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Abstract. We define a new decidable logic for expressing and checking invari-
ants of programs that manipulate dynamically-allocated objects via pointers and
destructive pointer updates. The main feature of this logicis the ability to limit
the neighborhood of a node that is reachable via a regular expression from a des-
ignated node. The logic is closed under boolean operations (entailment, negation)
and has a finite model property. The key technical result is the proof of decidabil-
ity.
We show how to express precondition, postconditions, and loop invariants for
some interesting programs. It is also possible to express properties such as dis-
jointness of data-structures, and low-level heap mutations. Moreover, our logic
can express properties of arbitrary data-structures and ofan arbitrary number
of pointer fields. The latter provides a way to naturally specify postconditions
that relate the fields on entry to a procedure to the fields on exit. Therefore, it is
possible to use the logic to automatically prove partial correctness of programs
performing low-level heap mutations.

1 Introduction

The automatic verification of programs with dynamic memory allocation and pointer
manipulation is a challenging problem. In fact, due to dynamic memory allocation and
destructive updates of pointer-valued fields, the program memory can be of arbitrary
size and structure. This requires the ability to reason about a potentially infinite number
of memory (graph) structures, even for programming languages that have good capabil-
ities for data abstraction. Usually abstract-datatype operations are implemented using
loops, procedure calls, and sequences of low-level pointermanipulations; consequently,
it is hard to prove that a data-structure invariant is reestablished once a sequence of op-
erations is finished [19].

To tackle the verification problem of such complex programs,several approaches
emerged in the last few years with different expressive powers and levels of automation,
including works based on abstract interpretation [27, 34, 31], logic-based reasoning [23,
32], and automata-based techniques [24, 28, 5]. An important issue is the definition of a
formalism that (1) allows us to express relevant properties(invariants) of various kinds
of linked data-structures, and (2) has the closure and decidability features needed for
⋆ This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No 304/03).



automated verification. The aim of this paper is to study sucha formalism based on
logics over arbitrary graph structures, and to find a balancebetween expressiveness,
decidability and complexity.

Reachability is a crucial notion for reasoning about linkeddata-structures. For in-
stance, to establish that a memory configuration contains nogarbage elements, we must
show that every element is reachable from some program variable. Other examples of
properties that involve reachability are (1) the acyclicity of data-structure fragments,
i.e., every element reachable from nodeu cannot reachu, (2) the property that a data-
structure traversal terminates, e.g., there is a path from anode to a sink-node of the
data-structure, (3) the property that, for programs with procedure calls when references
are passed as arguments, elements that arenot reachable from a formal parameter are
not modified.

A natural formalism to specify properties involving reachability is the first-order
logic over graph structures with transitive closure. Unfortunately, even simple decidable
fragments of first-order logic become undecidable when transitive closure is added [13,
21].

In this paper, we propose a logic that can be seen as a fragmentof the first-order
logic with transitive closure. Our logic is (1) simple and natural to use, (2) expressive
enough to cover important properties of a wide class of arbitrary linked data-structures,
and (3) allows for algorithmic modular verification using programmer’s specified loop-
invariants and procedure’s specifications.

Alternatively, our logic can be seen as a propositional logic with atomic proposition
modelling reachability between heap objects pointed-to byprogram variables and other
heap objects with certain properties. The properties are specified using patterns that
limit the neighborhood of an object. For example, in a doublylinked list, a pattern says
that if an objectv has an an emanatingforward pointer that leads to an objectw, then
w has abackward pointer intov.

The contributions of this paper can be summarized as follows:

– We define theLogic of Reachable Patterns(LRP) where reachability constraints
such as those mentioned above can be used. Patterns in such constraints are defined
by quantifier-free first-order formulas over graph structures and sets of access paths
are defined by regular expressions.

– We show thatLRPhas a finite-model property, i.e., every satisfiable formulahas a
finite model. Therefore, invalid formulas are always falsified by a finite store.

– We prove that the logicLRP is, unfortunately, undecidable.
– We define a suitable restriction on the patterns leading to a fragment ofLRPcalled

LRP2.
– We prove that the satisfiability (and validity) problem is decidable. The fragment

LRP2 is the main technical result of the paper and the decidability proof is non-
trivial. The main idea is to show that every satisfiableLRP2 formula is also satisfied
by a tree-like graph. Thus, even thoughLRP2 expresses properties of arbitrary data-
structures, because the logic is limited enough, a formula that is satisfied on an
arbitrary graph is also satisfied on a tree-like graph. Therefore, it is possible to
answer satisfiability (and validity) queries forLRP2 using a decision procedure for
monadic second-order logic (MSO) on trees.



– We show that despite the restriction on patterns we introduce, the logicLRP2 is
still expressive enough for use in program verification: various important data-
structures, and loop invariants concerning their manipulation, are in fact definable
in LRP2.

The new logicLRP2 forms a basis of the verification framework for programs with
pointer manipulation [37], which has important advantagesw.r.t. existing ones. For
instance, in contrast to decidable logics that restrict thegraphs of interest (such as
monadic second-order logic on trees), our logic allows arbitrary graphs with an arbi-
trary number of fields. We show that this is very useful even for verifying programs
that manipulate singly-linked lists in order to express postcondition and loop invariants
that relate the input and the output state. Moreover, our logic strictly generalizes the
decidable logic in [3], which inspired our work. Therefore,it can be shown that certain
heap abstractions including [16, 33] can be expressed usingLRP2 formulas.

The rest of the paper is organized as follows: Section 2 defines the syntax and the
semantics ofLRP, and shows that it has a finite model property, and thatLRP is unde-
cidable; Section 3 defines the fragmentLRP2, and demonstrates the expressiveness of
LRP2 on several examples; Section 4 describes the main ideas of the decidability proof
for LRP2; Section 5 discusses the limitations and the extensions of the new logics; fi-
nally, Section 6 discusses the related work. The full version of the paper [36] contains
the formal definition of the semantics ofLRPand proofs.

2 The LRP Logic

In this section, we define the syntax and the semantics of our logic. For simplicity,
we explain the material in terms of expressing properties ofheaps. However, our logic
can actually model properties of arbitrary directed graphs. Still, the logic is powerful
enough to express the property that a graph denotes a heap.

2.1 Syntax ofLRP

LRP is a propositional logic over reachability constraints. That is, anLRP formula is a
boolean combination of closed formulas in first-order logicwith transitive closure that
satisfy certain syntactic restrictions.

Let τ = 〈C,U, F 〉 denote a vocabulary, where (i)C is a finite set of constant sym-
bols usually denoting designated objects in the heap, pointed to by program variables;
(ii) U is a set of unary relation symbols denoting properties, e.g., color of a node in a
Red-Black tree; (ii)F is a finite set of binary relation symbols (edges) usually denoting
pointer fields.3

A term t is either a variable or a constantc ∈ C. An atomic formula is an equality

t = t′, a unary relationu(t), or an edge formulat
f
→ t′, wheref ∈ F , andt, t′ are

terms. Aquantifier-free formula ψ(v0, . . . , vn) overτ and variablesv0, . . . , vn is an
arbitrary boolean combination of atomic formulas. LetFV (ψ) denote the free variables
of the formulaψ.

3 We can also allow auxiliary constants and fields including abstract fields [8].



Definition 1. Let ψ be a conjunction of edge formulas of the formvi
f
→ vj , where

f ∈ F and0 ≤ i, j ≤ n. TheGaifman graph of ψ, denoted byBψ, is an undirected
graph with a vertex for each free variable ofψ. There is an arc between the vertices

corresponding tovi andvj inBψ if and only if(vi
f
→ vj) appears inψ, for somef ∈ F .

Thedistance between logical variablesvi andvj in the formulaψ is the minimal edge
distance between the corresponding verticesvi andvj in Bψ.

For example, for the formulaψ = (v0
f
→ v1) ∧ (v0

f
→ v2) the distance betweenv1 and

v2 in ψ is 2, and its underlying graphBψ looks like this:v1 — v0 — v2.

Definition 2. (Syntax ofLRP) A neighborhood formula N(v0, . . . , vn) is a conjunc-

tion of edge formulas of the formvi
f
→ vj , wheref ∈ F and0 ≤ i, j ≤ n.

A routing expression is an extended regular expression, defined as follows:

R ::= ∅ empty set
| ǫ empty path

|
f
→ f ∈ F forward along edge

|
f
← f ∈ F backward along edge

| u u ∈ U test if u holds
| ¬u u ∈ U test if u does not hold
| c c ∈ C test if c holds
| ¬c c ∈ C test if c does not hold
| R1.R2 concatenation
| R1|R2 union
| R∗ Kleene star

A routing expression can require that a path traverse some edges backwards. A routing
expression has the ability to test presence and absence of certain unary relations and
constants along the path.

A reachability constraint is a closed formula of the form:

∀v0, . . . , vn.R(c, v0)⇒ (N(v0, . . . , vn)⇒ ψ(v0, . . . , vn))

wherec ∈ C is a constant,R is a routing expression,N is a neighborhood formula,
andψ is an arbitrary quantifier-free formula, such thatFV (N) ⊆ {v0, . . . , vn} and
FV (ψ) ⊆ FV (N) ∪ {v0}. In particular, if the neighborhood formulaN is true (the
empty conjunction), thenψ is a formula with a single free variablev0.

An LRP formula is a boolean combination of reachability constraints.

The subformulaN(v0, . . . , vn) ⇒ ψ(v0, . . . , vn) defines apattern, denoted byp(v0).
Here, the designated variablev0 denotes a “central” node of the “neighborhood” reach-
able fromc by following anR-path. Intuitively, neighborhood formulaN binds the
variablesv0, . . . , vn to nodes that form a subgraph, andψ defines more constraints on
those nodes.4

4 In all our examples, a neighborhood formulaN used in a pattern is such thatBN (the Gaifman
graph ofN ) is connected.



We uselet expressions to specify the scope in which the pattern is declared:

let p1(v0)
def
= N1(v0, v1, . . . , vn)⇒ ψ1(v0, . . . , vn) in ϕ

This allows us to write more concise formulas via sharing of patterns.

ShorthandsWe usec[R]p to denote a reachability constraint. Intuitively, the reachabil-
ity constraint requires that every node that is reachable from c by following anR-path
satisfy the patternp.

We usec1[R]¬c2 to denotelet p(v0)
def
= (true ⇒ ¬(v0 = c2)) in c1[R]p. In this

simple case, the neighborhood is only the node assigned tov0. Intuitively, c1[R]¬c2
means that the node labelled by constantc2 is not reachable along anR-path from
the node labelled byc1. We usec1〈R〉c2 as a shorthand for¬(c1[R]¬c2). Intuitively,
c1〈R〉c2 means thatthere existsanR-path fromc1 to c2. We usec1 = c2 to denote
c1〈ǫ〉c2, andc1 6= c2 to denote¬(c1 = c2). We usec[R](p1 ∧ p2) to denote(c[R]p1) ∧
(c[R]p2), whenp1 andp2 agree on the central node variable. When two patterns are
often used together, we introduce a name for their conjunction (instead of naming each
one separately):let p(v0)

def
= (N1 ⇒ ψ1) ∧ (N2 ⇒ ψ2) in ϕ.

In routing expressions, we useΣ to denote(
f1
→ |

f2
→ | . . . |

fm

→), the union of all the
fields inF . For example,c1[Σ∗]¬c2 means thatc2 is not reachable fromc1 by any path.
Finally, we sometimes omit the concatenation operator “.” in routing expressions.

SemanticsAn interpretation for anLRP formula overτ = 〈C,U, F 〉 is a labelled
directed graphG = 〈V G, EG, CG, UG〉 where: (i)V G is a set of nodes modelling the
heap objects, (ii)EG : F → P(V G × V G) are labelled edges, (iii)CG : C → V G

provides interpretation of constants as unique labels on the nodes of the graph, and
(iv) UG : U → P(V G) maps unary relation symbols to the set of nodes in which they
hold.

We say that nodev ∈ G is labelled withσ if σ ∈ C andv = CG(σ) or σ ∈ U and
v ∈ UG(σ). In the rest of the paper,graphdenotes a directed labelled graph, in which
nodes are labelled by constant and unary relation symbols, and edges are labelled by
binary relation symbols, as defined above.

We define a satisfaction relation|= between a graphG andLRP formula (G |= ϕ)
similarly to the usual semantics the first-order logic with transitive closure over graphs
(see [36]).

2.2 Properties ofLRP

LRP with arbitrary patterns has a finite model property. If formula ϕ ∈ LRP has an
infinite model, each reachability constraint inϕ that is satisfied by this model has a
finite witness.

Theorem 1. (Finite Model Property) Every satisfiable LRP formula is satisfiable by
a finite graph.
Sketch of Proof:We show thatLRP can be translated into a fragment of an infinitary
logic that has a finite model property. Observe thatc[R]p is equivalent to an infinite



conjunction of universal first-order sentences. Therefore, if G is a model ofc[R]p then
every substructure ofG is also its model. Dually,¬c[R]p is equivalent to an infinite
disjunction of existential first-order sentences. Therefore, if G is a model of¬c[R]p,
thenG has a finite substructureG′ such that every substructure ofG that containsG′ is
a model of¬c[R]p. It follows that every satisfiable boolean combination of formulas of
the formc[R]p has a finite model. Thus,LRPhas a finite model property.

The logicLRP is undecidable. The proof uses a reduction from the halting problem
of a Turing machine.

Theorem 2. (Undecidability) The satisfiability problem of LRP formulas is undecid-
able.
Sketch of Proof:Given a Turing machineM , we construct a formulaϕM such thatϕM
is satisfiable if and only if the execution ofM eventually halts.

The idea is that each node in the graph that satisfiesϕM describes a cell of a tape
in some configuration, with unary relation symbols encodingthe symbol in each cell,
the location of the head and the current state. Then-edges describe the sequence of
cells in a configuration and a sequence of configurations. Theb-edges describe how the
cell is changed from one configuration to the next. The constant c1 marks the node that
describes the first cell of the tape in the first configuration,the constantc2 marks the
node that describes the first cell in the second configuration, and the constantc3 marks
the node that describes the last cell in the last configuration (see sketch in Fig. 1).

Fig. 1.sketch of a model.

The most interesting part of the formulaϕM ensures that all graphs that satisfy
ϕM have a grid-like form. It states that for every nodev that isn-reachable fromc1,
if there is ab-edge fromv to u, then there is ab-edge from then-successor ofv to the
n-successor ofu:

let p(v) def
= (v

b
→ u) ∧ (v

n
→ v1) ∧ (u

n
→ u1)⇒ (v1

b
→ u1) in c1[(

n
→)∗]p (1)

Remark. The reduction uses only two binary relation symbols and a fixed number of
unary relation symbols. It can be modified to show that the logic with three binary
relation symbols (and no unary relations) is undecidable.

3 The LRP2 Fragment and its Usefulness

In this section we define theLRP2 fragment ofLRP, by syntactically restricting the
patterns. The main idea is to limit the distance between the nodes in the pattern in
certain situations.



Definition 3. A formula is in LRP2 if in every reachability constraintc[R]p, with a
patternp(v0)

def
= N(v0, . . . , vn)⇒ ψ(v0, . . . , vn), ψ has one of the following forms:

– (equality pattern) ψ is a an equality between variablesvi = vj , where0 ≤ i, j ≤
n, and the distance betweenvi and vj in N is at most2 (distance is defined in
Def. 1),

– (edge pattern) ψ is of the formvi
f
→ vj wheref ∈ F and0 ≤ i, j ≤ n, and the

distance betweenvi andvj in N is at most1.
– (negative pattern) atomic formulas appear only negatively inψ.

Remark. Note that formula (1), which is used in the proof of undecidability in Theo-
rem 2, is not inLRP2, becausep is an edge pattern with distance3 betweenv1 andu1,
while LRP2 allows edge patterns with distance at most1.

3.1 Describing Linked Data-Structures

In this section, we show thatLRP2 can express properties of data-structures. Table 1
lists some useful patterns and their meanings. For example,the first patterndetf means
that there is at most one outgoingf -edge from a node. Another important patternunsf
means that a node has at most one incomingf -edge. We use the subscriptf to empha-
size that this definition is parametric inf .

Pattern NamePattern Definition Meaning

detf (v0) (v0
f
→ v1) ∧ (v0

f
→ v2)⇒ (v1 = v2) f -edge fromv0 is deterministic

unsf(v0) (v1
f
→ v0) ∧ (v2

f
→ v0)⇒ (v1 = v2) v0 is not heap-shared byf -edges

unsf,g(v0) (v1
f
→ v0) ∧ (v2

g
→ v0)⇒ false v0 is not heap-shared byf -edge andg-edge

invf,b(v0)
(v0

f
→ v1 ⇒ v1

b
→ v0)

∧ (v0
b
→ v1 ⇒ v1

f
→ v0)

edgesf andb form a doubly-linked
list betweenv0 andv1

samef,g(v0)
(v0

f
→ v1 ⇒ v0

g
→ v1)

∧ (v0
g
→ v1 ⇒ v0

f
→ v1)

edgesf andg emanating fromv0 are
parallel

Table 1.Useful pattern definitions (f, b, g ∈ F are edge labels).

Well-formed heapsWe assume thatC (the set of constant symbols) contains a constant
for each pointer variable in the program (denoted byx, y in our examples). Also,C
contains a designated constantnull that representsNULL values. Throughout the rest
of the paper we assume that all the graphs denote well-formedheaps, i.e., the fields of
all objects reachable from constants are deterministic, and dereferencing NULL yields
null. In LRP2 this is expressed by the formula:

(
∧

c∈C

∧

f∈F

c[Σ∗]detf ) ∧ (
∧

f∈F

null〈
f
→〉null) (2)



Name Formula

reachx,f,y x〈(
f
→)∗〉y

the heap object pointed-to byy is reachable from the heap object pointed-to byx.

cyclicx,f x〈(
f
→)+〉x

cyclicity: the heap object pointed-to byx is located on a cycle.

unsharedx,f x[(
f
→)∗]unsf

every heap object reachable fromx by anf -path has at most one incomingf -edge.

disjointx,f,y,g x[(
f
→)∗(

g
←)∗]¬y

disjointness: there is no heap object that is reachable fromx by anf -path
and also reachable fromy by ag-path.

samex,f,g x[(
f
→ |

g
→)∗]samef,g

thef -path and theg-path fromx are parallel, and traverse same objects.

inversex,f,b,y reachx,f,y ∧ x[(
f
→ .¬y)∗]invf,b

doubly-linked lists between two variablesx andy
with f andb as forward and backward edges.

treeroot,r,l root[(
l
→ |

r
→)∗](unsl,r ∧ unsl ∧ unsr) ∧ ¬(root〈(

l
→ |

r
→)∗〉root)

tree rooted atroot.

Table 2.Properties of data-structures expressed inLRP2.

Using the patterns in Table 1, Table 2 defines some interesting properties of data-
structures usingLRP2. The formulareachx,f,y means that the object pointed-to by
the program variabley is reachable from the object pointed-to by the program vari-
ablex by following an access path off field pointers. We can also use it withnull
in the place ofy. For example, the formulareachx,f,null describes a (possibly empty)
linked-list pointed-to byx. Note that it implies that the list is acyclic, becausenull is
always a “sink” node in a well-formed heap. We can also express that there are no in-
comingf -edges into the list pointed to byx, by conjoining the previous formula with
unsharedx,f . Alternatively, we can specify thatx is located on a cycle off -edges:
cyclicx,f . Disjointness can be expressed by the formuladisjointx,f,y,g that uses both
forward and backward traversal of edges in the routing expression. For example, we
can express that the linked list pointed to byx is disjoint from the linked-list pointed to
by y, using the formuladisjointx,f,y,f . Disjointness of data-structures is important for
parallelization (e.g., see [17]).

The last two examples in Table 2 specify data-structures with multiple fields. The
formulainversex,f,b,y describes a doubly-linked with variablesx andy pointing to the
head and the tail of the list, respectively. First, it guarantees the existence of anf -path.
Next, it uses the patterninvf,b to express that if there is anf -edge from one node to
another, then there is ab-edge in the opposite direction. This pattern is applied to all
nodes on thef -path that starts fromx and that does not visity, expressed using the test
“¬y” in the routing expression. The formulatreeroot,r,l describes a binary tree. The
first part requires that the nodes reachable from the root (byfollowing any path ofl and



r fields) be not heap-shared. The second part prevents edges from pointing back to the
root of the tree by forbidding the root to participate in a cycle.

3.2 Expressing Verification Conditions

Thereverse procedure shown in Fig. 2 performs in-place reversal of a singly-linked
list. This procedure is interesting because it destructively updates the list and requires
two fields to express partial correctness. Moreover, it manipulates linked lists in which
each list node can be pointed-to from the outside. In this section, we show that the
verification conditions for the procedurereverse can be expressed inLRP2. If the
verification conditions are valid, then the program is partially correct with respect to the
specification. The validity of the verification conditions can be checked automatically
because the logicLRP2 is decidable, as shown in the next section. In [37], we show how
to automatically generate verification conditions inLRP2 for arbitrary procedures that
are annotated with preconditions, postconditions, and loop invariants inLRP2.

Node reverse(Node x){
L0: Node y = NULL;
L1: while (x != NULL){
L2: Node t = x->n;
L3: x->n = y;
L4: y = x;
L5: x = t;
L6: }
L7: return y;

}

Fig. 2.Reverse.

Notice that in this section we assume that all graphs denote valid stores, i.e., sat-
isfy (2). The precondition requires thatx point to an acyclic list, on entry to the pro-
cedure. We use the symbolsx0 andn0 to record the values of the variablex and the
n-field on entry to the procedure.

pre
def
= x0〈(

n0

→)∗〉null0

The postcondition ensures that the result is an acyclic listpointed-to byy. Most impor-
tantly, it ensures that each edge of the original list is reversed in the returned list, which
is expressed in a similar way to a doubly-linked list, usinginverse formula. We use the
relation symbolsy7 andn7 to refer to the values on exit.

post
def
= y7〈(

n7

→)∗〉null7 ∧ inversex0,n0,n7,y7



The loop invariantϕ shown below relates the heap on entry to the procedure to the
heap at the beginning of each loop iteration (labelL1). First, we require that the part
of the list reachable fromx be the same as it was on entry toreverse. Second, the
list reachable fromy is reversed from its initial state. Finally, the only original edge
outgoing ofy is tox.

ϕ
def
= samex1,n0,n1 ∧ inversex0,n0,n1,y1 ∧ x0〈

n0

→〉y1

Note that the postcondition uses two binary relations,n0 andn7, and also the loop
invariant uses two binary relations,n0 andn1. This illustrates that reasoning about
singly-linked lists requires more than one binary relation.

The verification condition ofreverse consists of two parts,V Cloop andV C,
explained below.

The formulaV Cloop expresses the fact thatϕ is indeed a loop invariant. To express
it in our logic, we use several copies of the vocabulary, one for each program point.
Different copies of the relation symboln in the graph model values of the fieldn at
different program points. Similarly, for constants. For example, Fig. 3 shows a graph
that satisfies the formulaV Cloop below. It models the heap at the end of some loop
iteration ofreverse. The superscripts of the symbol names denote the corresponding
program points.

x0 y1 x1, y6 x6

◦
n0

// ◦
n0

//

n1cc

n6

[[
◦

n0

//

n1bb

n6

[[
◦

n0

//

n1
::

n6

^^
◦

n0

//

n1 ;;

n6

CC
◦

Fig. 3.An example graph that satisfies theV Cloop formula forreverse.

To show that the loop invariantϕ is maintained after executing the loop body, we
assume that the loop condition and the loop invariant hold atthe beginning of the itera-
tion, and show that the loop body was executed without performing a null-dereference,
and the loop invariant holds at the end of the loop body:

V Cloop
def
= (x 6= null) loop is entered
∧ϕ loop invariant holds on loop head
∧(y6 = x1) ∧ x1〈n1〉x6 ∧ x1〈n6〉y1 loop body
∧samey1,n1,n6 ∧ samex1,n1,n6 rest of the heap remains unchanged

⇒ (x1 6= null) no null-derefernce in the body
∧ϕ6 loop invariant after executing loop body

Here,ϕ6 denotes the loop-invariant formulaϕ after executing the loop body (labelL6),
i.e., replacing all occurrences ofx1, y1 andn1 in ϕ by x6, y6 andn6, respectively. The
formulaV Cloop defines a relation between three states: on entry to the procedure, at the
beginning of a loop iteration and at the end of a loop iteration.



The formulaV C expresses the fact that if the precondition holds and the execution
reaches procedure’s exit (i.e., the loop is not entered because the loop condition does
not hold), the postcondition holds on exit:V C

def
= pre ∧ (x1 = null)⇒ post.

4 Decidability of LRP2

In this section, we show thatLRP2 is decidable for validity and satisfiability. SinceLRP2

is closed under negation, it is sufficient to show that it is decidable for satisfiability.
The satisfiability problem forLRP2 is decidable. The proof proceeds as follows:

1. Every formulaϕ ∈ LRP2 can be translated into an equi-satisfiable normal-form
formula that is a disjunction of formulas inCLRP2 (Def. 4 and Theorem 3). It is
sufficient to show that the satisfiability ofCLRP2 is decidable.

2. Define a class of simple graphsAk, for which the Gaifman graph is a tree with at
mostk additional edges (Def. 5).

3. Show that if formulaϕ ∈ CLRP2 has a model,ϕ has a model inAk, wherek is
linear in the size of the formulaϕ (Theorem 4). This is the main part of the proof.

4. Translate formulaϕ ∈ CLRP2 into an equivalent MSO formula.
5. Show that the satisfiability of MSO logic overAk is decidable, by reduction to

MSO on trees [30]. We could have also shown decidability using the fact that the
tree width of all graphs inAk is bounded byk, and that MSO over graphs with
bounded tree width is decidable [11, 1, 35].

Definition 4. (Normal-Form Formulas) A formula inCLRP2 is a conjunction of reach-
ability constraints of the formc1〈R〉c2 andc[R]p, wherep is one of the patterns allowed
in LRP2 (Def. 3). A normal-form formula is a disjunction ofCLRP2 formulas.

Theorem 3. There is a computable translation from LRP2 to a disjunction of formulas
in CLRP2 that preserves satisfiability.

Ayah Graphs We define a notion of a simple tree-like directed graph, called Ayah
graph.

Let G(S) denote theGaifman graphof the graphS, i.e., an undirected graph ob-
tained fromS by removing node labels, edge labels, and edge directions (and parallel
edges). Thedistancebetween nodesv1 andv2 in S is the number of edges on the short-
est path betweenv1 andv2 in G(S). An undirected graphB is in T k if removing self
loops and at mostk additional edges fromB results in an acyclic graph.

Definition 5. For k ≥ 0, an Ayah graph ofk is a graphS for which the Gaifman graph
is in T k: Ak = {S|G(S) ∈ T k}.

Let ϕ ∈ CLRP2 be of the formϕ3 ∧ ϕ2 ∧ ϕ= ∧ ϕ→, whereϕ⋄ is a conjunction
of constraints of the formc1〈R〉c2, ϕ2 is a conjunction of reachability constraints with
negative patterns,ϕ= is a conjunction of reachability constraints with equalitypatterns,
andϕ→ is a conjunction of reachability constraints with edge patterns.



Theorem 4. If ϕ ∈ CLRP2 is satisfiable, thenϕ is satisfiable by a graph inAk, where
k = 2 × n × |C| × m, m is the number of constraints inϕ3, |C| is the number of
constants in the vocabulary, and for every regular expression that appears inϕ3 there
is an equivalent automaton with at mostn states.
Sketch of Proof:Let S be a model ofϕ : S |= ϕ. We construct a graphS′ from S and
show thatS′ |= ϕ andS′ ∈ Ak. The construction uses the following operations on
graphs.

Witness SplittingA witnessW for a formulac1〈R〉c2 in CLRP2 in a graphS is a
path inS, labelled with a wordw ∈ L(R), from the node labelled withc1 to the node
labelled withc2. Note that the nodes and edges on a witness path forR need not be
distinct. UsingW , we construct a graphW ′ that consists of a path, labelled withw,
that starts at the node labelled byc1 and ends at the node labelled byc2. Intuitively, we
duplicate a node ofW each time the witness path forR traverses it, unless the node is
marked with a constant. As a result, all shared nodes inW ′ are labelled with constants.
Also, every cycle contains a node labelled with a constant. By construction, we get that
W ′ |= c1〈R〉c2. We say thatW ′ is the result ofsplitting the witnessW .

Finally, we say thatW is theshortest witnessfor c1〈R〉c2 if any other witness path
for c1〈R〉c2 is at least as long asW . The result of splitting the shortest witness is a
graph inAk, wherek = 2 × n × |C|: to break all cycles it is sufficient to remove all
the edges adjacent to nodes labelled with constants, and a node labelled with a constant
is visited at mostn times. (If a node is visited more than once in the same state ofthe
automaton, the path can be shortened.)

Merge OperationMerging two nodes in a graph is defined in the usual way by gluing
these nodes. Letp(v0)

def
= N(v0, v1, v2)⇒ (v1 = v2) be an equality pattern. If a graph

violates a reachability constraint c[R]p, we can assign nodesn0, n1, andn2 to v0, v1,
andv2, respectively, such that there is aR-path fromc to v0, N(n0, n1, n2) holds, and
n1 andn2 are distinct nodes. In this case, we say thatmerge operation ofn1 andn2

is enabled(by c[R]p). The nodesn1 andn2 can be merge to discharge this assignment
(other merge operations might still be enabled after mergingn1 andn2).

Edge-Addition OperationLet p(v0)
def
= N(v0, v1, v2) ⇒ v1

f
→ v2 be an edge pattern.

If a graph violates a reachability constraint c[R]p, we can assign nodesn0, n1, andn2

to v0, v1, andv2, respectively, such that there is aR-path fromc to v0, N(n0, n1, n2)
holds, and there is nof -edge fromn1 to n2. In this case, we say thatedge-operation
operation is enabled(by c[R]p). We can add anf -edge fromn1 andn2 to discharge
this assignment.

The following lemma is the key observation of this proof.

Lemma 1. The class ofAk graphs is closed under merge operations of nodes in dis-
tance at most two and edge-addition operations at distance one.
Sketch of Proof:If an edge is added in parallel to an existing one (distance one), it does
not affect the Gaifman graph, thusAk is closed under edge-addition. The proof thatAk
is closed under merge operations is more subtle [36].



In particular, the classAk is closed under the merge and edge-addition operations forced
by LRP2 formulas. This is the only place in our proof where we use the distance restric-
tion of LRP2 patterns.

Given a graphS that satisfiesϕ, we construct the graphS′ as follows:

1. For each constrainti in ϕ⋄, identify the shortest witnessWi in S. LetW ′

i be the
result of splitting the witnessWi.

2. The graphS0 is a union of allW ′

i ’s, in which the nodes labelled with the (syntacti-
cally) same constants are merged.

3. Apply all enabled merge operations and all enabled edge-addition operations in
any order, producing a sequence of distinct graphsS0, S1, . . . , Sr, until Sm has no
enabled operations.

4. The resultS′ = Sr.

The process described above terminates after a finite numberof steps, because in each
step either the number of nodes in the graph is decreased (by merge operations) or the
number of edges is increased (by edge-addition operations).

The proof proceeds by induction on the process described above. Initially, S0 is in
Ak. By Lemma 1, allSi created in the third step of the construction above are inAk;
in particular,S′ ∈ Ak.

By construction ofS0, it contains a witness for each constraint inϕ3, and merge
and edge-addition operations preserve the witnesses, thusS′ satisfiesϕ3. Moreover,
S0 satisfies all constraints inϕ2. We show that merge and edge-addition operations
applied in the construction preserveϕ2 constraints, thusS′ satisfiesϕ2. The process
above terminates when no merge and edge-addition operations are enabled, that is,S′

satisfiesϕ= ∧ ϕ→. Thus,S′ satisfiesϕ.
The full proof is available at [36].

4.1 Complexity

We proved decidability by reduction to MSO on trees, which allows us to decideLRP2

formulas using MONA decision procedure [18]. Alternatively, a decision procedure for
LRP2 can directly construct a tree automaton from a normal-form formula, and can
then check emptiness of the automaton. The worst case complexity of the satisfiability
problem ofLRP2 formulas is at least doubly-exponential, but it remains elementary (in
contrast to MSO on trees, which is non-elementary); we are investigating tighter upper
and lower bounds. The complexity depends on the boundk of Ak models, according
to Theorem 4. If the routing expressions do not contain constant symbols, then the
boundk does not depend on the routing expressions: it depends only on the number
of reachability constraints of the formc1〈R〉c2. The LRP2 formulas that come up in
practice are well-structured, and we hope to achieve a reasonable performance.

5 Limitations and Further Extensions

Despite the fact thatLRP2 is useful, there are interesting program properties that cannot
be expressed. For example, transitivity of a binary relation, that can be used, e.g., to ex-
press partial orders, is naturally expressible inLRP, but not inLRP2. Also, the property



that a general graph is a tree in which each node has a pointer back to the root is ex-
pressible inLRP, but not inLRP2. Notice that the property is non-trivial because we are
operating on general graphs, and not just trees. Operating on general graphs allows us
to verify that the data-structure invariant is reestablished after a sequence of low-level
mutations that temporarily violate the invariant data-structure.

There are of course interesting properties that are beyondLRP, such as the property
that a general graph is a tree in which every leaf has a pointerto the root of a tree.

In the future, we plan to generalizeLRP2 while maintaining decidability, perhaps
beyondLRP. We are encouraged by the fact that the proof of decidabilityin Section 4
holds “as is” for many useful extensions. For example, we cangeneralize the patterns
to allow neighborhood formulas with disjunctions and negations of unary relations. In
fact, more complex patterns can be used, as long as they do notviolate theAk prop-
erty. For example, we can define trees rooted atx with parent pointerb from every tree

node to its parent bytreex,r,l,b ∧ let p(v0)
def
= ((v1

l
→ v0) ∨ (v1

r
→ v0)) ⇒ (v0

b
→

v1)in x[(
l
→ |

r
→)∗](detb ∧ p). The extended logic remains decidable, because the pat-

ternp adds edges only in parallel to the existing ones.
Currently, reachability constraints describe paths that start from nodes labelled by

constants. We can show that the logic remains decidable whenreachability constraints
are generalized to describe paths that start from any node that satisfies a quantifier-
free positive formula θ: ∀v, w0, . . . , wm, v0, . . . , vn.R(v, v0) ∧ θ(v, w0, . . . , wm) ⇒
(N(v0, . . . , vn)⇒ ψ(v0, . . . , vn)).

6 Related Work

There are several works on logic-based frameworks for reasoning about graph/heap
structures. We mention here the ones which are, as far as we know, the closest to ours.

The logicLRPcan be seen as a fragment of the first-order logic over graph structures
with transitive closure (TC logic [20]). It is well known that TC is undecidable, and that
this fact holds even when transitive closure is added to simple fragments of FO such as
the decidable fragmentL2 of formulas with two variables [29, 15, 13].

It can be seen that our logicsLRP and LRP2 are both uncomparable withL2 +
TC. Indeed, inLRP no alternation between universal and existential quantification is
allowed. On the other hand,LRP2 allows us to express patterns (e.g., heap sharing) that
require more than two variables (see Table 1, Section 3).

In [3], decidable logicLr (which can also be seen as a fragment of TC) is intro-
duced. The logicsLRPandLRP2 generalizeLr, which is in fact the fragment of these
logics where only two fixed patterns are allowed: equality toa program variable and
heap sharing.

In [21, 2, 26, 4] other decidable logics are defined, but theirexpressive power is
rather limited w.r.t.LRP2 since they allow at most one binary relation symbol (mod-
elling linked data-structures with 1-selector). For instance, the logic of [21] does not
allow us to express the reversal of a list. Concerning the class of 1-selector linked data-
structures, [6] provides a decision procedure for a logic with reachability constraints
and arithmetical constraints on lengths of segments in the structure. It is not clear how



the proposed techniques can be generalized to larger classes of graphs. Other decidable
logics [7, 25] are restricted in the sharing patterns and thereachability they can describe.

Other works in the literature consider extensions of the first-order logic with fix-
point operators. Such an extension is again undecidable in general but the introduction
of the notion of (loosely) guarded quantification allows oneto obtain decidable frag-
ments such asµGF (or µLGF ) (Guarded Fragment with least and greater fixpoint op-
erators) [14, 12]. Similarly to our logics, the logicµGF (and alsoµLGF ) has the tree
model property: every satisfiable formula has a model of bounded tree width. However,
guarded fixpoint logics are incomparable withLRPandLRP2. For instance, theLRP2

patterndetf that requires determinism off -field, is not a (loosely) guarded formula.
The PALE system [28] uses an extension of the monadic second order logic on

trees as a specification language. The considered linked data structures are those that
can be defined asgraph types[24]. Basically, they are graphs that can be defined as
trees augmented by a set of edges defined using routing expressions (regular expres-
sions) defining paths in the (undirected structure of the) tree.LRP2 allows us to reason
naturally about arbitrary graphs without limitation to tree-like structures. Moreover, as
we show in Section 3, our logical framework allows us to express postconditions and
loop invariants that relate the input and the output state. For instance, even in the case
of singly-linked lists, our framework allows us to express properties that cannot be ex-
pressed in the PALE framework: in the list reversal example of Section 3, we show that
the output list is precisely the reversed input list, whereas in the PALE approach, one
can only establish that the output is a list that is the permutation of the input list.

In [22], we tried to employ a decision procedure for MSO on trees to reason about
reachability. However, this places a heavy burden on the specifier to prove that the data-
structures in the program can be simulated using trees. The current paper eliminated
this burden by defining syntactic restrictions on the formulas and showing a general
reduction theorem.

Other approaches in the literature use undecidable formalisms such as [17], which
provides a natural and expressive language, but does not allow for automatic property
checking.

Separation logic has been introduced recently as a formalism for reasoning about
heap structures [32]. The general logic is undecidable [10]but there are few works
showing decidable fragments [10, 4]. One of the fragments ispropositional separation
logic where quantification is forbidden [10, 9] and therefore seems to be incomparable
with our logic. The fragment defined in [4] allows one to reason only about singly-
linked lists with explicit sharing. In fact, the fragment considered in [4] can be translated
to LRP2, and therefore, entailment problems as stated in [4] can be solved as implication
problems inLRP2.

7 Conclusions

Defining decidable fragments of first order logic with transitive closure that are useful
for program verification is a difficult task (e.g., [21]). In this paper, we demonstrated
that this is possible by combining three principles: (i) allowing arbitrary boolean com-
binations of the reachability constraints, which are closed formulas without quantifier



alternations, (ii) defining reachability using regular expressions denoting pointer access
paths (not) reaching a certain pattern, and (iii) syntactically limiting the way patterns
are formed. Extensions of the patterns that allow larger distances between nodes in the
pattern either break our proof of decidability or are directly undecidable.

The decidability result presented in this paper improves the state-of-the-art signifi-
cantly. In contrast to [21, 2, 26, 4],LRPallows several binary relations. This provides a
natural way to (i) specify invariants for data-structures with multiple fields (e.g., trees,
doubly-linked lists), (ii) specify post-condition for procedures that mutate pointer fields
of data-structures, by expressing the relationships between fields before and after the
procedure (e.g., list reversal, which is beyond the scope ofPALE), (iii) express verifi-
cation conditions using a copy of the vocabulary for each program location.

We are encouraged by the expressiveness of this simple logicand plan to explore its
usage for program verification and abstract interpretation.
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