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Abstract

We develop some theory of spinal decompositions of discrete and continuous fragmenta-
tion trees. Specifically, we consider a coarse and a fine spinal integer partition derived from
spinal tree decompositions. We prove that for a two-parameter Poisson-Dirichlet family of
continuous fragmentation trees, including the stable trees of Duquesne and Le Gall, the fine
partition is obtained from the coarse one by shattering each of its parts independently, ac-
cording to the same law. As a second application of spinal decompositions, we prove that
among the continuous fragmentation trees, stable trees are the only ones whose distribution
is invariant under uniform re-rooting.
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Keywords: Markov branching model, discrete tree, Poisson-Dirichlet distribution, fragmen-
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1 Introduction

Starting from a rooted combinatorial tree T[n] with n leaves labelled by [n] = {1, . . . , n}, we call
the path from the root to the leaf labelled 1 the spine of T[n]. Deleting each edge along the
spine of T[n] defines a graph whose connected components we call bushes. If as well as cutting
each edge on the spine, we cut each edge connected to a spinal vertex, each bush is further
decomposed into subtrees. We thus obtain two nested partitions of {2, . . . , n}, which naturally
extend to partitions of [n] by adding the singleton {1}. We call these partitions of [n] the coarse
spinal partition and the fine spinal partition derived from T[n].

The aim of this paper is to develop some theory of spinal decompositions of fragmenta-
tion trees that arise as genealogical trees of fragmentation processes. We focus on Markovian
partition-valued fragmentation processes of the following two types. In a setting of discrete time
and partitions of [n], we postulate that each non-singleton block splits at each time, which leads
to Markov branching models [4, 18, 26]. In a setting of continuous time and partitions of N we
postulate a self-similarity condition, which leads to self-similar continuum random trees [25, 26].

Before giving an overview of this paper in Section 1.3, we formally introduce the discrete
setting in Section 1.1 and the continuous setting in Section 1.2.
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1.1 Discrete fragmentations

We start by introducing a convenient formalism for the kind of combinatorial trees arising
naturally in the context of fragmentation processes. Let B be a finite non-empty set, and write
#B for the number of elements of B. Following standard terminology, a partition of B is a
collection

ΠB = {B1, . . . , Bk}

of non-empty disjoint subsets of B whose union is B. To introduce a new terminology convenient
for our purpose, we make the following recursive definition. A fragmentation of B (sometimes
called a hierarchy or a total partition [34, 35]) is a collection TB of non-empty subsets of B such
that

(i) B ∈ TB

(ii) if #B ≥ 2 there is a partition ΠB of B into at least two parts B1, . . . , Bk, called the
children of B, with

TB = {B} ∪ TB1
∪ · · · ∪ TBk

(1)

where TBi
is a fragmentation of Bi for each 1 ≤ i ≤ k.

Necessarily Bi ∈ TB, each child Bi of B with #Bi > 1 has further children, and so on, until the
set B is broken down into singletons. We use the same notation TB for both

• such a collection of subsets of B, and

• for the tree whose vertices are these subsets of B, and whose edges are defined by the
parent/child relation implicitly determined by the collection of subsets of B.

To emphasize the tree structure we may call TB a fragmentation tree. Thus B is the first branch
point of TB , and each singleton subset of B is a leaf of TB , see Figure 1. It is often convenient
to plant TB by adding a root vertex and an edge between the root and the first branch point
B. We denote by TB the collection of all fragmentation trees labelled by B.
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Figure 1: Two fragmentations of [9] represented as trees with nodes labelled by subsets of [9].

For each non-empty subset A of B, the restriction to A of TB , denoted TA,B , is the fragmentation
tree whose first branch point is A, whose leaves are the singleton subsets of A, and whose tree
structure is defined by restriction of TB. That is, TA,B is the fragmentation

TA,B = {C ∩ A : C ∩ A 6= ∅, C ∈ TB} ∈ TA,

corresponding to a reduced subtree as discussed by Aldous [1].
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Given a rooted combinatorial tree with no single-child vertices and whose leaves are labelled
by a finite set B, there is a corresponding fragmentation tree TB , where each vertex of the
combinatorial tree is associated with the set of leaves in the subtree above that vertex. So
the fragmentation trees defined here provide a convenient way to both label the vertices of a
combinatorial tree, and to encode the tree structure in the labelling.

A random fragmentation model is an assignment of a probability distribution on TB for a
random fragmentation tree TB with first branch point B for each finite subset B of N. We
assume throughout this paper that the model is exchangeable, meaning that the distribution of
ΠB , the partition of B generated by the branching of TB at its root, is of the form

P(ΠB = {B1, . . . , Bk}) = p(#B1, . . . ,#Bk) (2)

for all partitions {B1, . . . , Bk} with k ≥ 2 blocks, and some symmetric function p of compositions
of positive integers, called a splitting probability rule. The model is called

• Markovian (or a Markov branching model) if given ΠB = {B1, . . . , Bk}, the k subtrees of
TB above B are independent and distributed as TB1

, . . . , TBk
, for all partitions {B1, . . . , Bk}

of B;

• consistent if for every A ⊂ B, the restriction to A of TB is distributed like TA;

• binary if every A ∈ TB has either 0 or 2 children with probability one, for all B.

Now we take B = [n]. The collection of vertices at graph distance m ≥ 0 above the first

branch point form a partition of a subset of [n] that we extend to a partition Π
(n)
m of [n] by

adding a singleton {j} for each leaf j at height below m. We refer to (Π
(n)
m ,m ≥ 0) as the

partition-valued discrete fragmentation process associated with T[n]. See also [4, 18, 26].

1.2 Continuous self-similar fragmentations

We denote by P the set of partitions of N and equip it with the distance d(π, π′) = 2−n(π,π′),
where n(π, π′) is the largest integer such that the restrictions of partitions π, π′ to [n] coincide.
Following Bertoin [9], a continuous-time P-valued Markov process (Π(t), t ≥ 0) is called a self-
similar fragmentation process with index a ∈ R if it is càdlàg and

• Π(0) = {N}, i.e. Π starts from the trivial partition with a unique block;

• Π is exchangeable, i.e. its distribution is invariant under permutations of N;

• given Π(t) = π, the post-t process (Π(t + s), s ≥ 0) has the same law as the process whose
state at time s ≥ 0 is the partition of N whose blocks are those of

πi ∩ Π(i)(|πi|
as), i ≥ 1,

where (πi, i ≥ 1) is the sequence of blocks of π in order of least elements, (|πi|, i ≥ 1) is
the sequence of their asymptotic frequencies and (Π(i), i ≥ 1) is a sequence of i.i.d. copies
of Π.

We recall that Kingman’s theorem [27] on exchangeable partitions ensures that for every t ≥ 0,
the asymptotic frequencies |πi| = limn→∞ n−1#(πi ∩ [n]) of all blocks πi of Π(t) exist a.s..
Bertoin [8] shows that actually a.s. for every t, these asymptotic frequencies exist.
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In [9], Bertoin proved that the distribution of a self-similar fragmentation is entirely charac-
terized by three parameters: the index of self-similarity a, a coefficient c ≥ 0 that measures the
rate of erosion and a dislocation measure on

S↓ =



(si)i≥1 : s1 ≥ s2 ≥ . . . ≥ 0,

∑

i≥1

si ≤ 1



 ,

with no atom at (1, 0, ...) and that integrates 1− s1. This measure ν describes the sudden dislo-
cations of blocks, in the sense that a block B ⊂ N splits in some blocks B1, B2, . . . with relative
asymptotic frequencies s ∈ S↓ at rate |B|aν(ds). When the index a = 0, this fragmentation rate
does not depend on the size of the blocks and the fragmentation processes is then said to be
homogeneous. A crucial point is that a self-similar fragmentation with parameters a, c and ν
can always be constructed measurably from a homogeneous fragmentation with same coefficient
c and measure ν, using time-changes, and vice-versa. We refer to Bertoin’s book [10] and the
above mentioned papers [8, 9] for details on these time-changes and background on homogeneous
and self-similar fragmentations.

In this paper, we focus on self-similar fragmentations without erosion (c = 0), which are
non-trivial (ν(S↓) 6= 0) and do not lose mass at sudden dislocations, i.e.

ν




∑

i≥1

si < 1


 = 0.

We call (a, ν) the characteristic pair of such a process.

A family of combinatorial trees with edge lengths R[n], n ≥ 1, with n exchangeably labelled
leaves, is naturally associated to a self-similar fragmentation process Π by considering the evo-
lution of Π restricted to the first n integers. Specifically, R[n] consists of all blocks B that occur
in the evolution of Π ∩ [n]; an edge between the root and the first branch point [n] has as its
length the first dislocation time of Π ∩ [n], and similarly for subtrees with two or more leaves;
the edge below leaf j has as its length the time between the last relevant dislocation time of
Π ∩ [n] and the time when {j} becomes a singleton for Π, which may be infinite. This gives
a consistent family of trees, in the sense that the subtree of R[n] spanned by [k] is R[k], for all
k ≤ n, where superfluous (i.e. multiplicity 2) vertices are removed and associated edges merged,
their lengths summed up. By exchangeability, the same is true in distribution for uniformly cho-
sen k distinct leaves of R[n], relabelled by [k]. The coupling of self-similar fragmentations using
time-changes entails that the distribution of the combinatorial shapes (say T[n]) of R[n], n ≥ 1,
depends only on the dislocation measure ν, and not on the index a. So without loss of generality,
we may focus on a = 0, the case of homogeneous fragmentations, when working with the shapes
T[n], n ≥ 1. Furthermore, (T[n], n ≥ 1) defines a consistent Markov branching model as in the
previous subsection. Reciprocally, each consistent Markov branching model can be constructed
similarly from some homogeneous fragmentation (possibly with erosion). See [26].

When the index a is negative, small fragments vanish quickly and it is well-known that the
whole fragmentation Π then reaches in finite time the trivial partition composed exclusively
of singletons. See e.g. [10]. In terms of trees, this implies that the height of R[n] is bounded
uniformly in n. Using the consistency property and Aldous’s results [3], it is then possible to
define the projective limit T of the family (R[n], n ≥ 1) and equip it with a probability measure
µ, the mass measure, that arises as limit of the empirical measures on the leaves of R[n], n ≥ 1.
Implicitly, the tree T is rooted. The pair (T , µ) is a continuum random tree (CRT) and was
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studied in [25] using Aldous’s formalism of trees as compact metric subsets of l1, cf. [1, 2, 3].
An alternative formalism can be considered, via the set of equivalence classes of compact rooted
R-trees endowed with the Gromov-Hausdorff distance, as developed in [16, 17]. We will not go
further into details here and refer to the above-mentioned papers for rigorous definitions and
statements. We shall call the CRT (T , µ) a self-similar fragmentation CRT with parameters
(a, ν).

A fundamental property of (T , µ) is that a version of (R[n], n ≥ 1) can be obtained from
a random sampling L1, L2, ... picked independently according to µ, conditional on (T , µ), by
considering for each n the subtree of T spanned by the root and leaves L1, ..., Ln. Consider then
the forest FT (t) obtained by removing in T all vertices at distance less than t from the root and
define the random partition Π′(t) by letting i and j be in the same block of Π′(t) if and only
if Li and Lj are in the same connected component of FT (t), t ≥ 0. Clearly the process Π′ is
distributed as Π. We shall often suppose in the following that the fragmentation process we are
working with is constructed in such a manner from some self-similar fragmentation CRT.

Examples of self-similar fragmentation CRTs are the Brownian CRT of Aldous [1, 2, 3] and,
more generally, the stable Lévy trees with index β ∈ (1, 2] of Duquesne and Le Gall [13, 14].
For details on their fragmentation properties, see Bertoin [9] for the Brownian case (i.e. when
β = 2) and Miermont [29] for the other stable cases. The parameters of these CRTs are recalled
later in the paper.

1.3 Contents and organization of the paper

The structure and contents of this paper are as follows. In Section 2, we study the coarse and
fine spinal partitions of some Markov branching model (T[n], n ≥ 1) constructed consistently
from a self-similar fragmentation process. These partitions of [n] are consistent as n varies,
which leads to a nested pair of partitions of N. Restricted to N\{1}, they are jointly exchange-
able. In particular, they possess asymptotic frequencies a.s. The decreasing rearrangements of
these frequencies are called the coarse spinal mass partitions and fine spinal mass partitions. By
decomposing the trees along the spine, we then show that when the parameters a and ν of the
fragmentation are known and ν is infinite, we can reconstruct the whole self-similar fragmen-
tation process from the sequence of shapes (T[n], n ≥ 1) (Proposition 2). Next, the main result
of this section (Theorem 6) states that under some factorization property of the dislocation
measure ν (Definition 2), the fine spinal mass partition derived from the sequence of shapes
(T[n], n ≥ 1) is obtained from the coarse one by shattering each of its fragments in an i.i.d.
manner.

In particular, this result applies to a family of fragmentations whose dislocation measures
are built from Poisson-Dirichlet partitions (Section 3). The stable fragmentations studied by
Miermont [29], built from the stable trees of Duquesne and Le Gall with index in (1, 2), belong to
this family. As a consequence, we obtain an extensive description, in terms of Poisson-Dirichlet
partitions (Corollary 10), of spinal decompositions of stable trees.

The stable trees (T , µ) are known to possess an interesting symmetry property of invariance
under uniform re-rooting (see [2, 14, 15]). Informally, this means that taking a leaf at random
according to µ and considering T rooted at this random leaf, gives a CRT with the same
distribution as the original CRT with its original root. In Section 4, we give a new proof of this
invariance, using combinatorial methods, and show that, up to a scaling factor, stable trees are
the only self-similar fragmentation CRTs that are invariant under uniform re-rooting (Theorem
11).

To finish this introduction, let us mention that studies on spinal decompositions of various
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trees exist in the literature. See e.g. Aldous-Pitman [6] (for Galton-Watson trees), Duquesne-
Le Gall [14] (for stable and Lévy trees). In the fragmentation context, decomposing the
trees/processes along the spine is a useful tool, which has been used to obtain results on large
time asymptotics [11], small time asymptotics [24] and discrete approximations [26].

2 Spinal partitions of fragmentation trees

Decompose a combinatorial fragmentation tree T[n] with leaves labelled by [n] along the spine
from the root to leaf 1 into a collection of bushes by deleting each edge along the spine. By
adding a conventional root edge to its base, each bush is identified with an element of TB for
some B ⊆ [n], where TB is the collection of rooted combinatorial trees with #B leaves labelled by
B. Each such B is associated with a unique vertex on the spine of T[n]. We list these sets of leaf
labels B in order of the corresponding spinal vertices to obtain an ordered exchangeable random
partition of {2, . . . , n}. The first set B in this list is the set of elements of [n] not in the block
containing 1 after the first fragmentation event involving [n]. If after the first fragmentation of
[n] the block [n] − B containing 1 is of size 2 or more, the next set is what remains of [n] − B
after deleting the block containing 1 in the next fragmentation of [n] − B, and so on, until the
last set which is the singleton {1}. If as well as cutting each edge on the spine, we cut each edge
connected to a spinal vertex, each bush is further decomposed into subtrees. We thus obtain
two nested exchangeable random partitions of {2, . . . , n}, which naturally extend to partitions
of [n] by adding the singleton {1}, the coarse and fine spinal partitions derived from T[n]. We
can include the spinal order in the coarse spinal partition to form the coarse spinal composition.

Assuming that the trees T[n], n ≥ 1, are constructed consistently from a homogeneous frag-
mentation process with values in the partitions of N, both partitions of [n] are consistent as n
varies. Thus the coarse and fine spinal partitions may be regarded as a nested pair of random
partitions of N. These partitions have natural interpretations in terms of associated partition-
valued self-similar fragmentations processes (Π(t), t ≥ 0), of any index a, in which the sequence
(T[n], n ≥ 1) is embedded. For each pair of integers i and j let the splitting time Di,j be the first
time t that i and j fall in distinct blocks of Π(t). Let i, j ≥ 2. By construction, i and j fall in the
same block of the coarse spinal partition if and only if D1,i = D1,j, whereas i and j fall in the
same block of the fine spinal partition if and only if Di,j > D1,i (this clearly implies D1,i = D1,j).
Assuming further that Π is constructed by random sampling of leaves L1, L2, . . . from some CRT
(T , µ) according to µ, i and j fall in the same block of the coarse spinal partition if and only if
the paths from Li and Lj to the root first meet the spine of T , i.e. the path from the root to
L1, at the same point. Besides, i and j fall in the same block of the fine spinal partition if and
only if the path from Li to Lj does not intersect the spine.

The coarse spinal decomposition of T is the collection of equivalence classes for the random
equivalence relation x ∼ y if and only if the paths from x and y to the root first meet the spine
at the same point on the spine. Note that the whole spine itself carries no µ-mass, and spinal
non-branchpoints (an uncountable set of singletons in this decomposition of T ) will be excluded
from further consideration. The restriction of T to a typical equivalence class is a bush which
can be further decomposed into trees by deleting the point on the spine, and then giving each
connected component its own root where it used to be connected to the spine. The resulting
random partition of T into subtrees is the fine spinal decomposition of T .

We measure the size of each component of one of these partitions by its µ-mass, to obtain
coarse and fine spinal mass partitions of (T , µ), which we may regard as two random elements
of S↓. The following proposition summarizes some basic properties of these random partitions,
which follow easily from the above discussion.
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Proposition 1 The coarse and fine spinal partitions derived from the sequence of shapes (T[n], n ≥
1) embedded in (T , µ) have the following properties.

(i) The singleton block {1} belongs to both partitions of N, while the restrictions of these
partitions to N\{1} are jointly exchangeable.

(ii) The sequence of ranked limiting frequencies of each partition of N is the sequence of
ranked µ-masses of the corresponding mass partition of (T , µ).

We now offer a more detailed study of these two partitions, first considering the coarse spinal
partition (and composition), then the fine one and its relation to the coarse one. Obviously, the
fine spinal partition is identical to the coarse one if and only if the trees T[n] are binary for all
n ≥ 1.

2.1 The coarse spinal partition

Assume throughout this section that the trees T[n], n ≥ 1, are constructed consistently from a
homogeneous fragmentation process, as when T[n] is derived from an associated continuum tree
(T , µ) as the shape of the subtree spanned by Li, i ∈ [n] for L1, L2, . . . an exchangeable sample
of leaves with directing measure µ. To ease notation we work with T[n+1] instead of T[n]. Let

Bn,1, Bn,2, . . . , Bn,Kn , {1}

be the sets of leaves of the bushes derived from the coarse spinal decomposition of T[n+1], in
order of the corresponding spinal vertices. Then (Bn,1, Bn,2, . . . , Bn,Kn) is the restriction to
{2, . . . , n + 1} of an exchangeable ordered random partition of {2, 3, . . .}, as studied in [12, 21].
Let

Cn := (#Bn,1,#Bn,2, . . . ,#Bn,Kn). (3)

It follows easily from sampling consistency of the sequence (T[n], n ≥ 1) that (Cn, n ≥ 1) is a
regenerative composition structure, as defined in [19]. That is to say, (Cn, n ≥ 1) is a sampling
consistent sequence of random compositions Cn of n, with the property that conditionally given
the first part of Cn is of size i < n, the remaining parts of Cn define a random composition of
n − i with the same distribution as Cn−i. Let

Sn,k := n −
k∑

j=1

#Bn,j

where Bn,j is empty for j > Kn. So (Sn,k + 1, k ≥ 0) is the sequence of sizes of the fragment
containing 1 as it undergoes successive fragmentations according to T[n+1], starting with Sn,0 = n
and terminating with Sn,k = 0 for k ≥ Kn, where Kn is the total number of fragmentation events
experienced by the block containing 1 in T[n+1]. According to Gnedin and Pitman [19], there is
the following almost sure convergence of random sets with respect to the Hausdorff metric on
closed subsets of [0, 1]:

{Sn,k/n, k ≥ 0}
a.s.
−→
n→∞

{exp(−ξt), t ≥ 0}cl (4)

where the left side is the random discrete set of values Sn,k rescaled onto [0, 1], and the right
side is the closure of the range of the exponential of some subordinator (ξt, t ≥ 0). The random
interval partition of [0, 1] defined by interval components of the complement of the closed range
of 1 − e−ξ has a natural interpretation in terms of the associated CRT (T , µ): the lengths of
these intervals are the strictly positive masses of components in the coarse spinal decomposition
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of (T , µ), in the order they appear along the spine from the root to leaf 1. We will therefore
call this interval partition the coarse spinal interval partition of [0, 1] derived from (T , µ). In
terms of the associated homogeneous fragmentation, the lengths of these intervals are the total
masses of fragments thrown off by the mass process of the fragment containing 1, put in the
order they split away from this tagged fragment. Otherwise said, exp(−ξ) is the mass process
of the fragment containing 1. Since the fragmentation process has zero erosion and no sudden
loss of mass, the subordinator ξ has no drift and no killing. Bertoin [8] proved that the Lévy
measure of ξ is then given by

Λ(dx) = exp(−x)
∑

i≥1

ν(− log si ∈ dx), x > 0. (5)

Proposition 2 Let (Π(t), t ≥ 0) be a self-similar fragmentation process, with index a ∈ R and
dislocation measure ν with infinite total mass. Then the entire process (Π(t), t ≥ 0) can be
constructed from the consistent sequence (T[n], n ≥ 1) of combinatorial shapes of trees derived
from Π.

Proof. In view of the time-change relation between fragmentations of different indices, it suffices
to consider the homogeneous case. Given the consistent family of trees (T[n], n ≥ 1), we first use
(4) to recover the closure of the range of exp(−ξ), hence also the closure of the range of ξ, the
subordinator describing the evolution of the mass fragment containing 1. Since the dislocation
measure has infinite mass, so does the Lévy measure of ξ. Then it is well known that the entire
sample path of ξ can be measurably reconstructed from its range, up to a constant factor on the
time scale (see e.g. [22]). Since the distribution of ξ is determined by that of (Π(t), t ≥ 0), this
constant is known. Let Πn = (Πn(t), t ≥ 0) be the restriction of (Π(t), t ≥ 0) to [n]. The path of
ξ, and its construction (4) from (T[n], n ≥ 1), determine almost surely for each n the sequence of
random times t when transitions of Πn occur which change the block of Πn containing 1, and at
each of these times t the block of Πn(t) containing 1 can be read from T[n]. By exchangeability,
the same reconstruction can evidently be done almost surely for the block of Πn(t) containing j,
for each 1 ≤ j ≤ n. But this information determines the entire path of (Πn(t), t ≥ 0), for each
n, hence that of (Π(t), t ≥ 0). �

Corollary 3 If in the setting of Proposition 2 we have a < 0, then an associated (a, ν)-
fragmentation CRT (T , µ) can also be constructed from (T[n], n ≥ 1) on the same probability
space.

Proof. While the construction of a self-similar fragmentation CRT in [25] from a self-similar
partition-valued fragmentation process is carried out explicitly only “in distribution”, it is not
hard to give an almost sure construction, e.g. via Aldous’s sequential construction in l1 (see e.g.
[3] p.252). This yields an increasing sequence of trees with edge lengths R[n] that converges in
distribution, hence almost surely, with respect to the Hausdorff metric on closed subsets of l1.
The almost sure convergence of empirical measures on the leaves of R[n] to a mass measure µ is
then given by [3, Lemma 7] (convergence of measures is weak convergence). �

We record now an explicit distributional result for the coarse spinal partition of T[n+1], which
can either be read from [19] or derived directly. Recall that n + 1 − #Bn,1 is the size of the
fragment containing 1 at the first branch point of T[n+1]. Let Σ(ds) :=

∑∞
j=1 ν(sj ∈ ds) and

let Λ be the Lévy measure of (ξt, t ≥ 0), which, according to (5), is the image of sΣ(ds) via
s 7→ − log s. Then by embedding in the homogeneous fragmentation, we see that

P(#Bn,1 = m) = Φ(n : m)/Φ(n) (1 ≤ m ≤ n) (6)
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where Φ(n) is the total rate of fragmentations with some effect on partitions of [n + 1], and
Φ(n : m) the rate of such fragmentations in which 1 ends up in a block of size n + 1−m. These
rates are easily evaluated as follows:

Φ(n : m) =

(
n

m

)∫ 1

0
sn+1−m(1 − s)mΣ(ds) =

(
n

m

)∫ ∞

0
e−(n−m)x(1 − e−x)mΛ(dx) (7)

and

Φ(n) =
n∑

m=1

Φ(n : m) =

∫ 1

0
(1 − sn)sΣ(ds) =

∫ ∞

0
(1 − e−nx)Λ(dx). (8)

From this and [19], we get the exchangeable partition probability function (EPPF) of the coarse
spinal partition {Bn,1, Bn,2, . . . , Bn,Kn}, i.e. the probabilities p(n1, ...nk) = P({Bn,1, . . . , Bn,Kn} =
π), for each particular partition π of {2, ..., n + 1} in sets of sizes n1, ..., nk, ∀n ≥ 1,∀(n1, ...nk)
partition of n. For an explicit formula, see [19], especially formulae (26),(6),(3) and (4). Various
further properties of the coarse spinal partition can also be read from [19].

2.2 The fine spinal partition

We start by observing some basic symmetry properties of this partition.

Proposition 4 (i) Conditionally given the sizes of components of the fine spinal decomposition
of T[n+1], say n1, . . . , nk with

∑k
i=1 ni = n, the corresponding collection of subtrees of T[n+1],

modulo relabelling by [n1], . . . , [nk], is a collection of independent copies of T[n1], . . . , T[nk].
(ii) Conditionally given the fine spinal mass partition of a self-similar fragmentation CRT

(T , µ) with parameters (a, ν), the corresponding collection of subtrees T of T , with each T of
mass m equipped with m−1µ restricted to T , modulo isomorphism and multiplication of edge
lengths by ma, is a collection of independent copies of (T , µ).

Proof. Part (i) follows easily from the defining Markov (fragmentation/branching) property of
T[n]. For part (ii), consider Π a partition-valued (a, ν)-fragmentation constructed from (T , µ).
Let Π(i)(t) denote the block of Π(t) containing i, i ≥ 1, and recall that D1,i denotes the first time
at which 1 and i belong to distinct blocks. For all t ≥ 0, the collection of blocks (Π(i)(D1,i+t), i ≥
1) induces a partition of N. In the terminology of Bertoin ([10], Definition 3.4), the sequence
(D1,i, i ≥ 1) is a stopping line, and as such, satisfies the extended branching property ([10],
Lemma 3.14), which ensures that given (Π(i)(D1,i), i ≥ 1), the processes (Π(i)(D1,i + t), t ≥ 0),

i ≥ 1, evolve respectively as (miΠ
(i)(ma

i t), t ≥ 0), where mi is the asymptotic frequency of
Π(i)(D1,i), i ≥ 1, and the Π(i)s are i.i.d. copies of Π. Now, coming back to the CRT (T , µ),
each component of its fine spinal partition corresponds to a fragmentation (Π(i)(D1,i + t), t ≥
0) for some i and obviously, can be measurably reconstructed from this fragmentation (see
the proof of Corollary 3). Conditionally given the masses mi, i ≥ 1, the subtrees of the fine
spinal partition are therefore independent, distributed (modulo isomorphisms) respectively as

(m−a
i T ,miµ

(m−a
i )), i ≥ 1, where m−a

i T means that the edge lengths of T have been multiplied

by m−a
i and µ(m−a

i ) is the image of µ by this transformation. �

Part (ii) of the proposition is a natural generalization of the spinal decomposition of the
Brownian CRT described in [5]. When the Brownian CRT is encoded in a Brownian excursion,
this corresponds to a path decomposition whereby a single excursion is decomposed into a
countably infinite collection of independent copies of itself.
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In view of this symmetry property of the fine spinal partition, it is natural to look for some
more explicit description of this decomposition, such as its EPPF or the distribution on S↓ of the
corresponding mass partition. While such descriptions are known for the Brownian CRT, and
more generally for all binary self-similar fragmentation CRTs according to the previous section,
they appear to be difficult to obtain in general. But searching for conditions which simplify
the structure of the fine spinal partition of (T , µ) leads naturally to consideration of further
symmetry properties, and then to interesting examples with these properties for which explicit
computations can be made. Consider first the fine partition of the set of leaves in some block of
the coarse spinal decomposition of T[n+1]. By recursive arguments, it is enough to discuss the
fine partition of the first block of the spinal decomposition.

For each s ∈ S↓ let Ps denote the probability measure governing an exchangeable random
partition Π of N whose ranked frequencies are equal to s, and for a measure ν on S↓ let

Pν(·) =

∫

S↓

Ps(·)ν(ds)

be the corresponding distribution of Π as a mixture of Kingman’s paintbox partitions. For each
n the distribution of Πn is determined by the formula

Pν(Πn = {B1, . . . , Bk}) = pν(#B1, . . . ,#Bk)

for every partition {B1, . . . , Bk} of [n] into k ≥ 1 parts, for some function pν(n1, . . . , nk) of
compositions (n1, . . . , nk) of positive integers n. We refer here to [31] or [10] for a specific formula
for pν(n1, . . . , nk). In particular, pν(1, 1) =

∫
S↓(1−

∑
i≥1 s2

i )ν(ds). Note that pν(n1, . . . , nk) < ∞
for all n1, . . . , nk ∈ N, k ≥ 2, if and only if pν(1, 1) < ∞, i.e. if and only if

∫
S↓(1−s1)ν(ds) < ∞.

Definition 1 The function pν is called the exchangeable partition rate function (EPRF) asso-
ciated with ν. If ν is a probability measure, then so is Pν, and pν is known as an exchangeable
partition probability function (EPPF).

Note that we have the addition rule

pν(n1, . . . , nk) = pν(n1 + 1, n2, . . . , nk) + . . . + pν(n1, . . . , nk−1, nk + 1) + pν(n1, . . . , nk, 1).

The following lemma presents a basic decomposition in some generality.

Lemma 5 Let ν be a dislocation measure on S↓ with associated EPRF pν. Then for every k ≥ 2
and every composition n1, . . . , nk of n ≥ 2 into at least two parts,

pν(n1, . . . , nk) = g(n, n1)pν̂(n,n1)(n2, . . . , nk) (9)

for some function g(n, n1) and some family of probability measures ν̂(n, n1) on S↓ indexed by
1 ≤ n1 ≤ n − 1.

Proof. Let Π be a homogeneous fragmentation with dislocation measure ν. The result is
obtained by conditioning on the size of the block B1 containing 1. We (have to) take g(n, n1)
as the total rate associated with the formation of a particular block B1 of n1 out of n elements.
Then

( n−1
n1−1

)
g(n, n1) = Φ(n − 1 : n − n1) as in (7), so that

Φ(n − 1) =

n−1∑

n1=1

(
n − 1

n1 − 1

)
g(n, n1) = Pν(Πn 6= {[n]}) =

∫

S↓


1 −

∞∑

j=1

sn
j


 ν(ds), (10)
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as in (8), is the total rate of formation of partitions of [n] with at least 2 parts. Then
pν̂(n,n1)(n2, . . . , nk) is the conditional probability, given the particular set B1, that the remaining
n−n1 elements are partitioned as they must be to make a particular partition of [n] into blocks
of sizes n1, . . . , nk. To be more precise, we can take

ν̂(n, n1)(ds) =
1

g(n, n1)

∫

S↓

∑

i≥1

rn1

i (1 − ri)
n−n1δ

r̂i/(1−ri)(ds)ν(dr),

where r̂i is the vector r with component ri omitted. By Kingman’s paintbox representation and
conditioning on the colour i of the first block, we then get for all partitions with block sizes
(n1, . . . , nk) in order of least element

pν̂(n,n1)(n2, . . . , nk) =

∫

S↓

ps(n2, . . . , nk)ν̂(n, n1)(ds)

=
1

g(n, n1)

∫

S↓

∑

i≥1

rn1

i (1 − ri)
n−n1p

r̂i/(1−ri)(n2, . . . , nk)ν(dr)

=
1

g(n, n1)
pν(n1, . . . , nk),

where by convention ps = pδs . �

This discussion simplifies greatly for measures ν with the special symmetry property intro-
duced in the following definition:

Definition 2 Let ν be a measure on S↓, and let ν̂ be a probability measure on S↓. Say that ν
has ν̂ as its factor, if ν̂(n, n1) in (9) can be chosen identically equal to ν̂ for every 1 ≤ n1 < n,
that is

pν(n1, . . . , nk) = g(n, n1)pν̂(n2, . . . , nk) (11)

for every composition n1, . . . , nk of n ≥ 2 into at least 2 parts, and some function g(n, n1).

Note that ν may be sigma-finite, but that ν̂ is always assumed to be a probability measure.
It is obvious that if ν has factor ν̂, then ν̂ is unique. A rich class of measures ν which admit a
factor ν̂ is the class of Poisson-Dirichlet measures considered in the next section. It is an open
problem [31, Problem 3.7], even for probability measures, to describe all measures ν on S↓ which
admit a factor ν̂. Note that all binary dislocation measures trivially admit a factor, as well as
ordered Dirichlet(a, . . . , a) including the Dirac mass at (1/m, . . . , 1/m). The latter are just the
remaining members of the Ewens-Pitman two-parameter family.

Following the formalism of [32, Corollary 13], given two random elements V and V ′ of S↓, and
a probability distribution ν̂ on S↓, say that V ′ is a ν̂-fragmentation of V if the joint distribution
of V and V ′ is the same as if V ′ is derived from V by shattering each fragment of V independently
in proportions determined by ν̂.

Theorem 6 Let ν be a dislocation measure on S↓, let (T , µ) be some self-similar CRT derived
from fragmentation according to ν, and let ν̂ be a probability distribution on S↓. Then the
following two conditions are equivalent:

(i) the measure ν has ν̂ as a factor;
(ii) the fine spinal mass partition of (T , µ) is a ν̂-fragmentation of the coarse spinal mass

partition of (T , µ).

11



Proof. According to [32, Lemma 35], the fine spinal partition is a ν̂-fragmentation of the coarse
spinal partition if and only if, for all n ≥ 1, in passing from the coarse spinal partition of [n]
generated by T[n] to the fine one, within each block of the coarse partition the fine partition is
distributed according to Pν̂ , independently between blocks of the coarse partition. But due to
the fragmentation property of the trees T[n], n ≥ 1, this amounts to the relation (11) between ν
and ν̂. �

3 Poisson-Dirichlet fragmentations

We now turn to a particular family of fragmentation processes, namely the Poisson-Dirichlet
fragmentations, characterized by dislocation measures of type PD∗(α, θ), 0 < α < 1, θ >
−2α, as defined below by (18). This family generalizes the family of previously studied stable
fragmentations ([29],[30]), constructed from the stable trees (Tβ, µβ) with index β, 1 < β < 2.
These stable CRTs were introduced and studied by Duquesne and Le Gall [13],[14] to which
we refer for a rigorous construction. Roughly, Tβ arises as the limit in distribution as n → ∞
of rescaled critical Galton-Watson trees Tn, conditioned to have n vertices, with edge-lengths
n1/β−1, and an offspring distribution (ηk, k ≥ 0) such that ηk ∼ Ck−1−β as k → ∞. It is endowed
with a (random) probability measure µβ which is the limit as n → ∞ of the empirical measure on
the vertices of Tn. Miermont [29] shows that the partition-valued process constructed by random
sampling of leaves L1, L2, . . . from (Tβ, µβ) according to µβ is a self-similar fragmentation with
index 1/β − 1, and dislocation measure νβ defined for all non-negative measurable function f
on S↓ by ∫

S↓

f(s)νβ(ds) =
β2Γ(2 − 1/β)

Γ(2 − β)
E

[
Tf

(
∆1

T
,
∆2

T
, ...

)]
(12)

(and no erosion). Here T =
∑∞

i=1 ∆i where ∆1 > ∆2 > · · · are the points of a Poisson process on
(0,∞) with intensity (βΓ(1−1/β))−1x−1/β−1dx. Besides, cutting the stable tree Tβ at nodes (see
[30]), Miermont obtained a self-similar fragmentation with index 1/β and the same dislocation
measure νβ.

3.1 Definition and factorization property

For 0 ≤ α < 1, θ > −α, let PD(α, θ) denote the two-parameter Poisson-Dirichlet distribution on
S↓, defined as the distribution of the decreasing rearrangement of its size-biased presentation,
which is

W1, (1 − W1)W2, (1 − W1)(1 − W2)W3, . . . (13)

for Wi which are independent beta(1 − α, iα + θ) variables. The formula for the corresponding
EPPF is [31, Th.3.2.]

pPD(α,θ)(n1, ..., nk) =
αk−1[1 + θ/α]k−1

[1 + θ]n−1

k∏

i=1

[1 − α]ni−1 (14)

for every composition (n1, ..., nk) of n, where [x]n = Γ(x + n)/Γ(x) is a rising factorial. It is
evident by inspection of this formula and (11) that the probability measure PD(α, θ) admits
PD(α, θ + α) as a factor for every 0 < α < 1 and θ > −α. Following Miermont [29] we now
consider the rescaled measure

PD∗(α, θ) :=
Γ(1 + θ/α)

Γ(1 + θ)
PD(α, θ) (15)

12



which is defined in the first instance for 0 < α < 1 and −α < θ. It is known [31, Corollary 3.9.]
that for 0 < α < 1 there is the absolute continuity relation

PD∗(α, θ)(ds) = (Sα(s))θ/αPD(α, 0)(ds) (16)

where Sα(s) is the α-diversity which is almost surely associated to a sequence s = (s1, s2, . . .)
with distribution PD(α, 0) by the formula

Sα(s) := Γ(1 − α) lim
j→∞

jsα
j .

The PD(α, θ) distribution is recovered from (16) for −α < θ by normalization as in (15). The
α-diversity Sα, which has a Mittag-Leffler distribution (see e.g. [31, formula 0.43]), appears
variously disguised in different contexts, for example as a local time variable, or again as Sα =
T−α for a positive stable variable T of index α. Indeed, if such a T is constructed as T =∑∞

i=1 ∆i where ∆1 > ∆2 > · · · are the points of a Poisson process on (0,∞) with intensity
α(Γ(1 − α))−1x−α−1dx, then

(∆1/T,∆2/T, . . .) =d PD(α, 0)

and, according to [31, formula 4.45],

Sα(∆1/T,∆2/T, . . .) = T−α a.s.

so that for every non-negative measurable function f of s = (s1, s2, . . .) ∈ S↓,

∫

S↓

f(s)PD∗(α, θ)(ds) = E

[
T−θf(∆1/T,∆2/T, . . .)

]
. (17)

Lemma 7 For each 0 < α < 1, let PD∗(α, θ) be the measure defined on S↓ for each real θ by
either (16) or (17). Then for −2α < θ, this measure PD∗(α, θ) is also the unique measure with
no mass at (1, 0, 0, . . .) whose EPRF is given for k ≥ 2 by

pPD∗(α,θ)(n1, . . . , nk) =
αk−1Γ(k + θ/α)

Γ(n + θ)

k∏

i=1

[1 − α]ni−1 (18)

and for k = 1 by the same formula for −α < θ, and by ∞ for −2α < θ ≤ −α. Basic integrability
properties of this extended family of Poisson-Dirichlet measures are

∫

S↓

PD∗(α, θ)(ds) < ∞ ⇔ θ > −α; (19)

∫

S↓

(1 − s1)PD∗(α, θ)(ds) < ∞ ⇔ θ > −2α. (20)

For each choice of (α, θ) with θ > −2α the measure PD∗(α, θ) has the probability distribution
PD(α, θ + α) as its factor.

Proof. Following Miermont [29], we observe from (14) and (15) that the formula (18) holds in
the first instance for all θ > −α, and that the right side of (18) is analytic in θ for θ > −2α. It
follows easily that (18) holds for all such θ. The fact (19) is elementary. As for (20), we have
seen in Section 2.2 that this integrability condition holds if and only if the expressions in (18)
are finite for every choice of n1, · · · , nk with k ≥ 2, and this is clear by inspection of (18). �
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The infinite measure PD∗(α,−α) was already used and studied by Basdevant [7] in the
context of Ruelle’s probability cascades.

Remarks. 1). For 0 < α < 1, θ > −α, the EPPF (14) gives

PPD(α,θ)(Πn 6= {[n]}) = 1 −
[1 − α]n−1

[1 + θ]n−1
(21)

and hence

PPD∗(α,θ)(Πn 6= {[n]}) =
Γ(1 + θ/α)

Γ(1 + θ)

(
1 −

[1 − α]n−1

[1 + θ]n−1

)
(22)

in the first instance for 0 < α < 1, θ > −α, and then by analytic continuation for 0 < α < 1, θ >
−2α, with values of the right side defined by continuity for θ = −α or θ = −1. To see that the
left side of (22) is analytic in this range, observe that for each n this function of (α, θ) is just a
finite sum of the functions in (18) weighted by combinatorial coefficients.

2). From the fact (13) that a size-biased pick from PD(α, θ) has beta(1−α,α + θ) distribution,
we can write down

s

∞∑

j=1

PD(α, θ)(sj ∈ ds) =
Γ(1 + θ)

Γ(1 − α)Γ(α + θ)
s−α(1 − s)α+θ−1 ds (0 < s < 1)

and hence for −2α < θ by analytic continuation

s
∞∑

j=1

PD∗(α, θ)(sj ∈ ds) =
α Γ(2 + θ/α)

Γ(1 − α)Γ(1 + α + θ)
s−α(1 − s)α+θ−1 ds (0 < s < 1). (23)

The image of this measure by the change of variable x = − log s is the corresponding Lévy
measure

Λα,θ(dx) =
α Γ(2 + θ/α)

Γ(1 − α)Γ(1 + α + θ)
e−x(1−α)(1 − e−x)α+θ−1 dx (0 < x < ∞). (24)

From Theorem 6 we now deduce:

Corollary 8 For each 0 < α < 1, θ > −2α, let (Tα,θ, µ) be some CRT derived from fragmen-
tation process with dislocation measure PD∗(α, θ). The sequence of discrete fragmentation trees
(T[n], n ≥ 1) embedded in (Tα,θ, µ) is governed by fragmentations of [n] according the EPPF
obtained by normalization of formula (18) by formula (22). The fine spinal mass partition of
(Tα,θ, µ) is a PD(α,α + θ)-fragmentation of the coarse spinal mass partition of (Tα,θ, µ), which
is derived from the range of 1 − e−ξ for the pure jump subordinator ξ with Lévy measure (24)
and Laplace exponent

Φα,θ(z) =





αΓ(2 + θ/α)

(α + θ)Γ(1 − α)

(
(1 + θ)Γ(1 − α)

Γ(2 + θ)
−

(z + 1 + θ)Γ(z + 1 − α)

Γ(z + 2 + θ)

)
, θ 6= −α,

α

Γ(1 − α)

(
Γ′(z + 1 − α)

Γ(z + 1 − α)
−

Γ′(1 − α)

Γ(1 − α)

)
, θ = −α.

(25)

Last, for θ ∈ (−2α,−α) we have an interesting regime where Proposition 4 applies along
with the asymptotic theory of consistent Markov branching models in [26]. Specifically,
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Corollary 9 For θ ∈ (−2α,−α), let (T[n], n ≥ 1) be a Markov branching model derived from a
self-similar fragmentation with dislocation measure PD∗(α, θ). Adding unit edge lengths to T[n],
there is the convergence in probability

|α + θ|Γ(1 − α)

αΓ(2 + θ/α)
×

T[n]

n|θ+α|
→ T(θ+α,PD∗(α,θ)) (26)

for the Gromov-Hausdorff topology, where the limit is a self-similar fragmentation CRT of index
θ + α and dislocation measure PD∗(α, θ).

Proof. Note from (23) that

PD∗(α, θ)(s1 ≤ 1 − ε) ∼
αΓ(2 + θ/α)

|α + θ|Γ(1 − α)Γ(1 + α + θ)
εα+θ as ε ↓ 0.

Then Theorem 2 of [26] applies (Λα,θ clearly also satisfies
∫ ∞

xρΛα,θ(ds) < ∞ for some ρ > 0),
which gives (26). �

3.2 Stable fragmentations

The case 1/2 < α < 1 is of special interest. Then −2α < −1 < −α, so we can take θ = −1 in
(23), and then the Lévy measure (24) is of the form

Λ(dx) = cb(1 − e−x)−b−1e−bxdx, (27)

for some constant cb > 0 and b = 1 − α. It is known [19] that if ξ is a subordinator with this
Lévy measure, for any b ∈ (0, 1), then the closure of the range of e−ξ is reversible and identical
in law with the zero set of a Bessel bridge of dimension 2−2b. The corresponding distribution of
ranked lengths of intervals is then known to be PD(b, b) ([31, Corollary 4.9]). Miermont [29, p.
444] found the same Lévy measure, up to a scaling constant, for the subordinator associated with
the self-similar fragmentation of index α − 1 ∈ (−1/2, 0) that he derived from the stable CRT
Tβ of index β = 1/α ∈ (1, 2). Here we have reversed this line of reasoning, and constructed Tβ

directly from combinatorial considerations, without relying on the relation between the height
process of Tβ and the stable process of index β, which was the basis of the work of Duquesne
and Le Gall [13, 14]. As byproducts of this argument, we have a number of refinements of earlier
work on Tβ, which we summarize in the following corollary of previous results.

Corollary 10 For each α ∈ (1/2, 1), corresponding to β = 1/α ∈ (1, 2) the dislocation measure
PD∗(α,−1) derived from the two-parameter Poisson-Dirichlet family as in (18) has PD(α,α−1)
as a factor. Let (T[n], n = 1, 2 . . .) be a consistent family of combinatorial trees governed by
fragmentation according to PD∗(α,−1). Then

1. The tree T[n] is identical in law to the combinatorial tree with n leaves derived by sampling
according the mass measure in the stable tree Tβ of index β, and Tβ may be constructed
from the sequence of combinatorial trees (T[n], n ≥ 1), as indicated in [26, Theorem 2], or
Corollary 3.

2. The distribution of the coarse spinal mass partition of Tβ is PD(1 − α, 1 − α).

3. The coarse spinal interval partition of [0, 1] derived from Tβ is exchangeable, with the
same distribution as the collection of excursion intervals of a Bessel bridge of dimension
2α. The (1−α)-diversity of this interval partition is a multiple of the height of a leaf picked
at random from the mass measure of Tβ. This height has the same tilted Mittag-Leffler
distribution as the local time at 0 of the Bessel bridge of dimension 2α.
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4. The corresponding fine spinal mass partition of Tβ is a PD(α,α − 1)-fragmentation of the
coarse spinal mass partition.

5. The unconditional distribution of the fine spinal mass partition of Tβ is PD(α, 1 − α).

6. The conditional distribution of the coarse spinal mass partition of Tβ given the fine one is
provided by the operator of PD(γ, γ) coagulation, as defined in [32], for γ = (1 − α)/α.

7. Conditionally given the fine spinal mass partition of Tβ, the corresponding collection of
subtrees obtained by removing the spine, modulo isomorphism and rescaling trees T of
mass m to m−(1−α)T , is a collection of independent copies of Tβ.

Proof. All but items 5 and 6 follow immediately from the previous development. Those two
items are read from item 4 by the more general coagulation/fragmentation duality relation for
the PD family provided by [32, Theorem 12]. �

For more information about the distribution of random partitions in the PD family, see [33]
and [20]. In the limiting case when β ↑ 2, the above results reduce to the description of the
interval partition derived from the spinal decomposition of the Brownian CRT, which is well
known to be distributed like the partition generated by excursions of a Brownian bridge. See [5]
for applications of this decomposition to the asymptotics of random mappings. The structure of
the fine spinal partition of Tβ for 1 < β < 2 has no analogue for β = 2, because in the Brownian
tree all splits are binary.

4 Invariance under uniform re-rooting

It is of particular interest to consider fragmentation trees with additional symmetry properties.
A well-known property of the stable tree Tβ with index β ∈ (1, 2], established by Aldous [2] for
the Brownian CRT with β = 2, and by Duquesne and Le Gall [14, Prop.4.8] for β ∈ (1, 2), is
invariance under uniform re-rooting. See also [15]. Let us first introduce the discrete analogue
of this property.

For a tree T[n] with leaves labelled by [n], let T
(root↔1)
[n] denote the tree with leaves labelled

by [n] obtained by re-rooting T[n] at 1 and re-labelling the original root by 1. See for instance
the following picture.

9

ROOT

2 4

3 7 8

5 61 9

2 4

3 7 8

5 6

1378 569

378
ROOT

1

569

378

123456789

123456789 124569

Figure 2: A fragmentation tree T[9] and its re-rooted counterpart T
(root↔1)
[9] .

Definition 3 Let (T[n], n ≥ 1) be a consistent Markov branching model. We say that the Markov
branching model is invariant under uniform re-rooting if for all n ≥ 1

T[n]
law
= T

(root↔1)
[n] .
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Note that due to the exchangeability of leaf labels, leaf 1 is indeed a uniformly picked leaf
of the de-labelled combinatorial tree shape. Due to the exchangeability of leaf labels, invariance
under uniform re-rooting is in fact a property of de-labelled combinatorial tree shapes.

Definition 4 Let (T , µ) be a CRT rooted at ρ and conditionally on (T , µ), let (L1, L2, ...) be
a sample of leaves i.i.d. with distribution µ. Let then T [L1] denote the tree T re-rooted at L1.
We say that (T , µ) is invariant under uniform re-rooting if for all n ≥ 1, the law of the reduced
subtree R(T , L1, ..., Ln) of T spanned by the root ρ and L1, ..., Ln is invariant under re-rooting
at L1, i.e.

R(T [L1], ρ, L2, ..., Ln)
law
= R(T , L1, L2, ..., Ln)

as an identity in law of combinatorial tree shapes with assignment of edge lengths.

Clearly, the invariance under uniform re-rooting of (T , µ) implies the invariance under uni-
form re-rooting of the sequence (T[n], n ≥ 1) of combinatorial trees associated with (T , µ). We
will see that the converse is false (see the arguments after (35)).

Remark. In [2],[15] a different formalism is used for the definition of invariance under uniform
re-rooting, via height functions of ordered CRTs. Briefly, assuming that the CRT (T , µ) can be
encoded into a continuous real-valued function H on [0, 1], with H(0) = H(1) = 0, such that

• T is isometric to the quotient space ([0, 1], dH )/ ∼H where

dH(x, y) := H(x) + H(y) − 2 min
z∈[x,y]

H(z) and x ∼H y ⇔ dH(x, y) = 0

with the convention [x, y] = [y, x] when y < x

• µ is the measure induced by the projection of the Lebesgue measure on this quotient space

then the invariance under uniform re-rooting is defined via H [U ] law
= H where U if uniformly

distributed on [0, 1] independently of H and

H [u](x) := H(u) + H(u + x) − 2 min
z∈[u,x+u]

H(z), u, x ∈ [0, 1], (28)

with the convention u+x = u+x−1 when u+x > 1. It was proved in [25] that the structures of
the combinatorial subtrees R(T , L1, ..., Ln), n ≥ 1, derived from some self-similar fragmentation
CRT (T , µ) can be enriched with a consistent “uniform” order so as to encode the fragmentation
CRTs into a continuous height function as described above, provided the dislocation measure is
infinite. In that context, it is not hard to check that the height function definition and Definition
4 above are equivalent. Details are left to the reader.

The goal of this section is twofold: first to give a combinatorial proof, different from that
given in [2],[14],[15], of the fact that the stable trees are invariant under uniform re-rooting;
second to prove that among the self-similar fragmentation CRTs, the stable trees are the only
ones, up to a scaling factor, to satisfy this invariance property.

For the Brownian CRT (T2, µ2), we recall that the partition-valued process constructed by
random sampling of leaves L1, L2, . . . according to µ2 is a self-similar fragmentation with index
a = −1/2 and dislocation measure ν2 defined by ν2(s1 + s2 6= 1) = 0 and

ν2(s1 ∈ dx) = (2/π)1/2x−3/2(1 − x)−3/2dx, 1/2 ≤ x < 1

(see [9]). The dislocation measure νβ associated to the stable tree Tβ, 1 < β < 2 is given by (12)
and its self-similar index is 1/β − 1.
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Theorem 11 (i)[2, 14] For all β ∈ (1, 2], the stable tree (Tβ , µβ) is invariant under uniform
re-rooting.

(ii) Let (T , µ) be a self-similar fragmentation CRT with parameters (a, ν) and suppose it is
invariant under uniform re-rooting. Then there exists some β ∈ (1, 2] and some constant C > 0
such that ν = Cνβ and a = 1/β − 1.

Remark. According to [15], a stronger invariance result is available for the height functions
H of stable trees (and more generally Lévy trees), which is that H [u], as defined in (28), is
distributed as H for each fixed u ∈ [0, 1]. See also [28] for the Brownian CRT.

The rest of this section is devoted to the proof of Theorem 11.

4.1 Spinal decomposition and proof of Theorem 11 (i)

The first step is to consider the spinal decomposition of trees invariant under uniform re-rooting:
one consequence of this invariance is that the coarse spinal interval partition of [0, 1] derived
from the tree is reversible (in fact an exchangeable interval partition of [0, 1], see [19]). The class
of trees with this property is significantly restricted by the following proposition.

Proposition 12 Let (T[n], n ≥ 1) be a sequence of combinatorial trees associated with some
self-similar fragmentation CRT (T , µ) with dislocation measure ν, and let ξ be the subordina-
tor describing the evolution of the mass fragment containing 1 in an associated homogeneous
fragmentation process (cf. Section 2.1).

(i) The coarse spinal composition of n derived from T[n+1] (as defined in (3)) is reversible
for each n if and only if ξ has a Lévy measure of the form

Λ(dx) = c(1 − e−x)−b−1e−bxdx, (29)

for some 0 < b < 1 and some constant c > 0.
(ii) There cannot exist a self-similar fragmentation CRT with a Lévy measure of this form

when b > 1/2.

Proof. Part (i) is read from [19, Theorem 10.1], just using the regenerative property of the
coarse spinal compositions. For part (ii), from (5)

Λ(dx) = e−x
∑

i≥1

ν(− log si ∈ dx), x > 0,

and (29) we deduce by the transformation z = e−x, x = − log(z), dx = −dz/z

∑

i≥1

ν(si ∈ dz) = c(1 − z)−b−1zb−2dz, z ∈ (0, 1).

Since ν is supported by decreasing sequences with
∑∞

i=1 si = 1, si ≤ 1/i for all i ≥ 1. In
particular,

ν(s1 ∈ dz) = c(1 − z)−b−1zb−2dz, z ∈ (1/2, 1). (30)

Using the fact that for z ∈ (0, 1/2)

z−b(1 − z)b−2 > (1 − z)−b−1zb−1 ⇐⇒ (1 − z)2b−1 > z2b−1 ⇐⇒ b > 1/2,
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we see that for b > 1/2
∫

(0,1)
(1 − z)ν(s1 ∈ dz) ≥ c

∫

(1/2,1)
(1 − z)−bzb−2dz

= c

∫

(0,1/2)
z−b(1 − z)b−2dz

> c

∫

(0,1/2)
(1 − z)−b−1zb−1dz

≥
∑

i≥2

∫

(0,1)
zν(si ∈ dz)

by (30). On the other hand, we have

∫

(0,1)
(1 − z)ν(s1 ∈ dz) =

∫

(0,1)
zν




∑

i≥2

si ∈ dz




=

∫

S↓

∑

i≥2

siν(ds)

=
∑

i≥2

∫

S↓

siν(ds)

=
∑

i≥2

∫

(0,1)
zν(si ∈ dz),

which contradicts the inequality obtained in the preceding calculation. �

The Lévy measure associated with the tagged fragment of some fragmentation tree invariant
under uniform re-rooting is therefore of the form (29) for some 0 < b ≤ 1/2. We recall that the
Lévy measures associated to β-stable trees are of this form for b = 1 − 1/β (see Section 3.2 for
1 < β < 2 and [9] for β = 2) which covers the range (0, 1/2] when β varies in (1, 2].

Proof of Theorem 11 (i). Let (Tβ, µβ) be some stable CRT with index β ∈ (1, 2]. According
to the previous proposition, its coarse spinal interval partition of [0,1] is reversible. We then
conclude with Items 4 and 7 of Corollary 10. �

4.2 Characterization of the dislocation measure and Proof of Theorem 11(ii)

In general the Lévy measure does not characterize the dislocation measure of the fragmentation
tree, i.e. two different dislocation measures may lead to the same Lévy measure Λ, see Haas [23]
for an example. However, this complication no longer arises when the set of fragmentation trees
is restricted to the ones invariant under uniform re-rooting.

Proposition 13 Let (T , µ) be a self-similar fragmentation CRT with parameters (a, ν) and
suppose it is invariant under uniform re-rooting. Then the dislocation measure ν can be re-
constructed from the Lévy measure Λ associated to the tagged fragment.

Together with Proposition 12, this implies that

Corollary 14 The dislocation measure of a self-similar fragmentation CRT invariant under
uniform re-rooting is proportional to νβ for some β ∈ (1, 2].
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In order to prove Proposition 13, we first set up two lemmas. In the rest of this subsection,
the CRT (T , µ) with parameters (a, ν) is fixed and supposed to be invariant under uniform
re-rooting. A sample of leaves Li, i ≥ 1 is given and we consider the associated partition-valued
fragmentation Π. We call pn the probabilities

pn(n1, ..., nk) = P (Πn(tn) = {{1, ..., n1}, {n1 + 1, ..., n1 + n2}, ..., {n1 + ... + nk−1 + 1, ..., n}})

=
pν(n1, . . . , nk)

Φ(n − 1)

where tn is the first time when Πn differs from [n] and (n1, ..., nk) denotes any composition of n
with k ≥ 2 (in other words, the probabilities pn are the EPPFs obtained by conditioning Pν on
{Πn 6= {[n]}} in the proof of Lemma 5). Note in particular that

n∑

k=2

∑

(n1,...,nk)

n!

n1! . . . nk!

1

k!
pn(n1, . . . , nk) = 1, (31)

where the sum is over all compositions of n, see [31, Exercise 2.1.3].

Lemma 15 For all compositions (n1, ..., nk) of n with k ≥ 2

pn(n1, ..., nk)pn1
(1, n1 − 1) = pn(n2 + ... + nk + 1, n1 − 1)pn−n1+1(1, n2, ..., nk), (32)

with the convention, when n1 = 1, that the probabilities involving expressions with a term n1−1 =
0 are all equal to 1.

Proof. Consider the following fragmentation scheme : the first time at which the block
{1, ..., n} splits, it splits in blocks {1, ..., n1}, {n1 + 1, ..., n1 + n2}, ..., {n1 + ... + nk−1 + 1, ..., n};
then the first of these blocks splits in {1}, {2, ..., n1}. We are not really interested in the further
evolution of {2, ..., n1}, {n1 + 1, ..., n1 + n2}, ..., {n1 + ...+ nk−1 + 1, ..., n}, let us just say that it
is in a configuration which happens with a (strictly) positive probability, say rn(n1, ..., nk) (e.g.
evolutions as in Figure 3). Consider then the discrete tree with leaf labels obtained from this
fragmentation scheme. The probability that the tree with n leaves R(T , L1, L2, ..., Ln) has this
labelled shape is exactly

pn(n1, ..., nk)pn1
(1, n1 − 1)rn(n1, ..., nk). (33)

Now, look at the same tree rooted at L1, i.e. R(T L1 , ρ, L2, ..., Ln), cf. Figure 4. Starting from
the root L1, the corresponding fragmentation scheme evolves as follows : {ρ, 2, ..., n} first splits
in {2, ..., n1}, {ρ, n1 +1, ..., n}. Then {ρ, n1 +1, ..., n} splits in {ρ}, {n1 +1, ..., n1 +n2}, ..., {n1 +
...+nk−1 +1, ..., n}. And the blocks {2, ..., n1}, {n1 +1, ..., n1 +n2}, ..., {n1 + ...+nk−1 +1, ..., n}
then all split according to the same configuration as in the previous scheme. By invariance under
uniform re-rooting, the subtree R(T [L1], ρ, L2, ..., Ln) is distributed as R(T , L1, L2, ..., Ln), and
therefore, the probability that R(T [L1], ρ, L2, ..., Ln) has this labelled shape is

pn(n1 − 1, n2 + ... + nk + 1)pn−n1+1(1, n2, ..., nk)rn(n1, ..., nk). (34)

By invariance under re-rooting, the probabilities in (33) and (34) are equal. This yields (32),
since rn(n1, ..., nk) 6= 0. �

Remark. It is easy to check that the probabilities pn associated to the stable trees, which are
obtained by normalization of formula (18) by (22) with θ = −1, satisfy the relations (32).
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m

1

2
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m−1

Figure 3: This configuration always happen with positive probability

nk

1

n1−1
n2 ...

nk

ROOT ROOT

1

n1−1

n2

...

Figure 4: By the invariance under re-rooting assumption, these two configurations are equally
likely to occur
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Lemma 16 The probabilities p3(2, 1), p3(1, 1, 1) and pn(1, n − 1), ∀n ≥ 2, are determined by
the Lévy measure Λ.

Proof. Consider Π0, the homogeneous fragmentation constructed from Π by time-changes.
The probabilities pn describe the ordered sizes of blocks of Π0

n at the first time when it differs
from [n]. Let D0

1,i, 2 ≤ i ≤ n, be the first time in this homogeneous fragmentation at which

1 and i belong to separate fragments. Let (λ0(t), t ≥ 0) be the decreasing process of masses
of fragments containing 1. The law of λ0 = exp(−ξ) is determined by Λ, as well as that of
(λ0,D0

1,2, ...,D
0
1,n) since

P(D0
1,2 > s2, ...,D

0
1,n > sn | λ0) = λ0(s2)...λ

0(sn),

for all sequences of times (s2, ..., sn). In particular, knowing Λ, we know the probabilities
P(D0

1,2 < min3≤i≤n D0
1,i) = pn(1, n − 1). In the particular case when n = 3, this gives p3(1, 2)

and then p3(1, 1, 1), since 3p3(1, 2) + p3(1, 1, 1) = 1. �

Remark. It is not hard to see, with a specific example, that in general Λ does not characterize
the probabilities p4(n1, ..., nk), n1 + ... + nk = 4.

Proof of Proposition 13. The dislocation measure is determined, up to a scaling constant, by
the probabilities pn(n1, ..., nk), ∀n ≥ 2, ∀(n1, ..., nk) composition of n with k ≥ 2. The scaling
constant is then obtained from Λ, using (5). The goal here is therefore to check that under the
re-rooting assumption, all the probabilities pn can be recovered from Λ. Suppose Λ is known.
We proceed by induction on n. For n = 2, p2(1, 1) = 1. For n = 3, the probabilities p3 are
known, by Lemma 16. Suppose now that the pm’s are known, ∀m ≤ n − 1. By Lemma 16,
pn(1, n − 1) is also known. Then, by Lemma 15, ∀(n2, ..., nk) composition of n − 2,

pn(2, n2, ..., nk)p2(1, 1) = pn(1, n − 1)pn−1(1, n2, ..., nk),

which gives pn(2, n2, ..., nk). The probabilities pn(n1, ..., nk), with n1 ≥ 3, are obtained in the
same manner, by induction on n1, thanks to Lemma 15 (note that pn1

(1, n1 − 1) 6= 0, ∀n1).
Therefore, for all compositions (n1, ..., nk) 6= (1, ..., 1), k ≥ 2, of n, we have pn(n1, ..., nk), since
there is at least one ni 6= 1 and, by symmetry, one can suppose it is n1. It remains to get
pn(1, ..., 1), which can be done by using the equality (31). �

Proof of Theorem 11 (ii). By Corollary 14, since the law of the CRT (T , µ) is invariant
under uniform re-rooting, there exists some β ∈ (1, 2] and some constant C such that ν = Cνβ.
It remains to prove that the index of self-similarity is a = 1/β − 1. Up to now, we only used
the combinatorial properties of reduced trees encoded in the dislocation measure ν, and not the
further structure of the CRT (T , µ) that involves the edge lengths and depends on the scaling
parameter a. To conclude that a = 1/β − 1, we must consider edge lengths.

Given the CRT (T , µ) rooted at ρ and the leaves L1, L2, the reduced tree R(T , L1, L2) can
be described by the edge-lengths D1,2,D1 − D1,2,D2 − D1,2, where D1,2 is the separation time
of 1 and 2 in Π and Di the first time at which the block containing i is reduced to a singleton,
i = 1, 2. By invariance under re-rooting, D1,2 must have the same law as D1 −D1,2. We already
know that this is true for the index 1/β − 1, from Duquesne-Le Gall’s Theorem 4.8 in [14].

Using time-changes relating Π and its homogeneous counterpart Π0 (these time-changes are
given specifically in [9]), we have

D1,2 =

∫ D0

1,2

0
|Π0

(1)(t)|
−adt =

∫ ∞

0
|Π0

(1)(t)|
−adt −

∫ ∞

D0

1,2

|Π0
(1)(t)|

−adt = D1 −

∫ ∞

D0

1,2

|Π0
(1)(t)|

−adt ,
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and

D1 − D1,2 =

∫ ∞

D0

1,2

|Π0
(1)(t)|

−adt , (35)

where D0
1,2 is the first separation time of 1 and 2 in Π0. By the strong Markov property of Π (see

[9]), |Π0
(1)(t + D0

1,2)| has same distribution as |Π0
(1)(D

0
1,2)| · |Π̃

0
(1)(t)|, where Π̃0 is an independent

copy of Π0. Therefore,
∫ ∞

D0

1,2

|Π0
(1)(t)|

−adt = |Π0
(1)(D

0
1,2)|

−a

∫ ∞

0
|Π̃0

(1)(t)|
−adt = |Π0

(1)(D
0
1,2)|

−aD̃1 ,

where D̃1 has same distribution as D1 and is independent of |Π0
(1)(D

0
1,2)|

−a. Assuming that D1,2

has same distribution as D1 − D1,2 and taking expectations in (35), we obtain

E[|Π0
(1)(D

0
1,2)|

−a]E[D1] = E[D1 − D1,2] = E[D1,2] = E[D1](1 − E[|Π0
(1)(D

0
1,2)|

−a]) .

For a < 0 we may cancel the common factor of E[D1] < ∞ (D1 is an exponential functional
of a subordinator). It remains to notice that the function f(a) = E[|Π0

(1)(D
0
,12)|

−a] is a strictly

monotone function with limit 0 at −∞ and 1 at 0, so that the equation f(a) = 1 − f(a) has a
unique solution a, which has to be the index a = 1/β − 1. �
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processes. Astérisque, (281):vi+147, 2002.

[14] T. Duquesne and J.-F. Le Gall. Probabilistic and fractal aspects of Lévy trees. Probab.
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