N
N

N

HAL

open science

A Logic of Reachable Patterns in Linked
Data-Structures

Greta Yorsh, Alexander Rabinovich, Mooly Sagiv, Antoine Meyer, Ahmed

Bouajjani

» To cite this version:

Greta Yorsh, Alexander Rabinovich, Mooly Sagiv, Antoine Meyer, Ahmed Bouajjani. A Logic of
Reachable Patterns in Linked Data-Structures. FOSSACS 2006, Mar 2006, Vienne, Austria. p. 94-

110, 10.1007/11690634_7 . hal-00149120

HAL Id: hal-00149120
https://hal.science/hal-00149120v1
Submitted on 24 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00149120v1
https://hal.archives-ouvertes.fr

hal-00149120, version 1 - 24 May 2007

A Logic of Reachable Patterns
in Linked Data-Structures

Greta Yorsh*, Alexander Rabinovich Mooly Sagiv,
Antoine Meye?, and Ahmed Bouajjafi

! Tel Aviv Univ., Israel.{gretay,rabinoa,msagi@post.tau.ac.il
2 Liafa, Univ. of Paris 7, Francdameyer,abop@liafa.jussieu.fr

Abstract. We define a new decidable logic for expressing and checkivayiin
ants of programs that manipulate dynamically-allocatgédatb via pointers and
destructive pointer updates. The main feature of this lggibe ability to limit
the neighborhood of a node that is reachable via a regulaession from a des-
ignated node. The logic is closed under boolean operat@ntai(ment, negation)
and has a finite model property. The key technical resulegtioof of decidabil-
ity.

We show how to express precondition, postconditions, ang lavariants for
some interesting programs. It is also possible to expregsepties such as dis-
jointness of data-structures, and low-level heap mutatidoreover, our logic
can express properties of arbitrary data-structures arghadrbitrary number
of pointer fields. The latter provides a way to naturally sfyepostconditions
that relate the fields on entry to a procedure to the fields dnExerefore, it is
possible to use the logic to automatically prove partiateciness of programs
performing low-level heap mutations.

1 Introduction

The automatic verification of programs with dynamic memdtgcation and pointer
manipulation is a challenging problem. In fact, due to dyitamemory allocation and
destructive updates of pointer-valued fields, the prograamory can be of arbitrary
size and structure. This requires the ability to reason edpotentially infinite number
of memory (graph) structures, even for programming langedaigat have good capabil-
ities for data abstraction. Usually abstract-datatypeatens are implemented using
loops, procedure calls, and sequences of low-level pomégipulations; consequently,
it is hard to prove that a data-structure invariant is rd#istaed once a sequence of op-
erations is finished [19].

To tackle the verification problem of such complex prograseseral approaches
emerged in the last few years with different expressive pswaed levels of automation,
including works based on abstract interpretation [27, 34,I8gic-based reasoning [23,
32], and automata-based techniques [24, 28, 5]. An impbidane is the definition of a
formalism that (1) allows us to express relevant prope(treariants) of various kinds
of linked data-structures, and (2) has the closure and dbitity features needed for

* This research was supported by THE ISRAEL SCIENCE FOUNDAY [@rant No 304/03).

automated verification. The aim of this paper is to study sadbrmalism based on
logics over arbitrary graph structures, and to find a baldretereen expressiveness,
decidability and complexity.

Reachability is a crucial notion for reasoning about linkieda-structures. For in-
stance, to establish that a memory configuration contailgmartzage elements, we must
show that every element is reachable from some programblari®ther examples of
properties that involve reachability are (1) the acydjiaf data-structure fragments,
i.e., every element reachable from nadeannot reach:, (2) the property that a data-
structure traversal terminates, e.g., there is a path frarade to a sink-node of the
data-structure, (3) the property that, for programs wittcpdure calls when references
are passed as arguments, elements that@reeachable from a formal parameter are
not modified.

A natural formalism to specify properties involving reablidy is the first-order
logic over graph structures with transitive closure. Unfoately, even simple decidable
fragments of first-order logic become undecidable whersttiae closure is added [13,
21].

In this paper, we propose a logic that can be seen as a fragrhée first-order
logic with transitive closure. Our logic is (1) simple andunal to use, (2) expressive
enough to cover important properties of a wide class of emlyitinked data-structures,
and (3) allows for algorithmic modular verification usingpgrammer’s specified loop-
invariants and procedure’s specifications.

Alternatively, our logic can be seen as a propositionaldegth atomic proposition
modelling reachability between heap objects pointed-tprogram variables and other
heap objects with certain properties. The properties ageifipd using patterns that
limit the neighborhood of an object. For example, in a doliblged list, a pattern says
that if an object has an an emanatirigor war d pointer that leads to an objeet then
w has abackwar d pointer intov.

The contributions of this paper can be summarized as follows

— We define the_ogic of Reachable Pattern&RP) where reachability constraints
such as those mentioned above can be used. Patterns in sistfacds are defined
by quantifier-free first-order formulas over graph struesaind sets of access paths
are defined by regular expressions.

— We show that.RP has a finite-model property, i.e., every satisfiable forninals a
finite model. Therefore, invalid formulas are always fagsifby a finite store.

— We prove that the logitRPis, unfortunately, undecidable.

— We define a suitable restriction on the patterns leading tagnfent ol_.RP called
LRP.

— We prove that the satisfiability (and validity) problem icitable. The fragment
LRP; is the main technical result of the paper and the decidghglibof is non-
trivial. The main idea is to show that every satisfiabi®P, formula is also satisfied
by a tree-like graph. Thus, even thougRP, expresses properties of arbitrary data-
structures, because the logic is limited enough, a formhda is satisfied on an
arbitrary graph is also satisfied on a tree-like graph. Thoeeeit is possible to
answer satisfiability (and validity) queries foRP, using a decision procedure for
monadic second-order logic (MSO) on trees.

— We show that despite the restriction on patterns we intredtie logicLRP; is
still expressive enough for use in program verification:ioas important data-
structures, and loop invariants concerning their manipraare in fact definable
in LRP,.

The new logid_RP, forms a basis of the verification framewaork for programs with
pointer manipulation [37], which has important advantaged. existing ones. For
instance, in contrast to decidable logics that restrictghaphs of interest (such as
monadic second-order logic on trees), our logic allowsteahyi graphs with an arbi-
trary number of fields. We show that this is very useful evenvirifying programs
that manipulate singly-linked lists in order to expresstpasdition and loop invariants
that relate the input and the output state. Moreover, ouclsgictly generalizes the
decidable logic in [3], which inspired our work. Therefoitesan be shown that certain
heap abstractions including [16, 33] can be expressed Lty formulas.

The rest of the paper is organized as follows: Section 2 defime syntax and the
semantics of RP, and shows that it has a finite model property, and tiR®is unde-
cidable; Section 3 defines the fragmé&fP,, and demonstrates the expressiveness of
LRP, on several examples; Section 4 describes the main ideae dettidability proof
for LRP;; Section 5 discusses the limitations and the extensionseofiéw logics; fi-
nally, Section 6 discusses the related work. The full versibthe paper [36] contains
the formal definition of the semantics bRPand proofs.

2 ThelLRP Logic

In this section, we define the syntax and the semantics of agic.l For simplicity,
we explain the material in terms of expressing propertidseafps. However, our logic
can actually model properties of arbitrary directed graj@t#l, the logic is powerful
enough to express the property that a graph denotes a heap.

2.1 Syntax ofLRP

LRPis a propositional logic over reachability constraintsafts, anLRPformula is a
boolean combination of closed formulas in first-order logith transitive closure that
satisfy certain syntactic restrictions.

Let = (C,U, F) denote a vocabulary, where (i} is a finite set of constant sym-
bols usually denoting designated objects in the heap, @ittt by program variables;
(ii) U is a set of unary relation symbols denoting properties, eajor of a node in a
Red-Black tree; (ii)f is a finite set of binary relation symbols (edges) usuallyodieig
pointer fields®

A term t is either a variable or a constant C. An atomic formula is an equality
t = t/, a unary relation(¢), or an edge formula Loy, wheref € F, andt,t’ are
terms. Aquantifier-free formula ¥ (vo, . ..,v,) overr and variablesy, ..., v, is an
arbitrary boolean combination of atomic formulas. E8t (¢) denote the free variables
of the formulay.

3 We can also allow auxiliary constants and fields includinstratet fields [8].

Definition 1. Let ¢ be a conjunction of edge formulas of the fom;nﬁ v;, where

f e Fand0 < 4,5 < n. TheGaifman graph of 4, denoted by3,, is an undirected
graph with a vertex for each free variable ¢f There is an arc between the vertices
corresponding t@; andv; in By, if and only if(v; 4, vj) appearsing, for somef € F.
Thedistance between logical variables; andv; in the formulaz) is the minimal edge
distance between the corresponding verticeandv; in B..

For example, for the formula = (v ER v1) A (v ER v9) the distance between and
vg in 4 is 2, and its underlying grapB,; looks like this:v; — vg — va.

Definition 2. (Syntax of LRP) A neighborhood formula N (v, ..., v,) is a conjunc-

tion of edge formulas of the form 4, v, wheref € Frand0 <4,j <n.
Arouting expression is an extended regular expression, defined as follows:

R:u=0 empty set
| e empty path
| ER f € F forward along edge
| L f € F backward along edge
| w uelU test if u holds
| v weU testif udoes nothold
| ¢ ceC test if ¢ holds
| -¢ ce€C testifcdoes nothold
| Ri.R concatenation
| Ri|R2 union
| R* Kleene star

A routing expression can require that a path traverse songesthackwards. A routing
expression has the ability to test presence and absencetaircenary relations and
constants along the path.

A reachability constraint is a closed formula of the form:

Y, ..., Un.R(c,v9) = (N(voy...,vn) = ¥(vo,...,0n))

wherec € C is a constantR is a routing expressiony is a neighborhood formula,
and+ is an arbitrary quantifier-free formula, such th&tV (N) C {vo,...,v,} and
FV () C FV(N) U {vo}. In particular, if the neighborhood formuld’ is true (the
empty conjunction), then is a formula with a single free variablg,.

AnLRP formulais a boolean combination of reachability constraints.

The subformulaV (vo, . .., v,) = ¥ (vo, ..., v,) defines gattern, denoted by (vg).
Here, the designated variahlgdenotes a “central” node of the “neighborhood” reach-
able fromc by following an R-path. Intuitively, neighborhood formul& binds the
variablesy, . . ., v, to nodes that form a subgraph, anndlefines more constraints on
those node¢'

% In all our examples, a neighborhood formNaused in a pattern is such thBty (the Gaifman
graph ofN) is connected.

We usdet expressions to specify the scope in which the pattern isadexti

let p1 (vo) d:ele(vo,vl,...,vn) = 1(vo,...,vp) N @

This allows us to write more concise formulas via sharingaifgrns.

ShorthandsWe usec|R]p to denote a reachability constraint. Intuitively, the tesiail-
ity constraint requires that every node that is reachabi fr by following an R-path
satisfy the patterp.

We usec; [R]—c, to denotdet p(vg) = (true = —(vo = ¢3)) in ¢1[R]p. In this
simple case, the neighborhood is only the node assignegl. tmtuitively, ¢; [R]—ca
means that the node labelled by constanis not reachable along aR-path from
the node labelled by;. We usec; (R)c; as a shorthand for(cq[R]—-cz). Intuitively,
c1{R)co means thathere existean R-path frome; to co. We usec; = ¢, to denote
c1(e)ca, andey # ¢ to denote-(c; = c2). We usec[R](p1 A p2) to denotgc[R]p;1) A
(c[R]p2), whenp;, andp, agree on the central node variable. When two patterns are
often used together, we introduce a name for their conjan¢tnstead of naming each
one separatelyjet p(vo) = (Ny = 1) A (N2 = 12) in .

In routing expressions, we useto denote(@ £ |... f—"i’), the union of all the

fields in F'. For exampleg; [X*]—c2 means that, is not reachable fror, by any path.
Finally, we sometimes omit the concatenation operatan‘routing expressions.

SemanticsAn interpretation for arLRP formula overr = (C,U, F) is a labelled
directed graplt; = (V& E¢ C% U%) where: (i)V¢ is a set of nodes modelling the
heap objects, (ilE¢: F — P(VE x V) are labelled edges, (ig¢: ¢ — V&
provides interpretation of constants as unique labels emtides of the graph, and
(iv) U%: U — P(VE) maps unary relation symbols to the set of nodes in which they
hold.

We say that node € G is labelled withs if o € C andv = C%(o) oro € U and
v € U%(0). In the rest of the papegraphdenotes a directed labelled graph, in which
nodes are labelled by constant and unary relation symbitsedges are labelled by
binary relation symbols, as defined above.

We define a satisfaction relati¢a between a grapt’ andLRPformula G E ¢)
similarly to the usual semantics the first-order logic witmisitive closure over graphs
(see [36]).

2.2 Properties ofLRP

LRP with arbitrary patterns has a finite model property. If fotmyp € LRP has an
infinite model, each reachability constraint¢nthat is satisfied by this model has a
finite witness.

Theorem 1. (Finite Model Property) Every satisfiable LRP formula is satisfiable by
a finite graph.

Sketch of ProofWe show thal.RP can be translated into a fragment of an infinitary
logic that has a finite model property. Observe t#]p is equivalent to an infinite

conjunction of universal first-order sentences. Therefdr@ is a model ofc[R]p then
every substructure of is also its model. Dually;-¢[R]p is equivalent to an infinite
disjunction of existential first-order sentences. Therefdf G is a model of—¢[R]p,
thenG has a finite substructur@ such that every substructure@fthat contaings’ is
a model of—¢[R]p. It follows that every satisfiable boolean combination afifialas of
the form¢[R]p has a finite model. ThugRP has a finite model property.

The logicL RP is undecidable. The proof uses a reduction from the haltioglpm
of a Turing machine.

Theorem 2. (Undecidability) The satisfiability problem of LRP formulas is undecid-
able.

Sketch of ProofGiven a Turing machin@/, we construct a formula,, such thatp,,

is satisfiable if and only if the execution 8f eventually halts.

The idea is that each node in the graph that satigfigsdescribes a cell of a tape
in some configuration, with unary relation symbols encodimgsymbol in each cell,
the location of the head and the current state. A¥exiges describe the sequence of
cells in a configuration and a sequence of configurationshIddges describe how the
cell is changed from one configuration to the next. The coistamarks the node that
describes the first cell of the tape in the first configurattbe, constant, marks the
node that describes the first cell in the second configuradioe the constant; marks
the node that describes the last cell in the last configurdtiee sketch in Fig. 1).

cl n n c2 n n n c3
O Q Q O
N e W S
Fig. 1. sketch of a model.

The most interesting part of the formula,, ensures that all graphs that satisfy
pum have a grid-like form. It states that for every nodéhat isn-reachable from,
if there is ab-edge fromw to u, then there is &-edge from the:-successor of to the
n-successor of:

let p(v) « (v LA u) A (v S v) A (D u) = (0 LA up)in e [(Z)*]p ()

Remark. The reduction uses only two binary relation symbols and edfixumber of
unary relation symbols. It can be modified to show that theclegth three binary
relation symbols (and no unary relations) is undecidable.

3 TheLRP,; Fragment and its Usefulness

In this section we define theRP, fragment ofLRP, by syntactically restricting the
patterns. The main idea is to limit the distance between tides in the pattern in
certain situations.

Definition 3. A formula is in LRB if in every reachability constraint[R]p, with a
patternp(vo) N(vo, ooy 0n) = W¥(vo, ..., vs), ¥ has one of the following forms:

— (equality pattern) ¢ is a an equality between variables = v;, where0 < 4,j <
n, and the distance between andv; in IV is at most2 (distance is defined in
Def. 1),

— (edge pattern) v is of the formv; ER v; wheref € F and0 < ¢,j < n, and the
distance between; andv; in N is at mostl.

— (negative pattern) atomic formulas appear only negativelyin

Remark. Note that formula (1), which is used in the proof of undebitity in Theo-
rem 2, is not inLRP;, because is an edge pattern with distangdetweeny; andu,
while LRP, allows edge patterns with distance at mbst

3.1 Describing Linked Data-Structures

In this section, we show thatRP, can express properties of data-structures. Table 1
lists some useful patterns and their meanings. For exangléirst patternlet ; means
that there is at most one outgoirfigedge from a node. Another important patters s
means that a node has at most one inconfhagige. We use the subscripto empha-
size that this definition is parametric jh

Pattern NamePattern Definition Meaning
det s (vo) (vo ER v1) A (v ER v2) = (v1 = v2)|f-edge fromy, is deterministic
uns ¢(vo) (v1 4 vo) A (v2 EX vo) = (v1 = v2)|vg iS Not heap-shared bfredges
unsy,q(vo) (v EA vo) A (vy 2 wy) = false |vo is not heap-shared bfredge angj-edge
. (vo EX v = V1 i vg) edgesf andb form a doubly-linked
invyp(vo) ;

A (vo LN vy = vy ER o) list betweervg andv;
same;. (1) (vo EN v1 = vy > vy) edge”sflandg emanating fromy, are

A (vg 2 v1 = vy 4, v1) paralle

Table 1.Useful pattern definitionsf(b, g € F' are edge labels).

Well-formed heapdVe assume that' (the set of constant symbols) contains a constant
for each pointer variable in the program (denoteddhy in our examples). Alsof'
contains a designated constantl/ that representSlULL values. Throughout the rest
of the paper we assume that all the graphs denote well-fohmags, i.e., the fields of
all objects reachable from constants are deterministid demeferencing NULL yields
null. In LRP, this is expressed by the formula:

(N N\ ez Ndets) A (N null(=>)null) (2)

ceC feF feEF

Name Formula

reachspy |2((5))y

the heap object pointed-to hyis reachable from the heap object pointed-tacby|

cyclicy, m((i)ﬂm
cyclicity: the heap object pointed-to hyis located on a cycle.

unshared,, s m[(i)*]unsf

every heap object reachable franiy an f-path has at most one incomirfgedge|

disjointy ¢y.q IE[(L)*(&)*]WJ

disjointness: there is no heap object that is reachable frbsnan f-path
and also reachable frognby ag-path.

sameg, f.g z[(i» | i)*]samefyg
the f-path and the-path fromz are parallel, and traverse same objects.

. f s

inverseyg rb.y |reachy ru Ax[(= .—y)*linvy

doubly-linked lists between two variablesandy
with f andb as forward and backward edges.

treeroot .l root[(L | 5)*](uns - A uns; A uns,) A ﬁ(root<(—l> | 5)*)root)
tree rooted atoot.

Table 2. Properties of data-structures expresseldRi,.

Using the patterns in Table 1, Table 2 defines some intereptioperties of data-
structures using.RP,. The formulareach, ;, means that the object pointed-to by
the program variablg is reachable from the object pointed-to by the program vari-
ablez by following an access path of field pointers. We can also use it withull
in the place ofy. For example, the formuleeach, ¢ . describes a (possibly empty)
linked-list pointed-to byr. Note that it implies that the list is acyclic, becausgd! is
always a “sink” node in a well-formed heap. We can also exgtieat there are no in-
coming f-edges into the list pointed to hy; by conjoining the previous formula with
unshared, ;. Alternatively, we can specify that is located on a cycle of-edges:
cyclicg, ¢. Disjointness can be expressed by the formlitgoint, ¢, 4 that uses both
forward and backward traversal of edges in the routing esgioa. For example, we
can express that the linked list pointed tosis disjoint from the linked-list pointed to
by y, using the formula@isjoint, ;.. ¢. Disjointness of data-structures is important for
parallelization (e.qg., see [17]).

The last two examples in Table 2 specify data-structurels mitltiple fields. The
formulainverse, r 1., describes a doubly-linked with variablesindy pointing to the
head and the tail of the list, respectively. First, it guaeas the existence of giipath.
Next, it uses the patterimvs;, to express that if there is afredge from one node to
another, then there istaedge in the opposite direction. This pattern is appliediito a
nodes on the-path that starts from and that does not visit, expressed using the test
“—y” in the routing expression. The formuiaee, . ; describes a binary tree. The
first part requires that the nodes reachable from the rodioflowing any path of and

r fields) be not heap-shared. The second part prevents eadgep&inting back to the
root of the tree by forbidding the root to participate in aleyc

3.2 Expressing Verification Conditions

Ther ever se procedure shown in Fig. 2 performs in-place reversal of glgilinked
list. This procedure is interesting because it destrulgtivpdates the list and requires
two fields to express partial correctness. Moreover, it palaies linked lists in which
each list node can be pointed-to from the outside. In thisia®cwe show that the
verification conditions for the procedurever se can be expressed ItRP;. If the
verification conditions are valid, then the program is péisticorrect with respect to the
specification. The validity of the verification conditionasrcbe checked automatically
because the logicRP, is decidable, as shown in the next section. In [37], we shaw ho
to automatically generate verification conditiondiRP, for arbitrary procedures that
are annotated with preconditions, postconditions, ang ioeariants inLRP;.

Node reverse(Node Xx)({
LO: Node y = NULL;
L1: while (x !'= NULL){

L2: Node t = x->n;
L3: X->n = y;

L4: y = X;

L5: X =1t;

L6: }

L7: return y;

Fig. 2. Reverse.

Notice that in this section we assume that all graphs deraiié stores, i.e., sat-
isfy (2). The precondition requires thatpoint to an acyclic list, on entry to the pro-
cedure. We use the symbatg andn' to record the values of the variabteand the
n-field on entry to the procedure.

del 00Nk 0
pre = 2 ((=)*ynull

The postcondition ensures that the result is an acyclipéstted-to byy. Most impor-
tantly, it ensures that each edge of the original list is rese in the returned list, which
is expressed in a similar way to a doubly-linked list, usingerse formula. We use the
relation symbolg,” andn” to refer to the values on exit.

7
post Z yT () Ynull™ A inversego po n7 47

The loop invariantp shown below relates the heap on entry to the procedure to the
heap at the beginning of each loop iteration (lab®). First, we require that the part
of the list reachable from be the same as it was on entryrtever se. Second, the
list reachable fromy is reversed from its initial state. Finally, the only origlredge
outgoing ofy is to x.

0= SAMEL1 1,0 1 N TNVETSE 0 1o p1 1 A m0<n—0>>y1
Note that the postcondition uses two binary relatioffs,and»”, and also the loop
invariant uses two binary relations? andn'. This illustrates that reasoning about
singly-linked lists requires more than one binary relation

The verification condition of ever se consists of two partsy'Cj,., andVC,
explained below.

The formulaV’ Ci,,, €xpresses the fact thatis indeed a loop invariant. To express
it in our logic, we use several copies of the vocabulary, @reebich program point.
Different copies of the relation symbal in the graph model values of the fieldat
different program points. Similarly, for constants. Foample, Fig. 3 shows a graph
that satisfies the formul&C;,,, below. It models the heap at the end of some loop
iteration ofr ever se. The superscripts of the symbol names denote the corresmpnd
program points.

1 1 6
z° y .y 6
'IZO 'IZO nU 'IZO nU
O O O O O O
nG nG 716 716

Fig. 3. An example graph that satisfies th&’,,,, formula forr ever se.

To show that the loop invariant is maintained after executing the loop body, we
assume that the loop condition and the loop invariant holdeabeginning of the itera-
tion, and show that the loop body was executed without perifeg a null-dereference,
and the loop invariant holds at the end of the loop body:

VCioop = (z # null) loop is entered
Ap loop invariant holds on loop head
Ayt = zb) Azt (nh)ab Azt (n)y! loop body
ASa@MeE 1 p1 6 N SAMEL 11 16 rest of the heap remains unchanged
= (2! # null) no null-derefernce in the body
N loop invariant after executing loop body

Here,® denotes the loop-invariant formutaafter executing the loop body (lake6),
i.e., replacing all occurrences of, y! andn! in ¢ by 2%, 4° andn®, respectively. The
formulaV C,., defines a relation between three states: on entry to the guoegat the
beginning of a loop iteration and at the end of a loop iteratio

The formulaV C expresses the fact that if the precondition holds and theutian
reaches procedure’s exit (i.e., the loop is not enteredusecthe loop condition does
not hold), the postcondition holds on exXitC' £ pre A (! = null) = post.

4 Decidability of LRP,

In this section, we show thaRP; is decidable for validity and satisfiability. Sinc&P,
is closed under negation, it is sufficient to show that it isidable for satisfiability.
The satisfiability problem fotRP; is decidable. The proof proceeds as follows:

1. Every formulap € LRP, can be translated into an equi-satisfiable normal-form
formula that is a disjunction of formulas BILRP, (Def. 4 and Theorem 3). It is
sufficient to show that the satisfiability 6fLRP; is decidable.

2. Define a class of simple graplts;, for which the Gaifman graph is a tree with at
mostk additional edges (Def. 5).

3. Show that if formulap € CLRP, has a modely has a model ind;, wherek is
linear in the size of the formula (Theorem 4). This is the main part of the proof.

4. Translate formula € CLRP, into an equivalent MSO formula.

5. Show that the satisfiability of MSO logic ovet; is decidable, by reduction to
MSO on trees [30]. We could have also shown decidability giiire fact that the
tree width of all graphs ind;, is bounded by, and that MSO over graphs with
bounded tree width is decidable [11, 1, 35].

Definition 4. (Normal-Form Formulas) A formulainCLRP; is a conjunction of reach-
ability constraints of the form; (R)c, andc[R]p, wherep is one of the patterns allowed
in LRP; (Def. 3). A normal-form formula is a disjunction 61LRP, formulas.

Theorem 3. There is a computable translation from LR#® a disjunction of formulas
in CLRP; that preserves satisfiability.

Ayah Graphs We define a notion of a simple tree-like directed graph, dafgah
graph.

Let G(S) denote theGaifman graphof the graphS, i.e., an undirected graph ob-
tained fromS by removing node labels, edge labels, and edge directionsgarallel
edges). Thelistancebetween nodes, andvs in S is the number of edges on the short-
est path betweem; andv, in G(S). An undirected grapl® is in T* if removing self
loops and at most additional edges fron® results in an acyclic graph.

Definition 5. For & > 0, an Ayah graph ok is a graphsS for which the Gaifman graph
isinT* A, = {S|G(S) € T*}.

Let o € CLRP, be of the formpe A wo A p= A p_,, Whereyp, is a conjunction
of constraints of the form; (R)c2, ¢ is a conjunction of reachability constraints with
negative patterng;_ is a conjunction of reachability constraints with equafiatterns,
andyp_, is a conjunction of reachability constraints with edge ¢uais.

Theorem 4. If ¢ € CLRP; is satisfiable, thew is satisfiable by a graph i, where

k = 2 x n x |C|] x m, m is the number of constraints ips, |C| is the number of
constants in the vocabulary, and for every regular expoasgiat appears ipe there

is an equivalent automaton with at messtates.

Sketch of ProofLet S be a model ofp : S = . We construct a grapB’ from .S and
show thatS’ = ¢ andS’ € A,. The construction uses the following operations on
graphs.

Witness SplittingA witnessW for a formulac; (R)co in CLRP, in a graphS is a
path inS, labelled with a wordv € L(R), from the node labelled with; to the node
labelled withc,. Note that the nodes and edges on a witness patik foeed not be
distinct. UsingWW, we construct a grapi/’ that consists of a path, labelled with,
that starts at the node labelled hyand ends at the node labelled &y Intuitively, we
duplicate a node off” each time the witness path f& traverses it, unless the node is
marked with a constant. As a result, all shared nodé¥frare labelled with constants.
Also, every cycle contains a node labelled with a constaptdhstruction, we get that
W' = c1(R)co. We say thalV’ is the result ofplitting the witnesgv'.

Finally, we say that? is theshortest witnesfor c¢; (R) ¢ if any other witness path
for ¢1(R)cs is at least as long ai/. The result of splitting the shortest witness is a
graph inAx, wherek = 2 x n x |C|: to break all cycles it is sufficient to remove all
the edges adjacent to nodes labelled with constants, andedaloelled with a constant
is visited at mosh times. (If a node is visited more than once in the same statieeof
automaton, the path can be shortened.)

Merge OperationMerging two nodes in a graph is defined in the usual way by gluin
these nodes. Let(vg) e N(vg,v1,v2) = (v1 = v2) be an equality pattern. If a graph
violates a reachability constraint c[R]p, we can assignesed, ni, andns to vg, vy,
andws, respectively, such that there id@apath frome to vy, N (ng, n1,n2) holds, and

n1 andny are distinct nodes. In this case, we say tim&rge operation of:.; andno

is enabledby c[R]p). The node®; andn, can be merge to discharge this assignment
(other merge operations might still be enabled after merginandn.).

Edge-Addition Operatiori_et p(vg) « N(vg,v1,v2) = v1 4 vo be an edge pattern.
If a graph violates a reachability constraint c[R]p, we casign nodesy, n1, andny
to vo, v1, andus, respectively, such that there isiapath frome to vy, N(ng, n1,n2)
holds, and there is ng-edge fromn, to no. In this case, we say thadge-operation
operation is enabledby c[R]p). We can add arfi-edge fromn; andn, to discharge
this assignment.

The following lemma is the key observation of this proof.

Lemma 1. The class ofd; graphs is closed under merge operations of nodes in dis-
tance at most two and edge-addition operations at distamee o

Sketch of Prooftf an edge is added in parallel to an existing one (distaneg,éndoes

not affect the Gaifman graph, thuk; is closed under edge-addition. The proof tHat

is closed under merge operations is more subtle [36].

In particular, the clasgly, is closed under the merge and edge-addition operationsdorc
by LRP, formulas. This is the only place in our proof where we use thadce restric-
tion of LRP, patterns.

Given a graplb that satisfies, we construct the grap#l’ as follows:

1. For each constrairnitin ¢, identify the shortest witnesd’; in S. Let W/ be the
result of splitting the witnesy#/;.

2. The graphb, is a union of alli/’s, in which the nodes labelled with the (syntacti-
cally) same constants are merged.

3. Apply all enabled merge operations and all enabled eddéian operations in
any order, producing a sequence of distinct gragihs, . . ., S,, until S,,, has no
enabled operations.

4, Theresults’ = S,.

The process described above terminates after a finite nuofilsézps, because in each
step either the number of nodes in the graph is decreaseddlyerperations) or the
number of edges is increased (by edge-addition operations)

The proof proceeds by induction on the process describedeabditially, Sy is in
Ai. By Lemma 1, allS; created in the third step of the construction above atd;in
in particular,S’ € Ay.

By construction ofSy, it contains a witness for each constraintdg, and merge
and edge-addition operations preserve the witnesses,Sthsatisfiesy,. Moreover,
Sp satisfies all constraints ipg. We show that merge and edge-addition operations
applied in the construction preseryg constraints, thus’ satisfiespg. The process
above terminates when no merge and edge-addition opesatierenabled, that is;
satisfiesp— A p_,. Thus,S’ satisfiesp.

The full proof is available at [36].

4.1 Complexity

We proved decidability by reduction to MSO on trees, whidbvas us to decidéRP,
formulas using MONA decision procedure [18]. Alternatiyel decision procedure for
LRP, can directly construct a tree automaton from a normal-foormila, and can
then check emptiness of the automaton. The worst case citypéthe satisfiability
problem ofLRP, formulas is at least doubly-exponential, but it remainsneetary (in
contrast to MSO on trees, which is non-elementary); we aresitigating tighter upper
and lower bounds. The complexity depends on the baunfl. A, models, according
to Theorem 4. If the routing expressions do not contain @mstymbols, then the
boundk does not depend on the routing expressions: it depends ontflgeonumber
of reachability constraints of the form (R)c.. The LRP, formulas that come up in
practice are well-structured, and we hope to achieve a neéd® performance.

5 Limitations and Further Extensions

Despite the fact thdtRP; is useful, there are interesting program properties thatch
be expressed. For example, transitivity of a binary remtibat can be used, e.g., to ex-
press partial orders, is naturally expressibleRP, but not inLRP,. Also, the property

that a general graph is a tree in which each node has a poent&rtb the root is ex-
pressible irlLRP, but not inLRP,. Notice that the property is non-trivial because we are
operating on general graphs, and not just trees. Operatiggneral graphs allows us
to verify that the data-structure invariant is reestalgishfter a sequence of low-level
mutations that temporarily violate the invariant datarsture.

There are of course interesting properties that are beyBiisuch as the property
that a general graph is a tree in which every leaf has a pdimtée root of a tree.

In the future, we plan to generalizdkP, while maintaining decidability, perhaps
beyondLRP. We are encouraged by the fact that the proof of decidaliilifection 4
holds “as is” for many useful extensions. For example, wegemmeralize the patterns
to allow neighborhood formulas with disjunctions and neges of unary relations. In
fact, more complex patterns can be used, as long as they doatate the.4;, prop-

erty. For example, we can define trees rooted &ith parent pointeb from every tree

node to its parent byree, ;5 A let p(vg) = ((v1 4 vo) V (11 = wo)) = (vo LA

v1)in :c[(—l> |)*](dety A p). The extended logic remains decidable, because the pat-
ternp adds edges only in parallel to the existing ones.

Currently, reachability constraints describe paths tkeat from nodes labelled by
constants. We can show that the logic remains decidable vezemability constraints
are generalized to describe paths that start from any nadesttisfies a quantifier-
free positiveformula 8: Vv, wy, . . ., wm, vo, - . ., tn.R(v,v0) A O(v,wo, ..., wy) =
(N(voy...,vn) = Y (vo,...,05)).

6 Related Work

There are several works on logic-based frameworks for réagcabout graph/heap
structures. We mention here the ones which are, as far asove kme closest to ours.

The logicLRPcan be seen as a fragment of the first-order logic over graptistes
with transitive closure (TC logic [20]). It is well known th&C is undecidable, and that
this fact holds even when transitive closure is added to lgifnpgments of FO such as
the decidable fragmert? of formulas with two variables [29, 15, 13].

It can be seen that our logi¢sRP and LRP, are both uncomparable with? +
TC. Indeed, inLRP no alternation between universal and existential quaatifia is
allowed. On the other hantRP, allows us to express patterns (e.g., heap sharing) that
require more than two variables (see Table 1, Section 3).

In [3], decidable logicL, (which can also be seen as a fragment of TC) is intro-
duced. The logickRPandLRP, generalizel,., which is in fact the fragment of these
logics where only two fixed patterns are allowed: equality tprogram variable and
heap sharing.

In [21, 2, 26, 4] other decidable logics are defined, but teepressive power is
rather limited w.r.tLRP; since they allow at most one binary relation symbol (mod-
elling linked data-structures with 1-selector). For imst, the logic of [21] does not
allow us to express the reversal of a list. Concerning thesaté 1-selector linked data-
structures, [6] provides a decision procedure for a logithweachability constraints
and arithmetical constraints on lengths of segments intthetsire. It is not clear how

the proposed techniques can be generalized to larger slatgeaphs. Other decidable
logics [7, 25] are restricted in the sharing patterns andahehability they can describe.

Other works in the literature consider extensions of the-&irder logic with fix-
point operators. Such an extension is again undecidableriergl but the introduction
of the notion of (loosely) guarded quantification allows do®btain decidable frag-
ments such agGF (or uLGF) (Guarded Fragment with least and greater fixpoint op-
erators) [14, 12]. Similarly to our logics, the logig7 F' (and alsou LG F) has the tree
model property: every satisfiable formula has a model of dedriree width. However,
guarded fixpoint logics are incomparable witRP andLRP,. For instance, theRP,
patterndet s that requires determinism g¢tfield, is not a (loosely) guarded formula.

The PALE system [28] uses an extension of the monadic secatet thgic on
trees as a specification language. The considered linkedstiaictures are those that
can be defined agraph typeq24]. Basically, they are graphs that can be defined as
trees augmented by a set of edges defined using routing sigmegregular expres-
sions) defining paths in the (undirected structure of thex).trRP, allows us to reason
naturally about arbitrary graphs without limitation todrkke structures. Moreover, as
we show in Section 3, our logical framework allows us to egpngostconditions and
loop invariants that relate the input and the output stateirtstance, even in the case
of singly-linked lists, our framework allows us to expresegerties that cannot be ex-
pressed in the PALE framework: in the list reversal exampleaztion 3, we show that
the output list is precisely the reversed input list, whereathe PALE approach, one
can only establish that the output is a list that is the peatiart of the input list.

In [22], we tried to employ a decision procedure for MSO omrs$réo reason about
reachability. However, this places a heavy burden on theifspieto prove that the data-
structures in the program can be simulated using trees. @itrtert paper eliminated
this burden by defining syntactic restrictions on the formsudnd showing a general
reduction theorem.

Other approaches in the literature use undecidable fosmalsuch as [17], which
provides a natural and expressive language, but does oot il automatic property
checking.

Separation logic has been introduced recently as a formdbs reasoning about
heap structures [32]. The general logic is undecidable fl@]there are few works
showing decidable fragments [10, 4]. One of the fragmenpsapositional separation
logic where quantification is forbidden [10, 9] and therefeseems to be incomparable
with our logic. The fragment defined in [4] allows one to reasmly about singly-
linked lists with explicit sharing. In fact, the fragmentidered in [4] can be translated
to LRP;, and therefore, entailment problems as stated in [4] canlvedas implication
problems inLRP.

7 Conclusions

Defining decidable fragments of first order logic with trdiei closure that are useful
for program verification is a difficult task (e.g., [21]). Ihi$ paper, we demonstrated
that this is possible by combining three principles: (ipafing arbitrary boolean com-
binations of the reachability constraints, which are afbf@mulas without quantifier

alternations, (ii) defining reachability using regular eegsions denoting pointer access
paths (not) reaching a certain pattern, and (iii) syntadifidimiting the way patterns
are formed. Extensions of the patterns that allow large¢adtes between nodes in the
pattern either break our proof of decidability or are diyeahdecidable.

The decidability result presented in this paper improvesstiate-of-the-art signifi-
cantly. In contrast to [21, 2, 26, 41RP allows several binary relations. This provides a
natural way to (i) specify invariants for data-structuragwnultiple fields (e.g., trees,
doubly-linked lists), (ii) specify post-condition for predures that mutate pointer fields
of data-structures, by expressing the relationships viields before and after the
procedure (e.g., list reversal, which is beyond the scogeAbfE), (iii) express verifi-
cation conditions using a copy of the vocabulary for eacly@m location.

We are encouraged by the expressiveness of this simpledadiplan to explore its
usage for program verification and abstract interpretation

References

1. S. Arnborg, J. Lagergren, and D. Seese. Easy problemsefemdecomposable graphg.
Algorithms 12(2):308-340, 1991.

2. |. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis bylipege abstraction. INMCA|,
pages 164-180, 2005.

3. M. Benedikt, T. Reps, and M. Sagiv. A decidable logic fes@#ing linked data structures.
In European Symp. On Programmingages 2—19, March 1999.

4. J. Berdine, C. Calcagno, and P. O’'Hearn. A Decidable Fesjrof Separation Logic. In
FSTTCS'04LNCS 3328, 2004.

5. A. Bouajjani, P. Habermehl, P.Moro, and T. Vojnar. Verfy Programs with Dynamic 1-
Selector-Linked Structures in Regular Model Checking?ioc. of TACAS '05volume 3440
of LNCS Springer, 2005.

6. M. Bozga and R. losif. Quantitative Verification of Progmmwith Lists. InVISSAS intern.
workshop 10S Press, 2005.

7. M. Bozga, R. losif, and Y. Lakhnech. On logics of aliasiimg Static Analysis Symppages
344-360, 2004.

8. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leag. R. M. Leino, and E. Poll.
An overview of jml tools and applicationnt. J. on Software Tools for Technology Transfer
7(3):212-232, 2005.

9. C. Calcagno, P. Gardner, and M. Hague. From Separatioit tod-irst-Order Logic. In
FOSSACS'05LNCS 3441, 2005.

10. C. Calcagno, H. Yang, and P. O’Hearn. Computability anth@lexity Results for a Spatial
Assertion Language for Data Structures FIRTTCS'01LNCS 2245, 2001.

11. B. Courcelle. The monadic second-order logic of graghsnfinite graphs of bounded
width. Mathematical Systems Thep®4(4):187—221, 1989.

12. E. Gradel. Guarded fixed point logic and the monadicrthebtrees.Theoretical Computer
Science288:129-152, 2002.

13. E. Gradel, M.Otto, and E.Rosen. Undecidability resah two-variable logicsArchive of
Math. Logig 38:313-354, 1999.

14. E. Gradel and I. Walukiewicz. Guarded Fixed Point LogicLICS’99. IEEE, 1999.

15. E. Graedel, P. Kolaitis, and M. Vardi. On the decisioriyEm for two variable logicBulletin
of Symbolic Logic1997.

16.

17.

18.

19.
20.

21.

22.

23.

24.
25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

L. Hendren. Parallelizing Programs with Recursive Data Structuré8hD thesis, Cornell
Univ., Ithaca, NY, Jan 1990.

L. Hendren, J. Hummel, and A. Nicolau. Abstractions fmursive pointer data structures:
Improving the analysis and the transformation of impegafivograms. I'SIGPLAN Conf.
on Prog. Lang. Design and Imppages 249-260, New York, NY, June 1992. ACM Press.
J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlundaige, T. Rauhe, and A. Sandholm.
Mona: Monadic second-order logic in practice. TACAS 1995.

C.A.R. Hoare. Recursive data structures. J. of Comp. and Inf. S¢i4(2):105-132, 1975.
N. Immerman. Languages that capture complexity clasS&M Journal of Computing
16:760-778, 1987.

N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Nor3he boundery between
decidability and undecidability of transitive closure ilogy InCSL 2004.

N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Nor¥erification via structure
simulation. InCAV, 2004.

S. S. Ishtiag and P. W. O’Hearn. Bi as an assertion largf@gnutable data structures. In
POPL, pages 14-26, 2001.

N. Klarlund and M. I. Schwartzbach. Graph TypesPDPL'93 ACM, 1993.

V. Kuncak and M. Rinard. Generalized records and spetiajunction in role logic. In
Static Analysis SympVerona, Italy, August 26—28 2004.

S. K. Lahiri and S. Qadeer. Verifying properties of wiellinded linked lists. IrSymp. on
Princ. of Prog. Lang.2006. To appear.

T. Lev-Ami and M. Sagiv. TVLA: A system for implementingatic analyses. IiStatic
Analysis Symppages 280-301, 2000.

A. Mgller and M.I. Schwartzbach. The pointer assertagid engine. IrSIGPLAN Conf. on
Prog. Lang. Design and Implpages 221-231, 2001.

M. Mortimer. On languages with two variableZeitschrift fur Mathematische Logik und
Grundlagen der Mathematil21:135-140, 1975.

M. Rabin. Decidability of second-order theories an@eata on infinite treeslrans. Amer.
Math. Soc,. 141:1-35, 1969.

T. Reps, M. Sagiv, and R. Wilhelm. Static program analys 3-valued logic. IMCAV,
pages 15-30, 2004.

J. C. Reynolds. Separation Logic: A Logic for Shared Mig®ata Structures. InICS’02
IEEE, 2002.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analgsoblems in languages with
destructive updatingACM Transactions on Programming Languages and Syst2d(s):1—
50, January 1998.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape aisalja 3-valued logic. ACM
Transactions on Programming Languages and Syst2062.

D. Seese. Interpretability and tree automata: A simplg solve algorithmic problems on
graphs closely related to trees. Tree Automata and Languaggsages 83—114. 1992.

G. Yorsh, M. Sagiv, A. Rabinovich, A. Bouajjani, and A. y#e A logic of reachable pat-
terns in linked data-structures. Technical report, TelvAuniversity, 2005. Available at
“www.cs.tau.ac.iligretay”.

G. Yorsh, M. Sagiv, A. Rabinovich, A. Bouajjani, and A. e Verification framework
based on the logic of reachable patterns. In preparatid®.20

