
HAL Id: hal-00149163
https://hal.science/hal-00149163v1

Submitted on 13 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time Constraint Patterns for Event B Development
Dominique Cansell, Dominique Méry, Joris Rehm

To cite this version:
Dominique Cansell, Dominique Méry, Joris Rehm. Time Constraint Patterns for Event B Devel-
opment. 7th International Conference of B Users, January 17-19, 2007, 2007, Besançon, France.
pp.140-154, �10.1007/11955757_13�. �hal-00149163�

https://hal.science/hal-00149163v1
https://hal.archives-ouvertes.fr

Time constraint patterns for event B

development

Dominique Cansell1,5, Dominique Méry2,3,5, and Joris Rehm2,4,5

1 Université de Metz
cansell@loria.fr

2 Université Henri Poincaré Nancy 1
3
mery@loria.fr

4
rehm@loria.fr

5 LORIA
BP 239

54506 Vandœuvre-lès-Nancy
France

August 13, 2008

Abstract Distributed applications are based on algorithms which should
be able to deal with time constraints. It is mandatory to express time
constraints in (mathematical) models and the current work intends to
integrate time constraints in the modelling process based on event B
models and refinement. The starting point of our work is the event B de-
velopment of the IEEE 1394 leader election protocol; from standard doc-
uments, we derive temporal requirements to solve the contention prob-
lem and we propose a method for introducing time constraints using
a pattern. The pattern captures time constraints in a generic event B
development and it is applied to the IEEE 1394 case study.

Key-words: event B, pattern, distributed systems, refinement.

1 Introduction

1.1 Overview

In this article, we present work in progress on the modelling of time in event B
using patterns. The concept of time is not predefined in B but using set theory
we can effectively model it. Generally most formal models ”implement” time
in the first abstraction and they explicitly express time constraints in models
of computations or automata; several notations propose solutions for expressing
time and time constraints (timed automata of Alur and Dill [8]). We think that
it is not a good idea to introduce time too early in the development process,
because invariants on time (using natural numbers and arithmetic) introduce
too much noise for proof assistants and consequently most proof obligations
need interaction. Using abstraction without time we can solve and prove more
easily important properties of the system and obtain a first scheduling of events.
For us, time can be introduced later in a specific refinement where time is a
global variable.

1.2 Motivations for integrating time constraints in event B

development

Needs for integrating time constraints in event B development are motivated by
observations on a case study developed by Jean-Raymond Abrial, D. Cansell
and D. Méry [6] and the goal was to redevelop the leader election protocol and
to provide a proof simpler and easier to understand than Devillers et al [16].
The IEEE 1394 leader election protocol works properly provided the network
is acyclic; but it is sensitive to time constraints [20], since it may loop forever
if no time constraint is taken into account. In fact, the problem appears when
the algorithm is executed and leads to a situation where two nodes of a finite
network a and b are in contention. Let us recall the problem using events. Node
a sends a message to b and asks him to be its child, while node b is asking
to a to be its child. The two nodes a and b have sent messages to each other
and the messages were sent independently. No one wants to be the leader but
no other one can be the leader, since they are the last nodes in the election
process: the others nodes have already asked to be children or grand-children of
a or b. This problem is called the contention problem. This problem can occur
with only two nodes of the network (this can be proved using our models). In
the “real” protocol the problem is “solved” by means of timers. As soon as a
node a discovers a contention with node b, it waits for a very short delay in
order to be sure that the other node b has also discovered the problem. The very
short delay in question is at least equal to the message transfer time between
nodes (such a time is supposed to be bounded). After this, each node randomly
chooses (with probability 1/2) to wait for either a “short” or a “large” delay (the
difference between the two is at least twice the message transfer time). After the
chosen delay has passed each node sends a new request to the other if it is in the
situation to do so. Clearly, if both nodes choose the same delay, the contention
situation will reappear. However if they do not choose the same delay, then the
one with the largest delay becomes the father of the other: when it wakes up,
it discovers the request from the other while it has not itself already sent its
own request, it can therefore send an acknowledgement and thus become the
father. According to the law of large numbers, the probability for both nodes
indefinitely choosing the same delay is zero. Thus, at some point, they will (in
probability) choose different delays and one of them will thus becomes the father
of the other.

Abrial et al. [6] present a partial formalisation of the contention problem and
the idea is to introduce a virtual channel which is used to resolve the contention.
Recently, J-R. Abrial et al propose a simpler (without acknowledgement and
confirmation) algorithm [7]. In both models, the contention is solved abstractly
and no time reference is used. The real algorithm uses time constraints to solve
this contention. Our starting questions were:

– can we add time constraints in previous abstract models to facilitate more
realistic refinement?

– can we do this in a systematic way using something similar to design patterns
in object-oriented software development [18]?

2

The questions will be partly addressed in the next sections. However, the
introduction of time is not the main issue and the next sub-section motivates
the introduction of patterns in the B methodology.

1.3 B patterns

Designing models of a complex system using refinement and proofs are very hard
and often not very well used. This proof-based modelling technique is not auto-
matically done, since we need to extract some knowledge from the system in an
incremental and clever way. The event B method allows one such development
and many case studies have been developed, including sequential algorithms [5],
distributed algorithms [6,14], parallel algorithms [4] or embedded systems for
controlling train like METEOR [10] or Roissy Val [9]. The last example was
developed faster because previous models were reused and a specific automatic
refining tool - Edit B developed by Matra (now Siemens)- was utilised. EditB
provides automatic refinement from an abstract B model, which can be proved
more quickly and automatically using or adding specific rules in the B prover;
EditB is a ”private” tool and only Siemens uses it to develop systems. The inter-
esting thing is that the engineer activity (typing model) is very much simplified.
This tool seems to apply a similar technique to those used in design patterns. It
is the application of well-engineered patterns for a specific domain.

Three years ago Jean-Raymond Abrial, D. Cansell and D. Méry worked on
using genericity in event B [13,3]. When a designer develops a generic devel-
opment (a list of models related by refinement) both modelling and proof are
easily done. Models are more abstract and consequently the set of proof obliga-
tions can be discharged more automatically or in an interactive way (it is less
noisy for the prover). The generic development can be reused by instantiation
of the carrier sets and constants of the development (list of models). We obtain
a new development (list of models) which is correct, if all instantiated sets and
constants satisfy properties of the generic development. An interesting point is
that we do not prove the proof obligation of the instantiated development. This
technique is well known by mathematicians who prove abstract theorems and
reuse these on specific cases reproving the instantiated axioms of the theorem to
obtain (for free or without proof) the instantiated goal of the theorem.

Recently, Jean-Raymond Abrial has presented [2] patterns for the action/-
reaction paradigm to systematically develop the mechanical press controller.

These contributions follows the same direction leading to reuse previous
proof-based developments, to give guidelines for mechanical refinement in daily
software development. In our opinion, a B pattern is an event B development
which is proved, sufficiently generic and can be partially reused in another spe-
cific B development to produce automatically new refinement models: proofs are
(partly) inherited from the B pattern.

3

1.4 Summary

Our paper proposes initial and partial answers to these questions. We do not give
an exact definition of B patterns. It is too early to propose a standard definition
as many works are converging to this B pattern concept. We describe a pattern
with regard to time and how we can use it to produce other patterns or to solve
a specific problem. The next section introduces the time constraint pattern and
its construction. Section 3 presents an application of our pattern for a message
passing system. Section 4 concludes the paper by the IEEE 1394 case study and
future works.

2 Time constraint pattern

In order to express time and time constraints we introduce a new pattern. This
pattern demonstrates our modelling choice and gives a general background to
reason about things like time progression, clock or timer. The main idea is to
guard events with a time constraint, therefore those events can be observed only
when the system reaches a specific time. The time progress is also an event, so
there is no modification of the underlying language of B. It is only a modelling
technique instead of a specialised formal system. The variable time is in N but
time constraints can be written in terms involving unknown constants or ex-
pressions between different times. Finally, the timed event observations can be
constrained by other events which determine future activations.

2.1 Defining the pattern

We can explain our method through an example event-B model. Later this model
can be used like a pattern to refine another model adding time considerations.
As you can see below, the pattern has two variables:

model

m0
variables

time, / ∗ current time ∗ /
at/ ∗ Active Times ∗ /

invariant

time ∈ N ∧
at ⊆ N ∧
(at 6= ∅ =⇒ time ≤ min(at))

initialisation

time := 0 || at := ∅
events

...

– time in N models the current time value. The incrementation of this value
denotes the time progression.

4

– at ⊆ N is the known future active times of the system. Each active time
stands for a future event activation. For example, a simple clock will have a
set of active times like {time + 1, time + 2, ...}.

Since this pattern is very general, the invariant is simple and we have only to
satisfy at 6= ∅ ⇒ time ≤ min(at). This means that active times are in the future.
As a consequence of this fact the time can not be moved beyond the first active
time, this is intuitively correct because if time goes beyond one event activation,
then we miss the right moment for observing it.

The three events represent three different temporal aspects. The first event is
the creation of a new active time. In real system this can be the initialisation of
a timer or the setting of a new time constraint. We denote this by “posting” new
active times in the event “post time”. This event is needed when the activation
of the system is dynamic. For our example of a regular clock the active times are
known for every system so we have only to initialise the set at with N. In this
case, the event post time is not required. For more complex cases like message
passing in a network, the active times are determined by the message arrival so
we need an event like post time observed when a message is sent to constrain
the system to receiving them some time later.

post time =̂
any tm where

tm ∈ N ∧
tm > time

then

at := at ∪ {tm}
end

time tm

The event takes a new active time tm which is indeterminate in the most
general case but it can be more specific like time + delay with a constant delay
in N and greater than 0.

The second aspect is time progression. In this modelling approach, in a system
state the time is frozen and it can go with an observation of the tick tock event.

5

tick tock =̂
any tm where

tm ∈ N ∧
tm > time ∧
(at 6= ∅ =⇒ tm ≤ min(at))

then

time := tm
end

This event simply takes a new value of time in the future and assigns it at
the current time.

time at1 at2 at3

As we have already said, time progress is nondeterministic, the new value tm
should only satisfy the invariant with tm ≤ min(at), if at 6= ∅. Otherwise time
can take place everywhere and let the system trigger any event potentially. But
as time is a natural and tm > time we are sure that the system will reach the
next active time if tick tock is activated enough. Thanks to the set at, which
is very general, this event can be copied without modification when we use the
time constraint pattern.

Now we can look at the last aspect which is the goal of our work. With this
event “process time” we can consider events with time constraints.

process time =̂
when

time ∈ at
then

at := at − {time}
end

The guard time ∈ at and the invariant implies that time has reached the
first active time. The time can have made one or more step with one or more
activation on tick tock and other temporised events may have occurred.

time = at2 at3

X

at1

The current active time is deleted from at therefore an active time can be
used once and only once. After this removal the time and the system can continue
to change.

6

2.2 Applying the time constraint pattern

This model can be used as a pattern, but it is very general and the invariant is
limited. The pattern can be fit to time-sensitive systems in order to introduce
time behaviour and prove invariants. Consequently such B patterns can be used
as a systematic help to refine systems.

As this pattern represents a way to write time arguments it can not be used
directly but needs to be adapted to a specific system (except for tick tock which
can be used directly).

At first, events of the system involving time must be present and written in a
proved model. The idea is to use refinement and make an abstract model where
time is implicitly controlled by events as usual. One can already reason about
a model without time and prove general or abstract properties on the system.
Next, the pattern should be adapted except tick tock. The two aspects involved
in post time and process time need to be identified from the modelled system.
For instance, the beginning of a timer, sending of message or other initiation of
non-instantaneous actions match the posting time event. Connected to that timer
ending, message reception or finalisation of non-instantaneous actions match the
processing time event. The result will be a set of adapted and renamed instances
of post time and process time events.

When this aspect of events has been identified we can use it to refine the
abstract model with a superposition of modified events; we refine the abstract
model; for instance, we can substitute an abstract guard model by concrete
time expression; in this way, we can prove that the time constraints implements
required behaviour.

Some specific adaptation or improvement may be used:

– The two ideas of posting and processing active times have been presented
separately for getting the essence of the concept. However they are often
mixed in the same event. One can make a chain of reactions with time
constraints between events.

– There is no contradiction to consider more than one time posting in an
event which refines post time. We can add a number of active times in one
shot. Using the same idea, an infinite number of times can be posted using
generalised substitution: for example, on the initialisation of the system.

– In addition to the set at we can add variables to express in a more spe-
cialised and meaningful way active times. These variables have common el-
ements with at. For example, we can store sending time of messages. All
these added variables allow one to write more specialised time constraints
and give different categories of active times inside at.

– With the last remark, we can have different categories but we can not simply
trigger more than one event at the same time because at is a set and it can
not contain several identical values like in a multiset. To resolve this we can
take several sets like at or take a function to index different sets. This index
will represent different processes which can run at the same time. Of course
this modification needs to be done in the same way for the rest of the model:

7

invariant and other events. With this adaptation we can represent different
local clocks or several processes.

2.3 Comparisons with other methods

Our solution does not require a language with explicit time expression. Conse-
quently it is difficult to compare this work with other solutions. A big part of
other work uses timed automata [8] with model checkers such as Uppaal [11] or
Kronos [15]. These automata allows one to write transition systems with time.
Transitions between states are instantaneous and time can progress inside a state.
One can use several clocks (variables in R). Time constraints are comparisons
of clocks with numeric constants and can be set both on state and transition.
Automata can only stay in a state, if clock does not exceed time constraints. In
the same way system can transit, if constraints are valid. One can reset clock to
zero on transition, so the time may be cyclic.

We can point out fundamental differences with our time model using con-
nections between event B models and automata. In our model it is a transition
(event) which makes time progress under some condition instead of a state such
that time can grow under a limit. For this reason we can have several event ac-
tivations which are instantaneous. Usually we do not reset time to zero because
we can infinitely add active times in the future.

The main difference comes with the use of the active times set which are not
explicit in timed automata theory. The word “clock” does not fit very well with
our approach because the variable time denotes the general time passing. For
us a clock is a relation between time progression and known future active times.
This set is also the main difference with the explicit-time description in [1] and
[19] by L. Lamport et al. As a result our tick tock event is more general because
it only refers to elements of this set.

Properties certification for timed automata is done by a model-checker. The
infinite number of states (because of time) is reduced to a finite set of partitions
over vector space make by clocks. In our case, proof are made as usual with first
order classical logic and set theory inside B tools.

Some other works related to real-time systems can be found in [17] by C.J.
Fidge and A.J. Wellings, their approach is different than ours because they do
not use instantaneous actions.

3 Message passing using the time constraint pattern

This section presents an application of our pattern. We design a system of two
devices a and b. Device a can send a message to b. We prove that a timer triggered
after sending ensure to a the effective reception of message by b (we do not take
into account loss of message). The system is described by two models. The first
model has basic elements and events sequencing. The second model refines the
previous sequencing of events by time constraints.

8

3.1 Abstract model

As a first step we introduce the problem with an abstract model. The model
consists of two constants a and b for the devices, four variables A, S, B and AB,
and three events :

– sendA : a sends its message to b using connection AB
– recB : b receives it from the connection AB
– quA : when a knows that the message is received by b, it modifies one of its

local variable S.

The invariant of the model is:

A ⊆ { a } ∧
B ⊆ { b } ∧
AB ⊆ { a } ∧
S ⊆ { a } ∧
(A 6= ∅ =⇒ AB 6= ∅)

According to a distributed system, we consider that A and S are local vari-
ables for device a, B is a local variable for device b and AB is a global variable
for the channel between the two devices. Similarly events sendA and quA are
local to device a and event recB is local to device b. A denotes sending of the
message if and only if A is not empty, similarly B denotes its reception and S
denotes the state after execution of quA. All variables are booleans (empty or
not). Next we define the three events:

sendA =̂
when

A = ∅
then

A := { a } || AB := { a }
end

recB =̂
when

AB = { a }
then

B := { b } || AB := ∅
end

Using A to express the sending of the message and B
its reception, these events implicitly denote a delay be-
tween the execution of sendA and recB. After this delay,
we make an action (the reception of the message) as a re-
quirement. To specify this we explicitly ask the message
to be received, in the guard of quA.

quA =̂
when

B = { b }
then

S := { a }
end

In the abstract model we are “cheating” because event quaA is intended to
be local to device a but it can see the variable B which is intended to be local
to device b. It is as if device a can see local information of device b. In order to
enforce the localisation property as we are moving towards implementation we
refine this specification with the time constraint pattern.

9

3.2 Introducing time by the time constraint pattern

With the method already described we need to adapt the pattern and anchor
events in time. For this we need two constants : prop is the propagation time
needed for the message to transit from a to b and st is the sleeping time used in
the timer. As an adaptation we need two new variables: stm is the “send time
message” and slp the time when a will stop sleeping at the end of the timer.
The tick tock event can be copied as before and we have the two aspects of the
pattern:

– Only event sendA posts two active times : time + prop and time + st (with
the hypothesis prop < st).

– Events recB and quA are processing an active time.

Next we can write temporal aspects with a refinement of the abstract model.

sendA =̂
when

A = ∅
then

A := {a} ||
AB := {a} ||
at := at ∪ {time + prop}∪
{time + st} || / ∗ added ∗ /

stm := time || / ∗ added ∗ /
slp := time + st / ∗ added ∗ /

end

recB =̂
when

AB = {a} ∧
time = stm + prop / ∗ added ∗ /

then

B := {b} ||
AB := ∅ ||
at := at − {time} / ∗ added ∗ /

end

For these two events the refinement is just a superposition, i.e. some lines have
been added without changing existing expressions. On sendA we can see the two
new active times time + prop and time + st which are the future arrival time
of messages and the awake time ending the timer. On the same event the in-
formative variables stm and slp are set up. The second event is triggered by
stm + prop which is equal to the posted value time + prop, this active time is
deleted from at, as in the pattern. Now the most interesting event:

10

quA =̂
when

A 6= ∅ ∧ / ∗ changed to a local guard ∗ /
time = slp / ∗ added ∗ /

then

S := {a} ||
at := at − {time} / ∗ added ∗ /

end

Here the refinement is not just a superposition: the abstract guard was B =
{b} and is changed to a more concrete A 6= ∅ ∧ time = slp. The use of the non
local variable B has disappeared with the use of the local variable A and of the
variable time. Variable time is universal and global so we can use it to get more
information from the local state of distributed devices. In order to prove the
refinement we need the following invariant:

time ∈ N ∧
stm ∈ N ∧
slp ∈ N ∧
at ⊆ N ∧
(A 6= ∅ =⇒ stm + prop < slp) ∧
(A 6= ∅ ∧ time ≥ stm + prop ∧ stm + prop /∈ at =⇒ B = {b}) ∧
(at 6= ∅ =⇒ time ≤ min(at)) ∧
at ⊆ {stm + prop, slp} ∧
(A = ∅ =⇒ at = ∅) ∧
(A 6= ∅ ∧ at = ∅ =⇒ time ≥ slp) ∧
(A 6= ∅ ∧ at 6= ∅ =⇒ slp ∈ at) ∧
(A 6= ∅ ∧ at = {slp} =⇒ time ≥ stm + prop)

We give explanations on the most interesting part of this invariant and a
derived theorem:

– (A 6= ∅ ∧ stm + prop /∈ at ∧ time ≥ stm + prop ⇒ B = {b}:
This part of the invariant is important to prove the refinement of quA. In this
expression if time is beyond stm+prop and if the time constraint stm+prop
has already been processed then we are sure of the reception (B = {b}).

– (A 6= ∅ ∧ at = {slp} ⇒ time ≥ stm + prop:
If active times set is only {slp} and message is gone then current time is
after the message reception.

– (A 6= ∅ ∧ at = ∅ ⇒ time ≥ slp:
This predicate is interesting if the message has already been sent (A 6= ∅) and
if there is no more time constraints on process (at = ∅), in other words once
all the events were observed. In this case, one can affirm that the current
time exceeded the moment when a was awaken.

11

– (A 6= ∅ =⇒ stm + prop < slp):
This invariant uses the fact that prop < st because event sendA provides the
following proof obligation: {a} 6= ∅ =⇒ time + prop < time + st. This fact
is a property on constants st and prop which expresses that the propagation
time is less than the sleep time.

The abstract event quA is cheating, since it looks the variable B in its guard
(B = {b}); the refined version is no more cheating, since the guard is local
(A 6= ∅ it has sent the message) and the temporal guard time = slp. Only time
is a global variable shared by each participant of the global system: it is local
for each participant and everyone has the same time. We assume that the time
is the same of everyone.

4 Concluding remarks and perspectives

4.1 On the contention problem

This work began with the time constraint problems inside the firewire protocol.
The protocol, namely IEEE 1394, can be found in computers and devices like
cameras or external hard-disks and is used to connect them together in a local
network. When one or several devices are connected or disconnected, they are
able to reconfigure themselves. The reconfiguration consists of the election of
a network leader. The network is a symmetric acyclic graph, the algorithm of
election orients edges to obtain a spanning tree rooted by a leader.

At each step of this distributed algorithm a device is submitted to another.
The submitted device is a leaf node among non-submitted devices. The submis-
sion of the device is done by sending a message to the device next to it.

But, at the end of the process, a contention problem may occur with the last
two devices (and only in this case). Since both devices are leaves, they can send
submission almost at the same time. In this case, the two messages cross in the
bi-directional channel between the last devices. The election can not be done
because both devices are in a submission state.

We can see in the figure 1 an example of contention. X and Y devices are
sending messages together with the arrow “1”. After the first sending there is
a period “a”, in this period the other node can send a second message because
the first is not received. The protocol has a special case for this problem, the
chosen solution deletes the two submission messages and tries to choose a leader
with a new message. Messages are not structured packets but constant signals,
so a message can be put on or removed from the channel. To give a chance for
resolving contention each device chooses a delay between a long and a short time.
Then they sleep for the chosen delay. We can see a example below in figure 2
with the two delays “b” and “c” and the deletion of message with the arrow “2”.

When the device awakes, there are two possibilities:

– No message has arrived during the sleeping time, so the device can send a
submission message.

12

1

1

a

X

Y

Figure 1. Example for the contention problem

– One message has arrived during the sleep, so the device has to receive it and
becomes the leader.

This contention solving succeeds only if the chosen times are different, in this
case only one message is re-sent and the receiver becomes the leader. We can see
this discriminatory message labelled “3” in the figure 2. On the other hand if
sleeping times are the same the contention problem occurs again and the same
process begin.

As we have seen there are a lot of time issues in this part of the protocol.
Time is needed to quantify the two different sleeping times and to represent the
progression of the message signals over the channel.

4.2 Conclusion

The starting point of our work is the proof-based development of the IEEE 1394
leader election protocol and the observation of the partiality of the resulting
proved solution [6]: the development does not take into account time constraints.
Moreover, we paid attention to capture our modelling experience in a pattern
called time constraint pattern. We give a light definition of patterns which are
planned to give a systematic help for specialised refinement. Our work illustrates
the use of a general and global time which interacts with a number of actives
times. The time progression is abstract and nondeterministic; the concept of
active times can be fit to various situations like simple clocks, timers or delays
for messages. We have used our pattern on a realistic problem involving messages
on channels and we have studied time constraints in contention problem of the
IEEE 1394 protocol.

The contention problem is not yet completely solved. But we have enough
elements and tools to solve the contention problem in the event B framework.
With the help of refinement we can introduce time constraints that satisfies

13

1

2
1

2

a

b

c

3

X

Y

Figure 2. Example for the contention problem

a sequence of events. If a concrete system refines another system with time
constraints we can prove the timing validity of the concrete system. For future
work, we can enrich the library of patterns and we can study the applicability
of such a process on others case studies.

References

1. Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time. ACM

Transactions on Programming Languages and Systems, 16(5):1543–1571, Septem-
ber 1994.

2. J.-R. Abrial. Using Design Patterns in Formal Devlopments - Example: A Me-
chanical Press Controler. Journée scientifique du PPF IAEM Transversal -
Développement incrémental et prouvé de systèmes, April 2006.

3. Jean-Raymond Abrial. B#: Toward a synthesis between z and b. In Bert et al.
[12], pages 168–177.

4. Jean-Raymond Abrial and Dominique Cansell. Formal Construction of a Non-
blocking Concurrent Queue Algorithm (a Case Study in Atomicity). Journal of

Universal Computer Science, 11(5):744–770, May 2005.
5. Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. Formal deriva-

tion of spanning trees algorithms. In Bert et al. [12], pages 457–476.
6. Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechanically

proved and incremental development of IEEE 1394 tree identify protocol. Formal

Asp. Comput., 14(3):215–227, 2003.
7. Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A new IEEE

1394 leader election protocol. In Rigorous Methods for Software Construction and

Analysis Seminar N 06191,07.05.-12.05.06. Schloss Dagstuhl, U. Glaser and J.
Abrial, 2006.

8. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183–235, 1994.

14

9. Frédéric Badeau and Arnaud Amelot. Using B as a high level programming lan-
guage in an industrial project: Roissy val. In Helen Treharne, Steve King, Mar-
tin C. Henson, and Steve A. Schneider, editors, ZB, volume 3455 of Lecture Notes

in Computer Science, pages 334–354. Springer, 2005.
10. P. Behm, P. Benoit, A. Faivre, and J.-M.Meynadier. METEOR : A successful

application of B in a large project. In Proceedings of FM’99: World Congress on

Formal Methods, Lecture Notes in Computer Science, pages 369–387, 1999.
11. Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and

Wang Yi. UPPAAL - a tool suite for automatic verification of real-time systems.
In Hybrid Systems, pages 232–243, 1995.

12. Didier Bert, Jonathan P. Bowen, Steve King, and Marina A. Waldén, editors.
ZB 2003: Formal Specification and Development in Z and B, Third International

Conference of B and Z Users, Turku, Finland, June 4-6, 2003, Proceedings, volume
2651 of Lecture Notes in Computer Science. Springer, 2003.

13. D. Cansell. Assistance au développement incrémental et à sa preuve. Habilitation
à diriger des recherches, Université Henri Poincaré (Nancy 1), 2003.

14. D. Cansell and D. Méry. Formal and Incremental Construction of Distributed
Algorithms:
On the Distributed Reference Counting Algorithm. Theoretical Computer Science,
2006. to appear.

15. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hy-

brid Systems III: Verification and Control, volume 1066, pages 208–219, Rutgers
University, New Brunswick, NJ, USA, 22–25 October 1995. Springer.

16. Marco Devillers, W. O. David Griffioen, Judi Romijn, and Frits W. Vaandrager.
Verification of a leader election protocol: Formal methods applied to ieee 1394.
Formal Methods in System Design, 16(3):307–320, 2000.

17. Colin J. Fidge and Andy J. Wellings. An action-based formal model for concurrent
real-time systems. Formal Aspects of Computing, 9(2):175–207, 1997.

18. Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. Design
patterns: Abstraction and reuse of object-oriented design. In Oscar Nierstrasz,
editor, ECOOP, volume 707 of Lecture Notes in Computer Science, pages 406–
431. Springer, 1993.

19. L. Lamport. Real time is really simple. Technical Report MSR-TR-2006-30, March
2005.

20. Judi Romijn. A timed verification of the ieee 1394 leader election protocol. Formal

Methods in System Design, 19(2):165–194, 2001.

15

