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Weil-Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models

We prove that Mirzakhani's recursions for the volumes of moduli space of Riemann surfaces are a special case of random matrix recursion relations, and therefore we confirm again that Kontsevich's integral is a generating function for those volumes. As an application, we propose a formula for the Weil-Petersson volume Vol(M g,0 ).

1 Introduction Let V g,n (L 1 , . . . , L n ) = Vol(M g,n ) = d 0 +...+dn=3g-3+n n i=0 1 d i ! κ d 0 1 τ d 1 . . . τ dn g,n L 2d 1 1 . . . L 2dn n (1 -1)
denote the volume of the moduli space of curves of genus g, with n geodesic boundaries of lengths L 1 , . . . , L n , measured with the Weil-Petersson metrics. Using Teichmuller pants decomposition and hyperbolic geometry, M. Mirzakhani [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF] has found a recursion relation among the V g,n 's, which allows to compute all of them in a recursive manner. It was then observed [START_REF] Mulase | Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy[END_REF] that this recursion relation is equivalent to Virasoro constraints.

In fact, Mirzakhani's recursion relation takes a form [START_REF] Liu | A simple proof of Mirzakhani's recursion formula of Weil-Petersson volumes[END_REF] which is amazingly similar to the recursion relation obeyed by matrix models correlation functions ( [START_REF] Eynard | Topological expansion for the 1-hermitian matrix model correlation functions[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF]) and which were indeed initialy derived from loop equations [START_REF] Eynard | Topological expansion for the 1-hermitian matrix model correlation functions[END_REF], i.e. Virasoro constraints.

Here we make this observation more precise, and we prove that after Laplace transform, Mirzakhani's recursion is identical to the recursion of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] for the Kontsevich integral with times (Kontsevich's integral depends only on odd times):

Z(t k ) = dM e -N Tr [ M 3 3 +ΛM 2 ] , t 2k+3 = 1 N Tr Λ -(2k+3) = (2π) 2k (-1) k (2k + 1)! + 2δ k,0 .
(1-2)

Laplace transform

Define the Laplace transforms of the V g,n 's:

W g n (z 1 , . . . , z n ) = 2 -mg,n ∞ 0 dL 1 . . . dL n e -i z i L i n i=1 L i V g,n (L 1 , . . . , L n ) = 2 -mg,n d 0 +...+dn=3g-3+n n i=0 1 d i ! κ d 0 1 τ d 1 . . . τ dn g,n (2d 1 + 1)! z 2d 1 +2 1 . . . (2d n + 1)! z 2dn+2 n (2 -1)
where (see [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF]) m g,n = δ g,1 δ n,1 .

Since the V g,n 's are even polynomials of the L i 's, of degree 2d g,n where

d g,n = dim M g,n = 3g -3 + n (2-2)
the W g n 's are even polynomials of the 1/z i 's of degree 2d g,n + 2. Let us also define:

W 0 1 = 0 (2-3) W 0 2 (z 1 , z 2 ) = 1 (z 1 -z 2 ) 2 (2-4)
and

dE u (z) = 1 2 1 z -u - 1 z + u . (2-5)
We prove the following theorems:

Theorem 2.1 For any 2g -2 + n + 1 > 0, the W g n+1 satisfy the recursion relation

W g n+1 (z, K) = Res u→0 πdEu(z) u sin 2πu g h=0 J⊂K W h 1+|J| (u, J)W g-h 1+n-|J| (-u, K/J) +W g-1 n+2 (u, -u, K) (2-6)
where the RHS includes all possible W h k , including W 0 1 = 0 and W 0 2 , and where

K = {z 1 , . . . , z n } (2-7)
is a set of n variables.

proof:

This relation is merely the Laplace transform of Mirzakhani's recursion. See the appendix for a detailed proof.

Corollary 2.1 W g n are the invariants defined in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] for the curve:

x(z) = z 2 -2y(z) = sin (2πz) 2π = z -2 π 2 3 z 3 + 2π 4 15 z 5 -4π 6 315 z 7 + 2π 8 2835 z 9 + . . . (2-8)
which is a special case of Kontsevich's curve:

Z(t k ) = dM e -N Tr [ M 3 3 +ΛM 2 ] , t k = 1 N Tr Λ -k = (2π) k-3 sin (πk/2) (k -2)! (2-9)
For instance we have:

ln Z(t k ) = ∞ g=0 N 2-2g W g 0 (2-10) (W g 0 is often noted -F g in the litterature).
proof: Eq. 2-6 is precisely the definiton of the invariants of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] for the curve

x(z) = z 2 -2y(z) = sin (2πz) 2π = z -2 π 2 3 z 3 + 2π 4 15 z 5 -4π 6 315 z 7 + 2π 8 2835 z 9 + . . . (2-11) 
And it was proved in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] that this curve is a special case of Kontsevich's curve:

x(z) = z 2 y(z) = z -1 2 ∞ j=0 t j+2 z j (2-12)
which corresponds to the computation of the topological expansion of the Kontsevich integral:

Z(t k ) = dM e -N Tr [ M 3 3 +ΛM 2 ] , t k = 1 N Tr Λ -k (2-13) ln Z(t k ) = - ∞ g=0 N 2-2g F g (2-14)
Theorem 2.2 For any 2g -2 + n > 0 we have:

(2g -2 + n) W g n (K) = 1 4π 2 Res u→0 u cos (2πu) - 1 2π sin (2πu) W g n+1 (u, K) (2-15)
or in inverse Laplace transform:

(2g -2 + n) V g,n (K) = 1 2iπ V ′ g,n+1 (K, 2iπ) (2-16)
where ′ means the derivative with respect to the n + 1 th variable.

proof: This is a mere application of theorem 4.7. in [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], as well as its Laplace transform.

In particular with n = 0 we get:

V g,0 = Vol(M g,0 ) = 1 2g -2 V ′ g,1 (2iπ) 2iπ (2-17) 
for instance for g = 2:

V 2,0 = 43π 6 2160 .

(2-18)

Examples

From [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF] we get:

W 0 3 = 1 z 2 1 z 2 2 z 2 3 (2-19) W 1 1 = 1 8z 4 1 + π 2 12z 2 1
(2-20)

W 0 4 = 1 z 2 1 z 2 2 z 2 3 z 2 4 2π 2 + 3( 1 z 2 1 + 1 z 2 2 + 1 z 2 3 + 1 z 2 4 ) (2-21) W 1 2 = 1 z 2 1 z 2 2 π 4 4 + π 2 2 ( 1 z 2 1 + 1 z 2 2 ) + 5 8z 4 1 + 5 8z 4 2 + 3 8z 2 1 z 2 2 (2-22) W 0 5 = 1 z 2 1 z 2 2 z 2 3 z 2 4 z 2 5 10π 4 + 18π 2 i 1 z 2 i + 15 i 1 z 4 i + 18 i<j 1 z 2 i z 2 j (2-23) W 2 1 = 1 192z 2 1 29π 8 + 338π 6 5z 2 1 + 139π 4 z 4 1 + 203π 2 z 6 1 + 315 2z 8 1 (2-24)
Those functions are the same as those which appear in section 10.4.1 of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], for the Kontsevich curve with times: i.e. the rational curve:

t 3 -2 = 1, t 5 = - 2π 2 
E K = x(z) = z 2 -2y(z) = sin (2πz) 2π = z -2 π 2 3 z 3 + 2π 4 15 z 5 -4π 6 315 z 7 + 2π 8 2835 z 9 + . . . (2-26)
It is to be noted that those t k 's are closely related to the β k 's of [START_REF] Mulase | Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy[END_REF][START_REF] Liu | A simple proof of Mirzakhani's recursion formula of Weil-Petersson volumes[END_REF].

Conclusion

We have shown that, after Laplace transform, Mirzakhani's recursions are nothing but the solution of loop equations (i.e. Virasoro constraints) for the Kontsevich integral with some given set of times. It would be interesting to understand what the invariants of [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] compute for an arbitrary spectral curve (for instance for other Kontsevich times).

Mirzakhani's recursion reads:

2LV g,n+1 (L, L K ) = L 0 dt ∞ 0 dx ∞ 0 dyK(x + y, t)H g n (x, y, L K ) + n m=1 L 0 dt ∞ 0 dx(K(x, t + L m ) + K(x, t -L m ))xV g,n-1 (x, Lm ) (1-4) where K(x, t) = 1 1 + e ( x+t 2 )
+ 1

1 + e ( x-t 2 )

(1-5)

and Lm = L K /{L m }. Let Hg n be the Laplace transform of H g n with respect to x and y. The Laplace transform of the first term in eq.1-4 is:

ǫ=±1 ∞ 0 dL e -zL L 0 dt ∞ 0 dx ∞ 0 dy 1 1 + e x+y+ǫt 2 H g n (x, y, L K ) = ǫ=±1 ∞ 0 dt ∞ t dL e -zL ∞ 0 dx ∞ 0 dy 1 1 + e x+y+ǫt 2 H g n (x, y, L K ) = ǫ=±1 1 z ∞ 0 dt e -zt ∞ 0 dx ∞ 0 dy 1 1 + e x+y+ǫt 2 H g n (x, y, L K ) = - ∞ j=1 1 z ∞ 0 dt e -zt ∞ 0 dx ∞ 0 dy(-1) j e -j 2 (x+y+t) H g n (x, y, L K ) + ∞ j=0 1 z ∞ 0 dx ∞ 0 dy ∞ x+y dt e -zt (-1) j e j 2 (x+y-t) H g n (x, y, L K ) - ∞ j=1 1 z ∞ 0 dx ∞ 0 dy x+y 0 dt e -zt (-1) j e -j 2 (x+y-t) H g n (x, y, L K ) = - ∞ j=1 1 z ∞ 0 dx ∞ 0 dy (-1) j z + j 2 e -j 2 (x+y) H g n (x, y, L K ) + ∞ j=0 1 z ∞ 0 dx ∞ 0 dy (-1) j z + j 2 e -z(x+y) H g n (x, y, L K ) - ∞ j=1 1 z ∞ 0 dx ∞ 0 dy (-1) j z -j 2 (1 -e -(z-j 2 )(x+y) )e -j 2 (x+y) H g n (x, y, L K ) = -2 ∞ j=1 (-1) j z 2 -j 2 2 Hg n ( j 2 , j 2 , L K ) + 1 z 2 Hg n (z, z, L K ) +2 ∞ j=1 (-1) j z 2 -j 2 2 Hg n (z, z, L K ) = -2 ∞ j=1 (-1) j z 2 -j 2 2 Hg n ( j 2 , j 2 , L K ) + 2π z sin 2πz Hg n (z, z, L K ) = Res u→z + ∞ j=1 Res u→± j 2 du u -z 2π u sin (2πu) Hg n (u, u, L K ) = Res u→0 du z -u 2π u sin (2πu) Hg n (u, u, L K ) = Res u→0 2π du u sin (2πu) dE u (z) Hg n (u, u, L K ) (1 -6) Using the notation R(x, t, L m ) := (K(x, t + L m ) + K(x, t -L m )), (1-7) 
the Laplace transform of the second term in eq.1-4 is:

∞ 0 dL m e -zmLm ∞ 0 dL e -zL L 0 dt ∞ 0 dxR(x, t, L m )xV g,n-1 (x, Lm ) = 1 z ∞ 0 dx ∞ 0 dL m e -zmLm ∞ 0 dt e -zt R(x, t, L m )xV g,n-1 (x, Lm ) = 1 z ∞ 0 dx ∞ 0 dL m e -zmLm ∞ Lm dt e -z(t-Lm) K(x, t)xV g,n-1 (x, Lm ) + 1 z ∞ 0 dx ∞ 0 dL m e -zmLm ∞ -Lm dt e -z(t+Lm) K(x, t)xV g,n-1 (x, Lm ) = 1 z ∞ 0 dx ∞ 0 dt e -zt t 0 dL m e -(zm-z)Lm K(x, t)xV g,n-1 (x, Lm ) + 1 z ∞ 0 dx ∞ 0 dt e -zt ∞ 0 dL m e -(zm+z)Lm K(x, t)xV g,n-1 (x, Lm ) + 1 z ∞ 0 dx 0 -∞ dt e -zt ∞ -t dL m e -(zm+z)Lm K(x, t)xV g,n-1 (x, Lm ) = 1 z ∞ 0 dx ∞ 0 dt e -zt -e -zmt z m -z K(x, t)xV g,n-1 (x, Lm ) + 1 z ∞ 0 dx ∞ 0 dt e -zt + e zmt z m + z K(x, t)xV g,n-1 (x, Lm ) + 1 z ∞ 0 dx ∞ 0 dt e -zmt z m + z K(x, t)xV g,n-1 (x, Lm ) = 1 z ∞ 0 dx ∞ 0 dt e -zt -e -zmt z m -z + e -zt + e -zmt z m + z K(x, t)xV g,n-1 (x, Lm ) = 1 z ∞ 0 dx ∞ 0 dt 2z m e -zt -2ze -zmt (z 2 m -z 2 ) 1 1 + e x+t 2 xV g,n-1 (x, Lm ) + 1 z ∞ 0 dx x 0 dt 2z m e -zt -2ze -zmt (z 2 m -z 2 ) 1 1 + e x-t 2 xV g,n-1 (x, Lm ) + 1 z ∞ 0 dx ∞ x dt 2z m e -zt -2ze -zmt (z 2 m -z 2 ) 1 1 + e x-t 2 xV g,n-1 (x, Lm ) = - ∞ j=1 (-1) j z ∞ 0 dx ∞ 0 dt 2z m e -zt -2ze -zmt (z 2 m -z 2 ) e -j 2 (x+t) xV g,n-1 (x, Lm ) - ∞ j=1 (-1) j z ∞ 0 dx x 0 dt 2z m e -zt -2ze -zmt (z 2 m -z 2 ) e -j 2 (x-t) xV g,n-1 (x, Lm ) + ∞ j=0 (-1) j z ∞ 0 dx ∞ x dt 2z m e -zt -2ze -zmt (z 2 m -z 2 ) e j 2 (x-t) xV g,n-1 (x, Lm ) = - ∞ j=1 (-1) j z ∞ 0 dx 2zm z+ j 2 -2z zm+ j 2 (z 2 m -z 2 ) e -j 2 x xV g,n-1 (x, Lm ) - ∞ j=1 (-1) j z ∞ 0 dx x 0 dt 2z m e -j 2 x -e -zx z-j 2 -2z e -j 2 x -e -zmx zm-j 2 (z 2 m -z 2 ) xV g,n-1 (x, Lm ) + ∞ j=0 (-1) j z ∞ 0 dx ∞ x dt 2zme -zx z+ j 2 -2ze -zmx zm+ j 2 (z 2 m -z 2 ) xV g,n-1 (x, Lm ) = -2 ∞ j=1 (-1) j z z + z m + j 2 (z m + z)(z + j 2 )(z m + j 2 ) W g,n-1 ( j 2 , Lm ) -2 ∞ j=1 (-1) j z z + z m -j 2 (z m + z)(z -j 2 )(z m -j 2 ) W g,n-1 ( j 2 , Lm ) +2 ∞ j=1 (-1) j z z m (z -j 2 )(z 2 m -z 2 )
W g,n-1 (z, Lm ) 

+ j 2 )(z 2 m -z 2 )-u 2 )(z 2 -u 2 ) 1 z

 2222221 W g,n-1 (z m , Lm ) + z m + u (z m + z)(z + u)(z m + u) W g,n-1 (u, Lm ) +4 z m π z sin (2πz) (z 2 m -z 2 ) W g,n-1 (z, Lm ) -4 π sin (2πz m ) (z 2 m -z 2 ) W g,n-1 (z m , Lm ) (z 2 -u 2 )(z 2 m -u 2 ) W g,n-1 (u, Lm ) m -u + 1 z m + u W g,n-1 (u, Lm )
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Appendix A Laplace transform of the equations

Let us write:

where all the V h,k terms in the RHS are such that 2h + k -2 > 0 (i.e. stable curves only), as well as their laplace transform:

After taking the derivative with respect to z m that gives the expected term:

and therefore the Laplace transform of Eq. (1-4) gives the relation Eq. (2-6).