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Abstract

We describe a type system for the Xdπ calculus [9]. An Xdπ-network is a network of loca-
tions, where each location consists of both a data tree (which contains scripts and pointers
to nodes in trees at different locations) and a process, for modelling process interaction,
process migration and interaction between processes and data. Our type system is based
on types for locations, data and processes, expressing security levels. A tree can store data
of different security level, independently from the security level of the enclosing location.
The access and mobility rights of a process depend on the security level of the “source” lo-
cation of the process itself, i.e. of the location where the process was in the initial network
or where the process was created by the activation of a script. The type system enjoys type
preservation under reduction (subject reduction). In consequence of subject reduction we
prove the following security properties. In a well-typed Xdπ-network, a processP whose
source location is of levelh can copy data of security level at mosth and update data of
security level less thanh. Moreover, the processP can only communicate data and go to
locations of security level equal or less thanh.

1 Introduction

Information systems have evolved into open distributed systems that include decen-
tralised peer-to-peer networks. An essential role of such systems is management of
data, which appear to be semi-structured and distributed. Data-sharing applications
require to integrate mobile processes and semi-structureddata.

1 This work was partly funded by the project MMIT 1438 of PSNTR,by FP6-2004-510996
Coordination Action TYPES, by the project GLORA 144029 of MSEP and by the ANR
project “ParSec” ANR-06-SETI-010-02.
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As information networks become more open and dynamic, the need for security
and privacy grows stronger. Systems must be able to exchangedata and processes
while preserving security. One solution is to ground them ontyped models. In such
models, a well-typed network must reduce only to well-typednetworks, assuring
access and movement rights.

In this paper we propose a type system for the Xdπ calculus [9]. An Xdπ-network is
a network of locations, where each location consists of botha data tree and of a run-
ning process, for modelling process interaction, process migration and interaction
between processes and data. The leaves of data trees containpointers to nodes in
trees of different locations, and scripts, i.e. static processes, which can be activated.
In turn, scripts, pointers and trees can occur inside scripts and running processes.

In addition to the original syntax, we decorate location names with security levels
taken from a partially ordered set of security levels with a bottom element. There-
fore a location in a well-formed network will be of the shape:

lh[ T ‖ P ]

where l is a location name,h is its security level,T is a tree of data andP is
a running process. Pointers, scripts and running processesare assigned security
levels by means of a typing system.

The access and mobility rights of a process depend on the security level of the
“source” location of the process itself, i.e. of the location where the process was in
the initial network or where the process was created by the activation of a script.
Hence in a well typed network each process has the security level of its source
location. Security levels of scripts and pointers in trees,however, don’t depend on
the level of the enclosing location.

Processes migrate thanks to thego command. Thego command can only move
a process from one location to a location of security level lower or equal to the
level of the process itself. Processes can also communicatedata via channels. The
security levels of the communicated data will never exceed the security level of the
process.

Running processes can activate scripts in the local tree by the commandrunp,
wherep is a path expression which identifies a set of nodes. In a well-typed network
a scripted process can be activated only if its security level is at most the one of the
enclosing location.

Running processes can also modify the local tree and use the information in that
tree by means of the commandupdate. All trees can be copied by all processes,
but only trees containing no data can be deleted and possiblyreplaced. A process
of security levelh can only read data of security level at mosth, and modify data
of security level less thanh. The only exception being that processes generated
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by activating scripts can modify scripts of the same security level and in the same
positions in trees.

Related WorkThe Xdπ calculus [9,14] models both localised, mobile processes
and distributed, dynamic, semi-structured data, allowingto represent data-sharing
applications. It can be seen as an extension of the Active XMLmodel [1].

The locations and the processes of Xdπ are essentially those ofdπ [10] enriched
with capabilities for data manipulation. The only difference is that a process indπ
can migrate to a location independently from the existence of the location itself in
the current network, while in Xdπ such an existence is a necessary condition for
migration. The data trees of Xdπ are related to those in [2,4] and the treatment of
shared distributed data is inspired by [19]. We refer to [9] for further references
related to the calculus design.

Many type systems controlling the use of resources and the mobility of processes
have been proposed for thedπ calculus [10] and for related calculi [16,6,5]. The
types discussed here are essentially inspired by the security types checking access
rights forπ-calculus of [11]. For simplicity we do not distinguish between reading
and mobility rights, but our type system can be extended to take them into account.
Another simplification is to have elements of a partially ordered set with a bottom
element as security levels instead of elements of a lattice as it is usual [20], this
choice being justified by the fact that we do not use meets and joins. We formalise
the network properties assured by our type system using the notions of network
invariant and initial network as in [3].

The present paper is an expanded and revised version of [8], the main differences
being:

• the data in trees can be of different security levels and do not depend on the secu-
rity level of the enclosing location, while in [8] each location was only allowed
to contain data of at most the security level of the location itself;

• the communication, copying, updating and mobility rights of processes only de-
pend on their source location, while in [8] they were depending on the enclosing
location, but for the possibility of processes to move back to their source loca-
tions;

• the capability of modifying data requires a higher securitylevel than the capabil-
ity of reading data, while in [8] there was no difference;

• there is a special type fordata-lesstrees, i.e. trees whose leaves contain no data,
because only data-less trees can be deleted or replaced (they can be considered
garbage).

Outline of the paperSection 2 and Section 3 introduce the syntax, the reduction
rules, and the typing rules of typed Xdπ, exemplified by the examples in Section 5.
The properties of the calculus are discussed in Section 4 andproved in Appen-
dices B and C. Section 6 contains a few final remarks.
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2 Syntax and Operational Semantics

The Xdπ calculus we consider here is essentially the calculus introduced in [9],
with a few important differences.

The main difference between the original Xdπ and the present one is the use of a
typed syntax. We decorate the location names with security levels and the channel
names with value types. (An alternative approach could avoid these decorations by
fixing an environment for locations and channels.)

More importantly, the syntax includes a typed matching function instead of an un-
typed one. Pattern matching needs to take types into account, in order to have type
preservation under reduction. We will explain and motivatethis choice at the end
of the section.

In order to simplify the syntax we only allow monadic insteadof polyadic com-
munication and we do not distinguish between public channels (which cannot be
restricted) and session channels (which must be restrictedin the scripts).2 These
features of the original Xdπ can be easily handled by our type system.

2.1 Syntax

Networks A network is a parallel composition (| ) of locations consisting of a
tree and a process, where processes at different locations can share communication
channels. In a well-formed network the locations have different names. The syntax
of networks is given in Table 1. We usel, m to range over location names, and
h, i, j over security levels. The locationlh[ T ‖ P ] is well-formed if both the tree
T and the processP do not contain occurrences of free variables. We usec to range
over channel names andTv to denote a value type as defined in Table 9. The binder
ν is, as usual, the restriction operator.

Trees The data model is an unordered edge-labelled rooted tree with leaves con-
taining empty trees, scripts and pointers. The syntax of trees is presented in Table 2,
usinga to denote an edge label.

A script is a static process embedded in a tree that can be activated bya process
from the same location. We useΠ to range over processes and variables, and a
script is denoted by�Π.

2 The distinction between public and session channels is important for implementation
since otherwise one needs to alpha-convert the whole data tree of a location when a process,
restricting a channel name, migrates.
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N ::= 0 || N | N || lh[T ‖ P ] || (νcTv)N

Table 1
Syntax of networks

T ::= ∅ empty rooted tree

|| x tree variable

|| T | T composition of trees, joining the roots

|| a[T ] edge labeleda with subtreeT

|| a[�Π] edge labeleda with script�Π

|| a[p@λ] edge labeleda with pointerp@λ

Table 2
Syntax of trees

p ::= a || // || .. || . || x || p / p

Table 3
Syntax of paths

A pathidentifies nodes in a tree. Table 3 gives the formation rules of paths, usingp
to range over paths. In a path, “a” denotes a step along an edgea, “ // ” denotes any
node, “..” a step back, “.” the path from the root to the current node,x a variable
and “/ ” the path composition. We will say that a path is alocal pathif it contains
“ .”. 3

We useλ to range over variables and location names super-scripted by security
levels. Apointerp@λ refers to the set of nodes identified by the pathp in the tree
at locationλ.

Processes The processes that we are concerned with are essentiallydπ-calculus
processes [10], where the local communication modelled byπ-calculus processes
[15], [21] is extended with migration between locations (commandgo). There are
two more commands for local communication between processes and data: one

3 The path syntax allows also meaningless paths, like “./ ./ .”: this could be clearly
avoided either by typing or by refining the syntax.
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P ::= 0 the nil process

|| P | P composition of processes

|| (νcTv)P declare new channel namec transmitting values of typeTv

|| γ̄〈v〉 output valuev on a channelγ

|| γ(x).P input parametrised by a variablex

|| !γ(x).P replication of an input process

|| go λ.P migrate to locationλ, continue asP

|| go 	 .P migrate to the source location, continue asP

|| runp run the processes identified by the path expressionp

|| updatep(χ, V ).P update command

Table 4
Syntax of processes

v ::= cTv || T || �P || lh || p

Table 5
Syntax of values

χ ::= xDL || x || �xj || y⋆@xj

V ::= T || �P || p@λ

Table 6
Syntax of patterns and data terms

for updating (copy, paste, cut, etc.) the data tree (update) and the other one that
activates the execution of scripts that are embedded in local data tree (run). We use
P, Q, R to range over processes, andγ to range over channel names (decorated by
value types) and variables. The syntax of processes is givenin Table 4.

A valueis either a channel name super-scripted with a value type, a tree, a script of
a fixed security level, a location name super-scripted with asecurity level or a path.
Usingv to range over values, the syntax of values is given in Table 5.

The argument ofgo is a location name (super-scripted with a security level) ora
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variable, or the symbol “	”, which can only occur in scripts to denote the location
where the script will be activated.

The two arguments of the update command are respectively apatternχ and adata
termV , whose syntax is given in Table 6. A pattern is either adata-lesstree vari-
able, or a tree variable, or a script pattern, or a pointer pattern. In a pointer pattern
j is a security level and⋆ ∈ {Local, ǫ} 4 indicates whethery stands for a local path
or for a path without occurrences of “.”. Data terms can be trees, scripts or pointers.
The need to distinguish generic trees from data-less trees (that is trees whose leaves
are empty) arises from the facts that trees themselves do nothave security level. In
order for a process to delete or replace a tree, it has to have permission to delete
all the data contained in the tree first. Then any process, regardless of its security
level, can delete or replace a data-less trees.

In updatep(χ, V ).P the variables ofχ can occur both inV and inP and they are
bound. For this reason we allow variable occurrences in trees, scripts, pointers and
processes.

2.2 Reduction rules

The reduction relation describes three forms of interactions:

• processes can communicate with each other within a location(rules (com) and
(com!));

• processes can move between locations (rules (stay) and (go));
• process can interact with the local data (rules (update) and(run)).

The reduction relation is the least relation on networks which is closed with respect
to structural congruence, reduction rules given in Table 7 and reduction contexts,
given by

C ::= − || C | N || (νcTv)C.

The standard definition of structural congruence is presented in Appendix A.

The rules, (com) and (com!) are the communication rules fromtheπ-calculus [15,21].
Processes can communicate only if they are in the same location.

There are two rules for migration. Rule (go) describes migration to a distinct loca-
tion. The other rule, (stay), describes staying at the location where you are.

4 Here and in the following we useǫ to denote the empty string, so we get eitheryLocal@xj

or y@xj .
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(com) lh[ T || c̄Tv〈v〉 | cTv(z).P | Q ] → lh[ T || P{v//z} | Q ]

(com!) lh[ T || c̄Tv〈v〉 |!cTv(z).P | Q ] → lh[ T || !cTv(z).P | P{v//z} | Q ]

(stay) lh[ T || go lh.P | Q ] → lh[ T || P | Q ]

(go) lh[ T1 || go mj .P | Q ] | mj[ T2 || R ] → lh[ T1 || Q ] | mj[ T2 || P | R ]

(run)
p(T ) p,lh,�xh,�x T, {{�P1//�x}, . . . , {�Pn//�x}}

lh[ T || runp | Q ] → lh[ T || P1 | . . . | Pn | Q ]

(update)
p(T ) p,lh,χ,V T ′, {s1, . . . ,sn}

lh[ T ‖ updatep(χ, V ).P | Q ] → lh[ T ′ ‖ Ps1 | . . . | Psn | Q ]

Table 7
Reduction rules

(Empty tree)∅ θ ∅, ∅

(Script) �P  θ �P, ∅

(Pointer) p@lh  θ p@lh, ∅

(Node)
T  θ T ′,Θ

a[T ] θ a[T
′],Θ

(Par)
T  θ T ′,Θ1 S  θ S′,Θ2

T |S  θ T ′|S′,Θ1 ∪ Θ2

(Up)
match(U,χ) = s V s θ V ′,Θ θ = p, lh, χ, V

a[U ] θ a[V
′], {s{lh// 	, p//.}} ∪ Θ

Table 8
Definition of the update function 

The commandrunp finds all the scripts in the local tree identified by the pathp
and activates their parallel execution, after replacing “	” and “.” by the enclosing
location and the pathp, respectively.

The update commandupdatep(χ, V ).P traversing top-down the local tree finds all
the data termsVk given by the pathp and pattern matches these data terms withχ
to obtain substitutionssk when they exist. For each successful pattern matching it
replaces theVk with V sk and startsPsk in parallel. Thematch function, in order
to check if a data term agrees with a pattern, requires not only the data term to
be, respectively, a data-less tree, a tree, a pointer or a script, according to the four
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shapes of the pattern (as in [9]), but it requires also the data terms to satisfy the type
information given by the pattern. This means that:

(1) if the pattern isxDL, then the data term must be a data-less tree,
(2) if the pattern isx, then the data term must be a tree,
(3) if the pattern isy⋆@xj, then the data term must be a pointer in which(i) the path

can be a local path only if⋆ = Local and(ii) the location must be of levelj,
(4) if the pattern is�xj , then the data term must be a script of levelj.

These conditions are enforced by using the type assignment system of next section.
If the typed match is successful, the function returns a substitution which replaces
the variables in the pattern by the corresponding data terms. More precisely the
definition of thematch function is:

(1) match(T, xDL) = {T//x} if ⊢ T : DLTree;
(2) match(T, x) = {T//x} if ⊢ T : Tree;
(3) match(p@lj, y⋆@xj) = {lj//x, p//y} if ⊢ p : Path⋆;
(4) match(�P,�xj) = {�P//�x} if ⊢ P : ProcLocal(j).

In principle it would be desirable to avoid security level matching at run time,
and rely on static typing only. However in this setting, static typing would be too
restrictive. Values in a tree can have any security level, and we cannot statically
know the security levels of values found using the path “//”. This is why dynamic
checking is necessary.

The reduction rules forupdate andrun are based on the definition of the update
function , parametrised onp, lh, χ, V , which applied to a tree or to a node label
returns a data term and a set of substitutions. Table 8 definesthe function . The
only interesting rule is (Up): it matches the selected (underlined) U in p(T ) with
χ obtaining a substitutions. Then it continues updatingV s obtaining the data
term V ′ and the set of substitutionsΘ. Finally it replacesU with V ′ and adds to
Θ the substitutions{lh// 	, p//.}. This is useful whens = {�P//�x} for solving
the references to the enclosing location and to the current path. We convene that
occurrences of “	” and “.” inside scripts inP are unaffected by this substitution.
Similarly if s = {T//x} we convene that occurrences of “	” and “.” inside scripts
in T leaves are unaffected by this substitution, i.e. that{T//x}{lh// 	, p//.} =
{T//x} for anyT, x, lh, p.

Some special forms of the update command have been already defined in [9]:

cutp(χ).Q := updatep(χ, ∅).Q

copyp(χ).Q := updatep(χ, χ).Q

pastep〈T 〉.Q := updatep(x, x|T ).Q wherex does not occur inT, Q.

We will freely use these shorthands in the examples.

9



Ch(Tv) type of channels communicating values of typeTv

Loc(i) type of locations at security leveli

Script(i) type of scripts at security leveli

Path type of paths, not containing “.”

PathLocal type of paths, possibly containing “.”

Pointer(i) type of pointers, not containing local paths, at security level i

PointerLocal(i) type of pointers, possibly containing local paths, at security level i

DLTree type of data-less trees

Tree type of trees, not containing local paths

TreeLocal type of trees, possibly containing local paths

Proc(i) type of processes, not containing local paths, at security leveli

ProcLocal(i) type of processes, possibly containing local paths, at security level i

Net type of networks

wherei ∈ L andTv ranges over value types defined by

Tv ::= Ch(Tv) || Loc(i) || Script(i) || Path⋆ || DLTree || Tree⋆

Table 9
Syntax of types

3 Type Assignment

The main goals of our type system are to control communication of values, access
to data and migration of processes between locations. We will formalise this in
Section 4.

We rely on a notion of security levels, and therefore we assume a fixed partial order
(L,≤) of security levels with a bottom⊥. As already said in Section 2 we useh, i, j
to range over elements ofL.

The syntax of types is the content of Table 9. Clearly the types correspond to the
syntactic categories of the previous section. We use the suffix Local when we allow
local paths. This distinction is useful since a run or an update command containing
a local path as index cannot be executed, but it can appear inside a script.

We will usePath⋆ as short forPath or PathLocal and similarly for the other
types. When more than one⋆ appears in a typing rule we always assume that all of
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them are replaced either byǫ or byLocal.

We define thesecurity levelof a value type (notation|Tv|) as follows:

• |Ch(Tv)| = |Tv|;
• |Loc(i)| = |Script(i)|= i;
• |Path⋆| = |DLTree| = |Tree⋆| = ⊥.

An environmentΣ gives the association between:

• variables and value types
• variables and local process types

i.e. we define:
Σ := ∅ || Σ, x : Tv || Σ, x : ProcLocal(i).

We use the environment by means of a standard axiom:

(axiom)
Σ, x : σ ⊢ x : σ

whereσ ranges over value types and local process types.

Typing rules for channels, locations and scripts are as expected (recall thatΠ
ranges over processes and variables):

(chan)
Σ ⊢ cTv : Ch(Tv)

(loc)
Σ ⊢ li : Loc(i)

Σ ⊢ Π : Proc⋆(i)
(script)

Σ ⊢ �Π : Script(i)

Typing rules for paths are given in Table 10: a local path always gets the type
PathLocal instead ofPath.

The typing rule for pointers

Σ ⊢ λ : Loc(i) Σ ⊢ p : Path⋆

(pointer)
Σ ⊢ p@λ : Pointer⋆(i)

gives aPointer or aPointerLocal type according to the path type. The security
level of the pointer is the security level of the pointed location.

Typing rules for trees are given in Table 11. According to these typing rules:

• a tree is data-less, i.e. it has the typeDLTree, only if all its leaves are labelled
by ∅;

• a tree that has at least one node labelled by a local pointer will be typed by
TreeLocal.
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(patha)
Σ ⊢ a : Path

(path//)
Σ ⊢ // : Path

(path..)
Σ ⊢ .. : Path

(path.)
Σ ⊢ . : PathLocal

Σ ⊢ p : Path⋆ Σ ⊢ p′ : Path⋆

(path/)
Σ ⊢ p / p′ : Path⋆

Σ ⊢ p : Path
(pathL)

Σ ⊢ p : PathLocal

Table 10
Typing of paths

(treeEmpty)
Σ ⊢ ∅ : DLTree

Σ ⊢ T : DLTree
(treeDLa)

Σ ⊢ a[T ] : DLTree

Σ ⊢ T : Tree⋆

(treea)
Σ ⊢ a[T ] : Tree⋆

Σ ⊢ T1 : DLTree Σ ⊢ T2 : DLTree
(treeDL|)

Σ ⊢ T1 | T2 : DLTree

Σ ⊢ �Π : Script(i)
(treeScript)

Σ ⊢ a[�Π] : Tree

Σ ⊢ T1 : Tree⋆ Σ ⊢ T2 : Tree⋆

(tree|)
Σ ⊢ T1 | T2 : Tree⋆

Σ ⊢ p@λ : Pointer⋆(i)
(treePointer)

Σ ⊢ a[p@λ] : Tree⋆

Σ ⊢ T : DLTree
(treeDL)

Σ ⊢ T : Tree

Σ ⊢ T : Tree
(treeL)

Σ ⊢ T : TreeLocal

Table 11
Typing of trees

Typing rules for processes are given in Table 12. The rule (go) allows a process
whose source location is of security leveli to migrate to a location at security level
j only if j ≤ i.

In the typing rules for update we assume thatχ ∈ {xDL, x,y⋆@xj ,�xj}, and we
define the environmentΣχ for associating types to the variables bound by the pat-
tern.

Σχ =







































x : DLTree if χ = xDL,

x : Tree if χ = x,

x : Loc(j), y : Path⋆ if χ = y⋆@xj ,

x : ProcLocal(j) if χ = �xj

We define thesecurity levelof a pattern (notation|χ|) as expected:
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(proc0)
Σ ⊢ 0 : Proc⋆(i)

Σ ⊢ P1 : Proc⋆(i) Σ ⊢ P2 : Proc⋆(i)
(proc|)

Σ ⊢ P1 | P2 : Proc⋆(i)

Σ ⊢ P : Proc⋆(i) |Tv| ≤ i
(procν)

Σ ⊢ (νcTv)P : Proc⋆(i)

Σ ⊢ v : Tv Σ ⊢ γ : Ch(Tv) |Tv| ≤ i
(out)

Σ ⊢ γ̄〈v〉 : Proc⋆(i)

Σ, x : Tv ⊢ P : Proc⋆(i) Σ ⊢ γ : Ch(Tv) |Tv| ≤ i
(input)

Σ ⊢ γ(x).P : Proc⋆(i)

Σ, x : Tv ⊢ P : Proc⋆(i) Σ ⊢ γ : Ch(Tv) |Tv| ≤ i
(!input)

Σ ⊢ !γ(x).P : Proc⋆(i)

Σ ⊢ P : Proc⋆(i) Σ ⊢ λ : Loc(j) j ≤ i
(go)

Σ ⊢ go λ.P : Proc⋆(i)

Σ ⊢ P : Proc⋆(i)
(goHome)

Σ ⊢ go 	 .P : ProcLocal(i)

Σ ⊢ p : Path⋆

(run)
Σ ⊢ runp : Proc⋆(i)

Σ ⊢ p : Path⋆ Σ ∪ Σχ ⊢ P : Proc⋆(i) |χ| ≤ i
(copy)

Σ ⊢ updatep(χ, χ).P : Proc⋆(i)

Σ ⊢ p : Path⋆ Σ ∪ Σχ ⊢ P : Proc⋆(i)

χ 6= x |χ| < i Σχ ⊢ V : TPS(j) j ≤ i
(paste)

Σ ⊢ updatep(χ, V ).P : Proc⋆(i)

Σ, x : ProcLocal(i) ⊢ P : ProcLocal(i)

x : ProcLocal(i) ⊢ V : TPS(j) j ≤ i
(pasteHere)

Σ ⊢ update.(�xi, V ).P : ProcLocal(i)

Table 12
Typing of processes

• |xDL| =|x| = ⊥;
• |y⋆@xj | = |�xj | = j.

In these rulesTPS(j) stands forTree or Pointer⋆(j) or Script(j).

The three typing rules for the updating command are necessary since we require:

• all processes to be allowed to copy all trees and to replace only data-less trees
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∅ ⊢ T : Tree ∅ ⊢ P : Proc(i)
(netIloc)

⊢ li[ T ‖ P ] : Net

∅ ⊢ T : Tree ∅ ⊢ P : Proc(j)
(netOloc)

⊢ li[ T ‖ P ] : Net

(net0)
⊢ 0 : Net

⊢ N : Net
(netν)

⊢ (νcTv)N : Net

⊢ N1 : Net ⊢ N2 : Net N (N1) ∩N (N2) = ∅
(net|)

⊢ N1 | N2 : Net

Table 13
Typing of networks

(rules (copy) and (paste));
• processes at the same security level of a leaf to be allowed tocopy the leaf (rule

(copy));
• processes at a higher security level than a leaf to be allowedto replace the leaf

with a data term of a security level not greater than the security level of the
process itself (rule (paste));

• a process script in a leaf to be able to replace itself with a data term of a security
level not greater than its own security level (rule (pasteHere)).

As a consequence a process can replace a non data-less tree only if all the leaves
of this tree contain data terms of security levels lower thanthe security level of the
process itself. For this purpose the process needs first to replace all the leaves con-
taining pointers and scripts by the empty tree and then to replace the so obtained
data-less tree.

Typing rules for networks are given in Table 13. For typing a location in a network
we have two typing rules: the initial rule(netIloc) and the ongoing rule(netOloc).
The first rule requires the process to have the same security level of the enclosing
location, while the second one allows a process of any security level. This reflects
the requirement that access and mobility rights of processes depend on their source
locations, as we will discuss in Section 4.

The functionN associates to a network the set of its location names:

N (0) = ∅ N (li[ T ‖ P ]) = {l} N (N1 | N2) = N (N1) ∪ N (N2).

It is used in rule(net|) to assure that each location name occurs at most once in a
typed network.

The system satisfies subject reduction:
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Theorem 3.1 (Subject reduction) Let⊢ N : Net andN → N
′, then⊢ N

′ : Net.

The proof is presented in Appendix B. It uses someGeneration and Substitution
lemmaswhich are also presented in Appendix B.

4 Safety properties

In the present section, using the subject reduction, we can show some relevant prop-
erties of typed initial networks. We say that a network isinitial when its locations
can be typed by means of the initial typing rules.

More meaningful than the subject reduction theorem are the following properties
of initial networks:5

P0 a channel in a process whose source location has levelh can communicate only
values whose security level is less than or equal toh;

P1 a process whose source location has levelh can migrate to a location of levelj
only if j ≤ h;

P2 a process whose source location has levelh can copy from the local tree only
data of levelj with j ≤ h;

P3 a process whose source location has levelh can modify in the local tree only data
of levelj with j < h, unless the process itself was generated by running a script
of security levelh in a tree at pathp, and in this case it can modify scripts which
are both of the security levelh and reachable by the pathp;

P4 a script of levelj which is a leaf of a tree in a location of leveli can be activated
only if j ≤ i.

In order to discuss these properties we need to formalise thenotion of “source”
location of a process. Roughly by “source” location of a process we mean the loca-
tion where the process was in the initial net or where the process was created by a
run command.

We use_ to denote the reflexive and transitive closure of→ and~ν to denote a
possibly empty sequence of channel restrictions. IfN is an initial network and
N _ ~ν(lh[ T || P |Q ] | N

′), then thesourcelocation of the processP in this
reduction is defined by induction on the reduction_ and by cases:

• if N ≡ ~ν(lh[ T || P | Q ] | N′), then the source location ofP is lh;
• if N _ ~ν(lh[ T || runp | Q′ ] | N

′) → ~ν(lh[ T || P | Q ] | N
′)

sincep(T ) p,lh,�xh,�x T, {{�R1//�x}, . . . , {�Rn//�x}} and R1 ≡ P | R
andQ ≡ R | R2 | . . . | Rn | Q′, then the source location ofP is lh;

5 Notice thatP0, P1, P2, P3 andP4 are network invariants in the sense of [3].
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• if N _ ~ν(lh[ T ′ || updatep(χ, V ).P ′ | Q′ ] | N
′) → ~ν(lh[ T || P | Q ] | N

′)
sincep(T ′) p,lh,χ,V T, {s1, . . . ,sn} andP ′s1 ≡ P | R andQ ≡ R | P ′s2 | . . .
|P ′sn | Q′, then the source location ofP is the source one ofupdatep(χ, V ).P ′

in the reduction without the last step;
• if N _ ~ν(lh[ T || cTv〈v〉 | cTv(z).P ′ | Q′ ] | N

′) → ~ν(lh[ T || P | Q ] | N
′)

andP ′{v//z} ≡ P | R andQ ≡ R | Q′, then the source location ofP is the
source location ofcTv(z).P ′ in the reduction without the last step;

• if N _ ~ν(lh[ T ‖ cTv〈v〉 | !cTv(z).P ′ | Q′ ] | N
′) → ~ν(lh[ T ‖ P | Q ] | N

′)
andP ′{v//z} ≡ P | R andQ ≡ !cTv(z).P ′ | R | Q′, then the source location of
P is the source location of!cTv(z).P ′ in the reduction without the last step;

• if N _ ~ν(lh[ T || go lh.P ′ | Q′ ] | N
′) → ~ν(lh[ T || P | Q ] | N

′) and
P ′ ≡ P | R andQ ≡ R | Q′, then the source location ofP is the source location
of go lh.P ′ in the reduction without the last step;

• if N _ ~ν(lh[T ‖ Q′ ] | mj [ T ′ ‖ go lh.P ′ | R ] | N′′) → ~ν(lh[ T ‖ P | Q ] | N′)
andP ′ ≡ P | R′ andQ ≡ R′ | Q′ andN

′ ≡ mj [ T ′ || R ] | N
′′, then the

source location ofP is the source location ofgo lh.P ′ in the reduction without
the last step;

• if N _ ~ν(lh[ T ′ || P | Q′ ] | N
′′) → ~ν(lh[ T || P | Q ] | N

′), then the
source location ofP is the source location ofP in the reduction without the last
step.

The first two cases are the basic cases, in which the processP takes the current
location as source location: in the first one the network is initial, in the second
one the processP is generated by the last reduction step. In the last case the re-
duction does not modify the processP , which preserves its source location. In all
other cases an action prefixing the processP (possibly in parallel with other pro-
cesses and/or modulo the substitution of a value for a variable) is consumed and the
source location ofP is the source location of the process starting with that action
in the reduction without the last step.

We can then formalise the above properties as follows.

Proposition 4.1 If N is an initial network, andN _ ~ν(li[ T || P | Q ] | N′), and
h is the security level of the source location ofP , then:

P0 P ≡ c̄Tv〈v〉 implies|Tv| ≤ h;
P1 P ≡ go mj .P ′ impliesj ≤ h;
P2 P ≡ updatep(χ, χ).P ′ implies|χ| ≤ h;
P3 P ≡ updatep(χ, V ).P ′ implies either|χ| < h or χ = �xh and P has been

generated by activating a script in a tree at pathp;
P4 P ≡ runp implies that the execution ofP can only activate scripts at security

leveli.

PropertyP4 is an immediate consequence of the reduction rule (run). Theremain-
ing properties follow easily observing that each process has the security level of its
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source location: see Appendix C for the proof.

Proposition 4.2 If N is an initial network, andN _ ~ν(li[ T || P | Q ] | N′), and
h is the security level of the source location ofP , then⊢ P : Proc(h).

5 Examples

To simplify the following examples we will consider naturalnumbers with their
order as security levels.

5.1 Insensitivity to higher level values

The security policy enforced by our typing system should notbe confused with non-
interference. A high level process can easily declassify information of its security
level to lower levels. However in the absence of high level processes, lower level
processes are insensitive even to the existence of higher level data.

Consider the following networks

N1 = lh[ T || P ]

and
N2 = lh[ T || P ] | mj [ T ′ || 0 ]

whereh < j.

Then the following property holds

Proposition 5.1 For eachN such thatN1 _ N we haveN2 _ N | mj[ T ′ || 0 ].
Conversely ifN2 _ N

′, thenN
′ = N | mj[ T ′ || 0 ] andN1 _ N.

Proof The only transition that could violate the theorem would involve ago mj

action. This action cannot occur inP by propertyP1 of Proposition 4.1. Moreover
by propertyP4 of Proposition 4.1 no script contained inT with occurrences of
go mj could be activated.

Another similar result is the following. LetN be a network all whose locations
have security level less than or equal toh. Let V be a value of security levelj > h.
Then

Proposition 5.2 Under the above condition we haveN _ N
′ if and only if N[∅/V ]

_ N
′[∅/V ], whereN[∅/V ] is the network obtained by replacing inN some occur-

rences ofV in the leaves with the empty tree.
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Proof No pattern of security levelj can be contained in a process of level at mosth
by propertiesP2 andP3 of Proposition 4.1, nor in a script activated inside a location
of level at mosth by propertyP4 of Proposition 4.1.

5.2 Remote Voting System

The next example models a remote voting for election of a leader from a given
list of candidates, inspired by [13]. In this example, we allow tree nodes to contain
integers, in order to represent the counters of votes. A pattern too can be a variable
of typeInteger and of a fixed security level.

The network consists of an authority location, a cabin location and a fixed number
of voter locations. The authority location has level 3, while the cabin and all the
voter locations have level 1.

The cabin location

cabin1[voterList[ . . . | voterId[ �P ]| . . .] | candList[ T ] || 0 ],

whereP = (νcPath)(cut.(�x1).go voter1 .̄bCh(Path)〈cPath〉 | d̄Ch(Path)〈cPath〉) and
T = . . . | name[ 02 ] | . . . ,

contains as data the voter list and the candidate list with counters of votes.

The voter list has for each voter an edge labelled by the voteridentifier pointing
to the scripted process�P of security level1. This script contains two processes.
One process first destroys itself and then goes to the voter location, where it com-
municates a secret channel which the voter will use to express his vote. The other
process simply communicates the same secret channel via thechanneld.

The candidate list has for each candidate an edge labelled bythe candidate name
pointing to an integer (the vote counter, initially0) of security level2. This assures
that thevoter can copy the subtree with candidate list and see candidate names,
but by propertyP2 of Proposition 4.1 he cannot see and use already memorised
votes to make his decision.

A voter location contains two processes: the first process goes to the cabin and
activates the processP and the second one waits to receive a channel along which
he will communicate his vote, after going to the cabin and making a choice (based
on the candidate list):

voter1[ . . . || go cabin1.runvoterList/voterId |

bCh(Path)(y).go cabin1.Choice(z).ȳ〈z〉 | . . .].
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The process in the authority location starts the elections by going to the cabin where
he repeatedly collects one private channel via the channeld, receives along this
private channel one candidate name and increases by1 the corresponding candidate
counter:

authority3[ Start[�Q] | . . . || runStart | . . . ],

Q = go cabin1.!d(v).v(w).updatecandVoteList/w(t2, t + 1).

Similarly the authority can end the election going to the cabin and erasing the voter
list.

Notice that a malicious voter cannot vote more than once, since the processP de-
stroys itself, and if he would send the identifier of another voter, the other voter
would receive the secret channel to vote. Moreover by property P3 of Proposi-
tion 4.1 a malicious voter cannot change the vote counters inthe cabin location,
since the vote counters have security level2, while the voters have security level1.

A malicious voter can send to the location of another voter a process which votes
in place of the voter itself. We do not know how to avoid this kind of attacks, which
model a voter stealing the position of another voter during the voting act.

The present encoding is simpler than the encoding of the sameexample given in [8].

5.3 Distributed Library

Let us consider a network consisting of a distributed library (main library and
libraries of specific fields), readers, staff members and a head. The main library
(Library) has data subtrees for management and catalogue. The librarycatalogue
contains in its leaves pointers to full books which are distributed in leaves of spe-
cific field libraries.

Library1 [Management [ WorkingHours[HourP lan2] | . . . ] |

Catalog [ . . . | Pierce[Types[Pierce/Types@LICS1] |

Category[Pierce/Category@LICS1] . . .] |

| Cohn[Universal[Cohn/Universal@ALGEBRA1] | . . .]

|| . . .],

LICS1[ . . . | Pierce [ Types [ Book.pdf1 ] | Category [ Book.pdf1] | . . . ] || . . . ],

ALGEBRA1 [ . . . | . . . Cohn [ Universal [ Book.pdf1 ] | . . . ] || . . . ].

For example, the reader
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Reader1[Book[Pierce[∅] | . . . ] || go Library1.copyCatalog/Pierce/Types(y@x1).

go x.copyPierce/Types(z
1).go Reader1.pasteBook/Pierce(Types[z]) ]

goes to the library, reads in the catalogue the location of the book, goes to the
sublibrary, copies the book and pastes the copy in the tree ofhis location.

The typing system introduced in the current paper assures that the reader can copy
content of any book, but he cannot modify it (propertyP3 of Proposition 4.1).
Besides, he cannot seeHourP lan in the management leaf, because he is of less
security level than theHourP lan (propertyP2 of Proposition 4.1).

The staff is given security level2, such that they can update catalogue, modify the
book contents, but only copy theHourP lan.

The head, being of security level3, is the only one that can update all the data at
theLibrary. He can, for example, change working hours.

6 Conclusion

We discussed a typed version of the Xdπ calculus in which the access to resources
and the mobility of processes must respect a security policy. Since we used a typed
pattern matching which includes a dynamic type checking we will investigate both
type checking and type inference for this calculus, taking into account [7].

We plan to study modifications of our type system which allow to prevent illegal
flow of information [18], also in presence of dynamic flow policies [22].

We want to study the impact of our typing system in proving equivalence of net-
works, using different notions of behavioural equivalence. We plan to start from
the untyped equivalencies defined in [14] and [9], and to refine them using types as
done for example in [17] and [12].
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A Structural Congruence

The structural congruence for the Xdπ calculus is the least equivalence relation on
networks that satisfies alpha-conversion, the commutativemonoid properties for
(∅, | ) on trees, for(0, | ) on processes and for(0, | ) on networks, and the axioms
of Table A.1. As usualfn is the set of free channel names occurring in a process or
in a tree or in a network.

(trees) V ≡ V ′ ⇒ a[V ] ≡ a[V ′]

(scripts) P ≡ P ′ ⇒ �P ≡ �P ′

(processes)(νcTv)0 ≡ 0

v ≡ v′ ⇒ c̄Tv〈v〉 ≡ c̄Tv〈v′〉

(νcTv)(νdTv′

)P ≡ (νdTv′

)(νcTv)P

cTv 6∈ fn(P ) ⇒ P | (νcTv)Q ≡ (νcTv)(P | Q)

V ≡ V ′ ∧ P ≡ P ′ ⇒ updatep(χ, V ).P ≡ updatep(χ, V ′).P ′

(networks) (νcTv)0 ≡ 0

(νcTv)(νdTv′

)N ≡ (νdTv′

)(νcTv)N

cTv 6∈ fn(N) ⇒ N | (νcTv)N′ ≡ (νcTv)(N | N′)

T ≡ T ′ ∧ P ≡ P ′ ⇒ lh[ T ‖ P ] ≡ lh[ T ′ ‖ P ′ ]

cTv 6∈ fn(T ) ⇒ lh[ T ‖ (νcTv)P ] ≡ (νcTv)lh[ T ‖ P ]

Table A.1
Structural congruence

B Subject Reduction

We prove that the typing of networks is preserved by structural congruence and by
reduction. These proofs use generation lemmas which allow to reverse the typing
rules. Notice that for networks we need to distinguish initial and ongoing typing
rules.

We useτ to range over all types of Table 9.

Lemma B.1 (Generation lemma for variables, channels, locations and paths)

(1) Σ ⊢ x : τ ⇒ x : τ ∈ Σ.
(2) Σ ⊢ cTv : τ ⇒ τ = Ch(Tv).
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(3) Σ ⊢ li : τ ⇒ τ = Loc(i).
(4) Σ ⊢ p : τ andp is a local path⇒ τ = PathLocal.
(5) Σ ⊢ p : τ andp is not a local path⇒ τ = Path⋆.

Lemma B.2 (Generation lemma for scripts, pointers and trees)

(1) Σ ⊢ �Π : τ ⇒ τ = Script(i) andΣ ⊢ Π : Proc⋆(i).
(2) Σ ⊢ p@λ : τ ⇒ τ = Pointer⋆(i) andΣ ⊢ λ : Loc(i) andΣ ⊢ p : Path⋆.
(3) Σ ⊢ ∅ : τ ⇒ eitherτ = DLTree or τ = Tree⋆.
(4) Σ ⊢ T1 | T2 : τ ⇒ either τ = DLTree and Σ ⊢ T1 : DLTree and

Σ ⊢ T2 : DLTree or τ = Tree⋆ andΣ ⊢ T1 : Tree⋆ andΣ ⊢ T2 : Tree⋆.
(5) Σ ⊢ a[T ] : τ ⇒ eitherτ = DLTree andΣ ⊢ T : DLTree or τ = Tree⋆

andΣ ⊢ T : Tree⋆.
(6) Σ ⊢ a[p@λ] : τ ⇒ τ = Tree⋆ andΣ ⊢ p@λ : Pointer⋆(i).
(7) Σ ⊢ a[�Π] : τ ⇒ τ = Tree⋆ andΣ ⊢ �Π : Script(i).

Lemma B.3 (Generation lemma for processes)

(1) Σ ⊢ 0 : τ ⇒ τ = Proc⋆(i).
(2) Σ ⊢ P1 | P2 : τ ⇒ τ = Proc⋆(i) andΣ ⊢ P1 : Proc⋆(i) andΣ ⊢ P2 :

Proc⋆(i).
(3) Σ ⊢ (νcTv)P : τ ⇒ τ = Proc⋆(i) andΣ ⊢ P : Proc⋆(i) and |Tv| ≤ i.
(4) Σ ⊢ γ̄〈v〉 : τ ⇒ τ = Proc⋆(i) andΣ ⊢ v : Tv andΣ ⊢ γ : ch(Tv) and

|Tv| ≤ i.
(5) Σ ⊢ γ(x).P : τ ⇒ τ = Proc⋆(i) and Σ, x : Tv ⊢ P : Proc⋆(i) and

Σ ⊢ γ : ch(Tv) and |Tv| ≤ i.
(6) Σ ⊢ !γ(x).P : τ ⇒ τ = Proc⋆(i) and Σ, x : Tv ⊢ P : Proc⋆(i) and

Σ ⊢ γ : ch(Tv) and |Tv| ≤ i.
(7) Σ ⊢ goλ.P : τ ⇒ τ = Proc⋆(i) and ⊢ λ : Loc(j) and j ≤ i and

Σ ⊢ P : Proc⋆(i).
(8) Σ ⊢ go 	 .P : τ ⇒ τ = ProcLocal(i) andΣ ⊢ P : Proc⋆(i).
(9) Σ ⊢ runp : τ ⇒ τ = Proc⋆(i) andΣ ⊢ p : Path⋆.

(10) Σ ⊢ updatep(χ, χ).P : τ ⇒ τ = Proc⋆(i) and Σ ⊢ p : Path⋆ and
Σ ∪ Σχ ⊢ P : Proc⋆(i) and|χ| ≤ i.

(11) Σ ⊢ updatep(χ, V ).P : τ andχ 6= V, x and (p 6= . or χ 6= �xj for all j)
⇒ τ = Proc⋆(i) and Σ ⊢ p : Path⋆ and Σ ∪ Σχ ⊢ P : Proc⋆(i) and
|χ| < i andΣχ ⊢ V : TPS(j) andj ≤ i.

(12) Σ ⊢ update.(�xi, V ).P : τ ⇒ τ = ProcLocal(i) andΣ, x : ProcLocal(i) ⊢ P :
ProcLocal(i) andx : ProcLocal(i) ⊢ V : TPS(j) andj ≤ i.

Lemma B.4 (Generation lemma for networks) (1) ⊢ 0 : τ ⇒ τ = Net.
(2) ⊢ N1 | N2 : τ ⇒ τ = Net and⊢ N1 : Net and⊢ N2 : Net andN (N1) ∩

N (N2) = ∅.
(3) ⊢ li[ T ‖ P ] : τ ⇒ τ = Net and∅ ⊢ T : Tree and

• either(initial) ∅ ⊢ P : Proc(i),
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• or (ongoing) ∅ ⊢ P : Proc(j).
(4) ⊢ (νcTv)N : τ ⇒ τ = Net and⊢ N : Net.

The following two propositions point out some properties ofour type system and
can be easily verified by induction of deductions.

By replacing in an arbitrary process “	” by a location name (whose security level
agrees with that of the process) and “.” by a path not containing “.” we get a process
typeable with a process type.

Proposition B.5 If Σ ⊢ P : Proc⋆(i) andΣ ⊢ p : Path andj ≤ i, thenΣ ⊢
P{lj// 	, p//.} : Proc(i).

A process which has a given security level has also all biggersecurity levels. The
proof follows easily observing that the nil process can be typed with an arbitrary
security level and that all typing rules only check that the security level of the
current process is bigger than other security levels.

Proposition B.6 Σ ⊢ P : Proc⋆(i) andi ≤ j implyΣ ⊢ P : Proc⋆(j).

As usual the “core” of the subject reduction proofs are substitution lemmas.

Lemma B.7 (Substitution lemma for trees, pointers, scripts and processes)

(1) If Σ, x : Tv ⊢ V : TPS(i) andΣ ⊢ v : Tv, thenΣ ⊢ V {v//x} : TPS(i).
(2) If Σ, x : ProcLocal(j) ⊢ V : TPS(i) andΣ ⊢ P : ProcLocal(j), then

Σ ⊢ V {�P//�x} : TPS(i).
(3) If Σ, x : Tv ⊢ P : Proc⋆(i) andΣ ⊢ v : Tv, thenΣ ⊢ P{v//x} : Proc⋆(i).
(4) If Σ, x : ProcLocal(j) ⊢ P : Proc⋆(i) andΣ ⊢ Q : ProcLocal(j), then

Σ ⊢ P{�Q//�x} : Proc⋆(i).
(5) If Σ ⊢ updatep(χ, V ).P : Proc(i) and Σ ⊢ T : Tree and T  p,li,χ,V

T ′, Θ, thenΣ ⊢ T ′ : Tree.

Proof The proofs of the first four points are standard by induction on V andP ,
respectively.

For (5) we need to consider three cases according to the shapeof χ. We give the
proof for χ = y⋆@xj , the remaining cases being similar. LetΘ = {s1, . . . , sn}
and1 ≤ k ≤ n. By constructionsk = {mj//x, p′k//y}, for somemj andp′k such
that ⊢ p′k : Path⋆. By Lemma B.3(10) or (11)Σ, x : Loc(j), y : Path⋆ ⊢ V :
TPS(h) with h ≤ i. By Point (1)Σ ⊢ V sk : TPS(h). By constructionT ′

is obtained fromT by replacing top-down the nodesmj@p′k by V sk, so we can
easily check thatΣ ⊢ T ′ : Tree using the typing rules for trees.

Theorem 3.1 (Subject reduction) Let⊢ N : Net andN → N
′, then⊢ N

′ : Net.

Proof We only consider some interesting cases.
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Case N ≡ lh[ T1 || go mj .P | Q ] | mj [ T2 || R ] and the reduction is by rule (go):

lh[ T1 || go mj .P | Q ] | mj[ T2 || R ] → lh[ T1 || Q ] | mj[ T2 || P | R ].

From⊢ N : Net, by Lemma B.4(2) it follows that⊢ N1 ≡ lh[ T1 || go mj .P | Q ] :
Net and⊢ N2 ≡ mj [ T2 || R ] : Net. FromN1 : Net, by Lemma B.4(3) we get
∅ ⊢ T1 : Tree and

• either (initial)∅ ⊢ go mj .P | Q : Proc(h);
• or (ongoing)∅ ⊢ go mj .P | Q : Proc(i).

We consider the ongoing case, the proof for the initial case being the same. In
this case by Lemma B.3(2) we have that∅ ⊢ go mj .P : Proc(i) and then by
Lemma B.3(7)∅ ⊢ P : Proc(i). We conclude by applying the ongoing typing
rules taking into account Proposition B.6.

Case N ≡ lh[ T || runp | Q] and the reduction is by rule (run):

lh[ T || runp | Q] → lh[ T || P1 | . . . | Pn | Q]

wherep(T )  p,lh,�xh,�x T, {{�P1//�x}, . . . , {�Pn//�x}}. From⊢ N : Net, by
Lemma B.4(3)∅ ⊢ T : Tree. By constructionPk = P ′

k{l
h// 	, p//.}, where�P ′

k

matches�xh and therefore∅ ⊢ P ′

k : ProcLocal(h) and then∅ ⊢ Pk : Proc(h)
by Proposition B.5. We conclude by applying the ongoing typing rules taking into
account Proposition B.6.

Case N ≡ lh[ T || updatep(χ, V ).P | Q] and the reduction is by rule (update):

lh[ T || updatep(χ, V ).P | Q] → lh[ T ′ || Ps1 | . . . | Psn | Q]

where p(T )  p,lh,χ,V T ′, {s1, . . . ,sn}. From ⊢ N : Net, by Lemma B.4(3)
∅ ⊢ T : Tree and

• either (initial)∅ ⊢ updatep(χ, V ).P | Q : Proc(h),
• or (ongoing)∅ ⊢ updatep(χ, V ).P | Q : Proc(i).

We consider the ongoing case withχ = y⋆@xj , the proof for the other cases being
similar. In this case by Lemma B.7(5)∅ ⊢ T ′ : Tree. By Lemma B.3(2) we
have that∅ ⊢ updatep(χ, V ).P : Proc(i) and then by Lemma B.3(10) or (11)
x : Loc(j), y : Path⋆ ⊢ P : Proc(i). By constructionsk = {mj/x, p′k/y}, for
somemj andp′k such that ⊢ p′k : Path⋆. By Lemma B.7(3) this gives∅ ⊢ Psk :
Proc(i). We conclude by applying the ongoing typing rules for processes.
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C Safety proof

Proposition 4.2 If N is an initial network, andN _ ~ν(li[ T || P | Q ] | N′), and
h is the security level of the source location ofP , then⊢ P : Proc(h).

Proof The proof is by induction on_ and by cases on the definition of source
location using Generation and Substitution Lemmas.

Case N ≡ ~ν(li[ T || P | Q ] | N
′). In this casei = h and⊢ N : Net using the

initial typing rules. By Lemma B.4(4), (2), (3)⊢ P | Q : Proc(h) which implies
⊢ P : Proc(h) by Lemma B.3(2).

Case N _ ~ν(lh[ T || runp | Q′ ] | N
′) → ~ν(lh[ T || P | Q ] | N

′) since
p(T )  p,lh,�xh,�x T, {{�R1//�x}, . . . , {�Rn//�x}} andR1 ≡ P | R and Q ≡
R | R2 | . . . | Rn | Q′. Thenp(T ) p,lh,�xh,�x T, {{�R1//�x}, . . . , {�Rn//�x}}
implies match(�R′

1,�xh) = {�R1//�x} andR1 ≡ R′

1{l
h// 	, p1//.} for some

R′

1, p1 such that⊢ R′

1 : ProcLocal(h) andp1 is a path without occurrences of
“ .”. Then⊢ p1 : Path which together with⊢ R′

1 : ProcLocal(h) imply ⊢ R1 :
Proc(h) by Proposition B.5. So we conclude⊢ P : Proc(h) by Lemma B.3(2).

Case N _ ~ν(li[ T ′ || updatep(y
⋆@xj , V ).P ′ | Q′ ] | N′) → ~ν(li[ T || P | Q ] | N′)

sincep(T ′) p,li,y⋆@xj ,V T, {s1, . . . ,sn} andP ′s1 ≡ P | R andQ ≡ R | P ′s2 | . . .
|P ′sn | Q′. By induction we have that∅ ⊢ updatep(χ, V ).P : Proc(h) and then
by Lemma B.3(10) or (11)x : Loc(j), y : Path⋆ ⊢ P : Proc(h). By construction
sk = {mj//x, p′k//y}, for somemj , p′k such that ⊢ p′k : Path⋆. By Lemma B.7(1)
this gives∅ ⊢ Psk : Proc(h).

The proofs for the remaining cases are similar to the proof ofthe last case.
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