Mariangiola Dezani-Ciancaglini

Silvia Ghilezan

Jovanka Pantović
email: pantovic@uns.ns.ac.yu

Daniele Varacca
email: varacca@pps.jussieu.fr

Security Types for Dynamic Web Data 1

. An Xdπ-network is a network of locations, where each location consists of both a data tree (which contains scripts and pointers to nodes in trees at different locations) and a process, for modelling process interaction, process migration and interaction between processes and data. Our type system is based on types for locations, data and processes, expressing security levels. A tree can store data of different security level, independently from the security level of the enclosing location. The access and mobility rights of a process depend on the security level of the "source" location of the process itself, i.e. of the location where the process was in the initial network or where the process was created by the activation of a script. The type system enjoys type preservation under reduction (subject reduction). In consequence of subject reduction we prove the following security properties. In a well-typed Xdπ-network, a process P whose source location is of level h can copy data of security level at most h and update data of security level less than h. Moreover, the process P can only communicate data and go to locations of security level equal or less than h.

Introduction

Information systems have evolved into open distributed systems that include decentralised peer-to-peer networks. An essential role of such systems is management of data, which appear to be semi-structured and distributed. Data-sharing applications require to integrate mobile processes and semi-structured data.

As information networks become more open and dynamic, the need for security and privacy grows stronger. Systems must be able to exchange data and processes while preserving security. One solution is to ground them on typed models. In such models, a well-typed network must reduce only to well-typed networks, assuring access and movement rights.

In this paper we propose a type system for the Xdπ calculus [START_REF] Gardner | Modelling Dynamic Web Data[END_REF]. An Xdπ-network is a network of locations, where each location consists of both a data tree and of a running process, for modelling process interaction, process migration and interaction between processes and data. The leaves of data trees contain pointers to nodes in trees of different locations, and scripts, i.e. static processes, which can be activated. In turn, scripts, pointers and trees can occur inside scripts and running processes.

In addition to the original syntax, we decorate location names with security levels taken from a partially ordered set of security levels with a bottom element. Therefore a location in a well-formed network will be of the shape:

l h [T P]
where l is a location name, h is its security level, T is a tree of data and P is a running process. Pointers, scripts and running processes are assigned security levels by means of a typing system.

The access and mobility rights of a process depend on the security level of the "source" location of the process itself, i.e. of the location where the process was in the initial network or where the process was created by the activation of a script. Hence in a well typed network each process has the security level of its source location. Security levels of scripts and pointers in trees, however, don't depend on the level of the enclosing location.

Processes migrate thanks to the go command. The go command can only move a process from one location to a location of security level lower or equal to the level of the process itself. Processes can also communicate data via channels. The security levels of the communicated data will never exceed the security level of the process.

Running processes can activate scripts in the local tree by the command run p , where p is a path expression which identifies a set of nodes. In a well-typed network a scripted process can be activated only if its security level is at most the one of the enclosing location.

Running processes can also modify the local tree and use the information in that tree by means of the command update. All trees can be copied by all processes, but only trees containing no data can be deleted and possibly replaced. A process of security level h can only read data of security level at most h, and modify data of security level less than h. The only exception being that processes generated by activating scripts can modify scripts of the same security level and in the same positions in trees.

Related Work

The Xdπ calculus [START_REF] Gardner | Modelling Dynamic Web Data[END_REF][START_REF] Maffeis | Behavioural Equivalencies for Dynamic Web Data[END_REF] models both localised, mobile processes and distributed, dynamic, semi-structured data, allowing to represent data-sharing applications. It can be seen as an extension of the Active XML model [START_REF] Abiteboul | Active XML, Security and Access Control[END_REF].

The locations and the processes of Xdπ are essentially those of dπ [START_REF] Hennessy | Resource Access Control in Systems of Mobile Agents[END_REF] enriched with capabilities for data manipulation. The only difference is that a process in dπ can migrate to a location independently from the existence of the location itself in the current network, while in Xdπ such an existence is a necessary condition for migration. The data trees of Xdπ are related to those in [START_REF] Abiteboul | Data on the Web : From Relations to Semistructured Data and XML[END_REF][START_REF] Cardelli | A Query Language Based on the Ambient Logic[END_REF] and the treatment of shared distributed data is inspired by [START_REF] Sahuguet | ubQL: A Distributed Query Language to Program Distributed Query Systems[END_REF]. We refer to [START_REF] Gardner | Modelling Dynamic Web Data[END_REF] for further references related to the calculus design.

Many type systems controlling the use of resources and the mobility of processes have been proposed for the dπ calculus [START_REF] Hennessy | Resource Access Control in Systems of Mobile Agents[END_REF] and for related calculi [START_REF] De | Types for Access Control[END_REF][START_REF] Castagna | The Seal Calculus[END_REF][START_REF] Cardelli | Types for the Ambient Calculus[END_REF]. The types discussed here are essentially inspired by the security types checking access rights for π-calculus of [START_REF] Hennessy | Information Flow vs Resource Access in the Asynchronous π-calculus[END_REF]. For simplicity we do not distinguish between reading and mobility rights, but our type system can be extended to take them into account. Another simplification is to have elements of a partially ordered set with a bottom element as security levels instead of elements of a lattice as it is usual [START_REF] Sandhu | Lattice-based Access Control Models[END_REF], this choice being justified by the fact that we do not use meets and joins. We formalise the network properties assured by our type system using the notions of network invariant and initial network as in [START_REF] Ahern | Formalising Java RMI with Explicit Code Mobility[END_REF].

The present paper is an expanded and revised version of [START_REF] Dezani-Ciancaglini | Security Types for Dynamic Web Data[END_REF], the main differences being:

• the data in trees can be of different security levels and do not depend on the security level of the enclosing location, while in [START_REF] Dezani-Ciancaglini | Security Types for Dynamic Web Data[END_REF] each location was only allowed to contain data of at most the security level of the location itself; • the communication, copying, updating and mobility rights of processes only depend on their source location, while in [START_REF] Dezani-Ciancaglini | Security Types for Dynamic Web Data[END_REF] they were depending on the enclosing location, but for the possibility of processes to move back to their source locations; • the capability of modifying data requires a higher security level than the capability of reading data, while in [START_REF] Dezani-Ciancaglini | Security Types for Dynamic Web Data[END_REF] there was no difference; • there is a special type for data-less trees, i.e. trees whose leaves contain no data, because only data-less trees can be deleted or replaced (they can be considered garbage).

Outline of the paper Section 2 and Section 3 introduce the syntax, the reduction rules, and the typing rules of typed Xdπ, exemplified by the examples in Section 5.

The properties of the calculus are discussed in Section 4 and proved in Appendices B and C. Section 6 contains a few final remarks.

Syntax and Operational Semantics

The Xdπ calculus we consider here is essentially the calculus introduced in [START_REF] Gardner | Modelling Dynamic Web Data[END_REF], with a few important differences.

The main difference between the original Xdπ and the present one is the use of a typed syntax. We decorate the location names with security levels and the channel names with value types. (An alternative approach could avoid these decorations by fixing an environment for locations and channels.)

More importantly, the syntax includes a typed matching function instead of an untyped one. Pattern matching needs to take types into account, in order to have type preservation under reduction. We will explain and motivate this choice at the end of the section.

In order to simplify the syntax we only allow monadic instead of polyadic communication and we do not distinguish between public channels (which cannot be restricted) and session channels (which must be restricted in the scripts). 2 These features of the original Xdπ can be easily handled by our type system.

Syntax

Networks A network is a parallel composition (|) of locations consisting of a tree and a process, where processes at different locations can share communication channels. In a well-formed network the locations have different names. The syntax of networks is given in Table 1. We use l, m to range over location names, and h, i, j over security levels. The location l h [T P] is well-formed if both the tree T and the process P do not contain occurrences of free variables. We use c to range over channel names and T v to denote a value type as defined in Table 9. The binder ν is, as usual, the restriction operator.

Trees The data model is an unordered edge-labelled rooted tree with leaves containing empty trees, scripts and pointers. The syntax of trees is presented in Table 2, using a to denote an edge label.

A script is a static process embedded in a tree that can be activated by a process from the same location. We use Π to range over processes and variables, and a script is denoted by Π. A path identifies nodes in a tree. Table 3 gives the formation rules of paths, using p to range over paths. In a path, "a" denotes a step along an edge a, " // " denotes any node, ".." a step back, "." the path from the root to the current node, x a variable and "/ " the path composition. We will say that a path is a local path if it contains ".". 3We use λ to range over variables and location names super-scripted by security levels. A pointer p@λ refers to the set of nodes identified by the path p in the tree at location λ.

N ::= 0 | | N | N | | l h [T P] | | (νc T v)N
p ::= a | | // | | .. | | . | | x | | p / p

Processes

The processes that we are concerned with are essentially dπ-calculus processes [START_REF] Hennessy | Resource Access Control in Systems of Mobile Agents[END_REF], where the local communication modelled by π-calculus processes [START_REF] Milner | A Calculus of Mobile Processes, I-II[END_REF], [START_REF] Sangiorgi | The π-calculus: a Theory of Mobile Processes[END_REF] is extended with migration between locations (command go). There are two more commands for local communication between processes and data: one

v ::= c T v | | T | | P | | l h | | p Table 5
Syntax of values

χ ::= x DL | | x | | x j | | y ⋆ @x j V ::= T | | P | | p@λ Table 6
Syntax of patterns and data terms for updating (copy, paste, cut, etc.) the data tree (update) and the other one that activates the execution of scripts that are embedded in local data tree (run). We use P, Q, R to range over processes, and γ to range over channel names (decorated by value types) and variables. The syntax of processes is given in Table 4.

A value is either a channel name super-scripted with a value type, a tree, a script of a fixed security level, a location name super-scripted with a security level or a path. Using v to range over values, the syntax of values is given in Table 5.

The argument of go is a location name (super-scripted with a security level) or a variable, or the symbol " ", which can only occur in scripts to denote the location where the script will be activated.

The two arguments of the update command are respectively a pattern χ and a data term V , whose syntax is given in Table 6. A pattern is either a data-less tree variable, or a tree variable, or a script pattern, or a pointer pattern. In a pointer pattern j is a security level and ⋆ ∈ {Local, ǫ}4 indicates whether y stands for a local path or for a path without occurrences of ".". Data terms can be trees, scripts or pointers. The need to distinguish generic trees from data-less trees (that is trees whose leaves are empty) arises from the facts that trees themselves do not have security level. In order for a process to delete or replace a tree, it has to have permission to delete all the data contained in the tree first. Then any process, regardless of its security level, can delete or replace a data-less trees.

In update p (χ, V).P the variables of χ can occur both in V and in P and they are bound. For this reason we allow variable occurrences in trees, scripts, pointers and processes.

Reduction rules

The reduction relation describes three forms of interactions:

• processes can communicate with each other within a location (rules (com) and (com!)); • processes can move between locations (rules (stay) and (go));

• process can interact with the local data (rules (update) and (run)).

The reduction relation is the least relation on networks which is closed with respect to structural congruence, reduction rules given in Table 7 and reduction contexts, given by

C ::= -| | C | N | | (νc T v)C.
The standard definition of structural congruence is presented in Appendix A.

The rules, (com) and (com!) are the communication rules from the π-calculus [START_REF] Milner | A Calculus of Mobile Processes, I-II[END_REF][START_REF] Sangiorgi | The π-calculus: a Theory of Mobile Processes[END_REF].

Processes can communicate only if they are in the same location.

There are two rules for migration. Rule (go) describes migration to a distinct location. The other rule, (stay), describes staying at the location where you are.

(com) l h [T || cT v v | c T v (z).P | Q] → l h [T || P {v/ /z} | Q] (com!) l h [T || cT v v |!c T v (z).P | Q] → l h [T || !c T v (z).P | P {v/ /z} | Q] (stay) l h [T || go l h .P | Q] → l h [T || P | Q] (go) l h [T 1 || go m j .P | Q] | m j [T 2 || R] → l h [T 1 || Q] | m j [T 2 || P | R] (run) p(T) p,l h , x h , x T, {{ P 1 / / x}, . . . , { P n / / x}} l h [T || run p | Q] → l h [T || P 1 | . . . | P n | Q] (update) p(T) p,l h ,χ,V T ′ , {s 1 , . . . , s n } l h [T update p (χ, V).P | Q] → l h [T ′ P s 1 | . . . | P s n | Q] Table 7
Reduction rules

(Empty tree) ∅ θ ∅, ∅ (Script)
P θ P, ∅ (Pointer) p@l h θ p@l h , ∅ (Node) T θ T ′ , Θ a[T] θ a[T ′], Θ (Par) T θ T ′ , Θ 1 S θ S ′ , Θ 2 T |S θ T ′ |S ′ , Θ 1 ∪ Θ 2 (Up) match(U, χ) = s V s θ V ′ , Θ θ = p, l h , χ, V a[U] θ a[V ′], {s{l h / / , p/ /.}} ∪ Θ Table 8
Definition of the update function

The command run p finds all the scripts in the local tree identified by the path p and activates their parallel execution, after replacing " " and "." by the enclosing location and the path p, respectively.

The update command update p (χ, V).P traversing top-down the local tree finds all the data terms V k given by the path p and pattern matches these data terms with χ to obtain substitutions s k when they exist. For each successful pattern matching it replaces the V k with V s k and starts P s k in parallel. The match function, in order to check if a data term agrees with a pattern, requires not only the data term to be, respectively, a data-less tree, a tree, a pointer or a script, according to the four shapes of the pattern (as in [START_REF] Gardner | Modelling Dynamic Web Data[END_REF]), but it requires also the data terms to satisfy the type information given by the pattern. This means that:

(1) if the pattern is x DL , then the data term must be a data-less tree, (2) if the pattern is x, then the data term must be a tree, (3) if the pattern is y ⋆ @x j , then the data term must be a pointer in which (i) the path can be a local path only if ⋆ = Local and (ii) the location must be of level j, (4) if the pattern is x j , then the data term must be a script of level j.

These conditions are enforced by using the type assignment system of next section. If the typed match is successful, the function returns a substitution which replaces the variables in the pattern by the corresponding data terms. More precisely the definition of the match function is:

(1) match(T, x DL) = {T / /x} if ⊢ T : DLT ree; (2) match(T, x) = {T / /x} if ⊢ T : T ree;
(3) match(p@l j , y ⋆ @x j) = {l j / /x, p/ /y} if ⊢ p : P ath ⋆ ; (4) match(P, x j) = { P / / x} if ⊢ P : P rocLocal(j).

In principle it would be desirable to avoid security level matching at run time, and rely on static typing only. However in this setting, static typing would be too restrictive. Values in a tree can have any security level, and we cannot statically know the security levels of values found using the path "//". This is why dynamic checking is necessary.

The reduction rules for update and run are based on the definition of the update function , parametrised on p, l h , χ, V , which applied to a tree or to a node label returns a data term and a set of substitutions. Table 8 defines the function . The only interesting rule is (Up): it matches the selected (underlined) U in p(T) with χ obtaining a substitution s. Then it continues updating V s obtaining the data term V ′ and the set of substitutions Θ. Finally it replaces U with V ′ and adds to Θ the substitution s{l h / / , p/ /.}. This is useful when s = { P / / x} for solving the references to the enclosing location and to the current path. We convene that occurrences of " " and "." inside scripts in P are unaffected by this substitution. Similarly if s = {T / /x} we convene that occurrences of " " and "." inside scripts in T leaves are unaffected by this substitution, i.e. that {T / /x}{l h / / , p/ /.} = {T / /x} for any T, x, l h , p. Some special forms of the update command have been already defined in [START_REF] Gardner | Modelling Dynamic Web Data[END_REF]:

cut p (χ).Q := update p (χ, ∅).Q copy p (χ).Q := update p (χ, χ).Q paste p T .Q := update p (x, x|T).Q
where x does not occur in T, Q.

We will freely use these shorthands in the examples.

T v ::= Ch(T v) | | Loc(i) | | Script(i) | | P ath ⋆ | | DLT ree | | T ree ⋆ Table 9
Syntax of types

Type Assignment

The main goals of our type system are to control communication of values, access to data and migration of processes between locations. We will formalise this in Section 4.

We rely on a notion of security levels, and therefore we assume a fixed partial order (L, ≤) of security levels with a bottom ⊥. As already said in Section 2 we use h, i, j to range over elements of L.

The syntax of types is the content of Table 9. Clearly the types correspond to the syntactic categories of the previous section. We use the suffix Local when we allow local paths. This distinction is useful since a run or an update command containing a local path as index cannot be executed, but it can appear inside a script.

We will use P ath ⋆ as short for P ath or P athLocal and similarly for the other types. When more than one ⋆ appears in a typing rule we always assume that all of them are replaced either by ǫ or by Local.

We define the security level of a value type (notation |T v|) as follows:

• |Ch(T v)| = |T v|; • |Loc(i)| = |Script(i)|= i; • |P ath ⋆ | = |DLT ree| = |T ree ⋆ | = ⊥.
An environment Σ gives the association between:

• variables and value types • variables and local process types i.e. we define:

Σ := ∅ | | Σ, x : T v | | Σ, x : P rocLocal(i).
We use the environment by means of a standard axiom:

(axiom) Σ, x : σ ⊢ x : σ where σ ranges over value types and local process types.

Typing rules for channels, locations and scripts are as expected (recall that Π ranges over processes and variables):

(chan) Σ ⊢ c T v : Ch(T v) (loc) Σ ⊢ l i : Loc(i) Σ ⊢ Π : P roc ⋆ (i) (script) Σ ⊢ Π : Script(i)
Typing rules for paths are given in Table 10: a local path always gets the type P athLocal instead of P ath.

The typing rule for pointers

Σ ⊢ λ : Loc(i) Σ ⊢ p : P ath ⋆ (pointer) Σ ⊢ p@λ : P ointer ⋆ (i) gives a P ointer or a P ointerLocal type according to the path type. The security level of the pointer is the security level of the pointed location.

Typing rules for trees are given in Table 11. According to these typing rules:

• a tree is data-less, i.e. it has the type DLT ree, only if all its leaves are labelled by ∅; • a tree that has at least one node labelled by a local pointer will be typed by T reeLocal.

(patha) Σ ⊢ a : P ath

(
Σ ⊢ T : DLT ree (treeDLa) Σ ⊢ a[T] : DLT ree Σ ⊢ T : T ree ⋆ (treea) Σ ⊢ a[T] : T ree ⋆ Σ ⊢ T 1 : DLT ree Σ ⊢ T 2 : DLT ree (treeDL|) Σ ⊢ T 1 | T 2 : DLT ree Σ ⊢ Π : Script(i) (treeScript) Σ ⊢ a[Π] : T ree Σ ⊢ T 1 : T ree ⋆ Σ ⊢ T 2 : T ree ⋆ (tree|) Σ ⊢ T 1 | T 2 : T ree ⋆ Σ ⊢ p@λ : P ointer ⋆ (i) (treeP ointer) Σ ⊢ a[p@λ] : T ree ⋆ Σ ⊢ T : DLT ree (treeDL) Σ ⊢ T : T ree Σ ⊢ T : T ree (treeL) Σ ⊢ T : T reeLocal

Table 11 Typing of trees

Typing rules for processes are given in Table 12. The rule (go) allows a process whose source location is of security level i to migrate to a location at security level j only if j ≤ i.

In the typing rules for update we assume that χ ∈ {x DL , x,y ⋆ @x j , x j }, and we define the environment Σ χ for associating types to the variables bound by the pattern.

Σ χ =                    x : DLT ree if χ = x DL , x : T ree if χ = x, x : Loc(j), y : P ath ⋆ if χ = y ⋆ @x j , x : P rocLocal(j) if χ = x j
We define the security level of a pattern (notation |χ|) as expected:

(proc0) Σ ⊢ 0 : P roc ⋆ (i) Σ ⊢ P 1 : P roc ⋆ (i) Σ ⊢ P 2 : P roc ⋆ (i) (proc|) Σ ⊢ P 1 | P 2 : P roc ⋆ (i) Σ ⊢ P : P roc ⋆ (i) |T v| ≤ i (procν) Σ ⊢ (νc T v)P : P roc ⋆ (i) Σ ⊢ v : T v Σ ⊢ γ : Ch(T v) |T v| ≤ i (out) Σ ⊢ γ v : P roc ⋆ (i) Σ, x : T v ⊢ P : P roc ⋆ (i) Σ ⊢ γ : Ch(T v) |T v| ≤ i (input) Σ ⊢ γ(x).P : P roc ⋆ (i) Σ, x : T v ⊢ P : P roc ⋆ (i) Σ ⊢ γ : Ch(T v) |T v| ≤ i (!input) Σ ⊢ !γ(x).P : P roc ⋆ (i) Σ ⊢ P : P roc ⋆ (i) Σ ⊢ λ : Loc(j) j ≤ i (go) Σ ⊢ go λ.P : P roc ⋆ (i) Σ ⊢ P : P roc ⋆ (i) (goHome) Σ ⊢ go .P : P rocLocal(i) Σ ⊢ p : P ath ⋆ (run) Σ ⊢ run p : P roc ⋆ (i) Σ ⊢ p : P ath ⋆ Σ ∪ Σ χ ⊢ P : P roc ⋆ (i) |χ| ≤ i (copy) Σ ⊢ update p (χ, χ).P : P roc ⋆ (i) Σ ⊢ p : P ath ⋆ Σ ∪ Σ χ ⊢ P : P roc ⋆ (i) χ = x |χ| < i Σ χ ⊢ V : T P S(j) j ≤ i
(paste) Σ ⊢ update p (χ, V).P : P roc ⋆ (i) Σ, x : P rocLocal(i) ⊢ P : P rocLocal(i)

x : P rocLocal(i) ⊢ V : T P S(j) j ≤ i (pasteHere) Σ ⊢ update . (x i , V).P : P rocLocal(i)

Table 12

Typing of processes

• |x DL | =|x| = ⊥; • |y ⋆ @x j | = | x j | = j.
In these rules T P S(j) stands for T ree or P ointer ⋆ (j) or Script(j).

The three typing rules for the updating command are necessary since we require:

• all processes to be allowed to copy all trees and to replace only data-less trees ∅ ⊢ T : T ree ∅ ⊢ P : P roc(i)

(netIloc) ⊢ l i [T P] : N et ∅ ⊢ T : T ree ∅ ⊢ P : P roc(j) (netOloc) ⊢ l i [T P] : N et (net0) ⊢ 0 : N et ⊢ N : N et (netν) ⊢ (νc T v)N : N et ⊢ N 1 : N et ⊢ N 2 : N et N (N 1) ∩ N (N 2) = ∅ (net|) ⊢ N 1 | N 2 : N et Table 13
Typing of networks (rules (copy) and (paste)); • processes at the same security level of a leaf to be allowed to copy the leaf (rule (copy)); • processes at a higher security level than a leaf to be allowed to replace the leaf with a data term of a security level not greater than the security level of the process itself (rule (paste)); • a process script in a leaf to be able to replace itself with a data term of a security level not greater than its own security level (rule (pasteHere)).

As a consequence a process can replace a non data-less tree only if all the leaves of this tree contain data terms of security levels lower than the security level of the process itself. For this purpose the process needs first to replace all the leaves containing pointers and scripts by the empty tree and then to replace the so obtained data-less tree.

Typing rules for networks are given in Table 13. For typing a location in a network we have two typing rules: the initial rule (netIloc) and the ongoing rule (netOloc).

The first rule requires the process to have the same security level of the enclosing location, while the second one allows a process of any security level. This reflects the requirement that access and mobility rights of processes depend on their source locations, as we will discuss in Section 4.

The function N associates to a network the set of its location names:

N (0) = ∅ N (l i [T P]) = {l} N (N 1 | N 2) = N (N 1) ∪ N (N 2).
It is used in rule (net|) to assure that each location name occurs at most once in a typed network.

The system satisfies subject reduction:

Theorem 3.1 (Subject reduction) Let ⊢ N : Net and N → N ′ , then ⊢ N ′ : Net.
The proof is presented in Appendix B. It uses some Generation and Substitution lemmas which are also presented in Appendix B.

Safety properties

In the present section, using the subject reduction, we can show some relevant properties of typed initial networks. We say that a network is initial when its locations can be typed by means of the initial typing rules.

More meaningful than the subject reduction theorem are the following properties of initial networks:5 P0 a channel in a process whose source location has level h can communicate only values whose security level is less than or equal to h; P1 a process whose source location has level h can migrate to a location of level j only if j ≤ h; P2 a process whose source location has level h can copy from the local tree only data of level j with j ≤ h; P3 a process whose source location has level h can modify in the local tree only data of level j with j < h, unless the process itself was generated by running a script of security level h in a tree at path p, and in this case it can modify scripts which are both of the security level h and reachable by the path p; P4 a script of level j which is a leaf of a tree in a location of level i can be activated only if j ≤ i.

In order to discuss these properties we need to formalise the notion of "source" location of a process. Roughly by "source" location of a process we mean the location where the process was in the initial net or where the process was created by a run command.

We use to denote the reflexive and transitive closure of → and ν to denote a possibly empty sequence of channel restrictions. If N is an initial network and

N ν(l h [T || P |Q] | N ′)
, then the source location of the process P in this reduction is defined by induction on the reduction and by cases:

• if N ≡ ν(l h [T || P | Q] | N ′), then the source location of P is l h ; • if N ν(l h [T || run p | Q ′] | N ′) → ν(l h [T || P | Q] | N ′) since p(T) p,l h , x h , x T, {{ R 1 / / x}, . . . , { R n / / x}} and R 1 ≡ P | R and Q ≡ R | R 2 | . . . | R n | Q ′ , then the source location of P is l h ; • if N ν(l h [T ′ || update p (χ, V).P ′ | Q ′] | N ′) → ν(l h [T || P | Q] | N ′) since p(T ′) p,l h ,χ,V T, {s 1 , . . . , s n } and P ′ s 1 ≡ P | R and Q ≡ R | P ′ s 2 | . . . |P ′ s n | Q ′ ,
then the source location of P is the source one of update p (χ, V).P ′ in the reduction without the last step;

• if N ν(l h [T || c T v v | c T v (z).P ′ | Q ′] | N ′) → ν(l h [T || P | Q] | N ′) and P ′ {v/ /z} ≡ P | R and Q ≡ R | Q ′ ,
then the source location of P is the source location of c T v (z).P ′ in the reduction without the last step;

• if N ν(l h [T c T v v | !c T v (z).P ′ | Q ′] | N ′) → ν(l h [T P | Q] | N ′) and P ′ {v/ /z} ≡ P | R and Q ≡ !c T v (z).P ′ | R | Q ′ ,
then the source location of P is the source location of !c T v (z).P ′ in the reduction without the last step;

• if N ν(l h [T || go l h .P ′ | Q ′] | N ′) → ν(l h [T || P | Q] | N ′) and P ′ ≡ P | R and Q ≡ R | Q ′ ,
then the source location of P is the source location of go l h .P ′ in the reduction without the last step;

• if N ν(l h [T Q ′] | m j [T ′ go l h .P ′ | R] | N ′′) → ν(l h [T P | Q] | N ′) and P ′ ≡ P | R ′ and Q ≡ R ′ | Q ′ and N ′ ≡ m j [T ′ || R] | N ′′ ,
then the source location of P is the source location of go l h .P ′ in the reduction without the last step;

• if N ν(l h [T ′ || P | Q ′] | N ′′) → ν(l h [T || P | Q] | N ′)
, then the source location of P is the source location of P in the reduction without the last step.

The first two cases are the basic cases, in which the process P takes the current location as source location: in the first one the network is initial, in the second one the process P is generated by the last reduction step. In the last case the reduction does not modify the process P , which preserves its source location. In all other cases an action prefixing the process P (possibly in parallel with other processes and/or modulo the substitution of a value for a variable) is consumed and the source location of P is the source location of the process starting with that action in the reduction without the last step.

We can then formalise the above properties as follows.

(l i [T || P | Q] | N ′)
, and h is the security level of the source location of P , then ⊢ P : P roc(h).

Examples

To simplify the following examples we will consider natural numbers with their order as security levels.

Insensitivity to higher level values

The security policy enforced by our typing system should not be confused with noninterference. A high level process can easily declassify information of its security level to lower levels. However in the absence of high level processes, lower level processes are insensitive even to the existence of higher level data.

Consider the following networks

N 1 = l h [T || P] and N 2 = l h [T || P] | m j [T ′ || 0]
where h < j.

Then the following property holds

Proposition 5.1 For each N such that N 1 N we have N 2 N | m j [T ′ || 0]. Conversely if N 2 N ′ , then N ′ = N | m j [T ′ || 0] and N 1 N.
Proof The only transition that could violate the theorem would involve a go m j action. This action cannot occur in P by property P1 of Proposition 4.1. Moreover by property P4 of Proposition 4.1 no script contained in T with occurrences of go m j could be activated.

Another similar result is the following. Let N be a network all whose locations have security level less than or equal to h. Let V be a value of security level j > h. Then Proposition 5.2 Under the above condition we have N

N ′ if and only if N[∅/V] N ′ [∅/V],
where N[∅/V] is the network obtained by replacing in N some occurrences of V in the leaves with the empty tree.

Proof No pattern of security level j can be contained in a process of level at most h by properties P2 and P3 of Proposition 4.1, nor in a script activated inside a location of level at most h by property P4 of Proposition 4.1.

Remote Voting System

The next example models a remote voting for election of a leader from a given list of candidates, inspired by [START_REF] Kiniry | The KOA Remote Voting System: A Summary of Work To-Date[END_REF]. In this example, we allow tree nodes to contain integers, in order to represent the counters of votes. A pattern too can be a variable of type Integer and of a fixed security level.

The network consists of an authority location, a cabin location and a fixed number of voter locations. The authority location has level 3, while the cabin and all the voter locations have level 1.

The cabin location

cabin 1 [voterList[. . . | voterId[P]| . . .] | candList[T] || 0],
where P = (νc P ath)(cut . (x 1).go voter 1 . bCh(P ath) c P ath | dCh(P ath) c P ath) and T = . . . | name[0 2] | . . . , contains as data the voter list and the candidate list with counters of votes.

The voter list has for each voter an edge labelled by the voter identifier pointing to the scripted process P of security level 1. This script contains two processes. One process first destroys itself and then goes to the voter location, where it communicates a secret channel which the voter will use to express his vote. The other process simply communicates the same secret channel via the channel d.

The candidate list has for each candidate an edge labelled by the candidate name pointing to an integer (the vote counter, initially 0) of security level 2. This assures that the voter can copy the subtree with candidate list and see candidate names, but by property P2 of Proposition 4.1 he cannot see and use already memorised votes to make his decision.

A voter location contains two processes: the first process goes to the cabin and activates the process P and the second one waits to receive a channel along which he will communicate his vote, after going to the cabin and making a choice (based on the candidate list): The process in the authority location starts the elections by going to the cabin where he repeatedly collects one private channel via the channel d, receives along this private channel one candidate name and increases by 1 the corresponding candidate counter:

authority 3 [Start[Q] | . . . || run Start | . . .], Q = go cabin 1 .!d(v).v(w).update candVoteList/w (t 2 , t + 1).
Similarly the authority can end the election going to the cabin and erasing the voter list.

Notice that a malicious voter cannot vote more than once, since the process P destroys itself, and if he would send the identifier of another voter, the other voter would receive the secret channel to vote. Moreover by property P3 of Proposition 4.1 a malicious voter cannot change the vote counters in the cabin location, since the vote counters have security level 2, while the voters have security level 1.

A malicious voter can send to the location of another voter a process which votes in place of the voter itself. We do not know how to avoid this kind of attacks, which model a voter stealing the position of another voter during the voting act.

The present encoding is simpler than the encoding of the same example given in [START_REF] Dezani-Ciancaglini | Security Types for Dynamic Web Data[END_REF].

Distributed Library

Let us consider a network consisting of a distributed library (main library and libraries of specific fields), readers, staff members and a head. The main library (Library) has data subtrees for management and catalogue. The library catalogue contains in its leaves pointers to full books which are distributed in leaves of specific field libraries.

For example, the reader

Reader 1 [Book[Pierce[∅] | . . .] || go Library 1 .copy Catalog/Pierce/Types (y@x 1). go x.copy Pierce/Types (z 1).go Reader 1 .paste Book/Pierce (Types[z])] goes to the library, reads in the catalogue the location of the book, goes to the sublibrary, copies the book and pastes the copy in the tree of his location.

The typing system introduced in the current paper assures that the reader can copy content of any book, but he cannot modify it (property P3 of Proposition 4.1). Besides, he cannot see HourP lan in the management leaf, because he is of less security level than the HourP lan (property P2 of Proposition 4.1).

The staff is given security level 2, such that they can update catalogue, modify the book contents, but only copy the HourP lan.

The head, being of security level 3, is the only one that can update all the data at the Library. He can, for example, change working hours.

Conclusion

We discussed a typed version of the Xdπ calculus in which the access to resources and the mobility of processes must respect a security policy. Since we used a typed pattern matching which includes a dynamic type checking we will investigate both type checking and type inference for this calculus, taking into account [START_REF] Coppo | A Mobility Calculus with Local and Dependent Types[END_REF].

We plan to study modifications of our type system which allow to prevent illegal flow of information [START_REF] Sabelfeld | Language-Based Information-Flow Security[END_REF], also in presence of dynamic flow policies [START_REF] Zdancewic | Challenges for Information-flow Security[END_REF].

We want to study the impact of our typing system in proving equivalence of networks, using different notions of behavioural equivalence. We plan to start from the untyped equivalencies defined in [START_REF] Maffeis | Behavioural Equivalencies for Dynamic Web Data[END_REF] and [START_REF] Gardner | Modelling Dynamic Web Data[END_REF], and to refine them using types as done for example in [START_REF] Pierce | Behavioral Equivalence in the Polymorphic Pi-Calculus[END_REF] and [START_REF] Hennessy | Typed Behavioural Equivalences for Processes in the Presence of Subtyping[END_REF].

A Structural Congruence

The structural congruence for the Xdπ calculus is the least equivalence relation on networks that satisfies alpha-conversion, the commutative monoid properties for (∅, |) on trees, for (0, |) on processes and for (0, |) on networks, and the axioms of Table A.1. As usual fn is the set of free channel names occurring in a process or in a tree or in a network.

(trees)

V ≡ V ′ ⇒ a[V] ≡ a[V ′]
(scripts) P ≡ P ′ ⇒ P ≡ P ′ (processes) (νc T v)0 ≡ 0

v ≡ v ′ ⇒ cT v v ≡ cT v v ′ (νc T v)(νd T v ′)P ≡ (νd T v ′)(νc T v)P c T v ∈ fn(P) ⇒ P | (νc T v)Q ≡ (νc T v)(P | Q)
V ≡ V ′ ∧ P ≡ P ′ ⇒ update p (χ, V).P ≡ update p (χ, V ′).P ′ (networks) (νc T v)0 ≡ 0

(νc T v)(νd T v ′)N ≡ (νd T v ′)(νc T v)N c T v ∈ fn(N) ⇒ N | (νc T v)N ′ ≡ (νc T v)(N | N ′) T ≡ T ′ ∧ P ≡ P ′ ⇒ l h [T P] ≡ l h [T ′ P ′] c T v ∈ fn(T) ⇒ l h [T (νc T v)P] ≡ (νc T v)l h [T P] Table A.1 Structural congruence

B Subject Reduction

We prove that the typing of networks is preserved by structural congruence and by reduction. These proofs use generation lemmas which allow to reverse the typing rules. Notice that for networks we need to distinguish initial and ongoing typing rules.

We use τ to range over all types of Table 9.

Lemma B.1 (Generation lemma for variables, channels, locations and paths)

(1) Σ ⊢ x : τ ⇒ x : τ ∈ Σ.

(2) Σ ⊢ c T v : τ ⇒ τ = Ch(T v).

voter 1 [

 1 . . . || go cabin 1 .run voterList/voterId | b Ch(P ath) (y).go cabin 1 .Choice(z).ȳ z | . . .].

Library 1 [

 1 Management [WorkingHours[HourP lan 2] | . . .] | Catalog [. . . | Pierce[Types[Pierce/Types@LICS 1] | Category[Pierce/Category@LICS 1] . . .] | | Cohn[Universal[Cohn/Universal@ALGEBRA 1] | . . .] || . . .], LICS 1 [. . . | Pierce [Types [Book.pdf 1] | Category [Book.pdf 1] | . . .] || . . .], ALGEBRA 1 [. . . | . . . Cohn [Universal [Book.pdf 1] | . . .] || . . .].

Table 1

 1

	Syntax of networks	
	T ::= ∅	empty rooted tree
	| | x	tree variable
	| | T | T composition of trees, joining the roots
	| | a[T]	edge labeled a with subtree T
	| | a[Π] edge labeled a with script Π
	| | a[p@λ] edge labeled a with pointer p@λ
	Table 2	
	Syntax of trees	

Table 3

 3 Syntax of paths

Proposition 4.1

 If N is an initial network, and N ν(l i [T || P | Q] | N ′), and h is the security level of the source location of P , then: P0 P ≡ cTv v implies |T v| ≤ h; P1 P ≡ go m j .P ′ implies j ≤ h; P2 P ≡ update p (χ, χ).P ′ implies |χ| ≤ h; P3 P ≡ update p (χ, V).P ′ implies either |χ| < h or χ = x h and P has been generated by activating a script in a tree at path p; P4 P ≡ run p implies that the execution of P can only activate scripts at security level i.

	source location: see Appendix C for the proof.	
	Proposition 4.2 If N is an initial network, and N	ν
	Property P4 is an immediate consequence of the reduction rule (run). The remain-
	ing properties follow easily observing that each process has the security level of its

This work was partly funded by the project MMIT 1438 of PSNTR, by FP6-2004-510996 Coordination Action TYPES, by the project GLORA 144029 of MSEP and by the ANR project "ParSec" ANR-06-SETI-010-02.

The distinction between public and session channels is important for implementation since otherwise one needs to alpha-convert the whole data tree of a location when a process, restricting a channel name, migrates.

The path syntax allows also meaningless paths, like "./ ./ .": this could be clearly avoided either by typing or by refining the syntax.

Here and in the following we use ǫ to denote the empty string, so we get either y Local @x j or y@x j .

Notice that P0, P1, P2, P3 and P4 are network invariants in the sense of[START_REF] Ahern | Formalising Java RMI with Explicit Code Mobility[END_REF].

Acknowledgements

We thank Philippa Gardner and Sergio Maffeis for their careful reading of an earlier version of the paper and for many useful remarks on it. We also thank the anonymous referees of TGC'06 submission for detailed and appropriate comments. The final version for TGC'06 and the present version of the paper strongly improved due to their suggestions.

(3) Σ ⊢ l i : τ ⇒ τ = Loc(i). (4) Σ ⊢ p : τ and p is a local path ⇒ τ = P athLocal.

(5) Σ ⊢ p : τ and p is not a local path ⇒ τ = P ath ⋆ .

Lemma B.2 (Generation lemma for scripts, pointers and trees)

(1) Σ ⊢ Π : τ ⇒ τ = Script(i) and Σ ⊢ Π : P roc ⋆ (i).

(2) Σ ⊢ p@λ : τ ⇒ τ = P ointer ⋆ (i) and Σ ⊢ λ : Loc(i) and Σ ⊢ p : P ath ⋆ .

(3) Σ ⊢ ∅ : τ ⇒ either τ = DLT ree or τ = T ree ⋆ . (4) Σ ⊢ T 1 | T 2 : τ ⇒ either τ = DLT ree and Σ ⊢ T 1 : DLT ree and Σ ⊢ T 2 : DLT ree or τ = T ree ⋆ and Σ ⊢ T 1 : T ree ⋆ and Σ ⊢ T 2 : T ree ⋆ . (5) Σ ⊢ a[T] : τ ⇒ either τ = DLT ree and Σ ⊢ T : DLT ree or τ = T ree ⋆ and Σ ⊢ T : T ree ⋆ . (6) Σ ⊢ a[p@λ] : τ ⇒ τ = T ree ⋆ and Σ ⊢ p@λ : P ointer ⋆ (i).

Lemma B.3 (Generation lemma for processes)

(1) Σ ⊢ 0 : τ ⇒ τ = P roc ⋆ (i).

(2) Σ ⊢ P 1 | P 2 : τ ⇒ τ = P roc ⋆ (i) and Σ ⊢ P 1 : P roc ⋆ (i) and Σ ⊢ P 2 :

|T v| ≤ i. (5) Σ ⊢ γ(x).P : τ ⇒ τ = P roc ⋆ (i) and Σ, x : T v ⊢ P : P roc ⋆ (i) and Σ ⊢ γ : ch(T v) and |T v| ≤ i. (6) Σ ⊢ !γ(x).P : τ ⇒ τ = P roc ⋆ (i) and Σ, x : T v ⊢ P : P roc ⋆ (i) and Σ ⊢ γ : ch(T v) and |T v| ≤ i. (7) Σ ⊢ go λ.P : τ ⇒ τ = P roc ⋆ (i) and ⊢ λ : Loc(j) and j ≤ i and Σ ⊢ P : P roc ⋆ (i). (8) Σ ⊢ go .P : τ ⇒ τ = P rocLocal(i) and Σ ⊢ P : P roc ⋆ (i). (9) Σ ⊢ run p : τ ⇒ τ = P roc ⋆ (i) and Σ ⊢ p : P ath ⋆ . (10) Σ ⊢ update p (χ, χ).P : τ ⇒ τ = P roc ⋆ (i) and Σ ⊢ p : P ath ⋆ and Σ ∪ Σ χ ⊢ P : P roc ⋆ (i) and |χ| ≤ i. (11) Σ ⊢ update p (χ, V).P : τ and χ = V, x and (p = . or χ = x j for all j) ⇒ τ = P roc ⋆ (i) and Σ ⊢ p : P ath ⋆ and Σ ∪ Σ χ ⊢ P : P roc ⋆ (i) and |χ| < i and Σ χ ⊢ V : T P S(j) and j ≤ i. (12) Σ ⊢ update . (x i , V).P : τ ⇒ τ = P rocLocal(i) and Σ, x : P rocLocal(i) ⊢ P : P rocLocal(i) and x : P rocLocal(i) ⊢ V : T P S(j) and j ≤ i.

Lemma B.4 (Generation lemma for networks)

• either (initial) ∅ ⊢ P : P roc(i),

• or (ongoing) ∅ ⊢ P : P roc(j). (4) ⊢ (νc T v)N : τ ⇒ τ = Net and ⊢ N : Net.

The following two propositions point out some properties of our type system and can be easily verified by induction of deductions.

By replacing in an arbitrary process " " by a location name (whose security level agrees with that of the process) and "." by a path not containing "." we get a process typeable with a process type. Proposition B.5 If Σ ⊢ P : P roc ⋆ (i) and Σ ⊢ p : P ath and j ≤ i, then Σ ⊢ P {l j / / , p/ /.} : P roc(i).

A process which has a given security level has also all bigger security levels. The proof follows easily observing that the nil process can be typed with an arbitrary security level and that all typing rules only check that the security level of the current process is bigger than other security levels.

Proposition B.6 Σ ⊢ P : P roc ⋆ (i) and i ≤ j imply Σ ⊢ P : P roc ⋆ (j).

As usual the "core" of the subject reduction proofs are substitution lemmas.

Lemma B.7 (Substitution lemma for trees, pointers, scripts and processes)

(2) If Σ, x : P rocLocal(j) ⊢ V : T P S(i) and Σ ⊢ P : P rocLocal(j), then

(4) If Σ, x : P rocLocal(j) ⊢ P : P roc ⋆ (i) and Σ ⊢ Q : P rocLocal(j), then Σ ⊢ P { Q/ / x} : P roc ⋆ (i). (5) If Σ ⊢ update p (χ, V).P : P roc(i) and Σ ⊢ T : T ree and T p,l i ,χ,V T ′ , Θ, then Σ ⊢ T ′ : T ree.

Proof The proofs of the first four points are standard by induction on V and P , respectively.

For (5) we need to consider three cases according to the shape of χ. We give the proof for χ = y ⋆ @x j , the remaining cases being similar. Let Θ = {s 1 , . . . , s n } and 1 ≤ k ≤ n. By construction s k = {m j / /x, p ′ k / /y}, for some m j and p ′ k such that ⊢ p ′ k : P ath ⋆ . By Lemma B.3 [START_REF] Hennessy | Resource Access Control in Systems of Mobile Agents[END_REF] or (11) Σ, x : Loc(j), y : P ath ⋆ ⊢ V : T P S(h) with h ≤ i. By Point (1) Σ ⊢ V s k : T P S(h). By construction T ′ is obtained from T by replacing top-down the nodes m j @p ′ k by V s k , so we can easily check that Σ ⊢ T ′ : T ree using the typing rules for trees. Proof We only consider some interesting cases.

and the reduction is by rule (go): We consider the ongoing case, the proof for the initial case being the same. In this case by Lemma B.3 [START_REF] Abiteboul | Data on the Web : From Relations to Semistructured Data and XML[END_REF] we have that ∅ ⊢ go m j .P : P roc(i) and then by Lemma B.3(7) ∅ ⊢ P : P roc(i). We conclude by applying the ongoing typing rules taking into account Proposition B.6.

and the reduction is by rule (run):

where p(T) p,l h , x h , x T, {{ P 1 / / x}, . . . , { P n / / x}}. From ⊢ N : Net, by Lemma B.4(3) ∅ ⊢ T : T ree. By construction P k = P ′ k {l h / / , p/ /.}, where P ′ k matches x h and therefore ∅ ⊢ P ′ k : P rocLocal(h) and then ∅ ⊢ P k : P roc(h) by Proposition B.5. We conclude by applying the ongoing typing rules taking into account Proposition B.6.

Case N ≡ l h [T || update p (χ, V).P | Q] and the reduction is by rule (update):

where p(T) p,l h ,χ,V T ′ , {s 1 , . . . , s n }. From ⊢ N : Net, by Lemma B.4(3) ∅ ⊢ T : T ree and

We consider the ongoing case with χ = y ⋆ @x j , the proof for the other cases being similar. In this case by Lemma B.7(5) ∅ ⊢ T ′ : T ree. By Lemma B.3 [START_REF] Abiteboul | Data on the Web : From Relations to Semistructured Data and XML[END_REF] we have that ∅ ⊢ update p (χ, V).P : P roc(i) and then by Lemma B.3 [START_REF] Hennessy | Resource Access Control in Systems of Mobile Agents[END_REF] or [START_REF] Hennessy | Information Flow vs Resource Access in the Asynchronous π-calculus[END_REF] x : Loc(j), y : P ath ⋆ ⊢ P : P roc(i). By construction s k = {m j /x, p ′ k /y}, for some m j and p ′ k such that ⊢ p ′ k : P ath ⋆ . By Lemma B.7(3) this gives ∅ ⊢ P s k : P roc(i). We conclude by applying the ongoing typing rules for processes.

C Safety proof

Proof

The proof is by induction on and by cases on the definition of source location using Generation and Substitution Lemmas.

In this case i = h and ⊢ N : Net using the initial typing rules. By Lemma B.4(4), (2), (3) ⊢ P | Q : P roc(h) which implies ⊢ P : P roc(h) by Lemma B.3 [START_REF] Abiteboul | Data on the Web : From Relations to Semistructured Data and XML[END_REF].

Case N

ν(l i [T ′ || update p (y ⋆ @x j , V).

) since p(T ′) p,l i ,y ⋆ @x j ,V T, {s 1 , . . . , s n } and P ′ s 1 ≡ P | R and Q ≡ R | P ′ s 2 | . . . |P ′ s n | Q ′ . By induction we have that ∅ ⊢ update p (χ, V).P : P roc(h) and then by Lemma B.3 [START_REF] Hennessy | Resource Access Control in Systems of Mobile Agents[END_REF] or [START_REF] Hennessy | Information Flow vs Resource Access in the Asynchronous π-calculus[END_REF] x : Loc(j), y : P ath ⋆ ⊢ P : P roc(h). By construction s k = {m j / /x, p ′ k / /y}, for some m j , p ′ k such that ⊢ p ′ k : P ath ⋆ . By Lemma B.7(1) this gives ∅ ⊢ P s k : P roc(h).

The proofs for the remaining cases are similar to the proof of the last case.