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Abstract. This paper deals with the problem of numerical approximation in the Cauchy-Dirichlet
problem for a scalar conservation law with a flux function having finitely many discontinuities. The
well-posedness of this problem was proved by Carrillo [J. Evol. Eq. 3 (2003) 687–705]. Classical
numerical methods do not allow us to compute a numerical solution (due to the lack of regularity of
the flux). Therefore, we propose an implicit Finite Volume method based on an equivalent formulation
of the initial problem. We show the well-posedness of the scheme and the convergence of the numerical
solution to the entropy solution of the continuous problem. Numerical simulations are presented in the
framework of Riemann problems related to discontinuous transport equation, discontinuous Burgers
equation, discontinuous LWR equation and discontinuous non-autonomous Buckley-Leverett equation
(lubrication theory).
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1. Introduction

Let Ω ⊂ R
d be an open Lipschitz subset of R

d, d ∈ N
∗, let A : R → R

d be a function which is continuous
except at some points of a finite set S, let u0 ∈ L∞(Ω); set Q := (0, T )×Ω. We consider the evolution problem

P(u0)

⎧⎨⎩
ut + div(A(u)) = 0, on Q,
u(0, ·) = u0, on Ω,
u = 0, on (0, T )× ∂Ω.

In this paper, the flux function A is allowed to have discontinuities of first type on a finite subset S of R. More
precisely, let s ∈ S, for i = 1, ..., d, let

Ai(s+) = lim
r↘s

Ai(r), Ai(s−) = lim
r↗s

Ai(r),
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and we assume that, at least for some i, Ai(s+) �= Ai(s−). In this paper, we propose an implicit finite volume
method for the resolution of the problem, address its numerical analysis (well-posedness and convergence of the
discrete problem) and present some numerical results.

Theoretical background

The mathematical analysis of scalar conservation laws with a discontinuous flux function starts with the work
of Carrillo [5,6]. In case where the flux function is at least continuous, there has been many works (we refer
to Andreianov, Benilan and Kružkov [1,4] in case the flux function is continuous, and to the seminal works of
Oleinik, Volpert and Kružkov [15,18,23] in case the flux function is at least Lipschitz continuous).

In case where the flux function is discontinuous, or continuous (at least has not the local Lipschitz regularity),
there are phenomena of propagation (of the values of the initial datum) at infinite speed, even in the L∞

framework. To be well-posed, the problem has therefore to be considered on a bounded domain. This in turn
raises the question of the boundary conditions. For conservation laws with a “regular” flux function (at least
locally Lipschitz continuous), the question has been examined first by Bardos et al. [2], second by Otto [19] in
a more general framework. In [6], as in our present work, the boundary datum is homogeneous, i.e. constant
(taken to be 0 after an obvious step of normalization by translation).

Numerical analysis

The analysis of the approximation of nonlinear hyperbolic problems thanks to the finite volume method
began in the mid 80’s, involving several authors as, for example, Cockburn et al. [7], Szepessy [20], Vila [22],
Kröner et al. [14], Eymard et al. [12]. In space dimension greater than 2, a major difficulty in the proof of
convergence of the numerical approximation is the lack of strong compactness estimates for this approximation,
like BV estimates for example (they may indeed not exist [9]). In the L∞ framework, one is therefore led to use
generalized notions of solution, as measure-valued solution (this goes back to DiPerna [11]) or entropy process
solution [12].

Organization of the paper

The paper is organized as follows:
• In Section 2, we recall the main results (due to Carrillo [6]) on P(u0). This leads us to introduce an

equivalent problem P̃(u0) which will be useful for the numerical analysis. We also outline the new
difficulties that arise when dealing with discontinuous flux functions, in terms of numerical procedure:
in particular, we state that classical Finite Volume methods cannot be applied to compute the numerical
solution of P(u0). This leads us in a natural way to define and analyze an alternate numerical method.

• In Section 3, we present an implicit Finite Volume scheme and state related mathematical results, in
particular the well-posedness of the scheme and the convergence of the method.

• In Section 4, numerical tests are presented: in particular, we focus on Riemann problems which allow
us to concentrate on the analysis of certain shocks and rarefaction waves peculiar to the framework
of discontinuous flux functions. We also extend the method to non-autonomous flux functions by to a
physical application that arises in lubrication theory.

Remark 1.1.
• In our numerical examples, the scalar conservation laws are source term free, therefore we have worked

with such conservation laws, i.e. without source term. Notice that the extension to such an equation as

ut + div(A(u)) = f

with, say f ∈ L1(0, T ;L∞(Ω)) is not straightforward (in particular the proof of Prop. 2.4 is more tricky
in case f �= 0, see [6]).

• We use the result of comparison-uniqueness of Carrillo [6] (see Sect. 3.3.3) and are therefore in the
same framework. In particular the boundary conditions are homogeneous. The possible extension to
non-homogeneous boundary conditions is questionable when they are spatially varying.
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2. An equivalent formulation

We note γsi = Ai(s+) −Ai(s−) and we assume that the flux has the following structure:⎧⎪⎪⎨⎪⎪⎩
A = φ+ J
φ ∈ C(R,Rd), φi(0) = 0, i = 1, ..., d
J(r) =

∑
s∈S, s≤0

γs sign−(r − s) +
∑

s∈S, s≥0

γs sign+(r − s),

where γs ∈ R
d for any s ∈ S (we denote N = card(S)) and

sign+(r) =

⎧⎨⎩
1 if r > 0

[0, 1] if r = 0
0 if r < 0

, sign−(r) =

⎧⎨⎩
0 if r > 0

[−1, 0] if r = 0
−1 if r < 0.

The notion of “entropy solution” is crucial for the well-posedness of the problem, as stated in the earlier works
of Kružkov [15]. In the framework of a bounded domain, we have to use “semi Kružkov entropy-flux pairs”.
Thus, u �→ (u− k)± are the so-called “semi Kružkov entropies” defined by

(u− k)+ =
{
u− k, if u ≥ k,

0, otherwise, and (u− k)− = (k − u)+.

For a regular flux function φ, functions sgn±
0 (u− k)(φ(u)− φ(k)) are the corresponding “semi Kružkov fluxes”,

where u �→ sgn±
0 (u) is the derivative of the function u �→ u± with value 0 at point 0. Of course, when dealing

with discontinuous flux functions, the definition of entropy solution has to be modified:

Definition 2.1. Let u0 ∈ L∞(Ω). The function (u, (χj)j∈S) ∈ L∞(Q)×L∞(Q)N is an entropy solution of P(u0)
if and only if

(i) the functions (χj)j∈S satisfy:

• if s ∈ S ∩ (−∞, 0), then χs ∈ sign−(u− s),
• if s ∈ S ∩ (0,+∞), then χs ∈ sign+(u− s),
• if s ∈ S ∩ {0}, then χs ∈ sign+(u) + sign−(u);

(ii) esslim
t→0

‖u(t, ·) − u0‖L1(Ω) = 0;

(iii) ut + div

(
φ(u) +

∑
s∈S

γs χs

)
= 0 in D′(Q);

(iv) for any ϕ ∈ D((0, T ) × R
d), ϕ ≥ 0, for any k ∈ R

± and for any ks ∈ sign±
0 (k − s),

∫
Q

(u− k)± ϕt +

⎛⎝sign±
0 (u− k) (φ(u) − φ(k)) +

∑
s∈S±(k)

γs (χs − ks)±

⎞⎠ · ∇ϕ ≥ 0,

with S+(k) = {s ∈ S, s ≥ k} and S−(k) = {s ∈ S, s ≤ k}.
As proposed by Carrillo [6], we set

v := u+
∑
s∈S

χs

then v ∈ (I + G)(u) where G is a maximal monotone operator in R:

G(r) =
∑

s∈S−(0)

sign−(r − s) +
∑

s∈S+(0)

sign+(r − s). (2.1)
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Then, u := g(v) where g := (I + G)−1 satisfies:
(i) I − g is nondecreasing, bounded and continuous;
(ii) g ∈ C0,1(R), g(0) = 0, g is nondecreasing and D(g−1) = D(I + G) = R.

However, the way to deal with the mathematical analysis led by Carrillo is based on a reformulation of
Problem P(u0), which is proved to be equivalent to

P̃(u0)

⎧⎨⎩
g(v)t + div(B(v)) = 0, on Q,
g(v)(0, ·) = u0, on Ω,
g(v) = 0, on (0, T ) × ∂Ω,

where u = g(v), B(v) = A ◦ g, B being a Lipschitz continuous function (to be further discussed). According to
Carrillo [5,6], we have the following definition:

Definition 2.2. Let u0 ∈ L∞(Ω). A function v ∈ L∞(Q) is an entropy solution of P̃(u0) if and only if
(i) esslimt→0 ‖g(v(t, ·)) − u0‖L1(Ω) = 0;
(ii) (g(v))t + div (B(v)) = 0 in D′(Q);
(iii) for any ϕ ∈ D((0, T ) × R

d), ϕ ≥ 0, for any k ∈ R
±,∫

Q

(g(v) − g(k))± ϕt + sign±
0 (v − k) (B(v) −B(k)) · ∇ϕ ≥ 0.

The following two propositions describe how the definition can be enlarged, first by including the initial
datum in the entropy inequality, second by considering a smaller set of constants k. This will be used in the
proof of convergence of the numerical approximation.

Proposition 2.3. A function v ∈ L∞(Q) is an entropy solution of P̃(u0) if and only if it satisfies the weak
equation: for all ϕ ∈ D([0, T )× Ω),∫

Q

g(v)ϕt +B(v) · ∇ϕ+
∫

Ω

u0 ϕ(0, ·) = 0 (2.2)

and the entropy condition: for any ϕ ∈ D([0, T ) × R
d), ϕ ≥ 0, for any k ∈ R

±,∫
Q

(g(v) − g(k))± ϕt + sign±
0 (v − k) (B(v) −B(k)) · ∇ϕ+

∫
Ω

(u0 − g(k))± ϕ(0, ·) ≥ 0. (2.3)

Proposition 2.4. A function v ∈ L∞(Q) is an entropy solution of P̃(u0) if and only if it satisfies items (i)–(ii)
of Definition 2.2 and the entropy condition

(iii’) for any ϕ ∈ D((0, T ) × R
d), ϕ ≥ 0, for any k ∈ R

± \ g−1 (S),∫
Q

(g(v) − g(k))± ϕt + sign±
0 (v − k) (B(v) −B(k)) · ∇ϕ ≥ 0.

The proof of Proposition 2.3 and Proposition 2.4 are given in Appendix A.

The direct analysis of P̃(u0) is easier than the one of P(u0) since regularity of the flux has been gained. Here,
we propose a simple and alternative proof of the regularity of the flux:

Proposition 2.5. The flux B is a Lipschitz-continuous function (with a Lipschitz constant which will be de-
noted L) with respect to v.
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Proof. Let us consider that the elements of S are ordered as

s−k < s−k+1 < ... < s−1(< s0 = 0) < s1 < ... < sk.

For s ∈ S, set Ψs(v) := sign±(g(v) − s). By construction, g = (I + G)−1 where G is defined by (2.1). An easy
computation shows that

∀si ≥ 0, Ψsi(v) :=

⎧⎨⎩
1
v − (si + i− 1)
0

if v ≥ si + i
if si + i− 1 < v < si + i
if v ≤ si + i− 1

∀s−i ≤ 0, Ψs−i(v) :=

⎧⎨⎩
0
v − (s−i − i)
−1

if v ≥ s−i − i
if s−i − i− 1 < v < s−i − i
if v ≤ s−i − i− 1.

In particular, Ψs is a piecewise linear function. Additionally, g being also piecewise linear, the function

B := v �→ φ ◦ g(v) +
∑

s∈S, s≤0

γs sign−(g(v) − s) +
∑

s∈S, s≥0

γs sign+(g(v) − s)

is a Lipschitz-continuous function. �

As a consequence of Proposition 2.5, we can define a map from L1(Q) into L1(Q) × L∞(Q)N by

M(v) =
(
g(v), {Ψs(v)}s∈S

)
.

The equivalence between P(u0) and P̃(u0) is stated in Theorem 2.6 and existence and uniqueness results are
presented in Theorem 2.7:

Theorem 2.6 [6]. Let v be an entropy solution of P̃(u0) then M(v) is an entropy solution of P(u0). Re-
ciprocally, let (u, {χs}s∈S) be an entropy solution of P(u0), then v := u +

∑
s∈S χs is an entropy solution

of P̃(u0).

Theorem 2.7 [6]. There is a unique g(v) such that v is an entropy solution of P̃(u0).

In the next sections, we focus on a Finite Volume method which would enable us to compute the entropy
solution of P(u0) and related mathematical results involving the well-posedness of the scheme and the con-
vergence of the discrete solution to the continuous one. For this, we will use the regularity properties of the
flux B. Thus, the formulation P̃(u0) is still the key-point of the method. Nevertheless, as a foreword of all the
forthcoming sections, let us simply state that explicit (in time) finite volume schemes would not allow us to
compute the solution for the following reasons:

• Explicit Finite Volume methods cannot be applied to compute the solution of P(u0) due to the lack
of regularity of the flux: in particular, the implementation of explicit schemes is based on a Courant-
Friedrichs-Lewy condition for which the Lipschitz constant of the flux plays a crucial role in terms of
stability. But the Lipschitz constant of u �→ A(u) is not even defined.

• When dealing with Problem P̃(u0), one may think that difficulties have vanished since v �→ B(v) is
Lipschitz-continuous. However the difficulty is now that the inverse of g is non-univoque so that the
value of v cannot be deduced from the value of g(v).

Consequently, another strategy needs to be defined to solve numerically Problem P(u0) or, alternatively, P̃(u0):
to this effect, we propose an implicit Finite Volume procedure, which is described and analysed in the following
sections.
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3. Finite Volume scheme

3.1. Mesh and scheme

Mesh

Let T be a family of disjoint connected polygonal subsets of Ω (called control volumes) such that Ω is the
union of the closures of the elements of this family and such that the common interface of two control volumes
is included in an hyperplane of R

d. Let h be the size of the mesh: h := sup{diam(K), K ∈ T }. Notice that
h < +∞ for the set Ω is bounded. We suppose that the mesh has the following regularity property: there exists
α > 0 such that {

αhd ≤ |K|,
|∂K| ≤ α−1hd−1 , ∀K ∈ T , (3.1)

where |K| is the d-dimensional Lebesgue measure of K and |∂K| is the (d − 1)-dimensional Lebesgue measure
of ∂K. If two control volumes K and L have an edge in common, i.e. K|L := K ∩ L �= ∅, we say that L is a
neighbour of K, denoted, quite abusively, L ∈ ∂K. We denote by nKL the outward unit normal to K on K|L.
To each edges σ of a control volume K which is part of ∂Ω is associated a fictitious control volume L, considered
to belong to ∂K. We denote by T ∗ the set of control volumes extended by this process.

Numerical fluxes

The numerical fluxes are computed by means of numerical flux functions Fn
KL : R

2 → R, n ∈ N, K ∈ T ,
L ∈ ∂K with the following properties of

• consistency:
∀v ∈ R, Fn

KL(v, v) = |K|L|B(v) · nK|L; (3.2)
• conservativity:

∀(v, w) ∈ R
2, Fn

KL(v, w) = −Fn
LK(w, v); (3.3)

• monotony:
for all w ∈ R, Fn

KL(·, w) is a non-decreasing function on R; (3.4)
• regularity:

for all w ∈ R,
1

|K|L|F
n
KL(·, w) is a L-Lipschitz continuous function on R. (3.5)

Notice that the properties above are supposed to be satisfied whatever K ∈ T , L ∈ ∂K. In particular, by
equation (3.3), we have:

• for all v ∈ R, Fn
KL(v, ·) is a non-increasing function on R;

• for all v ∈ R,
1

|K|L|F
n
KL(v, ·) is a L-Lipschitz continuous function on R.

Also notice that we have the following remarkable identities:∑
L∈∂K

Fn
KL(v, v) = 0, ∀v ∈ R, ∀n ∈ N, ∀K ∈ T (3.6)

and, if (aK)K∈T ∗ is given,∑
K∈T

∑
L∈∂K

Fn
KL(aK , aL) =

∑
K∈T

∑
L∈∂K∩∂Ω

Fn
KL(aK , aL), ∀n ∈ N. (3.7)

Equation (3.6) is a direct consequence of equation (3.2); the left hand-side of the equation is indeed∫
∂K

B(v) · n
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where n is the outward unit normal to K, and this last quantity is 0 by Green Formula. To prove equation (3.7),
we first notice that any sum of the type ∑

K∈T

∑
L∈∂K

tKL

can be decomposed as∑
K∈T

∑
L∈∂K\∂Ω

tKL +
∑
K∈T

∑
L∈∂K∩∂Ω

tKL =
∑
L∈T

∑
K∈∂L\∂Ω

tKL +
∑
K∈T

∑
L∈∂K∩∂Ω

tKL

=
∑
K∈T

∑
L∈∂K\∂Ω

tLK +
∑
K∈T

∑
L∈∂K∩∂Ω

tKL

=
∑
K∈T

∑
L∈∂K

tLK +
∑
K∈T

∑
L∈∂K∩∂Ω

(tKL − tLK)

so that ∑
K∈T

∑
L∈∂K

(tKL − tLK) =
∑
K∈T

∑
L∈∂K∩∂Ω

(tKL − tLK).

In particular, we have:

Lemma 3.1. Let t : T ∗ × T ∗ → R be given. We have

∑
K∈T

∑
L∈∂K

tKL =
1
2

∑
K∈T

∑
L∈∂Kint

(tKL + tLK) +
∑
K∈T

∑
L∈∂K∩∂Ω

tKL

where, given a control volume K ∈ T , ∂Kint is the set of the edges of K which are not contained in ∂Ω.

We apply this last result to tKL := Fn
KL(aK , aL), which satisfies tKL = −tLK by the property of conserva-

tivity (3.3), to get equation (3.7).

Remark 3.2. The numerical fluxes are supposed to be globally Lipschitz although only their locally Lipschitz
character will be of use, since the numerical solution of the Finite Volume scheme a priori stays in a ball
of L∞(Ω), as proved in Lemma 3.8.

Finite Volume scheme

The entropy solution of P(u0) is approached with the help of the implicit Finite Volume scheme defined by
the following procedure:

u0
K =

1
|K|

∫
K

u0(x) dx, K ∈ T . (3.8)

Find vn+1
K such that

g(vn+1
K ) = un

K − δt

|K|
∑

L∈∂K

Fn
KL(vn+1

K , vn+1
L ), n ∈ N, K ∈ T , (3.9)

un+1
K = g(vn+1

K ), n ∈ N, K ∈ T . (3.10)

In equation (3.9), vn+1
L is defined to be 0 if L ∈ T ∗ \ T , i.e. if L is a fictitious control volume L (considered to

belong to ∂K).

Remark 3.3. In equation (3.9), vn+1
K is searched as a solution of a nonlinear system with card(T ) unknowns.
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Definition 3.4. A sequence (u, v)n
K is a sub-solution (resp. a super-solution) of equation (3.9)–(3.10) if equa-

tion (3.10) holds true while equation (3.9) is relaxed as an inequality with sign ≤ (resp. sign ≥) and, also,
vn

L ≤ 0 (resp. vn
L ≥ 0) for all fictitious control volume L ∈ T ∗ \ T .

Definition 3.5. The characteristic function of a set X is denoted by 1X . Given a set of values (un
K), n ∈ N,

K ∈ T , we let un denote the piecewise constant function on Ω defined by

un =
∑
K∈T

un
K1K ,

and also denote by uh the piecewise constant function on Q defined by

uh =
∑
n∈N

un+11[nδt,(n+1)δt).

3.2. Well-posedness of the Finite Volume scheme

A priori estimates

Lemma 3.6. Assume (u, v)n
K is solution to equations (3.9)–(3.10) and (ũ, ṽ)n

K is sub-solution to equations (3.9)–
(3.10). Then we have the L1-estimates∫

Ω

(ũn+1 − un+1)+ ≤
∫

Ω

(ũn − un)+, ∀n ∈ N. (3.11)

Proof. By monotony of the numerical fluxes, the right hand-side of (3.9) defines a function which is non-
decreasing with respect to the variable vn+1

L . It is also non-decreasing with respect to the variable un
K , therefore

we have

un+1
K ≤ un

K�ũn
K − δt

|K|
∑

L∈∂K

Fn
KL(vn+1

K , vn+1
L �ṽn+1

L )

where a�b := max(a, b) for a, b real numbers. Similarly, we have

ũn+1
K ≤ un

K�ũn
K − δt

|K|
∑

L∈∂K

Fn
KL(ṽn+1

K , vn+1
L �ṽn+1

L ).

The value of vn+1
K �ṽn+1

K is either vn+1
K or ṽn+1

K but in any case, in virtue of equation (3.10) and of the fact that
g is non-decreasing, we have

un+1
K �ũn+1

K ≤ un
K�ũn

K − δt

|K|
∑

L∈∂K

Fn
KL(vn+1

K �ṽn+1
K , vn+1

L �ṽn+1
L ).

Subtract both terms of the identity (3.9) to this inequality, and use the formula (a− b)+ = a�b− b for a, b real
numbers to deduce that

(ũn+1
K − un+1

K )+ ≤ (ũn
K − un

K)+ − δt

|K|
∑

L∈∂K

(Fn
KL(vn+1

K �ṽn+1
K , vn+1

L �ṽn+1
L ) − Fn

KL(vn+1
K , vn+1

L )).

Multiply by |K|, then sum this last inequality over K ∈ T and use equation (3.7) to get∫
Ω

(ũn+1 − un+1)+ ≤
∫

Ω

(ũn − un)+ − δt
∑
K∈T

∑
L∈∂K∩∂Ω

(Fn
KL(vn+1

K �ṽn+1
K , vn+1

L �ṽn+1
L ) − Fn

KL(vn+1
K , vn+1

L )).
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By definition of vn+1
L for L ∈ T ∗ \ T , the last term here is

−δt
∑
K∈T

∑
L∈∂K∩∂Ω

(Fn
KL(vn+1

K �ṽn+1
K , 0) − Fn

KL(vn+1
K , 0))

which is non-negative by monotony of the numerical fluxes. This proves the lemma. �
An immediate consequence of Lemma 3.6 is the following estimate, which we apply then to prove

an L∞-estimate.

Corollary 3.7. Assume (u, v)n
K is solution to equations (3.9)–(3.10) and (ũ, ṽ)n

K is sub-solution to equa-
tions (3.9)–(3.10). Then we have ∫

Ω

(ũn − un)+ ≤
∫

Ω

(ũ0 − u0)+. (3.12)

Lemma 3.8. Let T > 0 be given. Any solution uh of equations (3.8)–(3.10) satisfies

‖uh‖L∞(Ω×(0,T )) ≤ ‖u0‖L∞(Ω). (3.13)

Remark 3.9. We have vh ∈ (I + G)(uh) where G is a maximal monotone graph which sends bounded subsets
of R on bounded subsets of R, in particular the a priori estimate on the L∞-norm of uh gives an a priori
estimate on the L∞-norm of vh.

Proof. Notice that, given α ≤ 0, there exists β ≤ 0 such that α = g(β). For K ∈ T ∗, set

ũn
K := −‖u0‖L∞(Ω),

and let ṽn
K ≤ 0 be such that equation (3.10) holds. Since ũn

K actually does not depend on K, we can choose ṽn
K

independent on K also. Then we have ∑
L∈∂K

Fn
KL(vn+1

K , vn+1
L ) = 0

for all K ∈ T . Consequently, (ũ, ṽ)n
K is a sub-solution to equations (3.9)–(3.10). If u is a solution to equa-

tions (3.8)–(3.10), we deduce from Corollary 3.7 that∫
Ω

(ũn − un)+ ≤
∫

Ω

(ũ0 − u0)+

for n ≤ T/δt. Since (ũ0 − u0)+ = 0, we have (ũn − un)+ = 0, which gives uh ≥ −‖u0‖L∞(Ω). We apply this
result to −uh to conclude to (3.13). �
Theorem 3.10. Assume u0 ∈ L∞(Ω), then the Finite Volume scheme (3.8)–(3.10) admits a solution (uh, vh),
where uh is uniquely determined.

Proof. Uniqueness is a consequence of Lemma 3.6. As in [12], we use the topological degree of Brouwer to prove
existence. Let n ∈ N be given, suppose that the existence of u1, . . . , un satisfying equations (3.9)–(3.10) has
been proved. Let T > 0, T ≥ (n+2)δt, let P denote the number of elements of T . We see equations (3.9)–(3.10)
as an equation

(g −G)(vn+1) = 0 (3.14)
in R

P (g acting component by component on R
P ). By Lemma 3.8 and Remark 3.9, equation (3.14) has no

solution in ∂B(0, R′) for a given R′ > 0 (depending on ‖u0‖L∞(Ω)). Here, B(0, R′) is the open ball of center 0,
radius R′ in R

P . Actually, the proof of Lemma 3.8 readily adapts to show that, more generally, the equation

(g − λG)(un+1) = 0, λ ∈ [0, 1]
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has no solution in ∂B(0, R′). By homotopy invariance of the topological degree, we have deg(g−G, 0, B(0, R′)) =
deg(g, 0, B(0, R′)). The latter is not 0 since g maps R onto R, therefore the Finite Volume scheme admits a
solution. �

3.3. Convergence of the Finite Volume method

3.3.1. Entropy inequalities

It is the conjunction of local discrete entropy inequalities (Lem. 3.11) with the consistency of the scheme
(the latter proved with the help of the so-called weak BV inequality, see [12] and Lem. 3.13) which shows
that the solution uh of the Finite Volume scheme is an approximate entropy solution to P(u0), as asserted in
Theorem 3.12.

Lemma 3.11. Let (uh, vh) be the solution to equations (3.8)–(3.10). Then, for all k ∈ R, we have: for all
n ∈ N, for all K ∈ T s.t. ∂K ∩ ∂Ω = ∅,

(un+1
K − g(k))+ ≤ (un

K − g(k))+ − δt

|K|
∑

L∈∂K

Fn
KL(vn+1

K �k, vn+1
L �k). (3.15)

When ∂K ∩ ∂Ω �= ∅, equation (3.15) still holds true if k ≥ 0.

Proof. The proof is very similar to the one of Lemma 3.6. By a monotony argument, we deduce from equa-
tion (3.9) that

un+1
K ≤ un

K�g(k) − δt

|K|
∑

L∈∂K

Fn
KL(vn+1

K , vn+1
L �k).

Let K ∈ T s.t. ∂K ∩ ∂Ω = ∅. By equation (3.6) and a monotony argument, we have

g(k) = g(k) − δt

|K|
∑

L∈∂K

Fn
KL(k, k) ≤ un

K�g(k) − δt

|K|
∑

L∈∂K

Fn
KL(k, vn+1

L �k),

and the last inequality still holds if ∂K ∩ ∂Ω �= ∅ and k ≥ 0. By equation (3.10), and the monotony of g, we
then deduce equation (3.15) according to the cases vn+1

K ≤ k or vn+1
K > k. �

Theorem 3.12. Assume that equation (3.1) holds. A solution (uh, vh) to equations (3.8)–(3.10) satisfies the
following approximate entropy inequalities: for all real non-negative k, for all non-negative test function ϕ ∈
D([0, T ) × R

d),∫
Q

(uh − g(k))+ϕt + sgn+
0 (vh − k)(B(vh) −B(k)) · ∇ϕ+

∫
Ω

(u0 − g(k))+ϕ(0, ·) ≥ η(h, δt, ϕ) (3.16)

where η(h, δt, ϕ) → 0 when h, δt → 0. The approximate entropy inequality (3.16) is also satisfied for k ≤ 0 if
ϕ ∈ D([0,+∞) × Ω) is non-negative.

Proof. We will prove equation (3.16) in the case k ≥ 0, ϕ ∈ D([0, T ) × R
d) non-negative (the proof in the case

where k is any real and ϕ vanishes on ∂Ω is actually more easy). For K ∈ T , n ∈ N, denote by ϕn
K be the mean

value of ϕ over the space-time cell [nδt, (n+ 1)δt) ×K:

ϕn
K :=

1
δt|K|

∫ (n+1)δt

nδt

∫
K

ϕ(t, x) dxdt.
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Since uh and vh are piecewise constant functions, the first sum in equation (3.16) reads∫
Q

(uh − g(k))+ϕt + sgn+
0 (vh − k)(B(vh) − B(k)) · ∇ϕ

=
∑
n∈N

∑
K∈T

∫ (n+1)δt

nδt

∫
K

(un+1
K − g(k))+ϕt + sgn+

0 (vn+1
K − k)(B(vn+1

K ) −B(k)) · ∇ϕ

=
∑
n∈N

∑
K∈T

{
(un+1

K − g(k))+
(∫

K

ϕ((n+ 1)δt, ·) −
∫

K

ϕ(nδt, ·)
)

+ sgn+
0 (vn+1

K − k)(B(vn+1
K ) −B(k)) ·

∑
L∈∂K

∫ (n+1)δt

nδt

∫
K|L

ϕnK|L

=
∑
n∈N

∑
K∈T

(
(un

K − g(k))+ − (un+1
K − g(k))+

) ∫
K

ϕ(nδt, ·) −
∑
K∈T

(u0
K − g(k))+

∫
K

ϕ(0, ·)

+
∑
n∈N

∑
K∈T

∑
L∈∂K

sgn+
0 (vn+1

K − k)(B(vn+1
K ) −B(k)) ·

∫ (n+1)δt

nδt

∫
K|L

ϕnK|L.

Use the discrete entropy inequalities (Lem. 3.11), i.e. multiply the inequality (3.15) by∫
K

ϕ(nδt, ·)

and sum over n,K, to see that the left hand-side of equation (3.16) is bounded from below by η(h, δt, ϕ) :=
η0(h, δt, ϕ) + ηc(h, δt, ϕ) where

η0(h, δt, ϕ) =
∫

Ω

[(u0 − g(k))+ − (u0,h − g(k))]+ϕ(0, ·),

ηc(h, δt, ϕ) =
∑
n∈N

∑
K∈T

∑
L∈∂K

sgn+
0 (vn+1

K − k)(B(vn+1
K ) −B(k)) ·

∫ (n+1)δt

nδt

∫
K|L

ϕnK|L

+
∑
n∈N

∑
K∈T

∑
L∈∂K

Fn
KL(vn+1

K �k, vn+1
L �k) δt|K|

∫
K

ϕ(nδt, ·).

Since u �→ (u − g(k))+ is a 1-Lipschitz continuous function, the first error term η0(h, δt, ϕ) is bounded by

‖ϕ(·, 0)‖L∞(Ω)‖u0 − u0,h‖L1(Ω),

therefore it tends to 0 with h. To prove that ηc(h, δt, ϕ) tends to 0 with h, δt, we write sgn+
0 (vn+1

K −k)(B(vn+1
K )−

B(k)) = B(vn+1
K �k) −B(k) and use equation 3.1 to get

∑
n∈N

∑
K∈T

∑
L∈∂K

sgn+
0 (vn+1

K − k)(B(vn+1
K ) −B(k)) ·

∫ (n+1)δt

nδt

∫
K|L

ϕnK|L

=
1
2

∑
n∈N

∑
K∈T

∑
L∈∂Kint

(B(vn+1
K �k) −B(vn+1

L �k)) ·
∫ (n+1)δt

nδt

∫
K|L

ϕnK|L

+
∑
n∈N

∑
K∈T

∑
L∈∂K∩∂Ω

(
B(vn+1

K �k) −B(k)
)
·
∫ (n+1)δt

nδt

∫
K|L

ϕnK|L.
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Let

ϕn
K|L :=

1
δt|K|L|

∫ (n+1)δt

nδt

∫
K|L

ϕ

denote the mean value of ϕ over (nδt, (n+ 1)δt) ×K|L. The property of consistency (3.2) shows that we have

∑
n∈N

∑
K∈T

∑
L∈∂K

sgn+
0 (vn+1

K − k)(B(vn+1
K ) −B(k)) ·

∫ (n+1)δt

nδt

∫
K|L

ϕnK|L

=
1
2

∑
n∈N

δt
∑
K∈T

∑
L∈∂Kint

(
Fn

KL(vn+1
K �k, vn+1

K �k) − Fn
KL(vn+1

L �k, vn+1
L �k)

)
ϕn

K|L

+
∑
n∈N

δt
∑
K∈T

∑
L∈∂K∩∂Ω

(Fn
KL(vn+1

K �k, vn+1
K �k) − Fn

KL(k, k))ϕn
K|L.

In order to compare both terms in ηc(h, δt, ϕ), first we transform the previous equality as

∑
n∈N

∑
K∈T

∑
L∈∂K

sgn+
0 (vn+1

K − k)(B(vn+1
K ) −B(k)) ·

∫ (n+1)δt

nδt

∫
K|L

ϕnK|L

=
1
2

∑
n∈N

δt
∑
K∈T

∑
L∈∂Kint

(
Fn

KL(vn+1
K �k, vn+1

K �k) − Fn
KL(vn+1

K �k, vn+1
L �k)

)
ϕn

K|L

−
(
Fn

KL(vn+1
L �k, vn+1

L �k) − Fn
KL(vn+1

K �k, vn+1
L �k)

)
ϕn

K|L

+
∑
n∈N

δt
∑
K∈T

∑
L∈∂K∩∂Ω

(Fn
KL(vn+1

K �k, vn+1
K �k) − Fn

KL(k, k))ϕn
K|L

and, second, setting

ϕn
K :=

1
|K|

∫
K

ϕ(nδt, ·),

we transform the second term of ηc(h, δt, ϕ) as follows (we use, successively, the discrete version of the Stokes
Formula on a control volume (3.6) and the formula of discrete integration by parts of Lem. 3.1):

∑
n∈N

δt
∑
K∈T

∑
L∈∂K

Fn
KL(vn+1

K �k, vn+1
L �k)ϕn

K

=
∑
n∈N

δt
∑
K∈T

∑
L∈∂K

(
Fn

KL(vn+1
K �k, vn+1

L �k) − Fn
KL(vn+1

K �k, vn+1
K �k)

)
ϕn

K

=
1
2

∑
n∈N

δt
∑
K∈T

∑
L∈∂Kint

(
Fn

KL(vn+1
K �k, vn+1

L �k) − Fn
KL(vn+1

K �k, vn+1
K �k)

)
ϕn

K

−
(
Fn

KL(vn+1
K �k, vn+1

L �k) − Fn
KL(vn+1

L �k, vn+1
L �k)

)
ϕn

L

+
∑
n∈N

δt
∑
K∈T

∑
L∈∂K∩∂Ω

(
Fn

KL(vn+1
K �k, vn+1

L �k) − Fn
KL(vn+1

K �k, vn+1
K �k)

)
ϕn

K .
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Then ηc(h, δt, ϕ) is decomposed as the sum of three terms ηc
j(h, δt, ϕ), j = 1, 2, 3 where

ηc
1(h, δt, ϕ) =

1
2

∑
n∈N

δt
∑
K∈T

∑
L∈∂Kint(

Fn
KL(vn+1

K �k, vn+1
L �k) − Fn

KL(vn+1
K �k, vn+1

K �k)
)
(ϕn

K − ϕn
K|L),

ηc
2(h, δt, ϕ) = −1

2

∑
n∈N

δt
∑
K∈T

∑
L∈∂Kint(

Fn
KL(vn+1

K �k, vn+1
L �k) − Fn

KL(vn+1
L �k, vn+1

L �k)
)
(ϕn

L − ϕn
K|L),

ηc
3(h, δt, ϕ) =

∑
n∈N

δt
∑
K∈T

∑
L∈∂K∩∂Ω

(Fn
KL(vn+1

K �k, vn+1
K �k) − Fn

KL(k, k)) ϕn
K|L

+
(
Fn

KL(vn+1
K �k, vn+1

L �k) − Fn
KL(vn+1

K �k, vn+1
K �k)

)
ϕn

K .

If L ∈ ∂K ∩ ∂Ω, then vn+1
L �k = 0�k = k (recall that k ≥ 0), hence, by monotony of the numerical flux,

Fn
KL(vn+1

K �k, vn+1
L �k) ≥ Fn

KL(k, k) and we have

ηc
3(h, δt, ϕ) ≥

∑
n∈N

δt
∑
K∈T

∑
L∈∂K∩∂Ω

(Fn
KL(vn+1

K �k, vn+1
K �k) − Fn

KL(k, k))(ϕn
K|L − ϕn

K).

We still denote by ηc
3(h, δt, ϕ) the right hand-side of this inequality (this does not affect Eq. (3.16)). The

differences ϕn
K|L − ϕn

K are of order h+ δt [12]:

∀K ∈ T , L ∈ ∂K, |ϕn
K|L − ϕn

K | ≤ ‖ϕ‖W 1,∞(Q)(h+ δt).

Under the following weak BV -estimate (see Lem. 3.13), we then deduce that ηc
j(h, δt, ϕ) = O(

√
h+ δt), j = 1, 2

and ηc
3(h, δt, ϕ) = O(h+ δt) (see [12,24] for the detail of the constants involved in these estimates). This shows

that η(h, δt, ϕ) tends to 0 when h, δt→ 0 and achieves the proof of Theorem 3.12. �

3.3.2. Weak BV estimate

The terminology “weak BV estimate” together with the general approach to tackle numerical schemes lacking
uniform BV estimates, was introduced in [8]. Such “weak BV estimates” for general three-points monotonous
Finite Volume schemes were proved in [12] (see also the more recent work [13] on that subject). Here, we
propose a similar result.

Lemma 3.13. Assume that equation (3.1) holds. A solution (uh, vh) to equations (3.8)–(3.10) satisfies the
following inequality: for all N ∈ N, k ≥ 0,

∑
n≤N

δt
∑
K∈T

∑
L∈∂Kint

∣∣Fn
KL(vn+1

K �k, vn+1
L �k) − Fn

KL(vn+1
K �k, vn+1

K �k)
∣∣ ≤ C(α,Nδt)√

h+ δt
· (3.17)

Proof. The proof is a variation on the proof of the BV estimate given in [12]. Set T := (N + 1)δt. Let
R := ‖u0‖L∞(Ω) + ‖f‖L1(0,T ;L∞(Ω)). The a priori estimate (3.13) shows that ‖uh‖L∞(Q) ≤ R. Since uh = g(vh),
there also exists R′ ≥ R such that ‖vh‖L∞(Q) ≤ R′. We denote by C various constants which depend on T , Ω,



712 S. MARTIN AND J. VOVELLE

α and R′. Multiply the discrete equation (3.9) by |K|vn+1
K and sum the result over n ≤ N, K ∈ T to obtain

∑
n≤N

δt
∑
K∈T

vn+1
K

( ∑
L∈∂K

Fn
KL(vn+1

K , vn+1
L )

)
= −

∑
n≤N

∑
K∈T

|K|(un+1
K − un

K)vn+1
K

= −
∑
n≤N

∑
K∈T

|K|(g(vn+1
K ) − g(vn

K))vn+1
K .

We change the indexation of the sum over n according to the formula∑
n≤N

H(vn+1, vn) =
∑

n,m∈ΔN

H(vm, vn), ΔN := {n,m ≤ N, |n−m| ≤ 1, vn < vm}, (3.18)

which is valid for any H(v, w) ∈ C(R2) which vanishes for v = w. We obtain

∑
n≤N

δt
∑
K∈T

vn+1
K

( ∑
L∈∂K

Fn
KL(vn+1

K , vn+1
L ) − |K|fn

K

)
= −

∑
n,m∈ΔN

∑
K∈T

|K|(g(vm
K ) − g(vn

K))vm
K .

Then, for w > v, we use the inequality

(g(w) − g(v))w = w

∫ w

v

g′(s)ds ≥
∫ w

v

sg′(s)ds = −
∫ w

v

g +
[
sg(s)

]w
v

to obtain ∑
n≤N

δt
∑
K∈T

vn+1
K

( ∑
L∈∂K

Fn
KL(vn+1

K , vn+1
L )

)
≤

∑
n,m∈ΔN

∑
K∈T

|K|
∫ vm

K

vn
K

g −
[
sg(s)

]vm
K

vn
K

.

By a new change of the indexation (the converse of (3.18)), we have

∑
n≤N

δt
∑
K∈T

vn+1
K

( ∑
L∈∂K

Fn
KL(vn+1

K , vn+1
L )

)
≤

∑
n≤N

∑
K∈T

|K|
(∫ vn+1

K

vn
K

g −
[
sg(s)

]vn+1
K

vn
K

)

=
∑
K∈T

|K|
(∫ vN+1

K

v0
K

g −
[
sg(s)

]vN+1
K

v0
K

)
≤ C. (3.19)

Using discrete divergence equation (3.6), we infer∑
n≤N

δt
∑
K∈T

∑
L∈∂K

vn+1
K (Fn

KL(vn+1
K , vn+1

L ) − Fn
KL(vn+1

K , vn+1
K )) ≤ C.

We then use the formula of discrete integration by parts of Lemma 3.1 to obtain

∑
n≤N

δt
∑
K∈T

∑
L∈∂Kint

[
vn+1

K (Fn
KL(vn+1

K , vn+1
L ) − Fn

KL(vn+1
K , vn+1

K ))

− vn+1
L (Fn

KL(vn+1
K , vn+1

L ) − Fn
KL(vn+1

L , vn+1
L ))

]
≤ C − 2

∑
n≤N

δt
∑
K∈T

∑
L∈∂K∩∂Ω

vn+1
K (Fn

KL(vn+1
K , vn+1

L ) − Fn
KL(vn+1

K , vn+1
K )).
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The numerical fluxes being L|K|L|-Lipschitz continuous (see Eq. (3.5)), there is a bound

|vn+1
K (Fn

KL(vn+1
K , vn+1

L ) − Fn
KL(vn+1

K , vn+1
K ))| ≤ C|K|L|.

Since ∑
K∈T

∑
L∈∂K∩∂Ω

|K|L| = |∂Ω|,

we obtain the bound∑
n≤N

δt
∑
K∈T

∑
L∈∂Kint

[
vn+1

K (Fn
KL(vn+1

K , vn+1
L ) − Fn

KL(vn+1
K , vn+1

K ))

− vn+1
L (Fn

KL(vn+1
K , vn+1

L ) − Fn
KL(vn+1

L , vn+1
L ))

]
≤ C. (3.20)

Now we proceed as in the beginning of the proof: we change the indexation over K,L (analogously to equa-
tion (3.18)) by the formula∑

K∈T

∑
L∈∂Kint

H(vK , vL) =
∑

(K,L)∈Eint

H(vK , vL), Eint := {K,L ∈ T , vK > vL}, (3.21)

which is valid for any H(v, w) ∈ C(R2) which vanishes for v = w, and, for w > v, use the identity

w (Fn
KL(w, v) − Fn

KL(w,w)) − v (Fn
KL(w, v) − Fn

KL(v, v))

=
∫ w

v

d
ds

(s (Fn
KL(w, v) − Fn

KL(s, s))) ds

= −
∫ w

v

s
d
ds
Fn

KL(s, s) ds+
∫ w

v

(Fn
KL(w, v) − Fn

KL(s, s)) ds

to deduce from equation (3.20) the estimate

∑
n≤N

δt
∑

(K,L)∈Eint

∫ vn+1
K

vn+1
L

(
Fn

KL(vn+1
K , vn+1

L ) − Fn
KL(s, s)

)
ds

≤ C +
∑
n≤N

δt
∑

(K,L)∈Eint

∫ vn+1
K

vn+1
L

s
d
ds
Fn

KL(s, s) ds. (3.22)

Use again a change of indexation (3.21) and the discrete integration formula in Lemma 3.1 to reduce the sum
in the right hand-side of equation (3.22) to a sum over the boundary of Ω, as follows:

∑
n≤N

δt
∑

(K,L)∈Eint

∫ vn+1
K

vn+1
L

s
d
ds
Fn

KL(s, s) ds

=
∑
n≤N

δt
∑
K∈T

∑
L∈∂Kint

∫ vn+1
K

vn+1
L

s
d
ds
Fn

KL(s, s) ds

=
∑
n≤N

δt
∑
K∈T

∑
L∈∂K

∫ vn+1
K

0

s
d
ds
Fn

KL(s, s) ds−
∑
n≤N

δt
∑
K∈T

∑
L∈∂K∩∂Ω

∫ vn+1
K

0

s
d
ds
Fn

KL(s, s) ds

= −
∑
n≤N

δt
∑
K∈T

∑
L∈∂K∩∂Ω

∫ vn+1
K

0

s
d
ds
Fn

KL(s, s) ds by equation (3.6).
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The last term here is bounded by a constant C. From equation (3.22), we deduce

∑
n≤N

δt
∑

(K,L)∈Eint

∫ vn+1
K

vn+1
L

(
Fn

KL(vn+1
K , vn+1

L ) − Fn
KL(s, s)

)
ds ≤ C,

and, by monotony of v �→ Fn
KL(v, s),

∑
n≤N

δt
∑

(K,L)∈Eint

∫ vn+1
K

vn+1
L

(
Fn

KL(vn+1
K , vn+1

L ) − Fn
KL(vn+1

K , s)
)
ds ≤ C. (3.23)

Set Ψ(s) := −Fn
KL(vn+1

K , s): this is a non-decreasing, Lipschitz continuous function. If it is (strictly) increasing,
then we have, for w > v, and by the change of variable σ := Ψ(s) − Ψ(v) (with inverse s = Φ(σ)):

∫ w

v

(Ψ(s) − Ψ(w)) ds =
∫ Ψ(w)−Ψ(v)

0

σΦ′(σ) dσ ≥
∫ Ψ(w)−Ψ(v)

0

σ
1

Lip(Ψ)
dσ =

1
2Lip(Ψ)

(Ψ(w) − Ψ(v))2. (3.24)

If Ψ is not strictly increasing, then we obtain equation (3.24) by approaching Ψ by s �→ Ψ(s)+εs. By monotony
of Ψ, we have furthermore ∫ w

v

(Ψ(s) − Ψ(w)) ds ≥ 1
2Lip(Ψ)

(Ψ(w) − Ψ((v�k)⊥w))2

for every k ∈ R. Noticing that

Fn
KL(vn+1

K �k, vn+1
L �k) − Fn

KL(vn+1
K �k, vn+1

K �k) = Ψ(w) − Ψ((v�k)⊥w)

for v = vn+1
L , w = vn+1

K , we deduce from equation (3.23) the estimate

∑
n≤N

δt
∑

(K,L)∈Eint

1
2L|K|L| |F

n
KL(vn+1

K �k, vn+1
L �k) − Fn

KL(vn+1
K �k, vn+1

K �k)|2 ≤ C.

The Cauchy-Schwarz inequality then gives equation (3.17). This concludes the proof of the lemma. �

3.3.3. Convergence

Theorem 3.14. Let (Tn) be a sequence of meshes of size hn converging to 0, for which the condition of
uniformity (3.1) holds uniformly in n. Let (un, vn) be the numerical solution defined by the scheme (3.8)–(3.10).
Let v be an entropy solution to Problem P̃(u0, f). Then, for every 1 ≤ p < +∞, (un) converges strongly
in Lp(Q) to the entropy solution to g(v).

Proof. We give the sketch of the proof of convergence. It is based on two results. First, the following result of
(weak) compactness, based on the uniform L∞ estimate on (vn) (see Rem. 3.9) and proved in [12].

Proposition 3.15. There exists a function v∞ ∈ L∞(Q×[0, 1]) and a subsequence still denoted by (vn) such that

ψ(vn) →
∫ 1

0

ψ(v∞(·, α)) dα in L∞(Q) w − ∗

for every ψ ∈ C(R).
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We use this result of compactness (which can be seen as a variation over the result of convergence of a bounded
sequence of solutions to a measure-valued solution, as in compensated-compactness technique, see [21] for
instance) to pass to the limit in the approximate entropy inequality (3.16). We obtain the following generalized
entropy inequality: for all k ≥ 0, for all non-negative test function ϕ ∈ D([0, T ) × R

d),∫ 1

0

∫
Q

(g(v∞(x, t, α)) − g(k))+ϕt + sgn+
0 (v∞(x, t, α) − k)(B(v∞(x, t, α)) −B(k)) · ∇ϕdxdt dα

+
∫

Ω

(u0(x) − g(k))+ϕ(0, x) dx ≥ 0. (3.25)

Similarly, we show the generalized entropy inequality: for all k ≤ 0, for all non-negative test function ϕ ∈
D([0, T ) × R

d),∫ 1

0

∫
Q

(g(v∞(x, t, α)) − g(k))−ϕt + sgn−
0 (v∞(x, t, α) − k)(B(v∞(x, t, α)) −B(k)) · ∇ϕdxdt dα

+
∫

Ω

(u0(x) − g(k))−ϕ(0, x) dx ≥ 0. (3.26)

Using also the fact that equation (3.16) is satisfied for any k ∈ R if ϕ ∈ D([0,+∞)×Ω), we have equations (3.25)–
(3.26) for any k ∈ R, ϕ ∈ D([0, T ) × Ω). Taking k respectively close enough to −∞ and +∞, this shows that
v∞ is a generalized weak solution in the sense that∫ 1

0

∫
Q

(g(v∞)ϕt +B(v∞) · ∇ϕ) +
∫

Ω

u0 ϕ(0, ·) = 0 (3.27)

for all ϕ ∈ D([0, T )×Ω). A straightforward adaptation of Proposition 2.3 (just add the sum with respect to α)
then shows that we have (compare with Def. 2.2):

(i) esslim
t→0

‖g(v∞(t, ·)) − u0‖L1(Ω×(0,1)) = 0;

(ii) ∂t

∫ 1

0

g(v∞)(·, ·, α) dα + div
∫ 1

0

B(v∞)(·, ·, α) dα = 0 in D′(Q);

(iii) for any ϕ ∈ D((0, T ) × R
d), ϕ ≥ 0, for any k ∈ R

±,∫
Q

∫ 1

0

(g(v∞) − g(k))± ϕt + sign±
0 (v∞ − k) (B(v∞) −B(k)) · ∇ϕ ≥ 0.

The second major tool is the result of comparison proved by Carrillo [6], which gives the uniqueness of g(v)
for v entropy solution to P̃(u0). Let ṽ∞ be a an element of L∞(Q × [0, 1]) satisfying the same properties (i)–
(ii)–(iii) as v∞. An elementary adaptation of the proof of Theorem 4.1 and Corollary 4.2 of Carrillo [6] (it is
indeed elementary, just supplement with the sum with respect to α, β; we refer to [12] for such an extension of
the comparison inequalities for entropy solutions to entropy process solutions) shows that∫ 1

0

∫ 1

0

∫
Q

|g(v∞(x, t, α)) − g(ṽ∞(x, t, β))|ϕt dxdt dα dβ ≤ 0

for every non-negative test function ϕ ∈ D([0,+∞)). In particular, taking ṽ∞ = v∞ and ϕ(t) = T − t,
T arbitrary, we see that g(v∞)(x, t, α) = g(v∞)(x, t, β) for a.e. (x, t, α, β) ∈ Q× [0, 1]2. This implies that

g(v∞)(x, t, α) =
∫ 1

0

g(v∞)(x, t, β) dβ,
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i.e. that g(v∞) does not depend on α:

g(v∞(x, t, α)) = g(w(x, t)), w(x, t) :=
∫ 1

0

v∞(x, t, α) dα.

Since B = A ◦ g, also B(v∞) does not depend on α. Besides, if k ∈ R \ g (S), then

sign±
0 (v∞(x, t, α) − k) = sign±

0 (g(v∞)(x, t, α) − g(k))

does not depend on α and we deduce from equations (3.25)–(3.26) that: for any ϕ ∈ D((0, T )×R
d), ϕ ≥ 0, for

any k ∈ R
± \ g−1 (S), ∫

Q

(g(w) − g(k))± ϕt + sign±
0 (w − k) (B(w) −B(k)) · ∇ϕ ≥ 0.

By Proposition (2.4), w is therefore an entropy solution to P̃(u0). Furthermore, there is strong convergence
of (un) to g(w). Indeed, we have (taking ψ(v) = g(v) in Prop. 3.15), un → g(w) in L∞(Q) w − ∗, and, thus,
un → g(w) in L2(Q) weak. Taking ψ(v) = g(v)2 in Proposition 3.15, we obtain the convergence of the norms
in L2(Q) and, therefore, the strong convergence in L2(Q). The uniform bound in L∞(Q) then gives the strong
convergence in any Lp(Q), p ∈ [1,+∞). �

4. Numerical validation and applications

4.1. Numerical procedure

Let us focus on one-dimensional scalar conservation laws

ut + [A(u)]x = 0 (4.1)

with for instance A(u) := sign+(u − α)φ(u) or A(u) := (1 − sign+(u − α))φ(u), the function φ being regular.
Initial and boundary conditions have to be considered, as described before. Taking the new unknown v = u+χα

allows to express u as a function of the reduced unknown v:

u := g(v) =

⎧⎨⎩
v if v ≤ α
1 if α < v ≤ 1 + α
v − 1 if v > 1 + α

and the scalar conservation laws reduce to

[g(v)]t + [B(v)]x = 0, (4.2)

with corresponding boundary and initial conditions. We emphasize that, although the well-posedness of the
problem has been treated by Carrillo [6], the behaviour of the solution for hyperbolic scalar conservation laws
with discontinuous flux functions has never been observed. Here, we will present the numerical results related
to classical problems which have been modified in the sense that the flux has become discontinuous.

Algorithms

− Numerical flux. Considering the flux B (for convenience, g will be denoted g), we denote by B+

(resp. B−) a nondecreasing (resp. nonincreasing) function such that B = B+ + B−. In the sequel, the
implicit scheme related to equation (4.2) is an upwind three-point scheme

g(vn+1
i ) = g(vn

i ) − λ
(
B(vn+1

i , vn+1
i+1 ) − B(vn+1

i−1 , v
n+1
i )

)
,
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Table 1. Numerical parameters: Δx (spatial step), Δt (time step), N (number of time steps),
T (final time), λ (CFL parameter), ε (precision in the Newton procedure).

Δx Δt N T λ ε
Advection 0.00125 0.000625 800 0.5 0.5 10−8

Burgers 0.00250 0.002500 160 0.4 1.0 10−8

Traffic flow 0.00250 0.005000 200 1.0 2.0 10−8

Lubrication flow 0.00125 0.002500 400 1.0 2.0 10−8

with the following numerical flux:

B(u, v) := B+(u) +B−(v).

− Newton algorithm. Each step of the above scheme is solved using a classical Newton algorithm (in
order to solve some equation of the type F(X) = 0) with a stopping test based on the �∞-norm (of
vector F(X)). Moreover, in the Newton procedure, the Jacobian matrix which is involved in each step
is tridiagonal (for a three-point scheme) so that numerous efficient algorithms are available to evaluate
the solution of the linear system: in particular, the Gauss-Thomas algorithm has been used to solve the
linear systems.

Numerical parameters

Solutions to scalar conservation laws have been computed, corresponding to classical models whose flux has
been only modified by the introduction of a threshold (Heaviside graph), as described at the beginning of the
section. Thus A(u) may take one of the following forms:

sign+(u − α)φ(u), (1 − sign+(u− α))φ(u), φ(u) + 1 − sign+(u− α),

for which the flux φ may be φ(u) = u (advection), φ(u) = u2/2 (Burgers), φ(u) = u(1 − u) (traffic flow).
Numerical parameters which have been used in the following subsection are presented in Table 1.

4.2. Riemann problems and the convex-hull construction

Consider the Riemann problem related to a scalar conservation law with a regular flux φ. We recall that a
discontinuity of the problem, connecting the left-hand state uL and the right-hand state uR with shock speed σ,
is called a classical shock if it satisfies the Rankine-Hugoniot relations

φ(uR) − φ(uL)
uR − uL

= σ

and the Oleinik condition
φ(u) − φ(uL)

u− uL
> σ >

φ(u) − φ(uR)
u− uR

for all u between uL and uR. The Oleinik condition means in particular that the graph of φ is lying below (resp.
above) the line connecting uL to uR when uR < uL (resp. uR > uL). Thus, the entropy-satisfying solution to a
non-convex Riemann problem can be determined from the graph of u �→ φ(u) in a simple manner. If uL > uR,
construct the convex hull of the set

{(u, z), uL ≤ u ≤ uR and z ≥ φ(u)}.

The convex hull is the smallest convex set containing the original set. If uL < uR, then we look instead at the
convex hull of the set of points below the graph

{(u, z), uR ≤ u ≤ uL and z ≤ φ(u)}.
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Figure 1. Entropy solution u of the advection equation at different time steps: t = 100∗j ∗Δt
(j = 0, ..., 8). The solution (resp. solution at t = 0) is represented with plain (resp. dotted)
lines.

This construction allows to build the solution of the Riemann problem and locate shock waves and rarefaction
waves (see Chap. 16 in [16], for instance, for further details). We will see that the same idea works for fluxes
with discontinuities of first type. The numerical tests for Riemann problems always assume that

α ∈ [min(uL, uR),max(uL, uR)],

in order to describe the influence of the discontinuity (else the equation ∂tu + (A(u))x = 0 reduces either to
ut = 0 or ut + (φ(u))x = 0).

Advection equation

The conservation law with the flux A(u) = u + 1 − sign+(u) was considered, from the theoretical point of
view, by Dias et al. [10] as a limit case of a phase transition problem. We focus on the Riemann problem with
uL = −0.5 and uR = 1, the initial discontinuity being located at x = 0.5. Numerical results are given by
Figure 1. Conservative thresholding effects may be observed: a discontinuity between –0.5 and 0 and another
one between 0 and 1 have formed and evolved at different speeds. In fact, the analysis can be totally described
by the characteristics method and the convex-hull construction of the flux u �→ u+1− sign+(u) with uL = −0.5
and uR = 1 (see Fig. 2). If we look at the lower boundary of this set, we see that it is composed of straight line
segments:

− segment (S1): from (uL, 1 + uL) to (0, 0),
− segment (S2): from (0, 0) to (uR, uR).

The straight line (S1) (resp. (S2)) represent a shock jumping from uL to 0 (resp. 0 to uR) and the slope of the
line segment is equal to the shock speed σ:

σ =

⎧⎨⎩
1 + uL

uL
for the shock (S1),

1 for the shock (S2).
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Figure 2. Convex-hull construction for the flux u �→ u+ 1− sign+(u) with the Riemann data
uL = −0.5 and uR = 1.
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Figure 3. Entropy solution u of the Burgers equation with data (A) at different time steps:
t = 20 ∗ j ∗ Δt (j = 0, ..., 8). The solution of the discontinuous (resp. continuous) problem is
represented with plain (resp. dotted) lines.

Notice that the speed of the shock (S1) is negative for uL ∈ (−1, 0), zero for uL = −1, positive for uL ∈
(−∞,−1). However, (S1) evolves at a slower speed than (S2).

Burgers equation

Considering the flux A(u) = sign+(u − 1)u2/2, we focus on the Riemann problem with uL = 0 and uR > 1,
the initial discontinuity being located at x = 0.2. Two tests are provided:

− Data (A) correspond to uR = 1.50 (see Fig. 3).
− Data (B) correspond to uR = 3.00 (see Fig. 5).
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Figure 4. Convex-hull construction for the flux u �→ sign+(u−1)u2/2 with the Riemann data
uL = 0 and uR = 2.
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Figure 5. Entropy solution u of the Burgers equation with data (B) at different time steps:
t = 20 ∗ j ∗ Δt (j = 0, ..., 8). The solution of the discontinuous (resp. continuous) problem is
represented with plain (resp. dotted) lines.

It may be observed that if 1 < uR ≤ 2 there is no rarefaction wave (although such a wave exists for the
classical Burgers equation): the solution is instead composed of a stationary shock between 0 and 1 and an
evolutive shock between 1 and uR. If uR > 2, we obtain a stationary shock between 0 and 1, an evolutive shock
between 1 and 2 and a rarefaction wave between 2 and uR. As in the previous example, the analysis can be
totally described by the convex-hull construction of the flux u �→ sign+(u − 1)u2/2 with uL = 0 and uR > 1
(see Figs. 4 and 6). The construction provides the following analysis:
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Figure 6. Convex-hull construction for the flux u �→ sign+(u−1)u2/2 with the Riemann data
uL = 0 and uR = 3.

• if 1 < uR ≤ 2, then the solution is determined by two shocks:
− a shock (S1) from uL to 1, with a shock speed σ = 0;
− a shock (S2) from 1 to uR, with a shock speed σ =

uR

uR − 1
;

• if uR > 2, then the solution is determined by two shocks and a rarefaction wave:
− a shock (S1) from uL to 1, with a shock speed σ = 0;
− a compound wave is formed: a shock (S2) from 1 to 2, with a shock speed σ = 2 is immediately

followed by a rarefaction wave (R) between 2 and uR (as the lower boundary of the convex-hull
construction follows the graph of u �→ A(u) which is strictly convex).

Traffic flow equation

We choose the following flux A(u) = (1 − sign+(u − α))u (1 − u) with α = 0.75, uL = 1 and uR = 0.5.
Numerical results are given by Figure 7. Again, they may be recovered using the convex-hull construction
(see Fig. 8): in particular, we observe

− a shock between uR and α which propagates at speed

σ = −α(1 − α)
uR − α

< 0;

− a rarefaction wave between α and uL.
Notice that this example may model, in a very simple manner, some uniform obstacle which prevents cars
densities from reaching high values: even starting from a full-satured configuration, the density is locally
thresholded at the value α in a finite time.

4.3. Application to lubrication theory: a multifluid model

Physical motivation

Consider two Newtonian fluids with viscosities ν := 1 (for the so-called reference fluid) and ν := ε. A thin
film flow with two different (non-miscible) fluids in journal bearings of infinite width (i.e. including shearing
effects, as usual in lubrication theory) may be described by a modified Buckley-Leverett equation, see [3],
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Figure 7. Entropy solution u of the traffic flow equation at different time steps: t = 25∗ j∗Δt
(j = 0, ..., 8). The solution of the discontinuous (resp. continuous) problem is represented with
plain (resp. dotted) lines.
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Figure 8. Convex-hull construction for the flux u �→ (1 − sign+(u − 0.75))u(1 − u) with the
Riemann data uL = 0.5 and uR = 1.

which takes the form:

ut + (Qfε(u) + v0 h(x)u(1 − fε(u)))x = 0,

where u denotes the saturation of the reference fluid, h is the converging-diverging gap between the rigid surfaces
which enclose the bifluid mixture, v0 is the shearing velocity of the device and Q is the input flow. Notice that
fε is typically S-shaped and satisfies fε(0) = 0 and fε(1) = 1 (as in the classical Buckley-Leverett equation)
but its profile strongly depends on ε: for convenience and without loss of generality, we may assume that fε is
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defined by

fε(u) :=

{
0, if u ∈ [0, 1 − ε)
u− (1 − ε)

ε
, if u ∈ [1 − ε, 1).

The study and simulation of this model for small values of ε are of high interest for the understanding of
cavitation phenomena, which cannot be avoided in lubricated regimes: cavitation is defined as the rupture
of the continuous liquid lubricated film due to the formation of gas bubbles. In that case, we may observe
“satured” areas (the set [u = 1]) and “cavitated” or “unsatured” areas (the set [0 ≤ u < 1], corresponding to a
liquid/gas mixture). In this setting, the viscosity ratio is about ε ∼ 10−3. Of course, the numerical computation
of the corresponding entropy solution by using explicit schemes becomes very difficult since the CFL condition
is λ ε ≤ 1. Implicit schemes are needed and, at the limit (for even smaller values of ε), we may proceed as
follows: as the entropy solution lies in [0, 1] (for initial and boundary data in [0, 1]), fε can be extended by 0
on (−∞, 0) and 1 on (1,+∞) and we have the following convergence:

fε → sign+(· − 1) in Lp(R), 1 ≤ p < +∞.

The problem to be considered is

ut +
(
Q sign+(u− 1) + h(x)u (1 − sign+(u− 1))

)
x

= 0

with appropriate data, as will be stated further.

Numerical results

Unlike all the previous cases, the flux

A(·, u) = Q sign+(u− 1) + hu (1 − sign+(u − 1))

is not autonomous, as h′ �= 0 (we recall that h has typically a converging-diverging profile) which leads to balance
effects: in particular, constant functions are not stationary solutions, as will be observed in the numerical
simulation. However, all the previous theoretical analysis may be adapted to non-autonomous fluxes. Let us
fix the data:

− the normalized gap h is defined as: h(x) = (2. x− 1.)2 + 0.5;
− the shear velocity is normalized: v0 = 1;
− the initial and boundary conditions are taken constant and equal to u = 0.5 (i.e. the initial configuration

is unsatured and the device is partially supplied in liquid lubricant);
− the input flow is taken to Q = u v0 h(0) (which means that the global mass-flow input is only contributed

by the liquid phase, see [3]).
Numerical results are given by Figures 9–10. It is observed that, due to the non-autonomous contribution,
constant states are not preserved. In particular, starting from a full cavitated setting, we observe that a satured
region appears, located at the minimal gap region, as the entropy solution converges to

min
(

1,
Q

h

)
.

However, similarly to the results obtained in [17] for regular fluxes, the large-time behaviour of the entropy
solution highly depends on the initial condition.

4.4. Concluding remarks

In this paper, we have investigated the numerical analysis and computation of the entropy solution of scalar
conservation laws with discontinuous fluxes. For this, we have used implicit finite volume methods because
explicit schemes cannot be used in this framework:
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Figure 9. Entropy solution u of the non-autonomous Buckley-Leverett equation at different
time steps: t = 50 ∗ j ∗ Δt (j = 0, ..., 8).
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Figure 10. Entropy solution u of the non-autonomous Buckley-Leverett equation.

− Explicit schemes applied to P(u0) are unadapted for obvious reasons related to the lack of regularity of
the flux.

− Explicit schemes applied to P̃(u0) are also unadapted, despite the regularity of the flux, because the
inverse of g is non-univoque. Still, one could think that computations led with some chosen inverse
of g would allow us to recover the correct numerical solution: more precisely, assume that S = {α},
with α > 0. Then g−1 is multivalued (see further) and one could use, instead, any function g−1

τ with
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τ ∈ [0, 1] in a numerical explicit procedure:

g−1(v) :=

⎧⎨⎩
v if v < α,
[α, α+ 1] if v = α,
v + 1 if v > α,

g−1
τ (v) :=

⎧⎨⎩
v if v < α,
α+ τ if v = α,
v + 1 if v > α.

In fact, for the advection equation, Burgers equation or traffic flow equation, the corresponding numerical
solution (for different fixed values of τ) is not correct, in most of cases, and instabilities of the numerical
solution with respect to the spatial mesh have been observed.

The incorrect behaviour of explicit methods evidence the need to implement implicit methods which are proved
to be rigorous from a mathematical point of view.

A. Proof of Propositions 2.3 and 2.4

A.1. Proof of Proposition 2.3

Let v ∈ L∞(Q) be an entropy solution of P̃(u0, f). Let ϕ ∈ D([0, T ) × R
d) and, for h > 0, let ωh be the

cut-off function defined by ωh(t) = min(1, t/h). Using ϕωh as a test function, we obtain (by use of the Lebesgue
dominated convergence Theorem)∫

Q

(g(v) − g(k))± ϕt + sign±
0 (v − k) (B(v) −B(k)) · ∇ϕ+

1
h

∫ h

0

∫
Ω

(g(v) − g(k))± ϕ+ o(1) ≥ 0

when h→ 0. Since esslimt→0 ‖g(v(t, ·)) − u0‖L1(Ω) = 0, we obtain∫
Q

(g(v) − g(k))± ϕt + sign±
0 (v − k) (B(v) −B(k)) · ∇ϕ+

∫
Ω

(u0 − g(k))± ϕ(0, ·) ≥ 0

at the limit h→ 0, which is equation (2.3). Similarly, from the weak equation g(v)t + div(B(v)) = 0 in D′(Q),
we deduce the weak formulation including the initial datum (2.2).

Conversely, assume that the weak equation and the weak entropy inequalities (2.2) and (2.3) are satisfied. This
implies in particular that the weak entropy inequalities (2.3) are satisfied whatever the sign of k as soon as the
test function is compactly supported in [0, T )×Ω (use the identity (g(v)−g(k))+ = (g(v)−g(k))−+(g(v)−g(k))).
Let a non-negative θ ∈ D(Ω) be fixed and let k ∈ R. Using equation (2.3) with the multiplicative test-function
ϕ(t, x) = α(t)θ(x) (α ∈ D(0, T ) non-negative), we obtain K ′ ≤ L in D′(0, T ) where

K(t) :=
∫

Ω

(g(v) − g(k))± θ, L(t) :=
∫

Ω

sign±
0 (v − k) (B(v) −B(k)) · ∇θ.

The distribution L is of order 0, therefore K ′ also, i.e. K ∈ BV (0, T ). This proves that esslimt→0K(t) exists
(in [0,+∞] since K ≥ 0). By equation (2.3) tested with ϕ(t, x) = (1 − ωh(t))θ(x), we obtain

esslim
t→0

∫
Ω

(g(v(t, ·)) − g(k))± θ ≤
∫

Ω

(u0 − g(k))±θ.

The limit above in taken for t converging to 0 in a set S(k, θ) of full measure in [0, T ]. Since the countable
intersection of such sets is also of full measure in [0, T ], we have

esslim
t→0

∫
Ω

|g(v(t, ·)) − w| ≤
∫

Ω

|u0 − w|
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for every w ∈ L∞(Q) of the form
w =

∑
i∈N

g(ki)θi

where ki ∈ R, θi ∈ D(Ω) having disjoint support from θj if i �= j. Since u0 can be approximated by a sequence
of functions wn as above in L1(Ω), the result follows:

esslim
t→0

∫
Ω

|g(v(t, ·)) − u0| = 0.

A.2. Proof of Proposition 2.4

If v satisfies the entropy inequality (iii) of Definition 2.2 for k ∈ R± \ g−1(S) and k∗ ∈ g−1(S) with, say,
k∗ ≥ 0, then g−1({g(k)}) = [k−, k+] where k+ ≥ 0. Let (kn) be a sequence of R+ \ g−1(S) monotonically
decreasing which converges to k+. Passing to the limit in the entropy inequality (iii) written with k = kn, we
obtain ∫

Q

(g(v) − g(k+))+ ϕt + sign+
0 (v − k+) (B(v) −B(k+)) · ∇ϕ ≥ 0.

Since g(k+) = g(k∗) and since B = A ◦ g, we have (g(v) − g(k+))+ = (g(v) − g(k∗))+ and

sign+
0 (v − k+) (B(v) −B(k+)) = sign+

0 (v − k+) (B(v) −B(k∗)) = sign+
0 (v − k∗) (B(v) −B(k∗)),

therefore v satisfies the entropy inequality∫
Q

(g(v) − g(k∗))+ ϕt + sign+
0 (v − k∗) (B(v) −B(k∗)) · ∇ϕ ≥ 0.
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