N
N

N

HAL

open science

Compositional Event Structure Semantics of the
Internal pi-Calculus
Silvia Crafa, Daniele Varacca, Nobuko Yoshida

» To cite this version:

Silvia Crafa, Daniele Varacca, Nobuko Yoshida.

Internal pi-Calculus. Proceedings of Concur 2007, Sep 2007, Lisbon, Portugal. pp.317-332.

00148937

HAL Id: hal-00148937
https://hal.science/hal-00148937
Submitted on 23 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Compositional Event Structure Semantics of the

hal-

https://hal.science/hal-00148937
https://hal.archives-ouvertes.fr

Compositional Event Structure Semantics
for the t=-Calculus

Silvia Crafd Daniele Varacca Nobuko Yoshida

LUniversita di Padova 2 PPS - Université Paris 7 & CNRS 3Imperial College London

Abstract. We propose the first compositional event structure semsfidic a
fully expressivert-calculus, generalising Winskel’'s event structures foilSCThe
T-calculus we model is thad-calculus with recursive definitions and summa-
tions. First we model theynchronougalculus, introducing a notion of dynamic
renaming to the standard operators on event structures. Waenodel thesyn-
chronouscalculus, for which a new additional operator, calledting, is nec-
essary for representing causality due to new name bindihg. SEmantics are
shown to be operationally adequate and sound with respécsitaulation.

1 Introduction

Event structures [17] are a causal model for concurrenclwis particularly suited
for the traditional process calculi such as CCS, CSP, SCTSA@®. Event structures
intuitively and faithfully representausalityandconcurrencysimply as a partial order
and an irreflexive binary relation. The key point of the getigr and applicability of
this model is the compositionality of the parallel compiositoperator: the behaviour
of the parallel composition of two event structures is deiaed by the behaviours of
the two event structures. This modularity, together witheotalgebraic operators such
as summation, renaming and hiding, leads also to a straigtefd correspondence be-
tween the event structures semantics and the operatianalgies - such as the labelled
transition system - of a given calculus [25].

In this paper we propose the first compositional event strecemantics of a fully
expressive variant of the-calculus. The semantics we propose generalises Winskel's
semantics of CCS [21], it is operationally adequate witlpeesto the standard labelled
transition semantics, and consequently it is sound witheetsto bisimilarity.

Thertrcalculus we consider is known in the literature asmhealculus [18], where
the output of free names is disallowed. The symmetry of ignd output prefixes,
that are both binders, simplifies considerably the theotyilevpreserving the basic
expressiveness of the calculi with free name passing [2, 16]

In order to provide an event structure semantics ofttwalculus, one has in particu-
lar to be able to represent dynamic creations of new synésation channels, a feature
that is not present in traditional process algebras. In Wéhs event structure seman-
tics of CCS [21], the parallel composition is defined as patdin a suitable category
followed by relabelling and hiding. The product represaitsonceivable synchroni-
sations, the hiding removes synchronisations that arellooted, while the relabelling
chooses suitable names for synchronisation events. In G@San decide statically
whether two events are allowed to synchronise, whereagir-talculus, a synchroni-
sation between two events may depend on which synchromisatibok place before.

Consider for instance the-processa(x).x(u).0 | a(z).z(v).0 wherea(x).P is an
input ata, a(z).Q is an output of a new nameto a and0 denotes the inaction. This
process contains two synchronisations, first along theroélarand then along a private,
newly created, channel The second synchronisation is possible only since the same
x andz are made equal by the previous synchronisation aknfp account for this
phenomenon, we define the semantics of the parallel connobly performing hiding
and relabelling not uniformly on the whole event structuret relative to the causal
history of events.

The full symmetry underlying thetd-calculus theory has a further advantage: it
allows a uniform treatment of causal dependencies. Cawsatrdiencies in the-
processes arise in two ways [3,10]: by nesting prefixesddatructural or prefix-
ing or subjectcausality) and by using a name that has been bound by a pseviou
action (calledlink or nameor object causality). While subject causality is already
present in CCS, object causality is distinctive of tirealculus. In the synchronous
mi-calculus, object causality always appear under subjaasality, as ina(x).x(y).0
or in (ve)(a(x).c(z).0 | t(w).x(y).0), where the input orx causally depends in both
senses from the input an As a result, the causality of synchronauscalculus can be
naturally captured by the standard prefixing operator oftlhent structures, as in CCS.

On the other hand, in the asynchronatialculus, the bound output process is no
longer a prefix: ira(x)P, the continuation proce$scan perform any actioa before the
output ofx ona, provided thatr does not contai®. Thus the asynchronous output has
a looser causal dependency. For exampléyir)(a(x)c(z).0 | T(w)x(y).0), a(x) only
binds the input ax, and the interaction betweefz) andc(w) can perform befora(x),
thus there exists no subject causality. Representing thjsubobject causality requires
a novel operator on event structures that we iwadting, whose construction is inspired
from a recent study on Ludics [8].

With these new constructions, the semantics of both thetsgnous and the asyn-
chronousri-calculus is compositional, operationally adequate amchd with respect
to bisimilarity.

2 Internal T-calculus

This section gives basic definitions of thiecalculus [18]. This subcalculus captures
the essence of name passing with a simple labelled tramsélation. In contrast with
the full Tecalculus, only one notion of strong bisimulation exists] & is a congruence.

2.1 Syntax

The syntax of the monadic, synchronauscalculus [18] is the following, where the
symbolsa,b,..., X y,zrange over the infinite set of names denotedNames

Prefixes mi=alx) | ax)
Processes ®:=75iqm.R | P|Q | (va)P | A(X]|2)
Definitions AX|z) =Pa

The syntax consists of the parallel composition, nameiogistn, finite summation of
guarded processes and recursive definitiory,;ln 15.F, | is a finite indexing set; when

| is empty we simply writé® and denote witht the binary sum. The two prefixegx)
anda(x) represent, respectively, an input prefix and a bound outpafb@ A process
a(x).P can perform an input & andx is the placeholder for the name so received. The
bound output case is symmetric: a procags).P can perform an output of the fresh
namex along the channed. Differently from thercalculus, where both bound and
free names can be sent along channels, inmihealculus only bound names can be
communicated, modelling the so calledernal mobility We often omitO and objects
(e.g. writea instead ofa(x).0).

The choice of recursive definitions rather than replicafninfinite processes is
justified by the fact that thal-calculus with replication is strictly less expressive]1
We assume that every constakhas a unique defining equatiéy{X | z) = Pa. The
symbolxX denotes a tuple of distinct names, whileepresents an infinite sequence of
distinct name® — NamesWe denote(n) asz,. The tupledcontains all free names of
Pa and the range of contains all bound names Bf. The parametez does not usually
appear in recursive definitions in the literature. The reage add it is that we want to
maintain the following assumption:

Every bound name is different from any other name, eithendau free (1)

In the t-calculus, this policy is usually implicit and maintainddrag the computation
by dynamica-conversion: every time the definitiohis unfolded, a new copy of the
process$, is created whose bound names must be fresh. This dynamicecbbnames
is difficult to interpret in the event structures. Hence agursive definitions prescribe
all the names that will be possibly used for a precise semantrespondence.

The set of free and bound namesRyfwritten by fn(P) and br{P), is defined as
usual, for instance fi@(x).P) = {a} U (fn(P) \ {x}). As for constant processes, the def-
inition is as follows: ffA(X | z)) = {X} and br{A(X | z)) = z(N).

2.2 Operational Semantics

The operational semantics of the calculus is given in terfrenoL TS (in late style),
which is defined as follows, where we {3 range over the set of labe{s, a(x),a(x)}.
(IN LATE) (OuT) (Comm)

p 5 o ™, g

PIQ — (w)(P{y/x}|Q)

/

a(x) ax)
ax).p — P ax).p —

(PAR) (Sum) (RES)

PP AR PP agn
PIQ— PIQ ZieP — F (va)P — (va)P’
(REC)

PA{Y/R} {w/2}) — P/
A W) — P

A% | Z) = Pa

The rules above illustrate the internal mobility charasiag the ri-calculus com-
munication. In particular, according to @™m), we have that(x).P | a(y).Q LN
(vy)(P{y/x} | Q) where the fresh namg appearing in the output is chosen as the
“canonical representative” of the private value that hasnbsommunicated. In (&),

the unfolding of a new copy of the recursive process updétesequence of bound
names. The formal definition of the substitutipn/z} is found in Appendix A.1.

Proposition 1. Let P be a process that satisfies Assumption 1. Suppe%e P'. Then
P’ satisfies Assumption 1.

Example 1.ConsidelA(x | z) = X(20).A{zp | Z) | X(z1).A{z1 | Z"), whereZ (n) = z(2n+

2) andz’(n) = z(2n+ 3). In this case the sequence of namaés partitioned into two
infinite subsequence® and z”’ (corresponding to even and odd name occurrences),
so that the bound names used in the left branci afre different from those used

in the right branch. IntuitivelyA(a | z) partially “unfolds” to a(z).(z0(22).A(z | Z3)

| 20(z4).A(z4 | Z,)) | a(z).(z1(23).A(z3 | Z) | z1(25).A(z3 | Z5)) with suitablez),), 27, Z}.

We end this section with the definition of strong bisimilgii the ti-calculus.

Definition 1 (td strong bisimilarity). A symmetric relation® on i processes is a
strong bisimulation if PR Q implies:

— whenever P—— P/, there is @s.t. Q SN Q and PRQ.

— whenever Pﬂ P, thereis Qs.t. Q ﬂ Q and P{z/x} RQ'{z/y}.

— whenever Pﬂ P, thereis Qs.t. Q ﬂ Q and P{z/x}RQ'{z/y}.
with z being any fresh variable. Two processg® Brebisimilar, written P~ Q, if they

are related by some strong bisimulation.

This definition differs from the corresponding definition 18] because we do not have
the a-conversion rule, and thus we must all@vto mimic P using a different bound
name. The relation- is a congruence and contaimsequivalence.

3 Event Structures

This section reviews basic definitions of event structutest,will be useful in Section 4.
Event structures appear in the literature in different ferthe one we introduce here is
usually referred to as prime event structures [9, 17, 22].

3.1 Basic definitions
Definition 2 (Event Structure). An event structure is a tripl& = (E, <,—) s.t.

— E is a countable set ofvents

— (E,<) is a partial order, called theausal order

— for every ec E, the sefe) := {€ | € < e}, called theenabling sebf e, is finite;

— — is an irreflexive and symmetric relation, called tbenflict relation satisfying
the following: for every g ex,e3 € E ifeg < ey and @ — esthene — es.

The reflexive closure of conflict is denoted by We say that the conflia, — e3 is
inheritedfrom the conflicte; — e3, whene; < e,. If a conflicte; — & is not inherited
from any other conflict we say that itisimediatelf two events are not causally related
nor in conflict they are said to bmncurrent

Definition 3 (Labelled event structure). Let L be a set of labels. A labelled event
structure’E = (E, <,—,A) is an event structure together with a labelling function
E — L that associates a label to each eventin E.

Intuitively, labels represeractions and events should be thought of@scurrences of
actions Labels allow us to identify events which represent diffeér@ccurrences of the
same action. In addition, labels are essential when comgadsio event structures in a
parallel composition, in that they are used to point out \wldegents may synchronise.

In order to give the semantics of a procésas an event structurg, we have to
show how the computational steps®fare reflected inta&. This will be formalised
in the Operational Adequacy Theorem 2 in Section 4, whichagsel on the following
labelled transition systems over event structures.

Definition 4. Let £ = (E,<,—,A) be a labelled event structure and let e be one of
its minimal events. The event structdt¢e = (E’, <',—', N’} is defined by: E= {€ €
E|€ e}, <=<jg, —'=—, and\ = Ag. If A(e) = B, we write’E LR Ele.
Roughly speakingE | e is £ minus the eveng, and minus all events that are in conflict
with e. The reachable LTS with initial staté corresponds to the computations over
E. Itis usually defined using the notion cbnfiguration[25]. However, by relying on
the LTS as defined above, the adequacy theorem has a simptesl&ion. A precise
correspondence between the two notions of LTS can be eadilyedl.

Event structures have been shown to be the class of objeztsatégory [25], whose
morphisms are defined as follows. L&t = (E1, <1,—1), 2 = (Ez, <2,—2) be event
structures. Amorphism f: £; — E; is a partial functionf : E; — E, such that

— f reflects causality: iff (ey) is defined, therif (e1)) C f([e1));
— f reflects reflexive conflict: iff (e1), f(e2) are defined, and if (e1) < f(e2), then

e < e.

It is easily shown that an isomorphism in this category isjadhive function that
preserves and reflects causality and conflict. In the presehtabelled event struc-
tures®; = (E1,<1,—1,A1), 2 = (Ez, <p,—2,A2) on the same set of labéls we will
consider onlylabel preservingsomorphisms, i.e. isomorphisnis £; — £, such that
A2(f(e1)) = A1(er). If there is an isomorphisnfi : £1 — ‘£, we say thatk;, £, are
isomorphic, writtenk; = £,.

3.2 Operators on event structures

We provide here an informal description of several operation labelled event struc-
tures, that we are going to use in the next section. See [22)éve details.

— Prefixing a£. This operation adds to the event structure a new minimahef,
labelled bya, below every other event ift. Conflict, order, and labels of original
elements remain the same agfin

— Prefixed suny ., a.%. This is obtained as the disjoint union of copies of the event
structuresg;. %. The order relation of the new event structure is the disjoimion
of the orders of;. % and the labelling function is the disjoint union of the |ding)
functions ofg;. . As for the conflict relation, we take the disjoint union otth
conflicts appearing i.Z and we extend it by putting in conflict every pair of
events belonging to two different copiesafz;.

— Restriction(or Hiding) £\ X whereX C L is a set of labels. This is obtained by re-
moving fromE all events with label irX and all events that are above (i.e., causally
depend on) one of those. On the remaining events, orderjataarid labelling are
unchanged.

— RelabellingE[f] whereL andL’ are two sets of labels arfd L — L'. This operation
just consists in composing the labelling functdof £ with the function. The new
event structure is labelled ovet and its labelling function i o A.

3.3 The parallel composition

The parallel composition of two event structuesandZ, gives a new event structure
£’ whose events model the parallel occurrence of eventsE; ande, € Ey. In par-
ticular, when the labels af ande, match according to an underlying synchronisation
model, £’ records (with an everd € E’) that a synchronisation betweepande; is
possible, and deals with the causal effects of such a synigation.

The parallel composition is defined as the categorical pebthllowed by restric-
tion and relabelling [25]. Even if the categorical prodwctinique up to isomorphism, it
can be explicitly constructed in different ways. We give ieboutline of one such con-
struction [9, 19]. LetZ; := (E1,<1,—1) and &y := (Ep, <,,~—>) be event structures.
LetE" := Ejw{«}, wherex is a distinguished event. The categorical product s giwen b
an event structur& = (E, <,~—) and two morphisms; : £ — Z; (the projections). The
elements ok are of the form(W, e;, ;) whereW is a finite subset oE, ande € E;'.
Intuitively W is the enabling set of the evefW, e;,e;). The order< is generated by
(W,er,e) < (W,€),6,) iff (W,e,e2) € W'. The conflict relation— is defined using
the conflict relations oE;, E,. The projections are defined ag(W, er,e2) = e; and
™ (W, e1,e2) = €. For event structures with labels In let beL, := LW {x} where
% is a distinguished label. Then the labelling function of greduct takes on the set
L. x L, and we defin@(W,er,e) = (Aj(e1),A5(e2)), whereX (&) = Ai(e) if g # =,
andA; () = .

The synchronisation model underlying the relabelling agien needed for parallel
composition is formalised by the following notion synchronisation algebrg25]. A
synchronisation algebr@ is a partial binary operatioms defined onL,. If a; is the
label of an eveng € Ej, thena esay gives the label of the evert € E’ representing
the synchronisation af andey. If the synchronisation algebra is not defined, the syn-
chronisation event is given a distinguished lalyel that indicates that this event is not
allowed and should be deleted.

Definition 5 (Parallel Composition of Event Structures).Let £, E two event struc-
tures labelled over L, let S be a synchronisation algebraj b fs: L. — L' =L, U
{bad} be a function defined as(fi1,02) = 01 esay, if S is defined orfa1,az), and
fs(ay,02) = bad otherwise. The parallel compositicfy || sZ> is defined as follows the

categorical product followed by relabelling and restrimt:
Ta||lsTe = (F1 x E2)[fg] \ {bad}
The subscripts S are omitted when the synchronisation edgelslear from the context.

Example 2.We show a simple example of parallel composition. Let {a,B,d,1}
Consider the two event structur@s, E,, whereE; = {a,b},E; = {@'}, witha<i b
andA1(a) = a,A1(b) = B,A2(a’) =d. The event structures are represented as follows:

B B B
Eyr: Fo: Fs:

[0 [O ~~T~——~10

where curly lines representimmediate conflict, while thesed order proceeds upwards
along the straight lines. Consider the synchronisatioalaig obtained as the symmetric
closure of the following rulesi e =T, 00 x =0, Ge* = O, Bex = 3 and undefined
otherwise. TherEs := £, || E; is the event structuréEs, <,—,A\) whereEz = {e:=
(0,a,%),€ :=(0,x,&),e :==(0,a,&),d:= ({e},d,),d" := ({€"},d,x)}, the ordering
< is defined ae < d,e¢’ < d”, while the conflict— is defined az — €', € — €',
e—d" & —d’, & —d,d—d". Thelabelling functionid(e) = a,A\(¢) =T,A(€') =
T,A(d) =A(d") =B.

3.4 Alarge CPO of event structures

We say that an event structutgis aprefixif an event structur&’, denotede < £’ if
there exist€” = T’ such thaE C E” and no eventiit” \ E is below any event of.
Winskel [21] has shown that the class of event structurel tié prefix order is
a large CPO, and thus the limits of countable increasingnshekist. Moreover all
operators on event structures are continuous.
We will use this fact to define the semantics of the recursefandions.

4 Event Structure Semantics

This section defines the denotational semanticalgirocesses by the labelled event
structures. Given a proceBs we associate t® an event structur&p whose evente
represent the occurrence of an actide) in the LTS ofP. Moreover, our main issue is
compositionality: the semantics of the proc€ssQ should be defined ap || £q SO
that the operatol| satisfactorily models the parallel compositionfpandQ.

1 The standard definition of parallel composition(i&; x E, \X)[f], where the restriction and
relabeling operations are swapped, ahi the set of labels (pairs) for whichis undefined.
We can prove that such a definition is equivalent to ours, wkianore suitable to be gener-
alised to thet-calculus.

4.1 Generalised relabelling

Itis clear form Definition 5 that the core of the parallel casfiion of event structures
is the definition of a relabelling function encoding the imded synchronisation model.
As discussed in the Introduction, name dependences apgearii-processes let a
synchronisation between two events possibly depend onrévéopis synchronisations.
We then define a generalised relabelling operation whereethbelling of an event de-
pends on (the labels of) its causal history. Such a new opagatvell-suited to encode
therd-communication model and allows the semantics ofrthealculus to be defined
as an extension of CCS event structure semantics.

Definition 6 (Generalised Relabelling).Let L and L' be two sets of labels, and let
Pom(L’) be a pomset (i.e., partially ordered multiset) of labels in Given an event
structureZ = (E, <,—,\) over the set of labels L, and a function PomL") x L —

L', we define the relabelling operatidh| f] as the event structurg’ = (E, <,—,\)
with labels in L, where\’ : E — L’ is defined as follows by induction on the height of
an element of E:

if h(e) =0then)'(e) = f(0, A(e))
if h(e) =n+ 1thenX(e) = f(N([e)), A(e))

In words, an eveng is relabelled with a label’(e) that depends on the (pomset of)
labels of the events belonging to its causal hisfejy

The set of labels we considerlis= {a(x),a(x),T | a,x € Name$. For the par-
allel composition we need an auxiliary set of labkls= {a(x),a(x),Tx=y | a,xye
Name$ U {bad, hide}, wherebad andhide are distinguished labels.

In L, the silent action is tagged with the couple of bound names that get identified
through the synchronisation. This extra piece of inform@tcarried byt-actions is
essential in the definition of the generalised relabellingction. Let for instance
encode the parallel occurrence of two event®, labelled, respx(X') andy(y'), then
e; ande; do synchronise only ik andy are equal, that is only if in the causal history of
ethere is an event labelled witl—y; in such a case can then be labelled with,_.

The distinguished labdlad denotes, as before, synchronisations that are not al-
lowed, while the new labédiide denotes the hiding of newly generated names. Both
labels are finally deleted.

Let fr: PomL’) x (Lw{x} x Lw{x}) — L’ be the relabelling function defined as:

fr(X,(aly),a(2)) = fa(X, (@(2),aly))) = ty-2
Ty—z If Taup € X

fﬂ(xv<a(y)v*>): fﬂ(x’<*’a(y)>) =

X, 809 B(E) = (X, (B2 20)) = { 7 et
X, (89,) = X, (a)) = { Bl e
{ hide if Ta—p € X

a(y) otherwise

The functionf; encodes thed-synchronisation model in that it only allows synchroni-
sations between input and output over the same channeleotwe channels whose
names have been identified by a previous communication. Gt@na over a channel
a that has been the object of a previous synchronisation #ébeked ashide since,
according to internal mobilitya is a bound name.

The extra information carried by theactions is only necessary in orderdefine
the relabelling, but it should later on be forgotten, as wexdbdistinguisht-actions in
the LTS. Hence we apply a second relabellmghat simply erases the tags:

er(a) = {a otherwise

4.2 Definition of the semantics

The semantics of thal-calculus is then defined as follows by induction on proesss
where the parallel composition of event structure is defimed

E1|ln2 = ((F1 x) [f][er]) \{bad, hide}

To deal with recursive definitions, we use an indtdw denote the level of unfolding.

{ofk=10 {Zia MR k= Jia - {P }«
{PI1Qlk =Pk n{Q {(va)P}k= {P}\{l €L |ais the subject of}
{AY|w)fo=0 {AY | W) i1 = { Pa{¥/XH{w/z} |

Recall that all operators on event structures are contiswdgth respect to the prefix
order. Itis thus easy to show that, for ay{ P [tk < { P [}k+1. We define{ P[} to be the
limit of the increasing chain.{ P }x < {P[k+1 < {P[ks2...:

{Pl} = supen{Pl«

Since all operators are continuous with respect to the pozfler we also have the
following result:

Theorem 1 (Compositionality).The semantic§ P[is compositional, i.e{ P | Q} =
{P} lIx{Q}J}, and so on for all other operators.

4.3 Examples

Example 3.As the first example, consider the procéss- a(x).X(u) | a(z).z(v) dis-
cussed in the Introduction. We show in the following the twerd structurest;, £,
associated to the basic threads, as well as the event struzitresponding t§ P [} =
1 ||nE2. Figure 1 shows two intermediate steps involved in the cangon of {| P[},
according to the definition of the parallel composition ater.

X(u) z(v) X(u) T z(v)

Ei|lnE:

a(x) a(2) a(X) ~r~ T~~~ a2

Tx=z
Step 2.(E1 x Ep)|fn

Fig. 1. Event structure corresponding &x).X(u) | a(z).z(v)

Example 4.As the second example, consider= a(w) | P, whereP is the process
above. InQ two different communications may take place along the cebaineither
the fresh namev is sent, and the resulting process is stuck, or the two tisredd can
synchronise as before establishing a private channel fabaegjuent communication.
The behaviour of) is illustrated by the following event structure which capends
to { Q[= Es||n{P[, whereZz = {a(w) [} is a simple event structure consisting of a
single event labeled bg(w).

— X
—
N

a(w) ~~ oo a(x) ~~ T~ a(2)
Example 5.As a further example, R = a(x). (X(y).y | X(Y).y) | a(2).(z(w).(w | W))
whose two threads correspond to the following two eventsimes:

y y W~~~ T w
Er: ‘ ‘ Ty \ ‘ /
X(y) X(y))
O 7\
a(x) az)

10

Rallows a first communication aathat identifiesx andz and triggers a further synchro-
nisation with one of the outputs overelonging toZ;. This second communication
identifiesw with eithery or y, which can now compete witl for the third synchro-
nisation. The event structure corresponding{te} = %1 ||n%2 is the following; its
construction is shown in Appendix B.

2

Example 6.Consider the recursive process, seen in Example 1 in Seztibdfx | z) =
X(20).Alzo | Z') | X(z1).A(z1 | Z"), whereZ (n) = z(2n+2) andZ”(n) = z(2n+ 3). In the
following, we draw the first approximations of the semantt® = A(a | z):

() ()

2(z2) 20(z)
Pho: {Ph: e N |
a(2)

a(zo) az) a(z)

7211) 75(20) Zs5(z3)

(z1) 1z
AN |

2(z8) za(
| |
20(z4) a(zm) zz)

\\//

an) az)

»(z) 22(z10) 22) Z

\20

|
{Pls: (2)

4.4 Properties of the semantics

The operational correspondence is stated in terms of tredléabtransition system de-
fined in Section 3.

B
Theorem 2 (Operational Adequacy).Suppose P—— P’ in the m-calculus. Then
B B
{P} —— = {P'|}. Conversely, supposgP[} —— Z’. Then there exists’Buch
B
thatP —— P and{P [= Z'.

The proof technique is similar to the one used in [19], buekets into account the
generalised relabelling.
As an easy corollary, we get that the semantics is sound eghect to bisimilarity.

Theorem 3 (Soundness)f {P[} = {Q[, then P~ Q.

The converse of the soundness theorem (i.e. completeness)ndt hold. In fact this
is always the case for event structure semantics (for imstéime one in [21]), because

11

bisimilarity abstracts away from causal relations, whimhiastead apparentin the event
structures. As a counterexample, we have+b.a ~ a|bbut{ab+b.al} # {a|b}.

Isomorphism of event structures is indeed a very fine egemnad, however it is, in
a sense behavioural, as itSsictly coarser than structural congruence.

Proposition 2. If P = Q then{ P} = { Q[

The converse of the previous proposition does not h@lda)a.P[} = {0[= 0 but
(va)a.P # 0. As a further counterexample, we hapea)(a(x).X(u) | aly).y(v)) #
(va,b)(a(x).b(u) | a(y).b(v)), but both processes correspond to the same event structure
containing only two events;, e, with 1 < ey andA(e;) =A(e) =T.

5 Asynchronousrti-calculus

This section studies thesynchronoust-calculus [4, 14, 16], whose syntax slightly dif-
fers from that in Section 2 in the treatment of the output.

Processes B ::= S ai(x).R | ax)P | P|Q | (va)P | A(X]|2)
Definition AX|z) = Pa

The new syntax of the bound output reflects the fact that tisexéooser causal connec-
tion between the output and its continuation. A procssP is different froma(x).P

in that it can activate the proceBseven if the name has not been emitted yet along
the channeh. The operational semantics can be obtained from that ofi@e2t by
removing the rule (OT) and adding the following three rules:

(OuT) (AsYNC) (ASYNCH CEO)MM)
“ / aly ,
a) P—F y¢m) pP—FP

AP — P aP — ax)P AP —— (WP {x/y}

Relying on this LTS, the definition of strong bisimilarity féhe asynchronousi-
calculus is identical to that in Section 2.

5.1 Denotational semantics

The event structure semantics of the asynchromitalculus requires to encode the
output procesa(x)P, introducing the following novel operator, calleabting.

Definition 7 (Rooting a[X].£). Let £ be an event structure labelled over L, let a be a
label and XC L be a set of labels. We define the rooting operatipf] & as the event
structureZ’ = (E/, <’,—',\'), where E = Ew{€'} for some new event,e<’ coincides
with < on E and for every e E such thai(e) € X we have e<’ e, the conflict relation
—' coincides with—, that is € is in conflict with no event. Finallyy’ coincides with\

on E and\'(¢) = a.

The rooting operation adds to the event structure a new ghadrgied bya, which is put
below the events with labels X (and any event above them).

12

The rooting operation is used to give the semantics of aspmcus bound output.
Given a procesa(x)P, every action performed by that has< as subject is rooted with
a distinctive labell. The resulting structure is composed in parallel vak), so that
(i) every action that does not dependxozan synchronise with(x), and (i) the actions
rooted by_L (i.e. those depending of) become causally dependent on the acdox).

Such a composition is formalised the parallel compositiperator|| built around
the generalised relabelling functidf} : Pom(L’) x (Lw{*, L} x Lw{*, 1 }) — L’ that
extendsf; with the following two clauses dealing with the new labels:

fR(X, (L,a()) = (X, @x), L))
fAX, (L, %)) = fAX,(x, 1)) = bad

a(x)

The denotational semantics of asynchronuisprocesses is then identical to that in
Section 4, with a new construction for the output:

{ax)Plx = ax) ||A LX]. P« X ={a € L|xisthe subject ob}

Example 7.Let Rbe the procesa(y)(a(x).b.y); its semantics is defined by the follow-
ing event structure:

= b

a(x) 1 oo alx) a(y)

y
|
b
|

o
\7\:_,,-_/,._,/._/,\7\/

First a new event labelled hy is added below any event whose label fi@s subject.
In this case there is only one such event, labelleg.@jhen the resulting event structure
is put in parallel with the single event labelled &fy). This event can synchronise with
the L event or with thea(x) event. The first synchronisation simply substitutes thellab
a(y) for L. The second one behaves as a standard synchronisation.

Example 8.The semantics of the proceBs=a(y)(n(x) | y) | n(z)(a(w).w) discussed
above is the following event structure:
y W y T‘ W

ay) nx N@ aw) M) ~~T~~N@ ay) ~ T~ aWw)

Note that the causality between th@v) event and th& event is both objecnd sub-
ject, and it is due to the prefix constructor. The causalityieen thea(y) event and the
y event is only object, and it is due to the rooting.

5.2 Properties of the semantics

As for the synchronous case, the semantics is adequate @gffect to the labelled
transition system.

13

Theorem 4 (Operational Adequacy).Suppose PL P in the m-calculus. Then
{P} i» =~ {P'|}. Conversely, supposeP |} i» E’. Then there exists’Buch
that P L P and{P'} = £’

The proof is analogous to the synchronous case, with a cadgseifor the rooting.

Theorem 5 (Soundness)f {P} = {Q}, then P~ Q.

6 Related and Future Work

There are several causal models for thealculus, that use different techniques. There
exist semantics in terms of labelled transition systemsre/the causal relations be-
tween transitions are represented by “proofs” which allovdistinguish different oc-
currences of the same transition [3, 10]. In [7], a more &ostapproach is followed,
which involves indexed transition systems. In [15], a seticarof thete-calculus in
terms of pomsets is given, following ideas from dataflow tlgedhe two papers [6, 11]
present Petri nets semantics of tirealculus.

A direct antecedent of this work presented a compositiss@ind and adequate
event structure semantics for a restricted, typed varidrh® recalculus [19]. This
subcalculus can embed thecalculus fully abstractly [1], but is strictly less expsage
than the fullr-calculus. The newly generated names of this subcalculubeatatically
determined when typing processes, therefore the semamésented there uses the
original formulation of the parallel composition for CCShé generalised relabelling,
the rooting operator as well as the treatment of recursiViaitions are developed first
in the present paper.

A recent work [5] provides an event structure semantics efrtitalculus. How-
ever this semantics does not correspond to the labellediti@m semantics, but only to
thereductionsemantics, i.e. only internal silent transitions are reprng¢ed in the event
structure. For instance, in [5], the procesaés) and0 have both the same semantics,
the empty event structure. Consequently the semanticstieeneompositional, opera-
tionally adequate, nor an extension of Winskel's semamii¢3CS.

Recently Winskel [24] used event structures in a differeayw give semantics to
a kind of value passing CCS. His recent work [23] extends taméwork of [24] to
a functor category that can handle new name generation,das ot apply yet to the
T-calculus.

The close relation between concurrent game semanticsy liogic and event struc-
ture semantics of the typedcalculus has already been observed in [19, 13, 12]. In both
worlds, the types play an important role to restrict the amai concurrency and non-
determinism. Based on the present work, it will be interestd extend the relation to
the untyped, fully non-deterministic and concurrent framek.

Our semantics captures the essential features of the cdepahdencies created
by both synchronous and asynchronous name passing. Fortemsmsn of free name
passing, we plan to use a technique analogous to the onegeddbr the asynchronous
mi-calculus. As observed in [3, 10], the presence of free otstpllows subtle forms of
name dependences, as exemplified\Wdy) (a(b) | t(b)), where a restriction contributes

14

the object causality. A refinement of the rooting operatoulddoe used for uniform
handling name causalities induced by both internal andeatenobility.

References

1.

2.

(208 8

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

. G. Winskel. Relations in concurrency. LICS’05, pages 2-11. IEEE, 2005.
25.

M. Berger, K. Honda, and N. Yoshida. Sequentiality andtoalculus. INTLCA'0L, volume
2044 of LNCS pages 29-45. Springer, 2001.

M. Boreale. On the expressiveness of internal mobilityhame-passing calculi.Theor.
Comp. Sci.195(2):205-226, 1998.

. M. Boreale and D. Sangiorgi. A fully abstract semantictusality in thatcalculus.Acta

Inf., 35(5):353-400, 1998.

. G. Boudol. Asynchrony and thecalculus. Research Report 1702, INRIA, 1992.
. R. Bruni, H. Melgratti, and U. Montanari. Event structsemantics for nominal calculi. In

CONCUR’06 volume 4137 oL NCS pages 295-309. Springer, 2006.

. N. Busi and R. Gorrieri. A petri net semantics for pi-célsu InCONCUR’95 volume 962

of LNCS pages 145-159. Springer, 1995.

. G. L. Cattani and P. Sewell. Models for name-passing pseEs Interleaving and causal. In

LICS’00 pages 322-332. IEEE, 2000.

. P.-L. Curien and C. Faggian. L-nets, strategies and prets. InCSL'05 volume 3634 of

LNCS pages 167-183. Springer, 2005.

. P. Degano, R. De Nicola, and U. Montanari. On the constgtefn“truly concurrent” oper-

ational and denotational semantics.LICS’88 pages 133-141. IEEE, 1988.

P. Degano and C. Priami. Non-interleaving semanticenfaile processesTheor. Comp.
Sci, 216(1-2):237-270, 1999.

J. Engelfriet. A multiset semantics for the pi-calculvigh replication. Theor. Comp. Sgi.
153(1&2):65-94, 1996.

C. Faggian and M. Piccolo. A graph abstract machine igsgrevent structure composition.
In GT-VC workshopENTCS, 2007.

C. Faggian and M. Piccolo. Ludics is a model for the (figitdinear pi-calculus. In
TLCA'07, LNCS. Springer, 2007.

K. Honda and M. Tokoro. An object calculus for asynchish@ommunication. In
ECOOP’9] volume 512 oLLNCS pages 133-147. Springer, 1991.

L. J. Jagadeesan and R. Jagadeesan. Causality andrtcuereacy: A data-flow analysis of
the pi-calculus. IAMAST’95 volume 936 olLNCS pages 277-291, 1995.

M. Merro and D. Sangiorgi. On asynchrony in name-passatculi. Math.Struc. Comp. Sgi.
14:715-767, 2004.

M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets,re\&ructures and domains, part I.
Theor. Comp. Scil3(1):85-108, 1981.

D. Sangiorgi. T-calculus, internal mobility and agent passing calcdlheor. Comp. Sgi.
167(2):235-271, 1996.

D. Varacca and N. Yoshida. Typed event structures and-ttaéculus. INMIFPS'06 ENTCS,
2006. Full version available atw. pps. j ussi eu. fr/ ~varacca.

D. Varacca and N. Yoshida. The Probabilisti€alculus and Event Structures. QAPL’07,
ENTCS, 2007.

G. Winskel. Event structure semantics for CCS and rellateguages. WCALP’82, volume
140 of LNCS pages 561-576. Springer, 1982.

G. Winskel. Event structures. Kdvances in Petri Nets 1986, Part Il; Proceedings of an
Advanced Coursesolume 255 olLNCS pages 325-392. Springer, 1987.

G. Winskel. Name generation and linearityLI€S'05 pages 301-310. IEEE, 2005.

G. Winskel and M. Nielsen. Models for concurrency. Handbook of logic in Computer
Sciencevolume 4. Clarendon Press, 1995.

15

A Appendix: Proofs

A.1 Definition of the substitution of sequences

Let A(X | z) = Pa be a recursive definition. We have that the sequencentains all
bound names dPa. In particular the sequenaecontains all names of all sequenaés
that appear ifPa. Since all bound names are different, there exists an imgfiinction
f : N — N such thatZ'(n) = z(f(n)). Also all bound names d?, are of the forne(n)
for somen. The proces®a{w/z} is defined as follows. For each bound name of the
form z(n) we substitutev(n), and for each sequeneéwe substitute the sequenaé
defined asv’(n) = w(f(n)).

Formally:

— (a(x).P){w/z} = a(y).P{w'/Z'}, wherex = z(n), y = w(n), for somen; Z'(k) =
z(k) if k< nandZ (k) = z(k+ 1) otherwisew’ (k) = w(k) if k < nandw’(k) =
w(k+ 1) otherwise.

— (P] Q){w/z} = P{W'/Z} | Q{w"/Z"} where the sequenceb 2’ partition the
sequence, i.e. there exist two injection functiof,g : N — N such thatf (N) N
g(N) =0, f(N)ug(N) =N andz'(n) = z(f(n)) andz”’(n) = z(g(n)). Thenw’,w"”
are defined byv'(n) = w(f(n)) andw”(n) = w(g(n)).

— ((va)P){w/z} is defined as for the prefix.

- AX| z){w/z} = AX| w).

A.2 Proof of Theorem 2

The proofis by induction on the rules of the operational setica. All cases are rather
straightforward, except the parallel composition and reicun (and output for the asyn-
chronous calculus). For the parallel composition the @uemma is the following,
wherey — X is the relabelling functiorf (a) = a{x/y} andX is the set of labels witk
as subject.

Lemma 1. Let= denote isomorphism of event structures. L&t K be the set of labels

with subject x. We have thaﬂﬁfﬂel, and fzﬁfﬂeg if and only if

F1||Er—— 1 || E2| (0,€1,€2). Moreover, in such a case, we hati| % | (0,e,e) =
((E1le1) [(E2|e2ly — X)) \ X.

The first part of theorem is straightforwardeif, e, are minimal inZ;, £, then(0, e1, &)
is a minimal event inEy || £,, and vice versa. Assuming this is the case, one can prove
that £y || E2| (0,e1,e2) = (E1]e1)||(£2|e2). This is done by defining a bijective function
f || 2| (0,€1,6) — ((E1|er) | (E2|e2]y— X))\ X such that botif andf~* are mor-
phism of event structures. The definition band the proofs that it is a isomorphism is
similar to the one found in [20].

A similar lemma is used for the adequacy with respect to tya@sonous prefix.

Lemma 2. LetEZ =a(x) |4 L[X].£. Then we have that

Mg

— £-%.%|e where x is not the subjectfif and only if /-2~ ~a(x) |A L[X].E|e

16

_ gV £|e, if and only ifE' £ |ely — x] \ X
Finally, for the recursion, it is enough to observe that aripimal event of the
denotation of a recursive process must belong to all buefininany approximations.

B Appendix: Examples from Section 4

We show the construction of the examples of parallel conjpsi

(%, W)~~~ (k,T) ~~ (%,W)

(¥:%) (v>%) 5 5
L e N
(X(y), (x(y ~ (X¥).a(2) " (@),zw)) ~ (x2(w))

A NIy S
X N
-
‘\'P\"x'\.:\\:’\\:—_,\d}
N A
N

~~ (a(x),a(2)) ~ (x3a(2)
Step 1.%; x Ep, where the definition of£* is in Figure 2
y y : : WA~ T ~~ W
X(y) >‘<(>/ ~ bad ~ bad ‘[t bad ~ 2w
N M \
e~ Tz

a(x) ~
Step 2.(E; x Ep)[fr], where the definition ofE*[f] is in Flgure 2

y —~
| \
X(y) Y(‘x/) (" [fr])\X

a(x) ai2)
Step 3. || £, where the definition ofE* | fr][er]\X is in Figure 2

y

T ~~

Table 1. Event structure corresponding {dR[t

17

(@x),a(2)

Definition of £*, whereZ; is shown below andE; is identical toZ; wherey has been substituted with

/\/NNN —\/\f\
(W) = (1) =bad ~ (y,w)=bad
~_ ~ o
o~ F\f\ﬂx'\f\d \\—_Nxx—\x —\Nxxx
*) = hide *,W) = hide ~_ (%,T) ~ (%,W)=hide
(y’)) 7)

Definition of (E*[fr][er])\X

Table 2. Event structure corresponding {d=[}

18

