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Abstract

We describe a type system for thexcalculus [9]. An Xdw-network is a network of loca-
tions, where each location consists of both a data tree (wtvatains scripts and pointers
to nodes in trees at different locations) and a process, fmtatfing process interaction,
process migration and interaction between processes dad@ar type system is based
on types for locations, data and processes, expressingtgdeuels. A tree can store data
of different security level, independently from the setyukevel of the enclosing location.
The access and mobility rights of a process depend on theitydevel of the “source” lo-
cation of the process itself, i.e. of the location where treecess was in the initial network
or where the process was created by the activation of a s@itigttype system enjoys type
preservation under reduction (subject reduction). In egnence of subject reduction we
prove the following security properties. In a well-typeda<network, a proces® whose
source location is of level can copy data of security level at mdstand update data of
security level less thah. Moreover, the proces® can only communicate data and go to
locations of security level equal or less thian

1 Introduction

Information systems have evolved into open distributetesys that include decen-
tralised peer-to-peer networks. An essential role of syskesns is management of
data, which appear to be semi-structured and distributath-Bharing applications
require to integrate mobile processes and semi-structiatd

I This work was partly funded by the project MMIT 1438 of PSN R FP6-2004-510996
Coordination Action TYPES, by the project GLORA 144029 of EFSand by the ANR
project “ParSec” ANR-06-SETI-010-02.
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As information networks become more open and dynamic, tleel ier security
and privacy grows stronger. Systems must be able to exchdatgeand processes
while preserving security. One solution is to ground thentyged models. In such
models, a well-typed network must reduce only to well-typetworks, assuring
access and movement rights.

In this paper we propose a type system for thirXalculus [9]. An XiIr-network is

a network of locations, where each location consists of batata tree and of a run-
ning process, for modelling process interaction, proceiggation and interaction
between processes and data. The leaves of data trees cpoitaiers to nodes in
trees of different locations, and scripts, i.e. static psses, which can be activated.
In turn, scripts, pointers and trees can occur inside scapt running processes.

In addition to the original syntax, we decorate location rarwith security levels
taken from a partially ordered set of security levels withoétdm element. There-
fore a location in a well-formed network will be of the shape:

TP

where! is a location namel, is its security levelT’ is a tree of data and® is
a running process. Pointers, scripts and running procemgeassigned security
levels by means of a typing system.

The access and mobility rights of a process depend on theise@vel of the
“source” location of the process itself, i.e. of the locatighere the process was in
the initial network or where the process was created by thigadion of a script.
Hence in a well typed network each process has the secuvigy ¢ its source
location. Security levels of scripts and pointers in trédesyever, don’'t depend on
the level of the enclosing location.

Processes migrate thanks to the command. Theggo command can only move
a process from one location to a location of security leveldoor equal to the
level of the process itself. Processes can also commurdeddevia channels. The
security levels of the communicated data will never excéedsecurity level of the
process.

Running processes can activate scripts in the local treenéycommandrun,,
wherep is a path expression which identifies a set of nodes. In atyp#d network
a scripted process can be activated only if its securityl isve most the one of the
enclosing location.

Running processes can also modify the local tree and usefibveniation in that
tree by means of the commangdate. All trees can be copied by all processes,
but only trees containing no data can be deleted and pos®iplsced. A process

of security levelh can only read data of security level at mastand modify data

of security level less than. The only exception being that processes generated



by activating scripts can modify scripts of the same segleiel and in the same
positions in trees.

Related WorkThe Xdr calculus [9,14] models both localised, mobile processes
and distributed, dynamic, semi-structured data, allowogepresent data-sharing
applications. It can be seen as an extension of the Active Xiddel [1].

The locations and the processes afrXare essentially those afr [10] enriched
with capabilities for data manipulation. The only diffecenis that a process ir

can migrate to a location independently from the existeri¢dkeolocation itself in
the current network, while in X%r such an existence is a necessary condition for
migration. The data trees ofdt are related to those in [2,4] and the treatment of
shared distributed data is inspired by [19]. We refer to [&] further references
related to the calculus design.

Many type systems controlling the use of resources and tHsliyoof processes
have been proposed for tlie calculus [10] and for related calculi [16,6,5]. The
types discussed here are essentially inspired by the $etypes checking access
rights for-calculus of [11]. For simplicity we do not distinguish beten reading
and mobility rights, but our type system can be extendedk® tiaem into account.
Another simplification is to have elements of a partiallyenet set with a bottom
element as security levels instead of elements of a latscé ia usual [20], this
choice being justified by the fact that we do not use meets@ind.jWe formalise
the network properties assured by our type system using dtiens of network
invariant and initial network as in [3].

The present paper is an expanded and revised version ohfBnain differences
being:

e the data in trees can be of different security levels and dd@epend on the secu-
rity level of the enclosing location, while in [8] each lowat was only allowed
to contain data of at most the security level of the locattsalf;

e the communication, copying, updating and mobility rightgmcesses only de-
pend on their source location, while in [8] they were depegdin the enclosing
location, but for the possibility of processes to move backheir source loca-
tions;

¢ the capability of modifying data requires a higher secuetyel than the capabil-
ity of reading data, while in [8] there was no difference;

e there is a special type falata-lesgrees, i.e. trees whose leaves contain no data,
because only data-less trees can be deleted or replacgdcéhde considered
garbage).

Outline of the papeSection 2 and Section 3 introduce the syntax, the reduction
rules, and the typing rules of typediX, exemplified by the examples in Section 5.
The properties of the calculus are discussed in Section 4paoved in Appen-
dices B and C. Section 6 contains a few final remarks.



2 Syntax and Operational Semantics

The Xdr calculus we consider here is essentially the calculus dioiced in [9],
with a few important differences.

The main difference between the originalZand the present one is the use of a
typed syntax. We decorate the location names with secavigl$ and the channel
names with value types. (An alternative approach coulddti@se decorations by
fixing an environment for locations and channels.)

More importantly, the syntax includes a typed matching fiomcinstead of an un-
typed one. Pattern matching needs to take types into acdawnrtler to have type
preservation under reduction. We will explain and motivi#iis choice at the end
of the section.

In order to simplify the syntax we only allow monadic insteafcdpolyadic com-
munication and we do not distinguish between public chan(which cannot be
restricted) and session channels (which must be restrintéte scripts)? These
features of the original X can be easily handled by our type system.

2.1 Syntax

Networks A network is a parallel composition|() of locations consisting of a
tree and a process, where processes at different locat@onshare communication
channels. In a well-formed network the locations have dhifié names. The syntax
of networks is given in Table 1. We ugemn to range over location names, and
h,i, j over security levels. The locatidf| T || P | is well-formed if both the tree

T and the procesB do not contain occurrences of free variables. Wedtsaange
over channel names afd to denote a value type as defined in Table 9. The binder
v is, as usual, the restriction operator.

Trees The data model is an unordered edge-labelled rooted tréel@ates con-
taining empty trees, scripts and pointers. The syntax ektre presented in Table 2,
usinga to denote an edge label.

A scriptis a static process embedded in a tree that can be activatagtncess
from the same location. We udé to range over processes and variables, and a
script is denoted byI1.

2 The distinction between public and session channels is iitapofor implementation
since otherwise one needs to alpha-convert the whole ds@ta location when a process,
restricting a channel name, migrates.



N:=0| N|N | "[T]| P]| (vc')N

Table 1
Syntax of networks

T:=10 empty rooted tree
| = tree variable
| T|T composition of trees, joining the roots
| a[T] edge labeled with subtreel’
| a[dI] edge labeled with scriptOIT

| a[p@)] edge labeled with pointerp@A

Table 2
Syntax of trees

pr=al /1.l T=]p/p

Table 3
Syntax of paths

A pathidentifies nodes in a tree. Table 3 gives the formation rufgmths, using
to range over paths. In a patly™denotes a step along an edgée // ” denotes any

node, “.” a step back, " the path from the root to the current nodea variable

and “/ " the path composition. We will say that a path iaal pathif it contains
wn 3

We use) to range over variables and location names super-scripteseburity
levels. Apointerp@A refers to the set of nodes identified by the paih the tree
at locationA\.

Processes The processes that we are concerned with are essentialtalculus
processes [10], where the local communication modelled-bglculus processes
[15], [21] is extended with migration between locationsrfenandgo). There are
two more commands for local communication between proseasd data: one

3 The path syntax allows also meaningless paths, like./ .”: this could be clearly
avoided either by typing or by refining the syntax.



P = the nil process

| P|P composition of processes

| (ve™)P declare new channel nametransmitting values of typ&'v
| A (v) output valuev on a channel

| v(z).P input parametrised by a variable

| y(z).P replication of an input process

| go AP migrate to locatior\, continue as”

| go O.P migrate to the source location, continuefas

| run, run the processes identified by the path expresgion

I

update,(x,V).P update command

Table 4
Syntax of processes

voe=c® | T |apP | I" |p

Table 5
Syntax of values

=T T x 7
X Phle | 027 | yr@2

Viu= T | OP | p@A

Table 6
Syntax of patterns and data terms

for updating (copy, paste, cut, etc.) the data trigeifte) and the other one that
activates the execution of scripts that are embedded ihdata tree fun). We use

P, @, R to range over processes, apndo range over channel names (decorated by
value types) and variables. The syntax of processes is givEable 4.

A valueis either a channel name super-scripted with a value typegaa script of
a fixed security level, a location name super-scripted wibhaurity level or a path.
Usingw to range over values, the syntax of values is given in Table 5.

The argument ofo is a location name (super-scripted with a security levely or



variable, or the symbol®”, which can only occur in scripts to denote the location
where the script will be activated.

The two arguments of the update command are respectiyeytarny and adata
termV, whose syntax is given in Table 6. A pattern is eithelada-lesgree vari-
able, or a tree variable, or a script pattern, or a pointetepat In a pointer pattern

j is a security level and € {Local, ¢} * indicates whethey stands for a local path
or for a path without occurrences of ‘Data terms can be trees, scripts or pointers.
The need to distinguish generic trees from data-less tthasi¢ trees whose leaves
are empty) arises from the facts that trees themselves doavetsecurity level. In
order for a process to delete or replace a tree, it has to hanvmigsion to delete
all the data contained in the tree first. Then any processraégss of its security
level, can delete or replace a data-less trees.

In update, (x, V).P the variables ofy can occur both i/ and in P and they are
bound. For this reason we allow variable occurrences irsfregipts, pointers and
processes.

2.2 Reduction rules

The reduction relation describes three forms of interastio

e processes can communicate with each other within a locétides (com) and
(com!));

e processes can move between locations (rules (stay) and (go)

e process can interact with the local data (rules (update)iamg).

The reduction relation is the least relation on networksolhs closed with respect
to structural congruence, reduction rules given in Tabled @duction contexts,
given by

Cu=— | C|N| (vc™)C.

The standard definition of structural congruence is preskem Appendix A.

The rules, (com) and (com!) are the communication rules fiteemr-calculus [15,21].
Processes can communicate only if they are in the samedocati

There are two rules for migration. Rule (go) describes migrato a distinct loca-
tion. The other rule, (stay), describes staying at the lonavhere you are.

4 Here and in the following we useto denote the empty string, so we get eithet“* @z’
or y@ax’.



(com) [T (v) | c™(2).P| Q] = 1"[T || P{v/z} | Q]

(com!) [T || e (v) 1T (2).P | Q] — I"[ T || 1e"(2).P | P{v/2} | Q]
(stay) I"[T | gol".P[Q]—=I"T| P|Q]

@) M[Tillgom/.P|Q]m [T || R] = 1"[TL ]| Q]| m/ [Ty P|R]

p(T) ~pnopn e T, ({OPL/Oz}, - {0F, /Ox}}

(run) - ;
PIT [ xuny [ Q] = [T PL| ... [Pr]Q]
p(T) ko V Tlv {Slv s 7Sn}
(update)h —
I"[T || update,(x,V).P | Q] = 1"[T"|| Ps1| ... | Ps, | Q]
Table 7

Reduction rules

(Empty tree)() ~¢ 0,0
(Script) OP ~ OP, 0

(Pointer)  p@I" ~¢ p@I", ()
T~ T, 0

(Node)
a[T] ~¢ a[T"],©
T~gT 01 S~p8 0,
(Par)
T‘S ~50 T"Sl, O, U0,
match(U,x) =s Vs -~y V' 0 0O=p, "X,V
(Up)

a[U] ~g a[V'], {s{l"/ O.p/ }}U®

Table 8
Definition of the update functior-

The commandrun, finds all the scripts in the local tree identified by the path
and activates their parallel execution, after replaciog and “.” by the enclosing
location and the path, respectively.

The update commantpdate, (x, V). P traversing top-down the local tree finds all
the data term%/; given by the patlp and pattern matches these data terms with
to obtain substitutions; when they exist. For each successful pattern matching it
replaces thé/, with Vs, and starts”s,, in parallel. Thematch function, in order

to check if a data term agrees with a pattern, requires not thd data term to
be, respectively, a data-less tree, a tree, a pointer onat,saccording to the four



shapes of the pattern (as in [9]), but it requires also the tains to satisfy the type
information given by the pattern. This means that:

(1) if the pattern iscP%, then the data term must be a data-less tree,

(2) if the pattern ise, then the data term must be a tree,

(3) if the pattern ig/* @z, then the data term must be a pointer in whighthe path
can be a local path only # = Local and(ii) the location must be of levgl

(4) if the pattern igJa2’, then the data term must be a script of leyel

These conditions are enforced by using the type assignsi@s of next section.
If the typed match is successful, the function returns atgulisn which replaces
the variables in the pattern by the corresponding data tekfase precisely the
definition of thematch function is:

(1) match
(2) match
(3) match
(4) match

T, 2Py ={T/xz}if & T :DLTree;
T,x)={T/x}if & T:Tree;

p@U, y*@x7) = {l’/z,p/y}if + p: Path;
OP,027) = {OP/0x}if = P: ProcLocal(j).

o~

In principle it would be desirable to avoid security level tofang at run time,
and rely on static typing only. However in this setting, st&yping would be too
restrictive. Values in a tree can have any security leval, @e cannot statically
know the security levels of values found using the path This is why dynamic
checking is necessary.

The reduction rules fotipdate andrun are based on the definition of the update
function~-, parametrised op, /", y, V, which applied to a tree or to a node label
returns a data term and a set of substitutions. Table 8 defweefsinction~. The
only interesting rule is (Up): it matches the selected (ulinked) U in p(T") with

x Obtaining a substitutios. Then it continues updating's obtaining the data
term V' and the set of substitutiort3. Finally it replaced/ with VV/ and adds to
O the substitutiors {I"/ ©,p/.}. This is useful whers = {{0P/Cz} for solving
the references to the enclosing location and to the curretiit. Ve convene that
occurrences of®” and “.” inside scripts inP are unaffected by this substitution.
Similarly if s = {T'/x} we convene that occurrences of™and “.” inside scripts

in T leaves are unaffected by this substitution, i.e. thayz}{l"/ ©,p/.} =
{T/x}foranyT, x, 1" p.

Some special forms of the update command have been alrefidgdlen [9]:
cut,(x).Q := update,(x,0).Q

copy,(x).Q = update, (X, x)-Q
paste (1).Q := update (z,7|T).Q wherex does not occur iff’, Q.

We will freely use these shorthands in the examples.



Ch(Tv)
Loc(i)
Script (i)
Path
PathLocal
Pointer(i)
Pointer Local(i)
DLTree
Tree
T'reeLocal
Proc(i)
ProcLocal(i)
Net

type of channels communicating values of type
type of locations at security level

type of scripts at security level

type of paths, not containing™

type of paths, possibly containing’*

type of pointers, not containing local paths, at securitglé
type of pointers, possibly containing local paths, at séclevel i
type of data-less trees

type of trees, not containing local paths

type of trees, possibly containing local paths

type of processes, not containing local paths, at secuavigi {

type of processes, possibly containing local paths, atrggdevel i

type of networks

wherei € £ andT'v ranges over value types defined by

Tv ::= Ch(Tv) | Loc(i) | Seript(i) | Path* | DLTree | Tree*

Table 9
Syntax of types

3 TypeAssignment

The main goals of our type system are to control communinaifovalues, access
to data and migration of processes between locations. Wefamhalise this in

Section 4.

We rely on a notion of security levels, and therefore we assarixed partial order
(L, <) of security levels with a botton . As already said in Section 2 we usg;, j
to range over elements df.

The syntax of types is the content of Table 9. Clearly the syg@respond to the
syntactic categories of the previous section. We use thix dufcal when we allow
local paths. This distinction is useful since a run or an s@dammand containing
a local path as index cannot be executed, but it can appede iascript.

We will use Path* as short forPath or PathLocal and similarly for the other
types. When more than ogeappears in a typing rule we always assume that all of

10



them are replaced either layor by Local.

We define thesecurity levebf a value type (notatiofi'v|) as follows:
o |Ch(Tv)| = |Tv|;

e |Loc(i)| = |Script(i)|= 1;

e |Path*| = |DLTree| = |Tree*| = L.

An environment: gives the association between:

e variables and value types
e variables and local process types

i.e. we define:
Yo=0|%,x:Tv]|%,z: ProcLocal(i).
We use the environment by means of a standard axiom:

(azxiom)
Yrx:obk x:0o

whereo ranges over value types and local process types.

Typing rules for channels, locations and scripts are as expected (recall thHt
ranges over processes and variables):

(chan) Y+ I": Loc(i) (toc)

Y F M Ch(Tw)
Y F II: Proc*(i)
Y F OIT: Seript(i)

(seript)
Typing rules for paths are given in Table 10: a local path always gets the type
PathLocal instead ofPath.

Thetyping rulefor pointers
Y F XN:tLoc(i) X+ p:Path”
Y p@A : Pointer™(i)

(pointer)

gives aPointer or a Pointer Local type according to the path type. The security
level of the pointer is the security level of the pointed lhaa.

Typing rulesfor trees are given in Table 11. According to these typing rules:
e atree is data-less, i.e. it has the typéTree, only if all its leaves are labelled
by 0;

e a tree that has at least one node labelled by a local pointebwityped by
TreeLocal.

11



(patha) — (path//)

¥ + a: Path ¥ F //: Path
—— (path..) (path.)
> F ..: Path ¥ F .: PathLocal
Y F p:Path® X p': Path* Y + p: Path
p - (path/) (pathL)
X+ p/p: Path ¥ F p: PathLocal

Table 10
Typing of paths

Y+ T:DLTree X+ T:Tree*
(treeEmpty) (treeDLa) (treea)
X b 0:DLTree S b a[T]: DLTree Y b a[T]: Tree*
X+ Ty :DLTree X F Ty:DLTree ¥+ O : Seript(i)
(treeDL|) (treeScript)
Y+ Ty |Ty: DLTree Y F a0 : Tree
Y FTy:Tree* X F Ty:Tree* Y p@A\ : Pointer*(i)
(treel) (treePointer)
Xk Ty|Ty: Tree* Y F alp@A\ : Tree*
¥ F T:DLTree X F T:Tree
(treeDL) (treeL)
X F T:Tree ¥ F T :TreeLocal

Table 11
Typing of trees

Typing rules for processes are given in Table 12. The rule (go) allows a process
whose source location is of security leveb migrate to a location at security level
jonlyif j <.

In the typing rules for update we assume that {2, z,y*@2z7, 027}, and we
define the environment, for associating types to the variables bound by the pat-
tern.

x: DLTreeif y = oPL,
x:Treeif y = x,

x: Loc(j),y : Path* if x = y*@a7,
x : ProcLocal(j) if x = a7

We define thesecurity levebf a pattern (notatiohy|) as expected:

12



_ (proco) Y F Py :Proc*(i) X b Py:Proc*(i) (proc)
¥k 0: Proc®(i) Y+ P | Py Proc™(i)
Y+ P:Proc*(i) |Tv|<i
Y F (vel)P: Proc*(i)
YFov:Tv Y F ~:Ch(Tv) |Tv|<i
Y F §(v) : Proc*(i)
Y,2:Tv = P:Proc*(i) Xt ~:Ch(Tv) |Tv|<i

(procv)

(out)

(input)
¥ F ~(x).P : Proc(i)
Y,x:Tv F P:Proc*(i) X b ~:Ch(Tv) |Tv|<i
(linput)
Y F Iy(x).P: Proc*(i)
Yk P:Proc*(i) ¥ F X:Loc(j) j<i
— (g0)
Y F go AP : Proc*(i)
Y F P: Proc*(i) Y F p: Path*
(goHome) (run)
Y+ go O.P: ProcLocal(i) Y F run, : Proc*(i)
Y F p:Path* YUX, = P:Proc (i) |x|<i
— (copy)
¥ b update,(x, x).P : Proc*(i)
Y F p:Path* YUX, - P: Proc(i)
x#z W <i I b ViTPSG) j<i
(paste)
¥ F update,(x,V).P : Proc*(i)
Y,z : ProcLocal(i) & P : ProcLocal(7)
x : ProcLocal(i) = V :TPS(j) j<i
(pasteHere)

¥ F update (Oz',V).P : ProcLocal (i)

Table 12
Typing of processes

o 2P| =[z] = L;
o |y @] = |Ox'| = j.

In these rule§"PS(j) stands fofl'ree or Pointer*(j) or Script(j).
The three typing rules for the updating command are necgssare we require:

e all processes to be allowed to copy all trees and to replabedata-less trees

13



O b T:Tree 0 F P:Proci)
[T P]: Net

O FT:Tree 0+ P:Proc(j)
- I'[T| P]: Net

= N : Net
—— (net0) (netv)
- 0: Net F (ve'")N : Net

F Ny:Net = Ng:Net N(Ny)NN(N3) =0
H N1|N2:N€t

(netlloc)

(netOloc)

(net)

Table 13
Typing of networks

(rules copy) and paste));

e processes at the same security level of a leaf to be allowedpyp the leaf (rule
(copy));

e processes at a higher security level than a leaf to be alldweeplace the leaf
with a data term of a security level not greater than the sgclavel of the
process itself (rulegaste));

e aprocess script in a leaf to be able to replace itself withta ttam of a security
level not greater than its own security level (rute{te H ere)).

As a consequence a process can replace a non data-lesslyréfeatirthe leaves
of this tree contain data terms of security levels lower ttiensecurity level of the
process itself. For this purpose the process needs firsptaae all the leaves con-
taining pointers and scripts by the empty tree and then tlacepthe so obtained
data-less tree.

Typing rulesfor networksare given in Table 13. For typing a location in a network
we have two typing rules: the initial ruleiet Iloc) and the ongoing rulénetOloc).
The first rule requires the process to have the same secevigy of the enclosing
location, while the second one allows a process of any dgdatviel. This reflects
the requirement that access and mobility rights of procedepend on their source
locations, as we will discuss in Section 4.

The function\ associates to a network the set of its location names:
NO)=0  NU[T|P])={l}  N(N;|Ny)=N(N;)UN(Ny).

It is used in rule(net|) to assure that each location name occurs at most once in a
typed network.

The system satisfies subject reduction:

14



Theorem 3.1 (Subject reduction) Let N : Net andN — N/, then N’ : Net.

The proof is presented in Appendix B. It uses soBeneration and Substitution
lemmaswhich are also presented in Appendix B.

4 Safety properties

In the present section, using the subject reduction, weltamw some relevant prop-
erties of typed initial networks. We say that a networkiigial when its locations
can be typed by means of the initial typing rules.

More meaningful than the subject reduction theorem are dhewing properties
of initial networks?

PO a channel in a process whose source location has kewah communicate only
values whose security level is less than or equal; to

P1 a process whose source location has Iéveln migrate to a location of levgl
onlyif j < h;

P2 a process whose source location has lévehn copy from the local tree only
data of levelj with j < h;

P3 aprocess whose source location has lévean modify in the local tree only data
of level j with j < h, unless the process itself was generated by running a script
of security level: in a tree at patlp, and in this case it can modify scripts which
are both of the security levéland reachable by the paph

P4 a script of levelj which is a leaf of a tree in a location of levietan be activated
only if 7 <.

In order to discuss these properties we need to formalisedtien of “source”
location of a process. Roughly by “source” location of a gsswe mean the loca-
tion where the process was in the initial net or where thegssavas created by a
run command.

We use— to denote the reflexive and transitive closure-efand to denote a
possibly empty sequence of channel restrictiondNIis an initial network and
N — 7" T || P |Q ]| N’), then thesourcelocation of the proces# in this
reduction is defined by induction on the reductienand by cases:

e if N=7("T| P|Q]|N),thenthe source location dfis (",
«if N = s("[ T || rum, | Q] | N) — s("[ T || P
sincep(T) ~pmpn 0 T, {{OR: /Ox}, ..., {OR,/Oz}} and R,
andQ = R| Ry | ... | R, | Q' thenthe source location &f is I";

N)

Q]|
=P | R

° Notice thatP0, P1, P2, P3 andP4 are network invariants in the sense of [3].
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o it N — (1" T' || update,(x.V).P' | Q'] |N') — #("[T || P| Q]| N)
sincep(1") ~, v T,{S1,...,S,}andP's; = P| RandQ = R | P's, | ...
|[P's,, | @', then the source location &t is the source one afpdate ,(x, V).P”’
in the reduction without the last step;

o it N— 5(I"[ T || &™) | ™(2).P' | Q]| N') = #(I"[ T || P| Q]| N
andP'{v/z} = P | Rand@ = R | @, then the source location d? is the
source location of”*(z). P’ in the reduction without the last step;

o if N — s(I"[ T || e™(v) | lc™(2).P" | Q"] | N') = Z(I"[ T || P | Q] | N')
andP'{v/z} = P | RandQ = !c"*(z).P' | R | @', then the source location of
P is the source location d€"(z). P’ in the reduction without the last step;

o if N - (" T ||gol"P |Q]|N)—=JI"T| P|Q]]|N)and
P'=P| Rand@ = R | @, then the source location éf is the source location
of go [". P’ in the reduction without the last step;

o if N— i(I"T|| Q]| m/[T" | gol".P"| RI|N") — (I"[T || P| Q] N
andP’ = P | Rand@Q = R | Q andN' = m/[ T" || R ] | N”, then the
source location of” is the source location gfo . P’ in the reduction without
the last step;

e if N - (" T || P|Q||N)—=DI"TI| P|Q]|N),then the
source location of is the source location a? in the reduction without the last
step.

The first two cases are the basic cases, in which the prdédakes the current
location as source location: in the first one the network i8al in the second
one the proces® is generated by the last reduction step. In the last casesthe r
duction does not modify the procesgs which preserves its source location. In all
other cases an action prefixing the procé&sgpossibly in parallel with other pro-
cesses and/or modulo the substitution of a value for a via)@consumed and the
source location of? is the source location of the process starting with thabacti
in the reduction without the last step.

We can then formalise the above properties as follows.

Proposition 4.1 If N is an initial network, andN — 7(I/[ T || P | Q ] | N'), and
h is the security level of the source locationffthen:

PO P = c™(v) implies|Tv| < I

Pl P = gom/.P implies; < k;

P2 P = update,(x, x).P" implies|x| < h;

P3 P = update,(x,V).P" implies either|y| < h or x = Oz and P has been
generated by activating a script in a tree at path

P4 P = run, implies that the execution @ can only activate scripts at security
levels.

PropertyP4 is an immediate consequence of the reduction rule (run).rémain-
ing properties follow easily observing that each processtha security level of its
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source location: see Appendix C for the proof.

Proposition 4.2 If N is an initial network, andN — 7(I'[ T || P | @ ] | N’), and
h is the security level of the source location®fthent- P : Proc(h).

5 Examples

To simplify the following examples we will consider naturaimbers with their
order as security levels.

5.1 Insensitivity to higher level values

The security policy enforced by our typing system shouldagtonfused with non-
interference. A high level process can easily declassiigrmation of its security
level to lower levels. However in the absence of high levelcpsses, lower level
processes are insensitive even to the existence of highedrdata.

Consider the following networks
Ny =0"[T | P]
and

Ny =0"[T || P][m/[T"]|0]
whereh < j.

Then the following property holds

Proposition 5.1 For eachN such thafN; — N we haveN, — N | m?[ T" || 0 ].
Conversely ifN, — N’, thenN’ = N | m?[ T" || 0] andN; — N.

Proof The only transition that could violate the theorem wouldoive ago m’
action. This action cannot occur A by propertyP1 of Proposition 4.1. Moreover
by propertyP4 of Proposition 4.1 no script contained i with occurrences of
go m’ could be activated.

Another similar result is the following. LelN be a network all whose locations
have security level less than or equahtd_et V' be a value of security levgl > h.
Then

Proposition 5.2 Under the above condition we had®— N’ if and only if N[()/V]
— N'[()/V], whereN[(}/V] is the network obtained by replacing¥ some occur-
rences ofl” in the leaves with the empty tree.
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Proof No pattern of security level can be contained in a process of level at ntost
by propertie$?2 andP3 of Proposition 4.1, nor in a script activated inside a lomati
of level at most by propertyP4 of Proposition 4.1.

5.2 Remote Voting System

The next example models a remote voting for election of ade&dm a given
list of candidates, inspired by [13]. In this example, wewaltree nodes to contain
integers, in order to represent the counters of votes. Aepatbo can be a variable
of type Integer and of a fixed security level.

The network consists of an authority location, a cabin lleceand a fixed number
of voter locations. The authority location has level 3, whihe cabin and all the
voter locations have level 1.

The cabin location
cabin'[voterList| ...| voterId[ P ]| ...] | candList[T] || 0],

whereP = (vcP™™)(cut (Oz').go voter!.pCMPath) (cPathy | qCh(Path) (cPathy) and
T=...|name[0*]] ...,

contains as data the voter list and the candidate list witimtars of votes.

The voter list has for each voter an edge labelled by the udetifier pointing
to the scripted procedsP of security levell. This script contains two processes.
One process first destroys itself and then goes to the vatatitm, where it com-
municates a secret channel which the voter will use to eggresvote. The other
process simply communicates the same secret channel vchémaeld.

The candidate list has for each candidate an edge labell¢ebyandidate name
pointing to an integer (the vote counter, initially of security leveR. This assures
that thevoter can copy the subtree with candidate list and see candidates)a

but by propertyP2 of Proposition 4.1 he cannot see and use already memorised
votes to make his decision.

A voter location contains two processes: the first process do the cabin and
activates the proced3 and the second one waits to receive a channel along which
he will communicate his vote, after going to the cabin andimgk choice (based

on the candidate list):

voter'[ ... || go cabin'.runyeservist voterza |

pCMEath) (1) g0 cabint.Choice(z).5(z) | ...
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The process in the authority location starts the electigrgading to the cabin where
he repeatedly collects one private channel via the chafinedceives along this
private channel one candidate name and increasésh®/corresponding candidate
counter:
authority’[ Start[0Q] | ... || runseare | - ],

Q) = go cabml.!d(v).U(w).updatecandVoteList/w(tQ, t+1).
Similarly the authority can end the election going to theicamd erasing the voter
list.

Notice that a malicious voter cannot vote more than oncegesine proces#’ de-
stroys itself, and if he would send the identifier of anothetey, the other voter
would receive the secret channel to vote. Moreover by ptype8 of Proposi-
tion 4.1 a malicious voter cannot change the vote countetsdrcabin location,
since the vote counters have security |e¥elhile the voters have security level

A malicious voter can send to the location of another voterazgss which votes
in place of the voter itself. We do not know how to avoid thisdkbf attacks, which
model a voter stealing the position of another voter durire\oting act.

The present encoding is simpler than the encoding of the saaraple given in [8].
5.3 Distributed Library

Let us consider a network consisting of a distributed lifprémain library and

libraries of specific fields), readers, staff members andadh&he main library

(Library) has data subtrees for management and catalogue. The ldatipgue

contains in its leaves pointers to full books which are distied in leaves of spe-
cific field libraries.

Library' [Management | WorkingHours[HourPlan®] | ...] |
Catalog | ...| Pierce[Types|[Pierce/TypesQLICS!] |
Category[Pierce/CategoryQLICS!|.. ] |
| Cohn[Universal[Cohn/Universal@ALGEBRA'Y | .. ]

LICS!|...|Pierce [ Types [ Book.pdf! ]| Category [ Book.pdf!]| ... 11| ... ],
ALGEBRA'[...|...Cohn [Universal [ Book.pdf' ]| ... ]| ...].

For example, the reader
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Reader'[Book[Pierce[d] | ...] || go Library".copycapatog/pierce/Types (VQT).
go ZC'COPYPierce/Types (Zl)‘go Readerl'paSteBook/Pierce (Types[z]) ]

goes to the library, reads in the catalogue the location eflibok, goes to the
sublibrary, copies the book and pastes the copy in the treesdbcation.

The typing system introduced in the current paper assueggtib reader can copy
content of any book, but he cannot modify it (propeR$ of Proposition 4.1).
Besides, he cannot sééour Plan in the management leaf, because he is of less
security level than thél our Plan (propertyP2 of Proposition 4.1).

The staff is given security level, such that they can update catalogue, modify the
book contents, but only copy thiéour Plan.

The head, being of security levg| is the only one that can update all the data at
the Library. He can, for example, change working hours.

6 Conclusion

We discussed a typed version of thézXcalculus in which the access to resources
and the mobility of processes must respect a security pdicce we used a typed
pattern matching which includes a dynamic type checking warwestigate both
type checking and type inference for this calculus, takirig account [7].

We plan to study modifications of our type system which allowptevent illegal
flow of information [18], also in presence of dynamic flow modis [22].

We want to study the impact of our typing system in provingiegjence of net-
works, using different notions of behavioural equivalen& plan to start from
the untyped equivalencies defined in [14] and [9], and to edtfiem using types as
done for example in [17] and [12].
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A Structural Congruence

The structural congruence for thelX calculus is the least equivalence relation on
networks that satisfies alpha-conversion, the commutatiwaoid properties for

(0, | ) ontrees, fo0, | ) on processes and fed, | ) on networks, and the axioms
of Table A.1. As usualn is the set of free channel names occurring in a process or
in a tree or in a network.

(trees) V=V'=a[V] =a[V]
(scripts) P=P =0P=0PF
(processes)vc)0 = 0
v=1v = eV (v) =)
(v (wd™P = (vd™) (v P
¢ ¢ n(P) = P | (vi™)Q = (vi™)(P | Q)
V =V'AP =P = update,(x,V).P = update,(x, V').P’
(networks) (vc'™)0 = 0
(v (vd™ )N = (vd™") (ve")N
v ¢ f(N) = N | (vcT")N’ = (1) (N | NY)
T=T'ANP=P =I"T|P]="T|P]
¢ g (T) = [T || (v™)P | = (v ™)' T || P]

Table A.1
Structural congruence

B Subject Reduction

We prove that the typing of networks is preserved by strattcongruence and by
reduction. These proofs use generation lemmas which atbowverse the typing
rules. Notice that for networks we need to distinguish @&itind ongoing typing
rules.

We user to range over all types of Table 9.

Lemma B.1 (Generation lemma for variables, channels, locations and paths)
DXFz:7T=x:7TEX.
Q)T F cir=7=CnTv).
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(3) X F I': 7= 7= Loc(i).
(4) ¥ F p:7andpisalocal path= 7 = PathLocal.
(5) ¥ + p:7andpisnota local path= 7 = Path*.

Lemma B.2 (Generation lemma for scripts, pointers and trees)

(1) ¥ - Ol : 7= 7= Seript(i) and> F II: Proc*(i).

(2) ¥ F p@A\: 7 = 1 = Pointer*(i) andX - X : Loc(i) andX t p : Path*.

(3) X F 0:7 = eitherr = DLTree or T = Tree*.

@YX - Ty | Ty: 7= eitherr = DLTreeand® + Ty : DLTree and
Y F Ty:DLTreeort =Tree*and® = Tj: Tree*and® = T, : Tree*.

(5) ¥ F a[T]: 7= eitherr = DLTreecandX® + T : DLTreeor t = Tree*
and¥ + T : Tree*.

6) X F a[p@\] : 7= 7 ="Tree*and® + p@A\ : Pointer*(i).

(7) X F a0 : 7= 7="Tree*andX F OII: Script(q).

Lemma B.3 (Generation lemma for processes)

(1) ¥ F 0:7= 7= Proc*i).

20X F P | P,:7=17=Proc*(i)andX F P, : Proc*(i)and¥ F P, :
Proc*(i).

(B) X F (vc')P: 7= 7= Proc*(i)andX + P : Proc*(i) and|Tv| < i.

4 X F Aw) :7=7=Proc*(i)andX + v:Tvand¥ F ~v:ch(Tv)and
|Tv| < 1.

B) X F ~@x).P:7= 1= Proc*(i) andX,z : Tv + P : Proc*(i) and
Y F y:ch(Tv)and|Tv| <.

6) ¥ F 5(x).P: 7= 7= Proc(i)and ¥,z : Tv + P : Proc*(i) and
Y F y:ch(Tv)and|Tv| <.

(7)Y F goAP:7 = 1= Proc*(i) and + X : Loc(j) andj < i and
Y + P: Proc*(i).

8) X F go®.P:7= 7= ProcLocal(i)andX + P : Proc*(i).

(9) ¥ F run,: 7= 7= Proc*(i)andX F p: Path*.

(10) X F wupdate,(x,x).P : 7 = 7 = Proc*(i) and¥ F p: Path* and
YUX, F P: Proc(i)and|x| <.

(11) ¥ F update,(x,V).P: 7andy # V,z and (p # . or x # Oz for all j)
= 7 = Proc*(i)and¥ + p: Path*andX U, + P : Proc*(i) and
x| <iandX, F V:TPS(j)andj <i.

(12) ¥ + update (', V).P : 7 = 7 = ProcLocal(i) andX, z : ProcLocal(i) + P :
ProcLocal(i) andz : ProcLocal(i) = V : TPS(j) andj < i.

Lemma B.4 (Generation lemma for networks) (1) -0:7 = 7 = Net.
(2) FN; | Ny: 7= 7= Netand- N; : Net and- Ny : Net and V' (N;) N
@) FU[T|P]:7=7=Netand() = T :Treeand

e either(initial) 0 + P : Proc(i),
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e or (ongoing) ) = P : Proc(j).
(4) F (vc™)N : 7 = 7= Net and- N : Net.

The following two propositions point out some propertieoaf type system and
can be easily verified by induction of deductions.

By replacing in an arbitrary process)” by a location name (whose security level
agrees with that of the process) antldy a path not containing.” we get a process
typeable with a process type.

Proposition B.5 If X = P : Proc*(i) andX + p: Pathandj < i, thenX
P{li) ©,p/.} : Proc(i).

A process which has a given security level has also all biggeurity levels. The
proof follows easily observing that the nil process can hget/with an arbitrary
security level and that all typing rules only check that tieewity level of the
current process is bigger than other security levels.

Proposition B.6 X = P : Proc*(i)and: < jimplyX = P : Proc*(j).
As usual the “core” of the subject reduction proofs are stiigin lemmas.
Lemma B.7 (Substitution lemma for trees, pointers, scripts and processes)

1) ¥, z:Tv = V:TPS(i)andX F v:Tv, thenX = V{v/z} : TPS(i).
(2) If 3,z : ProcLocal(j) = V : TPS(i)andX + P : ProcLocal(j), then
Y F v{OP/Ozx} : TPS(1).
) IfX,z:Tv F P: Proc*(i)and¥ + v:Tv,thenX = P{v/x} : Proc*(i).
(4) If X,z : ProcLocal(j) = P : Proc*(i)and¥ + @ : ProcLocal(j), then
Y+ P{OQ/Ox} : Proc*(i).
(5) If X F update,(x,V).P : Proc(i)and% = T : TreeandT ~,;i v
T',0,thenX = T": Tree.

Proof The proofs of the first four points are standard by inductionvoand P,
respectively.

For (5) we need to consider three cases according to the sligpéNe give the
proof for y = y*@a7, the remaining cases being similar. l@t= {s, ..., s,}

and1 < k < n. By constructiors, = {m’/x, p,/y}, for somem’ andp} such
that + p) : Path*. By Lemma B.3(10) or (11%,x : Loc(j),y : Path* + V :

TPS(h) with h < 7. By Point (1) + Vs, : TPS(h). By construction”

is obtained fromI" by replacing top-down the nodes’ @p, by Vs, so we can
easily check that + T" : T'ree using the typing rules for trees.

Theorem 3.1 (Subject reduction) Let- N : Net andN — N/, then N’ : Net.

Proof We only consider some interesting cases.
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CaseN = ["[ T, || go m’.P | Q]| m?[ Ty || R] and the reduction is by rule (go):
MTllgom P|QIm [T | R] =" [Ty[| Q]| m/[ T2 || P| R].

From- N : Net, by LemmaB.4(2) it followsthat N, = I"[ T || go m/.P | Q] :
Net andt Ny = m/[ Ty || R] : Net. FromN; : Net, by Lemma B.4(3) we get
@ = Ty :Treeand

e either (initial)) = go m?.P | Q : Proc(h);
e or (ongoing)) = gom?.P | Q : Proc(i).

We consider the ongoing case, the proof for the initial casi@dthe same. In
this case by Lemma B.3(2) we have tiflat- go m’.P : Proc(i) and then by
Lemma B.3(7)) + P : Proc(i). We conclude by applying the ongoing typing
rules taking into account Proposition B.6.

Case N = ["[ T || run, | Q] and the reduction is by rule (run):
T run, | Q= [T Pl ... | Pl Q]

wherep(T') ~, n opn o, T, {{EP /O, ..., {0OF,/Ox}}. From= N : Net, by
Lemma B.4(3)) + T : Tree. By construction?, = P/{I"/ ©,p/.}, where(lP]
matches 12" and thereford) = P/ : ProcLocal(h) and ther) = P, : Proc(h)
by Proposition B.5. We conclude by applying the ongoingrigpiules taking into
account Proposition B.6.

CaseN = ["[ T || update,(x,V).P | Q] and the reduction is by rule (update):
" T || update,(x,V).P | Q] = I"[T" || Psy | ... | Ps, | Q]

where p(T') ~, v T',{S1,...,8,}. FromE N : Net, by Lemma B.4(3)
0 & T:Treeand

e either (initial)) - update (x,V).P | Q : Proc(h),
e or (ongoing))  update,(x,V).P | Q : Proc(i).

We consider the ongoing case with= y*@2z7, the proof for the other cases being
similar. In this case by Lemma B.7(8) - T’ : Tree. By Lemma B.3(2) we
have that)  update,(x,V).P : Proc(i) and then by Lemma B.3(10) or (11)
x : Loc(j),y : Path* & P : Proc(i). By constructiors; = {m’/x,p} /y}, for
somem’ andpj, such that - p, : Path*. By Lemma B.7(3) this give§ - Ps;, :
Proc(i). We conclude by applying the ongoing typing rules for preess
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C Safety proof

Proposition 4.2 If N is an initial network, andN — 7(I'[ T || P | Q ] | N’), and
h is the security level of the source location/fthent- P : Proc(h).

Proof The proof is by induction on~ and by cases on the definition of source
location using Generation and Substitution Lemmas.

CaeN=/J(I'| T || P| Q]| N'). In this case = h and- N : Net using the
initial typing rules. By Lemma B.4(4), (2), (3) P | @ : Proc(h) which implies
= P : Proc(h) by Lemma B.3(2).

Case N — J(I"[ T || run, | Q" | | N') - J(I" T || P| Q]| N') since
p(T) ~ppoproe T, {{0OR:/0x}, ..., {0R,/Ox}} andR, = P | R and Q =
RIRy| ... | R, | Q.Thenp(T) ~,n opn o T, {{0ORy /O }, ..., {OR,/Ox}}
impliesmatch(OR;, Oz") = {OR,/0z} and R, = R {i"/ ©,pi/.} for some
R', p1 such that- R| : ProcLocal(h) andp; is a path without occurrences of
“.”. Thent p; : Path which together with- R} : ProcLocal(h) imply - R; :
Proc(h) by Proposition B.5. So we concluéteP : Proc(h) by Lemma B.3(2).

CaseN — i(I'[ T" || update, (y*@z?, V).P' | Q' | | N') — #(I[ T || P | Q]| N)
sincep(T") ~p i yraziv T, {S1,...,S,}andP's; = P | RandQ = R | P's, | ...
|P's,, | Q. By induction we have thdt - update,(x,V).P : Proc(h) and then
by Lemma B.3(10) or (11} : Loc(j),y : Path* &= P : Proc(h). By construction
s, = {m’/z,p},/y}, for somem? pj suchthat - pj} : Path*. By Lemma B.7(1)
this gives) + Psy. : Proc(h).

The proofs for the remaining cases are similar to the prottfieflast case.
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