary at radius ri

and outer boundary at ro. Here, we fix the ratio η = r i/r o to 0.35.

For dynamo problems in rotating systems the magnetic induction B
is frequently scaled by (ρμλ�)1/2 with μ the magnetic permeablity

and λ the magnetic diffusivity. This choice makes the square of the

mean non-dimensional magnetic field strength equal to the Elsasser

number

� = B2
rms

/
ρμλ�, (1)

which is considered to represent the ratio of Lorentz forces to Cori-

olis forces acting on the flow. Here we follow again a different path

and select (ρμ)1/2 �D for scaling B. With this choice none of the

diffusivites appears in any of the scales and the governing equations

in the Boussinesq approximation can be written in a rather simple

and symmetric form:

∂u

∂t
+ u · ∇u + 2ẑ × u + ∇�

= E∇2u + Ra∗ r

ro
T + (∇ × B) × B, (2)
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∂B

∂t
− ∇ × (u × B) = Eλ∇2B, (3)

∂T

∂t
+ u · ∇T = Eκ∇2T, (4)

∇ · u = 0, ∇ · B = 0. (5)

Here the unit vector ẑ indicates the direction of the rotation axis and

gravity varies linearly with the radius r. The four non-dimensional

control parameters are the (viscous) Ekman number

E = ν

�D2
, (6)

the magnetic Ekman number

Eλ = λ

�D2
= E

Pm
, (7)

the thermal Ekman number

Eκ = κ

�D2
= E

Pr
, (8)

and the modified Rayleigh number

Ra∗ = αgo�T

�2 D
, (9)

where ν is viscosity, κ thermal diffusivity, α thermal expansivity and

go gravity at the outer radius ro. In our scaling, the diffusive terms

in eqs (2)–(4) multiply with the respective Ekman numbers, the

buoyancy term is multiplied with a modified Rayleigh number that

is independent of any diffusivity, and all other terms are parameter

free. In place of the magnetic and thermal Ekman numbers we will

later use the more conventional hydrodynamic Prandtl number Pr =
ν/κ and magnetic Prandtl number Pm = ν/λ.

We are interested in how characteristic values of the non-

dimensional velocity and of the non-dimensional magnetic field

strength depend on the control parameters. The kinetic energy and

the magnetic energy, scaled by ρ�2D5, are given by

Ekin = 1

2

∫
u · u dV , (10)

and

Emag = 1

2

∫
B · B dV , (11)

respectively, where the integral is taken over the fluid shell in case

of eq. (10) and over all space in case of eq. (11). The characteristic

mean velocity is the Rossby number,

Ro =
(

2Ekin

Vs

)1/2

, (12)

and we call the characteristic non-dimensional magnetic field

strength the Lorentz number

Lo =
(

2Emag

Vs

)1/2

, (13)

where V s is the volume of the spherical shell. The relation between

the Elsasser number and the Lorentz number is given by

� = Lo2 Pm E−1. (14)

In a regime where diffusive processes do not play a major role, the

Rossby number and the Lorentz number are expected to depend

on the modified Rayleigh number rather than on the conventional

Rayleigh number

Ra = Ra∗

Eκ E
. (15)

To obtain a non-dimensional measure for convective heat trans-

port that is independent of the thermal diffusivity we use a modified

Nusselt number

Nu∗ = 1

4πrori

Qadv

ρc�T �D
, (16)

where the advected heat flow Qadv is the time-average total heat flow

Q minus the conductive heat flow Q cond = 4πroriρc κ�T /D and c
is the heat capacity. The relation to the conventional Nusselt number

Nu = 1

4πrori

Q D

ρcκ�T
, (17)

is given by

Nu∗ = (Nu − 1)Eκ . (18)

Note that the modified Nusselt number used here is based on the

advective heat flux alone, in contrast to the definition employed by

Christensen (2002) and Aubert (2005).

Finally, although the solutions have been calculated for a fixed

temperature contrast, we analyse our results in terms of a modified

Rayleigh number Ra∗
Q based on the advected heat flux rather than

on �T

Ra∗
Q = 1

4πrori

αgo Qadv

ρc�3 D2
. (19)

The relation between the various Rayleigh numbers is Ra∗
Q =

Ra∗Nu∗ = Ra(Nu −1)E2
κ E .

Considering more general sources of buoyancy, we can replace

the heat flux by the buoyancy flux, or mass anomaly flux, QB, which

in case of thermal buoyancy is given by QB =αQadv/c. The Rayleigh

number

Ra∗
B = 1

4πrori

go Q B

ρ�3 D2
, (20)

is a non-dimensional expression for the buoyancy flux. In case of

thermal convection it is identical to Ra∗
Q .

For planetary applications the flux-based Rayleigh numbers are

more convenient, since estimates for the heat flux or buoyancy

flux exist, whereas the (superadiabatic) temperature contrast is not

known. Moreover, Ra∗
Q is very closely connected to the power P

generated by buoyancy forces (scaled by ρ�3D5)

P = Ra∗
∫

r

ro
ur T dV . (21)

In the appendix we show that to a very good approximation

P = 2πη
1 + η

(1 − η)2
Ra∗

Q ≈ 7.01Ra∗
Q . (22)

The rate of Ohmic dissipation is given by

Dλ = Eλ

∫
(∇ × B)2 dV. (23)

For our models we calculate the time-average fraction of Ohmic

dissipation

fohm = Dλ/P. (24)

We employ rigid mechanical boundary conditions and assume no

heat sources inside the fluid shell, which is more favourable to obtain

dipole-dominated dynamo solutions. The magnetic field is matched

to a potential field outside the fluid shell and in most cases also to

a potential field inside the (insulating) inner core. In some cases

we assumed a conducting inner core, with a ratio r λ = 1 of outer

core diffusivity to inner core diffusivity. This requires the solution
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of eq. (3) for u = 0 in this region. Wicht (2002) found only small

differences between the two options and we confirmed this in a few

cases that have been run with both kinds of conditions.

The equations are solved by a spectral transform method de-

scribed in Glatzmaier (1984), Christensen et al. (1999) or Tilgner

(1999). The resolution in terms of the maximum harmonic degree

and order �max and number of radial grid levels N r was selected so

that a drop by a factor of 50 or more is found in the kinetic and

magnetic energy spectra from the maximum to the energy at the

cut-off wavelength. This resolution has been found to be sufficient

for the robust determination of characteristic mean properties of the

solution (Christensen et al. 1999; Kutzner & Christensen 2002). At

larger values of the Ekman number, solutions are calculated for a

full sphere (symmetry parameter ms = 1), at lower values two-fold

symmetry in longitude (ms = 2) and at the lowest Ekman numbers

four-fold symmetry (ms = 4) is used to save computer time. Com-

paring results for different symmetries in a few cases showed no

significant influence on the average properties of the dynamos.

Usually a solution obtained at different parameters served as ini-

tial condition. The run time trun of each case covers at least 50

advection times, where one advection time unit is the shell thick-

ness divided by the rms velocity. An exception is a case at the lowest

Ekman number that we reached, which was run for only 28 advec-

tion times, but seems to have equilibrated. The transient adjustment

to the new condition occurs in about 5 to 20 advection time units

after which a statistically equilibrated solution is established. We

reject the first part of the time-series, typically about 20 advection

times, and for the remainder we average in time several properties

of interest to obtain characteristic values. In particular, we calculate

time-average values of the Rossby number Ro, the Lorentz number

Lo, the modified Nusselt number Nu∗, the power P, and the fraction

of Ohmic dissipation f ohm. In addition, we determine the relative

dipole field strength f dip, defined as the time-average ratio on the

outer shell boundary of the mean dipole field strength to the field

strength in harmonic degrees � = 1–12, and the ratio bdip of the

mean field strength inside the shell to the dipole strength on the

outer boundary.

3 R E S U LT S

The data base for this study has been built over several years. Some of

the results have been published in Christensen et al. (1999), Kutzner

& Christensen (2000), Kutzner & Christensen (2002), Christensen

& Tilgner (2004) and Aubert (2005), although previous cases have

been rerun to obtain additional data that had not been recorded

before or to get a more representative time average. Additional,

not previously reported, cases have been calculated in particular

to extend the data base to smaller Ekman numbers and magnetic

Prandtl numbers and to hydrodynamic Prandtl numbers different

from one. For a detailed analysis we selected from this data base

cases that satisfy the following criteria:

(1) The dynamo generates a non-decaying and dipole-

dominated magnetic field. The latter condition is met when the

relative dipole strength f dip exceeds 0.35.

(2) The Ekman number is 3 × 10−4 or smaller. The lowest

value of the Ekman number is 10−6. We note that our definition of

the Ekman number is conservative; with the definition of Kono &

Roberts (2002), E ′ = ν/(2�r 2
o), the range is roughly from 2 × 10−7

to 6 × 10−5.

(3) Convection must be sufficiently vigorous and fill the entire

volume. For this we require Nu > 2, which normally implies that

Table 1. Critical Rayleigh number.

E Pr Racrit Ra∗
crit mcrit

3 × 10−4 3.0 2.391 × 105 7.173 × 10−3 5

3 × 10−4 1.0 2.026 × 105 1.823 × 10−2 5

3 × 10−4 0.3 1.373 × 105 4.119 × 10−2 5

10−4 10 9.410 × 105 9.410 × 10−4 7

10−4 3 8.627 × 105 2.876 × 10−3 8

10−4 1.0 6.965 × 105 6.965 × 10−3 8

10−4 0.3 4.407 × 105 1.469 × 10−2 7

10−4 0.1 2.865 × 105 2.865 × 10−2 6

3 × 10−5 3.0 3.674 × 106 1.102 × 10−3 12

3 × 10−5 1.0 2.833 × 106 2.550 × 10−3 11

3 × 10−5 0.3 1.684 × 106 5.052 × 10−3 10

3 × 10−5 0.1 1.047 × 106 9.423 × 10−3 8

10−5 3.0 1.426 × 107 4.753 × 10−4 16

10−5 1.0 1.057 × 107 1.057 × 10−3 15

3 × 10−6 3.0 6.475 × 107 1.943 × 10−4 22

3 × 10−6 1.0 4.591 × 107 4.132 × 10−4 22

10−6 1.0 1.791 × 108 1.791 × 10−4 31

the Rayleigh number exceeds the critical value by a factor of five or

more. We list critical values of the Rayleigh number Racrit and the

critical azimuthal wavenumber mcrit in Table 1.

We have 66 different dynamos that satisfy the three criteria, cov-

ering at least two orders of magnitude in all control parameters. The

modified Rayleigh number Ra∗ is in the range of 0.001–0.4, or be-

tween 5 and 50 times supercritical. The magnetic Prandtl number

ranges between 0.06 and 10 and the hydrodynamic Prandtl number

falls between 0.1 and 10. In terms of mean-field dynamo theory,

our dipolar solutions can be classified as α2-dynamos (Olson et al.
1999). Differential rotation is weak, the toroidal magnetic field is of

similar strength as the poloidal field and the axisymmetric toroidal

field is usually weaker than the axisymmetric poloidal field, except

inside the inner core tangent cylinder. The results for the selected

cases are summarized in Table 2.

3.1 Dynamo regimes

Before we turn to the scaling laws for dipole-dominated dynamos,

we first revisit the question of the existence of dynamo solutions and

the class of magnetic field that they produce, following up earlier

studies with a more extensive data basis. In Fig. 1 we show for a fixed

Prandtl number of one and various values of the Ekman number the

type of solution obtained in dependence of the Rayleigh number and

the magnetic Prandtl number. Here we note that close to the regime

boundaries the transient adjustment of the magnetic field may take

longer than 50 advective time units and is more typically on the

magnetic diffusion timescale. When in doubt we, therefore, run a

case twice, starting from different initial magnetic field structures.

First we confirm the earlier result (Christensen et al. 1999) that

the minimum magnetic Prandtl number at which dynamos exist, at

least those generating a dipole-dominated magnetic field, increases

with the Ekman number. In Fig. 2(a) we plot for Pr = 1 the lowest

magnetic Prandtl number at which we found a dipolar dynamo as a

function of Ekman number. The solid line for the minimum magnetic

Prandtl number is given by the relation suggested in Christensen

et al. (1999) on the basis of results restricted to Ekman numbers

E ≥ 10−4:

Pmmin = 450E0.75. (25)
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Table 2. Results.

Ra∗ Pr Pm rλ �max N r ms trun Ro �̄u Nu Lo f dip bdip f ohm

E = 1 × 10−6

0.0011 1.0 1.000 0 201 81 4 162 000 1.72 × 10−4 42 2.18 7.78 × 10−4 0.87 4.9 0.80

E = 3 × 10−6

0.0198 1.0 0.060 0 224 97 4 13 000 3.98 × 10−3 55 17.80 4.02 × 10−3 0.98 3.0 0.41

0.0162 1.0 0.075 0 224 97 4 15 000 3.34 × 10−3 56 14.90 3.51 × 10−3 0.96 3.2 0.40

0.0072 1.0 0.100 0 201 81 4 42 000 1.53 × 10−3 56 5.33 1.50 × 10−3 0.99 3.0 0.25

0.0090 1.0 0.100 0 201 81 4 28 000 1.90 × 10−3 59 7.57 2.16 × 10−3 0.95 3.2 0.34

0.0162 1.0 0.100 0 224 97 4 29 000 3.27 × 10−3 58 14.90 3.61 × 10−3 0.92 3.4 0.44

0.0045 1.0 0.500 0 168 81 4 85 000 7.71 × 10−4 46 3.50 1.96 × 10−3 0.82 5.3 0.62

0.0090 1.0 0.500 0 201 81 4 34 000 1.48 × 10−3 49 7.33 3.61 × 10−3 0.87 5.1 0.67

0.0162 1.0 0.500 0 224 97 4 22 000 2.36 × 10−3 45 12.70 5.72 × 10−3 0.92 4.9 0.74

0.0021 3.0 1.000 0 168 81 4 119 000 4.18 × 10−4 56 5.09 1.12 × 10−3 0.68 6.5 0.47

0.0036 1.0 1.000 0 168 81 4 92 000 5.52 × 10−4 35 2.95 2.11 × 10−3 0.89 5.5 0.76

0.0015 3.0 1.500 0 168 81 4 188 000 2.68 × 10−4 47 3.57 1.08 × 10−3 0.81 5.3 0.60

E = 1 × 10−5

0.0500 1.0 0.100 0 168 81 2 6100 8.49 × 10−3 36 14.40 7.83 × 10−3 0.96 2.8 0.39

0.0350 1.0 0.150 0 168 81 2 12 000 5.93 × 10−3 39 11.30 7.73 × 10−3 0.96 3.0 0.45

0.0110 1.0 0.200 0 134 65 2 26 000 1.97 × 10−3 37 2.92 1.91 × 10−3 0.98 3.1 0.21

0.0150 1.0 0.200 0 134 65 2 20 000 2.54 × 10−3 40 4.06 3.41 × 10−3 0.95 3.3 0.33

0.0350 1.0 0.250 0 168 81 2 12 000 5.37 × 10−3 38 10.80 8.86 × 10−3 0.95 3.1 0.56

0.0500 1.0 0.250 0 168 81 2 12 000 6.93 × 10−3 38 13.50 1.03 × 10−2 0.96 3.2 0.58

0.0150 1.0 0.500 0 133 65 2 35 000 2.35 × 10−3 36 4.61 5.03 × 10−3 0.89 4.3 0.57

0.0350 1.0 0.500 0 168 81 2 18 000 4.56 × 10−3 36 9.58 9.35 × 10−3 0.94 3.7 0.66

0.0080 1.0 1.000 0 133 65 2 91 000 1.19 × 10−3 25 2.47 3.31 × 10−3 0.86 5.5 0.65

0.0117 3.0 1.500 0 168 81 2 34 000 1.48 × 10−3 35 9.12 5.44 × 10−3 0.94 4.1 0.67

0.0075 1.0 2.000 1 128 65 4 120 000 1.05 × 10−3 23 2.65 4.14 × 10−3 0.88 6.1 0.75

0.0100 1.0 2.000 1 128 65 4 120 000 1.22 × 10−3 23 3.55 6.20 × 10−3 0.89 4.8 0.81

0.0150 1.0 2.000 1 170 65 4 40 000 1.79 × 10−3 26 5.41 8.95 × 10−3 0.89 4.6 0.80

0.0200 1.0 2.000 1 170 81 4 45 000 2.34 × 10−3 28 6.65 1.03 × 10−2 0.87 5.1 0.79

0.0400 1.0 2.000 1 212 81 4 10 000 4.44 × 10−3 32 10.70 1.21 × 10−2 0.83 6.0 0.70

E = 3 × 10−5

0.0630 1.0 0.200 0 106 49 1 5200 1.01 × 10−2 27 7.48 9.38 × 10−3 0.96 2.8 0.31

0.0450 1.0 0.250 0 106 49 1 13 000 7.09 × 10−3 28 5.63 9.07 × 10−3 0.97 2.9 0.36

0.0720 1.0 0.250 0 133 65 1 13 000 1.09 × 10−2 26 8.30 1.13 × 10−2 0.94 2.9 0.38

0.0720 1.0 0.500 0 106 49 1 7000 8.95 × 10−3 26 7.32 1.38 × 10−2 0.95 3.5 0.54

0.0225 1.0 1.000 0 106 49 1 44 000 2.91 × 10−3 20 2.75 7.51 × 10−3 0.90 4.4 0.61

0.0750 0.3 1.000 0 106 49 2 13 000 8.36 × 10−3 17 3.18 2.24 × 10−2 0.85 4.7 0.76

0.1800 0.1 1.000 0 106 49 2 5000 2.13 × 10−2 18 3.01 3.67 × 10−2 0.73 6.6 0.69

0.0720 1.0 1.000 0 106 49 1 15 000 8.09 × 10−3 24 7.18 1.56 × 10−2 0.90 4.2 0.62

0.1080 1.0 1.000 0 133 65 1 17 000 1.17 × 10−2 25 9.67 1.69 × 10−2 0.87 4.7 0.57

0.0270 1.0 2.500 0 85 41 1 47 000 3.03 × 10−3 17 3.64 1.34 × 10−2 0.83 4.7 0.76

0.0720 1.0 2.500 0 106 49 1 20 000 7.53 × 10−3 24 7.32 1.81 × 10−2 0.78 5.6 0.63

0.1080 1.0 2.500 0 133 65 1 8300 1.11 × 10−2 26 9.85 1.91 × 10−2 0.74 6.6 0.56

0.0054 3.0 3.000 0 85 41 1 69 000 8.61 × 10−4 20 2.13 2.03 × 10−3 0.81 5.8 0.37

E = 1 × 10−4

0.0750 1.0 0.500 0 64 41 1 14 000 1.00 × 10−2 18 3.25 1.22 × 10−2 0.97 2.9 0.32

0.0750 1.0 1.000 0 64 41 1 9700 8.43 × 10−3 16 3.06 1.68 × 10−2 0.95 3.4 0.52

0.1500 1.0 1.000 0 85 41 1 6800 1.71 × 10−2 18 5.28 1.95 × 10−2 0.87 4.0 0.42

0.0750 1.0 2.000 0 106 49 1 23 000 8.27 × 10−3 15 3.26 1.89 × 10−2 0.86 4.3 0.59

0.1500 1.0 2.000 0 85 41 1 7700 1.65 × 10−2 18 5.40 2.13 × 10−2 0.75 5.3 0.45

0.3200 0.1 1.500 0 64 41 1 6700 3.61 × 10−2 12 2.14 5.30 × 10−2 0.66 7.1 0.58

0.1033 3.0 3.000 0 106 49 1 5300 0.98 × 10−2 19 8.26 1.56 × 10−2 0.80 4.8 0.42

0.1500 1.0 3.000 0 106 49 1 4800 1.57 × 10−2 18 5.46 2.41 × 10−2 0.70 6.1 0.49

0.0750 1.0 3.330 0 85 41 1 8100 8.29 × 10−3 15 3.47 2.11 × 10−2 0.74 5.2 0.59

0.0150 10.0 3.330 0 85 41 1 30 000 1.89 × 10−3 20 5.22 5.13 × 10−3 0.96 3.2 0.28

0.1500 1.0 5.000 0 106 49 1 3300 1.51 × 10−2 17 5.43 2.64 × 10−2 0.63 7.6 0.48

0.0667 3.0 6.000 0 106 49 1 12 000 6.56 × 10−3 18 6.42 1.61 × 10−2 0.74 5.5 0.50

0.0833 3.0 6.000 0 106 49 1 8500 7.95 × 10−3 18 7.41 1.67 × 10−2 0.70 6.1 0.46

0.1500 1.0 10.000 0 133 65 1 3500 1.45 × 10−2 18 5.44 2.91 × 10−2 0.55 10.1 0.46

0.0075 10.0 10.000 0 64 41 1 171 000 8.53 × 10−4 15 3.10 5.38 × 10−3 0.93 3.7 0.54

0.0150 10.0 10.000 0 85 41 1 37 000 1.57 × 10−3 17 5.11 7.61 × 10−3 0.88 4.1 0.49

0.0310 10.0 10.000 0 106 49 1 54 000 2.82 × 10−3 18 8.10 9.54 × 10−3 0.82 4.9 0.46
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Table 2. (Continued.)

Ra∗ Pr Pm rλ �max N r ms trun Ro �̄u Nu Lo f dip bdip f ohm

E = 3 × 10−4

0.1125 1.0 1.500 0 42 33 1 10 000 1.23 × 10−2 11 2.18 2.09 × 10−2 0.92 3.5 0.42

0.1125 1.0 3.000 0 42 33 1 5500 1.15 × 10−2 10 2.20 2.48 × 10−2 0.80 4.5 0.50

0.3750 0.3 3.000 0 64 41 1 2400 4.11 × 10−2 10 2.35 4.58 × 10−2 0.53 8.6 0.43

0.1890 1.0 3.000 0 64 41 1 115 000 1.99 × 10−2 12 3.11 2.71 × 10−2 0.67 5.3 0.39

0.2250 1.0 3.000 0 64 41 1 13 000 2.45 × 10−2 13 3.51 2.40 × 10−2 0.63 6.1 0.30

0.2430 1.0 3.000 0 64 41 1 27 000 2.77 × 10−2 13 3.72 1.98 × 10−2 0.59 7.3 0.22

0.0990 3.0 3.000 0 64 41 1 13 000 9.70 × 10−3 13 3.92 1.79 × 10−2 0.86 3.8 0.35

0.0990 3.0 9.000 0 64 41 1 11 000 9.65 × 10−3 13 4.14 2.03 × 10−2 0.62 6.2 0.38

0.2430 1.0 5.000 0 64 41 1 4500 2.38 × 10−2 12 3.64 3.28 × 10−2 0.57 7.6 0.38
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Figure 1. Regime diagram for dynamos at Pr = 1 with rigid boundaries driven by an imposed temperature contrast at different values of the Ekman number.

Circles show dipolar dynamos, diamonds non-dipolar dynamos and crosses failed dynamos. The size of the symbol has been chosen according to the value of

the Elsasser number. In parameter ranges not well covered by case studies the regime boundaries are tentative.
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Figure 2. (a) The tip of the arrow indicates the lowest magnetic Prandtl number at which a non-decaying dipolar dynamo was found. Solid line according to

eq. (25). (b) Tip of right arrow indicates lowest magnetic Reynolds number for self-sustained dipolar dynamos, left arrow highest magnetic Reynolds number

for cases with decaying field. Intermediate cases have not been tested.

This relation is confirmed by the new results at lower Ekman

number. At E = 3 × 10−6 the lowest magnetic Prandtl number at

which we found a dynamo, Pm = 0.06, lies somewhat above the

fitting line. However, from the systematic shift of the minimum Pm

for dipolar dynamos towards higher supercritical Rayleigh number

(Fig. 1), it seems likely that we have not reached the minimum, which

may require a Rayleigh number more than 60 times supercritical at

E = 3 × 10−6.
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Scaling properties of dynamos 103

Since the hydrodynamic Prandtl number is one for all the cases

considered here, eq. (25) holds also when the magnetic Prandtl num-

ber is replaced by the Roberts number q = κ/λ = Pm/Pr . Simitev

& Busse (2005) noted that q may be a more relevant parameter than

the magnetic Prandtl number. They found dynamos with a low Pm
only in cases when Pr is also low and speculated that for Pr ≤ O(1)

dynamo action occurs only at values of the Roberts number of order

unity or larger, which is contradicted by our results.

Another question is whether the minimum value for self-sustained

dynamo action of the magnetic Reynolds number

Rm = Ro

Eλ

= urms

λD
, (26)

depends on Pm. For dynamos in non-rotating systems that gener-

ate a magnetic field from small-scale turbulence it had been found

that the critical Reynolds number increases strongly when Pm is

lowered below one and it has been debated if such dynamos ex-

ist at all for Pm < 0.1 (Schekochihin et al. 2004,2005). When a

large-scale flow component is also present, low-Pm dynamos have

been found (Ponty et al. 2005), but require a magnetic Reynolds

number of the order 200, substantially higher than for dynamos at

Pm ≈ 1. In Fig. 2(b) we bracket the critical magnetic Reynolds

number as function of the magnetic Prandtl number at appropriate

values of the Ekman number. For the class of dynamos studied here,

there is no strong dependence of the critical magnetic Reynolds

number on Pm, provided the Ekman number is low enough. Our

results are compatible with a nearly constant critical Rm of about

40–45.

Kutzner & Christensen (2002) found that the dipolar dynamo

regime gives way to a class of dynamos that generate small-scale

magnetic fields when the Rayleigh number is sufficiently increased

with all other parameters held constant. The two regimes are clearly

distinguished in the magnetic spectra at the outer boundary: the

power is usually rather evenly distributed among the low-order har-

monics, except for the dipole term, which is clearly stronger or

clearly weaker, respectively, than the rest. When convection is driven

by an imposed temperature contrast between the shell boundaries, as

in the cases considered here, the transition is sharp, whereas for other

modes of driving convection it can be more gradual. The degree of

supercriticality of the Rayleigh number at which the transition oc-

curs was found to increase when the Ekman number was lowered

from 10−3 to 10−4 (Kutzner & Christensen 2002), thus making the

parameter space domain of dipolar dynamos comparatively larger

at low Ekman numbers. Here this trend is confirmed to continue for

E < 10−4 (Fig. 1). For the non-dipolar dynamos the critical mag-

netic Reynolds number is larger than 100. The dynamo mechanism

in the non-dipolar regime seems, therefore, less efficient than in the

dipolar regime.

Combining all results for different values of the Ekman num-

ber and the Prandtl numbers, we find non-dipolar dynamos at

high values of the Rossby number and dipolar ones at low val-

ues, with some overlap of the two classes in the range Ro ≈ 1.5–

4 × 10−2. The Rossby number can be considered as measuring the

importance of inertial forces relative to the Coriolis force. There-

fore, we hypothesize that the dipolar dynamo regime breaks down

when inertia starts to play an essential role in the force balance.

Sreenivasan & Jones (2006) observed a similar change of dynamo

regime when they varied the two Prandtl numbers together at fixed

values of the Ekman number and the Rayleigh number and attributed

the change to the non-dipolar regime to the growing influence of in-

ertial forces. They estimated that inertial effects become small when

Ro < 0.1.

Because the inertial term in eq. (2) involves a length scale whereas

the Coriolis term does not, a modified Rossby number that depends

on the characteristic length scale of the flow rather than on the shell

thickness is potentially a better measure for the balance between

inertia and Coriolis force. Assuming that the radial and horizontal

length scales are roughly similar, we estimate a characteristic value

from the spectra of kinetic energy as function of spherical harmonic

degree �. The mean value �̄u is obtained from the time-averaged

kinetic energy spectrum

�̄u =
∑

�〈u� · u�〉
2Ekin

, (27)

where u� is the flow component at degree �. As the mean radius to a

point inside the shell is of order one, we set the characteristic half-

wavelength of the flow to π/�̄u and the modified Rossby number

is

Ro� = Ro
�̄u

π
. (28)

In Fig. 3 we plot the relative dipole strength f dip versus the mod-

ified Rossby number. We have included all cases, independent of

the dipole strength, that satisfy the conditions (2) and (3) mentioned

at the beginning of the section. There is a rather clear transition

from the dipolar regime (f dip > 0.5) to the non-dipolar one (f dip <

0.3) at Ro� ≈ 0.12, irrespective of the values of the Ekman number,

Prandtl number and magnetic Prandtl number. The only outlier is a

non-dipolar case at Ro� ≈ 0.09. However, in this case the type of

dynamo solution was sensitive to the starting condition. Depending

on the initial magnetic field either a dipolar or a non-dipolar state

persisted, the latter for 1.2 magnetic diffusion times (the two solu-

tions are joined by a broken line in Fig. 3). In another case it took
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Figure 3. Relative dipole strength versus modified Rossby number. The

Ekman number is indicated by the shape of the symbol and the magnetic

Prandtl number by the shading (Pm < 0.3 black, 0.3 < Pm < 1 dark grey,

Pm = 1 light grey, Pm > 1 white). Hydrodynamical Prandtl numbers other

than one are indicated by an additional small cross (Pr = 3), larger cross

(Pr = 10), small circle (Pr = 0.3) or larger circle (Pr = 0.1) inside the

main symbol. The two symbols joined by a broken line indicate a case where

the dynamo regime depends on the starting condition.
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104 U. R. Christensen and J. Aubert

approximately three magnetic diffusion times for the transition from

a non-dipolar to a dipolar state to occur. Therefore, it is not clear if

both branches of the solution are stable in the long term. In general

the clear dependence of the regime on the modified Rossby number

supports the assumption that inertial forces play the key role in the

breakdown of dipolar dynamo solutions.

3.2 Heat transport

In Fig. 4(a) we plot in the conventional way the Nusselt number

versus the Rayleigh number normalized by its critical value for all

cases satisfying criteria (1)–(3). Of course the Nusselt number and

Rayleigh number correlate, however, there is substantial scatter and

the results do not fall on a single line. This changes remarkably when
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Figure 4. (a) Conventional Nusselt number versus Rayleigh number nor-

malized by its critical value. (b) Modified Nusselt number versus modified

flux-based Rayleigh number. Symbols as in Fig. 3.

we plot the modified Nusselt number versus the flux-based modified

Rayleigh number (Fig. 4b). We note that since both Nu∗ and Ra∗
Q

are defined in terms of the advected heat flux Qadv, the driving

temperature contrast �T in eq. (16) assumes the role of the physical

property that is determined by the functional dependence Nu∗(Ra∗
Q).

By the introduction of the modified ‘diffusionless’ parameters it is

possible to collapse the data for all dynamos, regardless of the values

of E, Pm and Pr, on a single regression line with a mean relative

misfit of 5 per cent. We obtain the following power-law dependence

Nu∗ = 0.076Ra∗0.53
Q . (29)

This is not much different from the scaling law obtained for non-

magnetic rotating convection between stress-free boundaries, for

which an exponent of 5/9 has been suggested (Christensen 2002).

The exponent for the dependence of Nu∗ on the Rayleigh number

Ra∗ based on �T is approximately 1.1. This very strong dependence

compared to an exponent of order 1/3 that is typical for Benard-type

convection seems to be a particular property of rotating convection.

A requirement is that convection fills the entire fluid volume, that

is, the Rayleigh number must be sufficiently supercritical (Tilgner

& Busse 1997).

3.3 Flow velocity

In Fig. 5 we plot the Rossby number, that is, the non-dimensional

rms velocity, against the modified Rayleigh number. The best-fitting

power law has the form

Ro = 0.85Ra∗0.41
Q . (30)

With a mean relative deviation of 18 per cent the fit is decent given

that the cases cover a broad range of the control parameters E, Pm
and Pr, and almost six decades in Ra∗

Q , but is not as good as in case

of the Nusselt number.

We attempted to reduce the residual scatter by assuming an addi-

tional dependence on one more parameter. The best result is obtained
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Figure 5. Rossby number versus modified Rayleigh number. Symbols as in

Fig. 3.
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ber and magnetic Prandtl number. Symbols as in Fig. 3.

with a two-parameter fit that involves the magnetic Prandtl number

(Fig. 6), for which the optimal exponent is −0.13.

Ro = 1.07Ra∗0.43
Q Pm−0.13. (31)

This reduces the mean deviation of the dynamo results from the

fitting law to 8 per cent. The improvement is substantial, but not so

large that a dependence on Pm can be firmly assumed. A similar

improvement on including a dependence on Pm had been found by

Christensen & Tilgner (2004) when scaling the magnetic diffusion

time as function of the magnetic Reynolds number. However, based

on results of a laboratory dynamo with a much lower Pm they re-

jected the additional dependence on the magnetic Prandtl number

at least for Pm � 1.

3.4 Magnetic field strength

It is often assumed that in a magnetostrophic force balance the El-

sasser number � should be of order one. For our dipole-dominated

dynamos we find a broad range of values for the Elsasser number,

between 0.06 and 100. There is some correlation with the magnetic

Reynolds number Rm (Fig. 7), but clearly � does not simply de-

pend on Rm alone. For a fixed value of Rm, the Elsasser number

tends to decrease with decreasing Ekman number. The large range

of values for � suggests that the dynamos are either not in a magne-

tostrophic balance or that the conventional Elsasser number is not a

good measure for the degree of magnetostrophy.

A somewhat better fit is obtained when we relate the Lorentz

number, that is, the non-dimensional mean magnetic field strength

in our scaling, to the modified Rayleigh number (not shown). We

do not discuss this results in detail, because a consideration based

on the energetics of the dynamo suggests a correction term that

significantly improves the fit to the numerical data. The fundamental

idea is that the magnetic field strength is not determined by a force

balance, but by the power available to balance Ohmic dissipation.

Dissipation and magnetic field strength are linked through the length

scale of the field, or a dissipation timescale, which we take as being a
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Figure 7. Elsasser number versus magnetic Reynolds number. Symbols as

in Fig. 3.

function of the flow properties. Christensen & Tilgner (2004) found

an inverse relation between the magnetic dissipation time τ ′, that

is, the ratio of magnetic energy Emag to Ohmic dissipation Dλ, and

the magnetic Reynolds number Rm. τ ′ is scaled with the magnetic

diffusion time and by τ we denote the dissipation timescaled with

the rotational timescale used here. From the relations τ = E−1
λ τ ′

and Ro = EλRm we find that τ ∼ Ro−1. Furthermore, from eqs (13),

(22) and (24) we obtain with Dλ = f ohm P ∼ f ohmRa∗
Q and Lo2 =

2E mag = 2Dλτ the relation

Lo

f 1/2
ohm

∼
(

Ra∗
Q

Ro

)1/2

. (32)

Using eq. (30) for the relation between Rossby number and Rayleigh

number, a dependence of the Lorentz number, corrected for the

fraction of Ohmic dissipation, on the modified Rayleigh number

with an exponent of order 0.3 is predicted.

In Fig. 8 we plot the corrected Lorentz number against the mod-

ified Rayleigh number. For our selected dynamos the best-fitting

power law is

Lo

f 1/2
ohm

= 0.92Ra∗0.34
Q , (33)

with a mean relative misfit of 17 per cent.

Again, as in the case of the Rossby number, the fit can be improved

by assuming a weak additional dependence on the magnetic Prandtl

number. A two-parameter best fit (Fig. 9) results in

Lo

f 1/2
ohm

= 0.76Ra∗0.32
Q Pm0.11. (34)

The reduction of the misfit, to 10 per cent, is not as strong as in the

case of the Rossby number.

3.5 Robustness of the scaling laws

We have found that the Rossby number and the Lorentz depend

on the modified Rayleigh number through a power law. They may
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sipation versus a combination of modified Rayleigh number and magnetic

Prandtl number. Symbols as in Fig. 3.

also depend weakly on the magnetic Prandtl number. Because of the

large range of extrapolation required for a planetary application, it

is important to verify that the power-law exponents are not biased

by dynamo cases that lie far away from an asymptotic regime. For

example, an exponent of 0.4 for the relation between Rossby number

and modified Rayleigh number has been found for non-magnetic

rotating convection, where the main force balance is between inertia,

Coriolis force and buoyancy force (Aubert et al. 2001). Inertia is

assumed to play a small role in planetary dynamos, however, it may

still be important in some of our dynamo cases. This might bias

Table 3. Best-fitting parameters.

A α β γ δ

Nu∗ 0.0861 0.527 −0.010 0.018 −0.007

Ro 1.159 0.419 −0.131 0.020 −0.028

Lo/
√

fohm 0.837 0.312 −0.105 0.023 −0.026

the power-law exponent towards a value appropriate for the inertial

regime. We test this by fitting only subsets of our dynamo data to a

power law.

Cases with a large value of the scale-sensitive Rossby number Ro�

are more affected by inertial forces than those at low Ro�. We set a

threshold for the modified Rossby number of 0.05, that is, a factor 2.5

below the critical value at which the dipolar dynamo regime breaks

down. When we reject all cases above this threshold, retaining 36

models, the exponent to Ra∗
Q for the Rossby number is 0.39 and that

for the corrected Lorentz number is 0.36. This is not very different

from the exponents obtained when all data are included. When we

reject all dynamos with an Ekman number of 10−4 or larger, which

are presumably more affected by viscous forces than those at lower

values of the Ekman number, the power-law exponents relating Ro
and Lo/f 1/2

ohm to the modified Rayleigh number remain unchanged

within one percent.

In order to verify that the parameters not included in the fit, the

Ekman number and the hydrodynamic Prandtl number, do not affect

the dynamo properties significantly we calculate a general least-

squares fit of the form

Y = ARa∗α
Q Pmβ Eγ Pr δ, (35)

where Y stands for any of Nu∗, Ro, or Lo/f 1/2
ohm. The best-fitting

exponents are listed in Table 3. Those describing a dependence on the

Ekman number or on the Prandtl number differ only very marginally

from zero.

These tests suggest that power laws relating the Rossby num-

ber and the Lorentz number to the flux-based modified Rayleigh

number, with exponents of the order 2/5 and 1/3, respectively, are

robust within our range of model parameters and can probably be

extrapolated beyond this range.

4 F O RC E B A L A N C E

The scaling laws presented in the previous sections are mainly em-

pirical, that is, they are derived by fitting numerical data. Usually

such laws can be understood in terms of a balance of dominant forces

or physical effects. We have presented a rationale for the scaling of

the magnetic field strength based on the available power that lead to

eq. (32). However, to arrive at our final expression (33) we had to re-

sort to the empirical relation between Rossby number and Rayleigh

number, for which an explanation is missing so far.

In the so-called mixing length theory for non-magnetic rotating

convection a triple balance between buoyancy, Coriolis force and

inertia is supposed. A critical point is the value of the character-

istic length scale δ. With the simple assumption δ ∼ D the flow

velocity is predicted to depend on the 1/3 power of the heat flux

(Starchenko & Jones 2002; Stevenson 2003). Aubert et al. (2001)

invoked different length scales parallel to the rotation axis, δ z ∼ D,

and perpendicular to it, δφ � D, and obtained with the triple force

balance a 2/5 power law for the dependence of the Rossby number

on the modified flux-based Rayleigh number. In the dynamo case

the presence of the Lorentz force adds complexity to any such anal-

ysis. In the magnetostrophic assumption, usually made for dynamos
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in an earth-like regime, inertia is replaced by the Lorentz force in

the triple balance. Starchenko & Jones (2002) derived a dependence

of the magnetic field strength ∼ (QB �)1/4 and found an order-

of-magnitude agreement with the estimated field inside the Earth

and Jupiter. In their analysis they supposed that the characteristic

length scale of the magnetic field is independent of the magnetic

Reynolds number and fixed the value to δB ≈ ro/50 from numerical

simulations at Rm = 200. However, the inverse dependence of the

magnetic dissipation time on the magnetic Reynolds number found

by Christensen & Tilgner (2004) in the range of 50–1000 for Rm
implies that δB ∼ Rm−1/2.

Analysing the zonal part of the flow in numerical models, Aubert

(2005) found that the zonal velocity scales differently for dynamos

and for non-magnetic convection, which can be explained by Lorentz

forces playing a significant role in the former case and inertia in the

latter. The importance of the Lorentz force seems less clear in our

case, where the total velocity and magnetic field are considered. The

large variability of the Elsasser number casts some doubt on a basi-

cally magnetostrophic balance. However, the conventional Elsasser

number (eq. 1) does not take into account that the Lorentz force de-

pends on the length scale of the magnetic field, whereas the Coriolis

force does not depend on any length scale, hence � may not be a

good measure for the relative importance of these two forces. By a

simple scaling argument we get the length scale δB from Ohmic dis-

sipation: Dλ ∼ Eλ Lo2/δ2
B ∼ f ohm P ∼ f ohm Ra∗

Q . Using eq. (33), we

obtain δB ∼ E1/2
λ Ra∗−1/6

Q . The ratio of the Lorentz force term to the

Coriolis term in eq. (2) scales as Lo2/(δB Ro) ∼ f ohmE−1/2
λ Ra∗ 0.42

Q .

Therefore, our scaling laws suggest a rather variable influence of

the Lorentz forces depending on the control parameters. Obviously

the Lorentz force must have a significant effect on the flow in ev-

ery dynamo, because this is the only way how the magnetic field

strength can saturate. However, it does not necessarily mean that a

global balance with the Coriolis force holds, which is implied in our

formula. The spatial distribution of the Lorentz force can be very

intermittent (see for example Figure 14 in Rotvig & Jones (2002)),

and the balance may be local rather than global. Furthermore, major

parts of the Coriolis force and/or the Lorentz force can be balanced

by pressure gradients, and only the unbalanced residuals are mean-

ingful in a MAC balance.

4.1 Enstrophy budget

We calculate for several of our models sources and sinks of enstrophy

ω2, which is the ‘energy of vorticity’ ω = ∇ ×u. In fluid systems

where the Coriolis force plays a significant role, the geostrophic

equilibrium usually holds between the Coriolis force and the pres-

sure gradient. However, the dynamics of the system is not controlled

by this equilibrium, but by departures from it, where the contribu-

tions of other forces play an decisive role. It is, therefore, useful

to remove the geostrophic balance from the Navier–Stokes equa-

tion by considering the vorticity equation, obtained by taking the

curl of eq. (2):

∂ω

∂t
+ ∇ × (ω × u) − 2

∂u

∂z

= Ra∗

ro
∇ × (T r) + ∇ × [(∇ × B) × B] + E∇2ω (36)

The pressure gradient disappears in eq. (36) and the Coriolis term is

reduced to the contribution of the departure from geostrophy ∂u/∂z.

Taking the dot-product of eq. (36) with ω we obtain the enstrophy

equation:

1

2

∂ω2

∂t
= −[∇ × (ω × u)] · ω︸ ︷︷ ︸

NI

−2
∂u

∂z
· ω︸ ︷︷ ︸

NC

+ Ra∗

ro
[∇ × (T r)] · ω︸ ︷︷ ︸

NB

+ (∇ × [(∇ × B) × B]) · ω︸ ︷︷ ︸
NL

+ E(∇2ω) · ω︸ ︷︷ ︸
NV

(37)

Each of the quantities N I,C,B,L,V gives insight into how the re-

spective forces affect the dynamics of vorticity in the convective

dynamo. To get an estimate of the importance of these quantities,

unsigned, time-averaged and normalized shell integrals I I,C,L,V are

defined as

II,C,B,L ,V =
〈∫

V ′ |NI,C,B,L ,V | dV∫
V ′ |NB | dV

〉
. (38)

The angular brackets denote the time-averaging operator, and V ′ is

the spherical shell volume minus the inner and outer viscous bound-

ary layers. These layers are excluded because rigid walls are sources

and sinks of enstrophy. I I,C,L,V represents the respective contribution

of inertia, Coriolis force, Lorentz force and viscous force in the en-

strophy budget, normalized by the driving contribution of buoyancy

(I B = 1).

The different contributions to the enstrophy budget are illustrated

in Fig. 10 for a reference case. N B is positive almost everywhere,

which correlates with the location of the axial vortices: buoyancy

is the main creator of enstrophy. The negative contribution of N V

shows that viscosity is destroying enstrophy mainly near the bound-

aries and at the edges of axial vortices. The Lorentz force makes

a mainly negative contribution N L. The Coriolis force withdraws

enstrophy from the interior of the fluid and creates enstrophy close

to the boundaries. This redistribution of enstrophy can be seen as

an effect of the Proudman–Taylor constraint. In the interior the fluid

the enstrophy associated with gradients of the velocity along ẑ tends

to be eliminated and recreated close to the boundary. N I is sizeable

near the inner boundary.

To explore the dependence of the various contributions to the en-

strophy budget on the control parameters we have calculated I I,C,L,V

for several other dynamo models. The results are shown in Fig. 11,

where each of the control parameters is varied separately. The contri-

bution of the Coriolis force I C is found to be consistently in balance

with the contribution of buoyancy I B = 1. Since the integrals are

normalized with I B, they can also be seen as normalized by I C ,

and as a logical result, the variations of I I,L,V basically reflect the

respective variations of the Rossby, Elsasser and Ekman numbers.

The contribution I L of the Lorentz force is quite variable, suggest-

ing again that the saturation of the magnetic field does not originate

in a force balance, but rather in an energy balance. In the case of

a non-dipolar dynamo included in Fig. 11(a), inertia is dominating

the enstrophy balance, in agreement with our previous assumption

that the dipolar dynamo regime breaks down when inertia becomes

important.

While the inertial and viscous contributions to the enstrophy bud-

get are usually smaller than those of the Coriolis and buoyancy force,

there is not an order-of-magnitude difference. However, we note that

by considering a vorticity equation rather than the original Navier–

Stokes equation smaller scales are more strongly emphasized. Both

the inertial term and the viscous term in the Navier–Stokes equa-

tion involve a length scale, whereas the Coriolis term does not.

Hence we expect that inertia and viscosity contribute less to a force

balance of the flow at large scales.
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Figure 10. Equatorial cuts of the axial vorticity ω · ẑ (dotted contours: negative values, plain contours: positive values, contour increment: 0.15), and the

various contributions to the enstrophy budget (same convention, contour increment: 0.018). E = 10−4, Pm = Pr = 1, Ra∗ = 0.075.
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Figure 11. Contributions to the enstrophy budget for various cases. (a) Ra∗
is variable (Pm = 1, Pr = 1, E = 10−4). (b) Pm is variable (Ra∗ = 0.075,

Pr = 1, E = 10−4). (c) E is variable (Ra∗ is 10 times supercritical, Pr =
1, Pm = 2). (d) Pr is variable (E = 3 × 10−5, Ra∗ is 10 times supercritical,

Pm = 1).

4.2 Scaling of the Rossby number

We now attempt to explore the theoretical background for the scaling

of the typical value Ro of the velocity. We assume that the thermal

fluctuations of typical amplitude δT have an azimuthal size of order

δϕ , different from the characteristic length scale of the flow δ z in

the direction of the rotation axis. In the previous section we have

seen that a balance between the curled Coriolis force and the curled

buoyancy force generally holds in the enstrophy budget (eq. 37):

2
∂u

∂z
∼ Ra∗

ro
∇ × (δT r). (39)

An order-of-magnitude analysis yields

Ro

δz
∼ Ra∗ δT

δϕ

. (40)

Temperature fluctuations and velocity can also be related through

an estimate of the convective Nusselt number:

Ro δT ∼ Nu∗, (41)

hence

Ro ∼ (Ra∗
Q)1/2

√
δz

δϕ

. (42)

The variation of
√

δz/δϕ with the Rayleigh number must account

for the difference between the observed scaling exponent of 0.41 and

the reference value of 1/2 in eq. (42). Either δϕ must increase with

Ra∗
Q , or δ z decrease, or both may vary. For non-magnetic convection,

Aubert et al. (2001) proposed that δ z/D remains of order one due

to the geostrophy of the convective flow, and that δϕ is determined

by a balance between inertia and Coriolis force and increases with

the vigour of convection. This theory yields Ro ∼ (Ra∗
Q)0.4, in close

agreement with our empirical results. Because of the strongly vari-

able and often rather small contribution of inertia to the enstrophy

budget (Fig. 11), it seems unlikely that the balance between inertia

and the Coriolis force can generally be invoked in our dynamo mod-

els. Furthermore, we calculated the mean harmonic order m̄ in the

kinetic energy spectrum, which should be inversely proportional to

δϕ . In models of non-magnetic convection (not reported here), we

found indeed a systematic decrease of m̄ with the Rayleigh num-

ber, consistent with the increase of δϕ observed experimentally by

Aubert et al. (2001). In the dynamo cases however, the variation of m̄
with the Rayleigh number is smaller and incoherent. This suggests
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that the force balance differs between non-magnetic and magnetic

cases. We must, therefore, assume that in the dynamos δ z is reduced

when the flow becomes more vigorous, which might be affected by

Lorentz forces. However, we did not record the characteristic length

scale in z-direction in our models and a more definitive analysis

remains a task for the future.

5 A P P L I C AT I O N T O T H E E A RT H

A N D P L A N E T S

In this section we discuss the scaling laws for the heat flow, flow

velocity and magnetic field in physical units and make applications

to the geodynamo and other planetary dynamos, assuming that the

scaling laws remain valid under planetary conditions.

5.1 Core heat flow

The exponent in the scaling law for the modified Nusselt number

(eq. 29) is close to 0.5, and in order to simplify the following dis-

cussion, we assume it to be exactly 0.5. With the exponent fixed in

this way, the constant in eq. (29) should be adjusted:

Nu∗ ≈ 0.05Ra∗1/2
Q . (43)

Casting the scaling law into dimensional form we then obtain

Qadv ≈ 0.01
πroriαgoρc�T 2

�
. (44)

A remarkable point about eq. (44) is that the (advected) heat flow

is independent of thermal conductivity. Of course, this is a con-

sequence of the existence of a relation between non-dimensional

parameters Nu∗ and Ra∗
Q that are both independent of thermal con-

ductivity. However, it is surprising that conductivity plays no role

because the heat must be conducted through boundary layers at the

inner and outer shell boundaries. Obviously eq. (44) cannot hold

in the limit of vanishingly small conductivity where the thermal

boundary layer thickness must go to zero. The validity of eq. (44)

probably requires that the thermal boundary layer extends beyond

the Ekman layer. With an Ekman layer thickness of DE1/2 and a

thermal boundary layer thickness of D/Nu, using eqs (18) and (43)

and neglecting the difference between Nu and Nu − 1, we arrive at

the condition

Ra∗
Q < 400E Pr−2. (45)

This condition is satisfied in all numerical models. With the esti-

mates for Ra∗
Q given below it also satisfied in the Earth’s core.

Let us assume that convection in the Earth’s core is mainly ther-

mally driven. Estimates for the core heat flow vary widely (e.g.

Buffett 2002). Taking a value of 2 TW for the advected heat flow

and appropriate values for the other parameters (α = 10−5, go =
10, ρ = 104, c = 700, r o = 3.48 × 106, r i = 1.22 × 106, � =
7.3 × 10−5, in SI-units), we can use eq. (44) to estimate a driving

(superadiabatic) temperature contrast of �T ≈ 1 mK. The corre-

sponding density anomaly providing the buoyancy is 10−4 kg m−3.

The same value has been estimated by Aurnou et al. (2003) from

a study of vortex-flow driven by a thermal wind inside the core’s

tangent cylinders.

5.2 Buoyancy flux and inner core growth

Since the buoyancy flux in the Earth’s core is poorly constrained,

the value of the Rayleigh number Ra∗
Q cannot be calculated directly.

However, decent estimates for the characteristic flow velocity in the

core have been derived from geomagnetic secular variation. There-

fore, we use the relation between Rossby number and Rayleigh num-

ber to estimate a value for the latter. A typical velocity of flow near

the core’s surface obtained by inverting secular variation data is

0.4–0.5 mm s−1 (Voorhies 1986; Bloxham et al. 1989). Only the

large-scale part of the flow is retrieved in these inversions and it is

an open question how much energy is present at smaller scales and

contributes to the rms velocity. In our models we find that the ve-

locity of the large-scale flow below the Ekman layer near the outer

surface, for harmonic degrees � up to 12, is typically of the order of

1/4 to 1/2 of the total rms velocity in the entire shell. Taking this

ratio as a rough guide, a better estimate for the true rms velocity in

the core may be 1 mm s−1, which gives a Rossby number of 6 ×
10−6. From eq. (30) the flux-based modified Rayleigh number in the

core is then obtained as Ra∗
Q = 3 × 10−13.

A somewhat independent estimate of Ra∗
Q is obtained from the

scaling relation for the Rossby number related to the zonal part of

the flow that has been obtained by Aubert (2005): Rozonal ≈ 0.9

Ra∗1/2
Q . The zonal flow contributes significantly inside the Earth’s

inner core tangential cylinder, but is substantially weaker outside.

A characteristic value is 0.1 mm s−1 (Olson & Aurnou 1999; Hulot

et al. 2002). The zonal flow Rossby number of 6 × 10−7 leads to an

estimate for the Rayleigh number of Ra∗
Q = 4 × 10−13, very similar

to the value derived using the global velocity.

Assuming a core viscosity of ν = 2 × 10−6 m2 s1 and thermal

diffusivity of 8 × 10−6 m2 s−1, which gives E = 5 × 10−15 and

Pr = 0.25, other parameters of interest have the following values:

Nu∗ ≈ 10−8, Nu ≈ 106, Ra∗ ≈ 10−5 and Ra ≈ 1023. The criti-

cal Rayleigh number for non-magnetic convection at this Prandtl

number is Racrit ∼ 2 E−4/3 ≈ 2 × 1019 (Jones et al. 2000), hence

convection in the core would be 5000 times supercritical even in the

absence of a magnetic field. Our estimate for the degree of super-

criticality is fairly similar to that obtained by Gubbins (2001) along

different lines of reasoning for ‘turbulent’ parameters, where his ra-

tio between turbulent and molecular thermal diffusivity is equivalent

to our Nusselt number.

If core convection were completely thermally driven, these values

of the the Rayleigh number would correspond to a superadiabatic

heat flow of 2–3 TW. However, it is believed that most of the driving

buoyancy arises from the rejection of the light alloying element from

the growing inner core (Loper 1978; Buffett et al. 1996). Kutzner &

Christensen (2002) found that the properties of chemically driven

dynamos, in which the buoyancy flux originates at the inner shell

boundary and is zero on the outer boundary, are fairly similar to

those of dynamos driven by a fixed temperature contrast. We assume

that the same scaling laws hold, with Ra∗
Q replaced by the Rayleigh

number based on the buoyancy flux Ra∗
B (eq. 20). Our estimated

value for the flux-based modified Rayleigh number of 3–4 × 10−13

translates into a buoyancy flux of 3 − 4 × 104 kg s−1. The rate of

growth of the inner core radius ri is obtained as

dri

dt
= Q B

4πr 2
i �ρic

. (46)

�ρ ic is the compositional contribution to the density contrast at the

inner core boundary, which is estimated to be in the range 350–700

kg m−3 (Gubbins et al. 2004). The predicted rate of inner core growth

is approximately 0.1 mm yr−1. Assuming for simplicity a constant

buoyancy flux, which concurs with a magnetic field strength that did

not change substantially over geological time, the age of the inner

core tic = 4πr3
i �ρ ic/(3QB) is obtained as 3.5 ± 1.5 Gyr. The cal-

culated rate of inner core growth is smaller and the suggested inner
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core age substantially larger than other recent estimates (Labrosse

et al. 2001; Nimmo et al. 2004), which assumed that a higher heat

flux from the core (or higher buoyancy flux) was necessary to drive

to geodynamo. With typical values for the relevant thermodynamic

parameters, a slightly subadiabatic value of the CMB heat flux is

sufficient to let the inner core grow at 0.1 mm yr−1 and generate

a buoyancy flux at the inner core boundary of the order required

by our analysis. The buoyancy flux at the CMB is weakly negative

in such a scenario, which should be taken into account for a more

quantitative analysis.

We close this section by giving for later purposes the relation be-

tween the dimensional characteristic velocity U and the flux, where

we set for simplicity the exponent in eq. (30) equal to 0.4 and adjust

the constant:

U ≈ 0.7

(
D

�

)1/5 (
αgo Qadv

4πroriρc

)2/5

. (47)

5.3 Core magnetic field

Next we derive a law for the dimensional magnetic field strength

by using the dependence of the Lorentz number on the Rayleigh

number with a power-law exponent of 1/3 and no influence of the

magnetic Prandtl number (eq. 33). The fraction of Ohmic dissipation

in most of our models is in the range of 0.3–0.8. For the Earth’s

core f ohm ≈ 1 is usually assumed, based on a ratio of magnetic

energy to kinetic energy much larger than one and the high magnetic

diffusivity. However, if the kinetic energy is allowed to cascade

to much smaller length scales than the magnetic energy, viscous

dissipation may still be significant. From our model results we did

not find a simple rule of how f ohm varies with the control parameters,

but for simplicity we will make the usual assumption that viscous

dissipation becomes negligible under core conditions. Replacing

again the heat flux by the buoyancy flux, we then obtain for the

characteristic value of magnetic induction inside the dynamo region

B ≈ 0.9 μ1/2ρ1/6

(
go Q B D

4πrori

)1/3

. (48)

This scaling law is remarkable, because it predicts that the mag-

netic field strength is not only independent of the electrical conduc-

tivity (or magnetic diffusivity) but also of the rotation rate. It does

not imply that these two properties are irrelevant; obviously the dif-

fusivity must be low enough for the magnetic Reynolds number to

be supercritical and, as was shown above, the rotational effects must

be strong in comparison to the inertial force in order to get a dipole-

dominated dynamo at all. However, eq. (48) implies that once these

two conditions are satisfied, the precise values of the conductivity

and of the rotation rate become unimportant and the magnetic field

strength is basically determined by the buoyancy flux and the size

of the dynamo.

For the estimated buoyancy flux of 3−4 × 104 kg s−1 an average

magnetic field strength in the core of about 1.2 mT is obtained from

eq. (48). The corresponding Lorentz number is 6 × 10−5. Our pre-

diction is somewhat lower than usually quoted values for the core

field in the range of 2–4 mT, but the magnetic field strength inside

the core is poorly known. It can be estimated via an assumption

on how the mean field in the interior relates to the large-scale mag-

netic field on the core–mantle boundary (CMB). The observed mean

dipole field on the CMB is 0.26 mT and the mean field strength in

harmonic degrees 1–12 is 0.39 mT (Bloxham & Jackson 1992). In

our dynamo models, the magnetic field inside the fluid shell is 3–10

times stronger than the dipole field on the outer boundary (factor

bdip in table 2). If such factor applies also to the geodynamo, the core

field should be in the range 0.8–2.6 mT. Many of our dynamo mod-

els overestimate the contribution of the dipole to the external field,

that is, have factors f dip > 0.8 as compared to f dip ≈ 0.68 for the ge-

omagnetic field. bdip is anticorrelated with f dip and for models with

earth-like values of f dip the factor bdip is typically 6–7, suggesting

a core field strength of 1.7 mT. In a different approach, Zatman &

Bloxham (1997) analysed secular geomagnetic variations in terms

of torsional oscillations in the core and obtained an rms strength of

the magnetic field component Bs pointing away from the rotation

axis of ≈0.4 mT. While in some conceptual dynamo models the Bs

component is comparatively small (Braginsky 1975), we find that in

our models Bs is not significantly weaker than the other components.

In this case the inferred Bs ≈ 0.4 mT corresponds to an overall field

strength of about 1 mT. We conclude that our prediction from the

scaling laws is in reasonable agreement with independent estimates

for the core field strength.

When we use the scaling laws involving a dependence on the

magnetic Prandtl number, first eq. (34) to estimate the Rayleigh

number in the Earth’s core, and in the next step eq. (31) to obtain the

magnetic field strength, the results differ substantially. For a value

Pm ≈ 2 × 10−6 a Rayleigh number Ra∗
Q ≈ 10−14 is obtained, with

a corresponding buoyancy flux of about 1000 kg s−1, a factor of 30

lower than the above estimate. Such a low value seems unlikely. The

predicted Lorentz number is 7 × 10−6, corresponding to a magnetic

field strength of 0.13 mT. This is only one-third of the strength of

the poloidal field at the core-mantle boundary and can, therefore, be

ruled out as a characteristic value for the magnetic field inside the

core.

5.4 Jupiter’s dynamo

Jupiter’s magnetic field is similar to the Earth’s field in terms of the

ratio of dipole to higher multipole moments and the dipole tilt rela-

tive to the rotation axis, but is about 10 times stronger at the surface

than Earth’s field (Connerney 1981). The internal heat flow is well

known, so that we can compare the prediction for the magnetic field

strength from our scaling laws with the observed field strength. One

complication is that the dynamos in the metallic hydrogen core of

these planets are powered by secular cooling, that is, the sources of

buoyancy are volumetrically distributed whereas in our numerical

model they are located at the inner boundary. To account for this,

we replace the inner radius ri in eq. (48), which refers actually to the

radius at which the heat enters, by an effective value of ro/2 and set

D = ro/2, thus replacing the term in parenthesis by goQB/(4πro).

The outer limit of the dynamo region is in the pressure range P ≈
130–160 GPa (Guillot et al. 2005), which corresponds to approxi-

mately 0.83 of the planetary radius. Probably most of the observed

internal heat flow of 5.4 Wm−2 (Guillot et al. 2005) originates in the

deep interior. The factor for conversion of heat flux into buoyancy

flux, α/c p = ρ/P (∂logT/∂logP)S is approximately 10−9 kg J−1 in

the dynamo region (Guillot 1999), which leads to a buoyancy flux

of 3 × 108 kg s−1. From this and r o = 58 000 km, go = 30 m s−2 and

ρ = 1400 kg m−3 we obtain a magnetic field strength of 8 mT. The

mean dipole field strength of Jupiter, downward continued to ro, is

1.1 mT. Applying a factor of 6–7 between the field strength inside

the dynamo region and that of the dipole on its the outer boundary,

as discussed above, leads to an estimate for the internal field in good

agreement with the prediction from the scaling law.

A characteristic velocity in Jupiter’s dynamo region of approxi-

mately 2 cm s−1 is predicted from eq. (47), that is, 20 times faster

than in the Earth’s core. Details of the secular variation of Jupiter’s
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magnetic field are not known, but Russell et al. (2001) determined a

change of the dipole tilt by 0.5◦ between 1975 and 2000. The change

of tilt of the Earth’s dipole in 25 yr intervals during the time period

1690–2005 according to the ufm1 (Bloxham & Jackson 1992) and

IGRF (http://swdcwww.kugi.kyoto-u.ac.jp/igrf) models was highly

variable, between zero and 1.3◦. The average value of 0.4◦ change

in 25 yr is comparable to the rate of change of Jupiter’s dipole.

Assuming that the changing tilt represents predominantly magnetic

field advection in both cases, the magnitude of the large-scale flow

component that advects the dipole field must differ in proportion

of the radii of the dynamo regions in Jupiter and Earth, that is, be

larger in Jupiter by a factor of about 17, in good agreement with the

predicted difference of the rms velocity.

5.5 Magnetic fields of other planets

A similar calculation for Saturn, whose dynamo region is bounded

to approximately 60 per cent of the planetary radius, predicts an

internal magnetic field strength of about 4 mT, when we assume that

roughly one-half of the observed internal heat flow originates in the

metallic and deeper layers. In comparison, the observed dipole field

projected to the outer boundary of the dynamo region has a mean

strength of only 0.15 mT. Either our scaling law fails in the case

of Saturn, or the ratio of the internal field strength to the external

dipole strength is much larger than in the case of Jupiter and Earth.

The very high degree of axisymmetry of Saturn’s field (Acuña et al.
1981) suggest that the dynamo could be of a different type compared

to that in the other two planets. It has been suggested that ongoing

fractionation and downward segregation of helium in the outer parts

of the metallic region provides energy to drive the dynamo but also

leads to a stably stratified conducting region, which may have a

strong influence on the magnetic field escaping through this layer

(Stevenson 1982a,b). Wicht (personal communication, 2005) found

that a dynamo model driven by differential rotation between the

inner and outer boundaries of a spherical fluid shell can have a highly

axisymmetric external magnetic field. In his models, the ratio bdip

is approximately 15.

The magnetic fields of Uranus and Neptune have a strongly tilted

dipole that does not dominate compared to higher multipole com-

ponents, so that our scaling laws do not apply. The relatively low

conductivity in the dynamo regions of these planets implies a low

Elsasser number �. Simple models of dynamos with non-axial

dipoles (Aubert & Wicht 2004) suggest that in this case the mag-

netic field saturates at low values of �. Stanley & Bloxham (2004)

present a dynamo model where convection is restricted to a relatively

thin region overlying a stable fluid layer and which reproduces the

observed spectral characteristic of the magnetic field of Uranus and

Neptune.

Mercury’s field is probably dipolar, but very weak compared to

that of the other planets. Could this be due to a low buoyancy flux

driving Mercury’s dynamo? Because neither the heat flux nor a char-

acteristic velocity in the core are known, we use the magnetic field

strength to estimate the buoyancy flux. The size of the inner core is

unknown. The scaling laws for thin-shell dynamos or for dynamos

with a very small inner core probably differ from those derived here,

therefore, we assume a fluid shell of moderate thickness D = 1000

km. Arguing along the same lines that we applied to other planets,

we estimate from the magnetic field strength of 0.3 μT at the plane-

tary surface a characteristic field strength in the core of 5 μT, which

corresponds to a Lorentz number Lo ≈ 4 × 10−5. The Rayleigh

number obtained from eq. (33) is Ra∗
Q ≈ 10−13. While this value is

similar to our estimate for the Earth, the smaller size and the much

slower rotation (� ≈ 1.3 × 10−6) make the absolute value of the

buoyancy flux inconceivably small, of the order 0.01 kg s−1. The

magnetic Reynolds number obtained with eqs (36) and (30) would

be around 4, insufficient for sustaining a dynamo. Clearly, weak

driving of the dynamo (alone) cannot explain the weakness of Mer-

cury’s magnetic field and the explanation may lie in some intrinsic

difference between dynamos with a moderate size of the inner core,

as in case of the Earth, and dynamos with a very large inner core

(Stanley et al. 2005) or a very small one (Heimpel et al. 2005).

6 D I S C U S S I O N A N D C O N C L U S I O N S

Our analysis shows that dynamos which generate a dipole-

dominated magnetic field are preferred when rotational effects on

the flow are strong. A strong influence of inertia favours dynamos

characterized by weaker magnetic fields dominated by higher multi-

pole components (see also Sreenivasan & Jones 2006). They are less

efficient in the sense that they require a higher magnetic Reynolds

number. This explains the earlier finding that dipolar dynamos at

realistic values of the magnetic Prandtl number Pm � 1 require

also very low values of the Ekman number. Pm can be considered

as the ratio of the magnetic Reynolds number to the hydrodynamic

Reynolds number. In order to exceed the critical value of Rm, which

we find consistently to be approximately 50 for dipolar dynamos, the

hydrodynamic Reynolds number has to be very large at low Pm. To

‘fight’ the associated inertial effects, the rotational constraints must

be made very strong, that is, the Ekman number low. If the scaling

law for the minimum magnetic Prandtl number at which a dipolar

dynamo is possible (eq. 25) remains valid to earth-like values of the

Ekman number, the minimum magnetic Prandtl number would be

of order 10−8, well below the estimated core values of Pm ≈ 10−6.

Without rotational effects, dynamos are more difficult to obtain at

Pm � 1 (Schekochihin et al. 2004; Ponty et al. 2005).

In all available numerical geodynamo models several control pa-

rameters are far from earth values, mainly because it is not possible

to run simulations at the appropriate low values of the viscosity

and thermal diffusivity. Whether or not the difference is important

depends on the role that diffusive processes play in these models.

In the present study we have varied each of the key parameters (E,

Pm, Pr, Ra∗) over at least two orders of magnitude and found that

within our parameter range the characteristic dynamo properties

are at most weakly dependent on the diffusivities. Defining the non-

dimensional properties (Rossby number, Lorentz number, modified

Nusselt number) and the key control parameter (modified Rayleigh

number) in a way that makes them independent of any diffusivity

has been very helpful to demonstrate this point. It allows to collapse

the data from a substantial range of the 4-D parameter space into a

simple dependence on the modified Rayleigh number, at least as a

first approximation.

While a simple power law relating the modified Nusselt num-

ber to the modified Rayleigh number gives an excellent fit to our

results, in the cases of the characteristic flow velocity (Rossby num-

ber) and magnetic field strength (Lorentz number) we cannot rule

out an additional dependence on other parameters, in particular the

magnetic Prandtl number. Although the suggested dependence is

weak, it poses a serious problem. Given the large range of extrapo-

lation over five orders of magnitude from our models to planetary

values of Pm, the results obtained from the scaling laws with or with-

out a dependence on Pm differ substantially. It is difficult to verify

or reject such a dependence based on the numerical results alone;

C© 2006 The Authors, GJI, 166, 97–114

Journal compilation C© 2006 RAS



112 U. R. Christensen and J. Aubert

furthermore, it may change outside the parameter range covered by

the model calculations. In the case of scaling the magnetic dissipa-

tion time Christensen & Tilgner (2004) tried to resolve the ambiguity

by invoking results from the Karlsruhe dynamo experiment (Müller

et al. 2004), which do not support an additional dependence on the

magnetic Prandtl number. Because the flow is strongly constrained in

this experiment it cannot be used to test our scaling for the Rossby

number and would be of limited help to test the Lorentz number

scaling, which through eq. (32) is related to that of the Rossby num-

ber. Future dynamo experiments with unconstrained flow in rotating

spherical containers (Lathrop et al. 2001; Cardin et al. 2002) will be

better suited to investigate a possible dependence of the magnetic

field strength on the diffusion constants or rotation rate.

The rationale for our scaling of the magnetic field strength is not

based on the MAC balance, as most previously suggested heuristic

scaling laws are (Stevenson 1979,2003; Starchenko & Jones 2002),

but on the energetics of the dynamo. These two approaches are not

exclusive. Energy is necessarily conserved, but the MAC balance

could be satisfied as well. The large variability of the Elsasser num-

ber suggests that this is not generally the case, but the Elsasser num-

ber may not be adequate to describe the force balance. Therefore,

we have calculated the enstrophy budget of several of our models,

which eliminates from consideration those parts of the Coriolis or

Lorentz forces that are balanced by pressure gradients. The results

suggest that the Coriolis and buoyancy forces are globally in bal-

ance, however, the total contribution of the Lorentz force is again

quite variable. A drawback of studying enstrophy is that it empha-

sizes the balance for small scales in the flow more strongly than that

on large scales. We conclude that the force balance in our models is

rather complex. It cannot be understood in terms of a simple MAC

balance, in the sense of a close agreement of the mean values of the

forces in questions or of their contribution to the enstrophy budget.

Whether a MAC balance holds in planetary cores, or in what sense

it holds, must be considered an open question. Inertial and viscous

forces can play a role provided the flow contains energy at suffi-

ciently short length scales. These scales may be too small for being

relevant to the magnetic induction process, however, by inverse cas-

cading of energy (by Reynolds stresses) they can strongly influence

the larger-scale flow.

There are some remarkable differences between previously sug-

gested scaling laws and ours. Our scaling of the velocity (eq. 47) is

only weakly dependent on the rotation frequency, U ∼ �−1/5 com-

pared to U ∼ �−1/2 in case of a MAC balance (Starchenko & Jones

2002; Stevenson 2003). We note that this result depends crucially

on the exact value of the exponent in the power law relating the

Rossby number to the modified Rayleigh number (eq. 30). A value

of 0.5 instead of our preferred 0.4 leads to the MAC balance result.

The scaling law for the magnetic field (eq. 48) is completely inde-

pendent of the rotation rate and the electrical conductivity σ . Under

the magnetostrophic assumption it is usually suggested that B is in-

dependent of the buoyancy flux QB and varies as B ∼ �1/2σ−1/2,

based on a balance of Lorentz and Coriolis force expressed by an El-

sasser number of order one (e.g. Stevenson 2003). With the different

approach of balancing Lorentz force and buoyancy and assuming

a fixed length scale δB of the magnetic field, Starchenko & Jones

(2002) suggested a dependence B ∼ �1/4Q1/4
B . We would obtain the

same result following the reasoning given in Section 3.4 when we

assume an exponent of 1/2 instead of 2/5 in the power law for the

Rossby number.

Estimates for the buoyancy flux in the Earth’s core, which presum-

ably is mostly the compositional flux related to inner core growth,

are important because they put constraints on the age of the Earth’s

inner core, the necessity for heat-producing elements such as40K in

the core, and the degree to which convection in the Earth’s mantle is

driven by heating from the core (Labrosse 2002; Buffett 2003). Our

estimate of 3 × 104 kg s−1 based on the scaling of the characteristic

flow velocity is in good agreement with results from scaling laws for

the zonal flow component alone (Aurnou et al. 2003; Aubert 2005).

Furthermore, the estimate for the power consumption of the geo-

dynamo of 0.2–0.5 TW obtained from a scaling law of the Ohmic

dissipation time (Christensen & Tilgner 2004) can be translated us-

ing eqs (20) and (21) into a buoyancy flux of 1.3−3.3 × 104 kg s−1,

in agreement with the other estimates. The rather low values imply

that the inner core grows slowly and started to nucleate early in the

Earth’s history.

Our predictions for the magnetic field strength in the Earth’s and

Jupiter’s core agree well with estimates based on the observed field

and reasonable assumptions on the ratio between internal and ex-

ternal field. This is also true for other suggested scaling laws based

on simple force-balance arguments. The magnetic fields of Mercury

and to lesser degree of Saturn pose a problem for our scaling laws,

but also for the other approaches. Mercury and Saturn probably

represent different classes of dynamos, whereas Earth and Jupiter

basically fall into the same category. The advantage of our scaling

laws is that they are based on a fair number of actual dynamo sim-

ulations, even if these have been performed at parameters values

different from the planetary ones. A drawback is that we can only

give a partial theoretical basis for our scaling laws and cannot ex-

clude slightly more complex dependencies that would lead to quite

different results when applied to the Earth. However, the fact that

Earth and Jupiter fit well with our simple scaling laws supports the

view that the present numerical dynamo models operate indeed in

the same regime as these two planetary dynamos do. This enhances

our confidence that dynamo models are a useful tool to understand

not only the bulk properties of planetary magnetic fields but also

details of its spatial and temporal behaviour.

N O T E A D D E D I N P RO O F

Continuing the simulation at the lowest Ekman number of 10−6 for

another 14 advection times suggested that it has not reached its final

equilibrium. Its data should not be used. Omitting this case does not

affect any of the scaling laws.
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A P P E N D I X A : P O W E R G E N E R AT I O N

Here we show that the flux-based modified Rayleigh number is a

measure for the power P generated by the buoyancy forces. Denoting

the time average by angular brackets and using non-dimensional

quantities throughout, we write the averaged eq. (21) as

P = Ra∗
∫ ro

ri

r

ro

(∫
S
〈ur T 〉 d S

)
dr, (A1)

The surface integral in (A1) is equivalent to the non-dimensional

advected heat flux Qa(r) through a spherical surface at radius r. In

general Qa will vary with r. The conservation of the total (advec-

tive and diffusive) heat flux Q can be written by taking the surface

integral form of (4) and averaging in time:

d Q

dr
= d

dr

(
Qa − Eκ

∫
S

〈
∂T

∂r

〉
d S

)
= 0. (A2)

Q, Qa and P refer here to the time-average values. The total heat flow

is constant with radius and by definition equal to the heat flow in a

conductive state times the Nusselt number. Using square brackets
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Figure A1. Power versus modified flux-based Rayleigh number. Symbols

as in Fig. 3. The slope of the fitting line has been set to one, the constant

obtained from a best fit is 6.97.

for the mean on a spherical surface, we can write:

Qa = 4πriro NuEκ + Eκ4πr 2 d 〈[T ]〉
dr

, (A3)

Combining (A1) and (A3) we obtain:

P = 4π Ra∗ Eκ

(
Nu

∫ ro

ri

ri rdr +
∫ ro

ri

r 3

ro

〈[T ]〉
dr

dr

)
. (A4)

The second integral is negative. It is of order one and, therefore, small

compared to the first term in parenthesis when Nu � 1. The precise

result at moderate values of the Nusselt number depends on the radial

distribution of the temperature gradient, or in other words, on the

partitioning of conductive and advective heat transport with radius.

To obtain an approximate expression we evaluate the second integral

for a purely conductive temperature gradient dT/dr = −riro/r 2,

which assumes that the ratio of advective to conductive heat flow

does not change with r:

P ≈ 2π Ra∗ Eκ (Nu − 1) ri

(
r 2

o − r 2
i

)
. (A5)

Writing the result in terms of the ratio η = ri/ro and the heat-flux-

based modified Rayleigh number we obtain:

P ≈ 2πη
1 + η

(1 − η)2
Ra∗

Q ≈ 7.01Ra∗
Q . (A6)

We have recorded the power in our selected dynamo models by

evaluating and time averaging the integral (21) and plot it in Fig. A1

against the Rayleigh number Ra∗
Q . The points fall almost perfectly

on the line given by eq. (A6). Although the radial temperature dis-

tribution certainly deviates from the conductive one, this appears to

be of little consequence. However, the good agreement holds only

for fully developed convection with Nu > 2. In cases with smaller

values of the Nusselt number we find that the power is below the

value given by eq. (A6).
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