
HAL Id: hal-00148937
https://hal.science/hal-00148937

Submitted on 23 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Event Structure Semantics of the
Internal pi-Calculus

Silvia Crafa, Daniele Varacca, Nobuko Yoshida

To cite this version:
Silvia Crafa, Daniele Varacca, Nobuko Yoshida. Compositional Event Structure Semantics of the
Internal pi-Calculus. Proceedings of Concur 2007, Sep 2007, Lisbon, Portugal. pp.317-332. �hal-
00148937�

https://hal.science/hal-00148937
https://hal.archives-ouvertes.fr

Compositional Event Structure Semantics
for the π-Calculus

Silvia Crafa1 Daniele Varacca2 Nobuko Yoshida3

1Università di Padova 2 PPS - Université Paris 7 & CNRS 3Imperial College London

Abstract. We propose the first compositional event structure semantics for a
fully expressiveπ-calculus, generalising Winskel’s event structures for CCS. The
π-calculus we model is theπI-calculus with recursive definitions and summa-
tions. First we model thesynchronouscalculus, introducing a notion of dynamic
renaming to the standard operators on event structures. Then we model theasyn-
chronouscalculus, for which a new additional operator, calledrooting, is nec-
essary for representing causality due to new name binding. The semantics are
shown to be operationally adequate and sound with respect tobisimulation.

1 Introduction

Event structures [17] are a causal model for concurrency which is particularly suited
for the traditional process calculi such as CCS, CSP, SCCS and ACP. Event structures
intuitively and faithfully representcausalityandconcurrency, simply as a partial order
and an irreflexive binary relation. The key point of the generality and applicability of
this model is the compositionality of the parallel composition operator: the behaviour
of the parallel composition of two event structures is determined by the behaviours of
the two event structures. This modularity, together with other algebraic operators such
as summation, renaming and hiding, leads also to a straightforward correspondence be-
tween the event structures semantics and the operational semantics - such as the labelled
transition system - of a given calculus [25].

In this paper we propose the first compositional event structure semantics of a fully
expressive variant of theπ-calculus. The semantics we propose generalises Winskel’s
semantics of CCS [21], it is operationally adequate with respect to the standard labelled
transition semantics, and consequently it is sound with respect to bisimilarity.

Theπ-calculus we consider is known in the literature as theπI-calculus [18], where
the output of free names is disallowed. The symmetry of inputand output prefixes,
that are both binders, simplifies considerably the theory, while preserving the basic
expressiveness of the calculi with free name passing [2, 16].

In order to provide an event structure semantics of theπ-calculus, one has in particu-
lar to be able to represent dynamic creations of new synchronisation channels, a feature
that is not present in traditional process algebras. In Winskel’s event structure seman-
tics of CCS [21], the parallel composition is defined as product in a suitable category
followed by relabelling and hiding. The product representsall conceivable synchroni-
sations, the hiding removes synchronisations that are not allowed, while the relabelling
chooses suitable names for synchronisation events. In CCS one can decide statically
whether two events are allowed to synchronise, whereas in theπ-calculus, a synchroni-
sation between two events may depend on which synchronisations took place before.

Consider for instance theπ-processa(x).x(u).0 | a(z).z(v).0 wherea(x).P is an
input ata, a(z).Q is an output of a new namez to a and0 denotes the inaction. This
process contains two synchronisations, first along the channela and then along a private,
newly created, channelz. The second synchronisation is possible only since the names
x andz are made equal by the previous synchronisation alonga. To account for this
phenomenon, we define the semantics of the parallel composition by performing hiding
and relabelling not uniformly on the whole event structure,but relative to the causal
history of events.

The full symmetry underlying theπI-calculus theory has a further advantage: it
allows a uniform treatment of causal dependencies. Causal dependencies in theπ-
processes arise in two ways [3, 10]: by nesting prefixes (called structural or prefix-
ing or subjectcausality) and by using a name that has been bound by a previous
action (calledlink or nameor object causality). While subject causality is already
present in CCS, object causality is distinctive of theπ-calculus. In the synchronous
πI-calculus, object causality always appear under subject causality, as ina(x).x(y).0
or in (νc)(a(x).c(z).0 | c(w).x(y).0), where the input onx causally depends in both
senses from the input ona. As a result, the causality of synchronousπI-calculus can be
naturally captured by the standard prefixing operator of theevent structures, as in CCS.

On the other hand, in the asynchronousπI-calculus, the bound output process is no
longer a prefix: ina(x)P, the continuation processP can perform any actionα before the
output ofx ona, provided thatα does not containx. Thus the asynchronous output has
a looser causal dependency. For example, in(νc)(a(x)c(z).0 | c(w)x(y).0), a(x) only
binds the input atx, and the interaction betweenc(z) andc(w) can perform beforea(x),
thus there exists no subject causality. Representing this output object causality requires
a novel operator on event structures that we callrooting, whose construction is inspired
from a recent study on Ludics [8].

With these new constructions, the semantics of both the synchronous and the asyn-
chronousπI-calculus is compositional, operationally adequate and sound with respect
to bisimilarity.

2 Internal π-calculus

This section gives basic definitions of theπI-calculus [18]. This subcalculus captures
the essence of name passing with a simple labelled transition relation. In contrast with
the full π-calculus, only one notion of strong bisimulation exists, and it is a congruence.

2.1 Syntax

The syntax of the monadic, synchronousπI-calculus [18] is the following, where the
symbolsa,b, . . . ,x,y,z range over the infinite set of names denoted byNames.

Prefixes π ::= a(x) | a(x)

Processes P,Q ::= ∑i∈I πi.Pi | P | Q | (νa)P | A〈x̃ | z〉

Definitions A(x̃ | z) = PA

The syntax consists of the parallel composition, name restriction, finite summation of
guarded processes and recursive definition. In∑i∈I πi.Pi , I is a finite indexing set; when

2

I is empty we simply write0 and denote with+ the binary sum. The two prefixesa(x)
anda(x) represent, respectively, an input prefix and a bound output prefix. A process
a(x).P can perform an input ata andx is the placeholder for the name so received. The
bound output case is symmetric: a processa(x).P can perform an output of the fresh
namex along the channela. Differently from theπ-calculus, where both bound and
free names can be sent along channels, in theπI-calculus only bound names can be
communicated, modelling the so calledinternal mobility. We often omit0 and objects
(e.g. writea instead ofa(x).0).

The choice of recursive definitions rather than replicationfor infinite processes is
justified by the fact that theπI-calculus with replication is strictly less expressive [18].
We assume that every constantA has a unique defining equationA(x̃ | z) = PA. The
symbolx̃ denotes a tuple of distinct names, whilez represents an infinite sequence of
distinct namesN→Names. We denotez(n) aszn. The tuple ˜x contains all free names of
PA and the range ofz contains all bound names ofPA. The parameterz does not usually
appear in recursive definitions in the literature. The reason we add it is that we want to
maintain the following assumption:

Every bound name is different from any other name, either bound or free. (1)

In theπ-calculus, this policy is usually implicit and maintained along the computation
by dynamicα-conversion: every time the definitionA is unfolded, a new copy of the
processPA is created whose bound names must be fresh. This dynamic choice of names
is difficult to interpret in the event structures. Hence our recursive definitions prescribe
all the names that will be possibly used for a precise semantic correspondence.

The set of free and bound names ofP, written by fn(P) and bn(P), is defined as
usual, for instance fn(a(x).P) = {a}∪(fn(P)\{x}). As for constant processes, the def-
inition is as follows: fn(A〈x̃ | z〉) = {x̃} and bn(A〈x̃ | z〉) = z(N).

2.2 Operational Semantics

The operational semantics of the calculus is given in terms of an LTS (in late style),
which is defined as follows, where we letα,β range over the set of labels{τ,a(x),a(x)}.

(IN LATE)

a(x).P
a(x)
−−→ P

(OUT)

a(x).P
a(x)
−−→ P

(COMM)

P
a(x)
−−→ P′ Q

a(y)
−−→ Q′

P | Q
τ

−−→ (νy)(P′{y/x} | Q′)

(PAR)

P
α

−−→ P′

P | Q
α

−−→ P′ | Q

(SUM)

Pi
α

−−→ P′
i

∑i∈I Pi
α

−−→ P′
i

i ∈ I

(RES)

P
α

−−→ P′

(νa)P
α

−−→ (νa)P′
a /∈ fn(α)

(REC)

PA{ỹ/x̃}{w/z}
α

−−→ P′

A〈ỹ | w〉
α

−−→ P′
A(x̃ | z) = PA

3

The rules above illustrate the internal mobility characterising the πI-calculus com-
munication. In particular, according to (COMM), we have thata(x).P | a(y).Q

τ
−→

(νy)(P{y/x} | Q) where the fresh namey appearing in the output is chosen as the
“canonical representative” of the private value that has been communicated. In (REC),
the unfolding of a new copy of the recursive process updates the sequence of bound
names. The formal definition of the substitution{w/z} is found in Appendix A.1.

Proposition 1. Let P be a process that satisfies Assumption 1. Suppose P
α

−→ P′. Then
P′ satisfies Assumption 1.

Example 1.ConsiderA(x | z) = x(z0).A〈z0 | z′〉 | x(z1).A〈z1 | z′′〉, wherez′(n) = z(2n+
2) andz′′(n) = z(2n+ 3). In this case the sequence of namesz is partitioned into two
infinite subsequencesz′ and z′′ (corresponding to even and odd name occurrences),
so that the bound names used in the left branch ofA are different from those used
in the right branch. IntuitivelyA〈a | z〉 partially “unfolds” to a(z0).(z0(z2).A〈z2 | z′1〉
| z0(z4).A〈z4 | z′2〉) | a(z1).(z1(z3).A〈z3 | z′′1〉 | z1(z5).A〈z3 | z′′2〉) with suitablez′1,z

′
2,z

′′
1,z

′′
2.

We end this section with the definition of strong bisimilarity in theπI-calculus.

Definition 1 (πI strong bisimilarity). A symmetric relationR on πI processes is a
strong bisimulation if PR Q implies:

– whenever P
τ

−−→ P′, there is Q′ s.t. Q
τ

−−→ Q′ and P′RQ′.

– whenever P
a(x)
−−→ P′, there is Q′ s.t. Q

a(y)
−−→ Q′ and P′{z/x}RQ′{z/y}.

– whenever P
a(x)
−−→ P′, there is Q′ s.t. Q

a(y)
−−→ Q′ and P′{z/x}RQ′{z/y}.

with z being any fresh variable. Two processes P,Q arebisimilar, written P∼ Q, if they
are related by some strong bisimulation.

This definition differs from the corresponding definition in[18] because we do not have
the α-conversion rule, and thus we must allowQ to mimic P using a different bound
name. The relation∼ is a congruence and containsα-equivalence.

3 Event Structures

This section reviews basic definitions of event structures,that will be useful in Section 4.
Event structures appear in the literature in different forms, the one we introduce here is
usually referred to as prime event structures [9, 17, 22].

3.1 Basic definitions

Definition 2 (Event Structure). An event structure is a tripleE = 〈E,≤,⌣〉 s.t.

– E is a countable set ofevents;
– 〈E,≤〉 is a partial order, called thecausal order;
– for every e∈ E, the set[e) := {e′ | e′ < e}, called theenabling setof e, is finite;
– ⌣ is an irreflexive and symmetric relation, called theconflict relation, satisfying

the following: for every e1,e2,e3 ∈ E if e1 ≤ e2 and e1 ⌣ e3 then e2 ⌣ e3.

4

The reflexive closure of conflict is denoted by≍. We say that the conflicte2 ⌣ e3 is
inheritedfrom the conflicte1 ⌣ e3, whene1 < e2. If a conflicte1 ⌣ e2 is not inherited
from any other conflict we say that it isimmediate. If two events are not causally related
nor in conflict they are said to beconcurrent.

Definition 3 (Labelled event structure). Let L be a set of labels. A labelled event
structureE = 〈E,≤,⌣,λ〉 is an event structure together with a labelling functionλ :
E → L that associates a label to each event in E.

Intuitively, labels representactions, and events should be thought of asoccurrences of
actions. Labels allow us to identify events which represent different occurrences of the
same action. In addition, labels are essential when composing two event structures in a
parallel composition, in that they are used to point out which events may synchronise.

In order to give the semantics of a processP as an event structureE , we have to
show how the computational steps ofP are reflected intoE . This will be formalised
in the Operational Adequacy Theorem 2 in Section 4, which is based on the following
labelled transition systems over event structures.

Definition 4. Let E = 〈E,≤,⌣,λ〉 be a labelled event structure and let e be one of
its minimal events. The event structureE⌊e= 〈E′,≤′,⌣′,λ′〉 is defined by: E′ = {e′ ∈

E | e′ 6≍ e}, ≤′=≤|E′ , ⌣′=⌣|E′ , andλ′ = λE′ . If λ(e) = β, we writeE
β

−→ E⌊e .

Roughly speaking,E⌊e isE minus the evente, and minus all events that are in conflict
with e. The reachable LTS with initial stateE corresponds to the computations over
E . It is usually defined using the notion ofconfiguration[25]. However, by relying on
the LTS as defined above, the adequacy theorem has a simpler formulation. A precise
correspondence between the two notions of LTS can be easily defined.

Event structures have been shown to be the class of objects ofa category [25], whose
morphisms are defined as follows. LetE1 = 〈E1,≤1,⌣1〉, E2 = 〈E2,≤2,⌣2〉 be event
structures. Amorphism f: E1 → E2 is a partial functionf : E1 → E2 such that

– f reflects causality: iff (e1) is defined, then
[

f (e1)
)

⊆ f
(

[e1)
)

;
– f reflects reflexive conflict: iff (e1), f (e2) are defined, and iff (e1) ≍ f (e2), then

e1 ≍ e2.

It is easily shown that an isomorphism in this category is a bijective function that
preserves and reflects causality and conflict. In the presence of labelled event struc-
turesE1 = 〈E1,≤1,⌣1,λ1〉, E2 = 〈E2,≤2,⌣2,λ2〉 on the same set of labelsL, we will
consider onlylabel preservingisomorphisms, i.e. isomorphismsf : E1 → E2 such that
λ2(f (e1)) = λ1(e1). If there is an isomorphismf : E1 → E2, we say thatE1,E2 are
isomorphic, writtenE1 ∼= E2.

3.2 Operators on event structures

We provide here an informal description of several operations on labelled event struc-
tures, that we are going to use in the next section. See [22] for more details.

– Prefixing a.E . This operation adds to the event structure a new minimal element,
labelled bya, below every other event inE . Conflict, order, and labels of original
elements remain the same as inE .

5

– Prefixed sum∑i∈I ai .Ei . This is obtained as the disjoint union of copies of the event
structuresai .Ei . The order relation of the new event structure is the disjoint union
of the orders ofai .Ei and the labelling function is the disjoint union of the labelling
functions ofai .Ei . As for the conflict relation, we take the disjoint union of the
conflicts appearing inai .Ei and we extend it by putting in conflict every pair of
events belonging to two different copies ofai.Ei .

– Restriction(or Hiding) E \X whereX ⊆ L is a set of labels. This is obtained by re-
moving fromE all events with label inX and all events that are above (i.e., causally
depend on) one of those. On the remaining events, order, conflict and labelling are
unchanged.

– RelabellingE [f] whereL andL′ are two sets of labels andf : L→ L′. This operation
just consists in composing the labelling functionλ of E with the function. The new
event structure is labelled overL′ and its labelling function isf ◦λ.

3.3 The parallel composition

The parallel composition of two event structuresE1 andE2 gives a new event structure
E ′ whose events model the parallel occurrence of eventse1 ∈ E1 ande2 ∈ E2. In par-
ticular, when the labels ofe1 ande2 match according to an underlying synchronisation
model,E ′ records (with an evente′ ∈ E′) that a synchronisation betweene1 ande2 is
possible, and deals with the causal effects of such a synchronisation.

The parallel composition is defined as the categorical product followed by restric-
tion and relabelling [25]. Even if the categorical product is unique up to isomorphism, it
can be explicitly constructed in different ways. We give a brief outline of one such con-
struction [9, 19]. LetE1 := 〈E1,≤1,⌣1〉 andE2 := 〈E2,≤2,⌣2〉 be event structures.
Let E∗

i := Ei ⊎{∗}, where∗ is a distinguished event. The categorical product is given by
an event structureE = 〈E,≤,⌣〉 and two morphismsπi :E→Ei (the projections). The
elements ofE are of the form(W,e1,e2) whereW is a finite subset ofE, andei ∈ E∗

i .
Intuitively W is the enabling set of the event(W,e1,e2). The order≤ is generated by
(W,e1,e2) ≤ (W′,e′1,e

′
2) iff (W,e1,e2) ∈ W′. The conflict relation⌣ is defined using

the conflict relations ofE1,E2. The projections are defined asπ1(W,e1,e2) = e1 and
π2(W,e1,e2) = e2. For event structures with labels inL, let beL∗ := L⊎ {∗} where
∗ is a distinguished label. Then the labelling function of theproduct takes on the set
L∗×L∗, and we defineλ(W,e1,e2) = (λ∗

1(e1),λ∗
2(e2)), whereλ∗

i (ei) = λi(ei) if ei 6= ∗,
andλ∗

i (∗) = ∗.
The synchronisation model underlying the relabelling operation needed for parallel

composition is formalised by the following notion ofsynchronisation algebra[25]. A
synchronisation algebraS is a partial binary operation•S defined onL∗. If αi is the
label of an eventei ∈ Ei , thenα1 •Sα2 gives the label of the evente′ ∈ E′ representing
the synchronisation ofe1 ande2. If the synchronisation algebra is not defined, the syn-
chronisation event is given a distinguished labelbad that indicates that this event is not
allowed and should be deleted.

Definition 5 (Parallel Composition of Event Structures).LetE1,E2 two event struc-
tures labelled over L, let S be a synchronisation algebra, and let fS : L∗ → L′ = L∗ ∪
{bad} be a function defined as fS(α1,α2) = α1 •Sα2, if S is defined on(α1,α2), and
fS(α1,α2) = bad otherwise. The parallel compositionE1‖SE2 is defined as follows the

6

categorical product followed by relabelling and restriction1:

E1‖SE2 = (E1×E2)[fS]\ {bad}

The subscripts S are omitted when the synchronisation algebra is clear from the context.

Example 2.We show a simple example of parallel composition. LetL = {α,β,α,τ}
Consider the two event structuresE1,E2, whereE1 = {a,b},E2 = {a′}, with a ≤1 b
andλ1(a) = α,λ1(b) = β,λ2(a′) = α. The event structures are represented as follows:

E1 :

β

E2 : E3 :

β β

α α α /o/o/o τ /o/o/o α

where curly lines represent immediate conflict, while the causal order proceeds upwards
along the straight lines. Consider the synchronisation algebra obtained as the symmetric
closure of the following rules:α•α = τ, α• ∗ = α, α • ∗ = α, β• ∗ = β and undefined
otherwise. ThenE3 := E1‖E2 is the event structure〈E3,≤,⌣,λ〉 whereE3 = {e :=
(/0,a,∗),e′ := (/0,∗,a′),e′′ := (/0,a,a′),d := ({e},a′,∗),d′′ := ({e′′},a′,∗)}, the ordering
≤ is defined ase≤ d,e′′ ≤ d′′, while the conflict⌣ is defined ase ⌣ e′′, e′ ⌣ e′′,
e⌣ d′′, e′ ⌣ d′′, e′′ ⌣ d, d ⌣ d′′. The labelling function isλ(e) = α, λ(e′) = α,λ(e′′) =
τ,λ(d) = λ(d′′) = β.

3.4 A large CPO of event structures

We say that an event structureE is aprefix if an event structureE ′, denotedE ≤ E ′ if
there existsE ′′ ∼= E ′ such thatE ⊆ E′′ and no event inE′′ \E is below any event ofE.

Winskel [21] has shown that the class of event structures with the prefix order is
a large CPO, and thus the limits of countable increasing chains exist. Moreover all
operators on event structures are continuous.

We will use this fact to define the semantics of the recursive definitions.

4 Event Structure Semantics

This section defines the denotational semantics ofπI-processes by the labelled event
structures. Given a processP, we associate toP an event structureEP whose eventse
represent the occurrence of an actionλ(e) in the LTS ofP. Moreover, our main issue is
compositionality: the semantics of the processP | Q should be defined asEP || EQ so
that the operator|| satisfactorily models the parallel composition ofP andQ.

1 The standard definition of parallel composition is(E1×E2 \X)[f], where the restriction and
relabeling operations are swapped, andX is the set of labels (pairs) for whichf is undefined.
We can prove that such a definition is equivalent to ours, which is more suitable to be gener-
alised to theπ-calculus.

7

4.1 Generalised relabelling

It is clear form Definition 5 that the core of the parallel composition of event structures
is the definition of a relabelling function encoding the intended synchronisation model.
As discussed in the Introduction, name dependences appearing in πI-processes let a
synchronisation between two events possibly depend on the previous synchronisations.
We then define a generalised relabelling operation where therelabelling of an event de-
pends on (the labels of) its causal history. Such a new operator is well-suited to encode
theπI-communication model and allows the semantics of theπI-calculus to be defined
as an extension of CCS event structure semantics.

Definition 6 (Generalised Relabelling).Let L and L′ be two sets of labels, and let
Pom(L′) be a pomset (i.e., partially ordered multiset) of labels in L′. Given an event
structureE = 〈E,≤,⌣,λ〉 over the set of labels L, and a function f: Pom(L′)×L −→
L′, we define the relabelling operationE [f] as the event structureE ′ = 〈E,≤,⌣,λ′〉
with labels in L′, whereλ′ : E −→ L′ is defined as follows by induction on the height of
an element of E:

if h(e) = 0 thenλ′(e) = f (/0, λ(e))

if h(e) = n+1 thenλ′(e) = f (λ′([e)), λ(e))

In words, an evente is relabelled with a labelλ′(e) that depends on the (pomset of)
labels of the events belonging to its causal history[e).

The set of labels we consider isL = {a(x),a(x),τ | a,x ∈ Names}. For the par-
allel composition we need an auxiliary set of labelsL′ = {a(x),a(x),τx=y | a,x,y ∈
Names}∪{bad,hide}, wherebad andhide are distinguished labels.

In L′, the silent actionτ is tagged with the couple of bound names that get identified
through the synchronisation. This extra piece of information carried byτ-actions is
essential in the definition of the generalised relabelling function. Let for instancee
encode the parallel occurrence of two eventse1,e2 labelled, resp.,x(x′) andy(y′), then
e1 ande2 do synchronise only ifx andy are equal, that is only if in the causal history of
e there is an event labelled withτx=y; in such a casee can then be labelled withτx′=y′ .

The distinguished labelbad denotes, as before, synchronisations that are not al-
lowed, while the new labelhide denotes the hiding of newly generated names. Both
labels are finally deleted.

Let fπ : Pom(L′)× (L⊎{∗}×L⊎{∗})−→ L′ be the relabelling function defined as:

fπ(X,〈a(y),a(z)〉) = fπ(X,〈a(z),a(y)〉) = τy=z

fπ(X,〈a(y),b(z)〉) = fπ(X,〈b(z),a(y)〉) =

{

τy=z if τa=b ∈ X
bad otherwise

fπ(X,〈a(y),∗〉) = fπ(X,〈∗,a(y)〉) =

{

hide if τa=b ∈ X
a(y) otherwise

fπ(X,〈a(y),∗〉) = fπ(X,〈∗,a(y)〉) =

{

hide if τa=b ∈ X
a(y) otherwise

fπ(X,〈α,β〉) = bad otherwise

8

The functionfπ encodes theπI-synchronisation model in that it only allows synchroni-
sations between input and output over the same channel, or over two channels whose
names have been identified by a previous communication. The actions over a channel
a that has been the object of a previous synchronisation are relabelled ashide since,
according to internal mobility,a is a bound name.

The extra information carried by theτ-actions is only necessary in order todefine
the relabelling, but it should later on be forgotten, as we donot distinguishτ-actions in
the LTS. Hence we apply a second relabellinger that simply erases the tags:

er(α) =

{

τ if α = τx=y

α otherwise

4.2 Definition of the semantics

The semantics of theπI-calculus is then defined as follows by induction on processes,
where the parallel composition of event structure is definedby

E1‖πE2 = ((E1×E2) [fπ][er]) \{bad,hide}

To deal with recursive definitions, we use an indexk to denote the level of unfolding.

{|0|}k = /0 {|∑i∈I πi .Pi |}k = ∑i∈I πi .{|Pi |}k

{|P | Q|}k = {|P|}k ‖π {|Q|}k {|(νa)P|}k = {|P|}k\{l ∈ L | a is the subject ofl}

{|A〈ỹ | w〉 |}0 = /0 {|A〈ỹ | w〉 |}k+1 = {|PA{ỹ/x̃}{w/z}|}k

Recall that all operators on event structures are continuous with respect to the prefix
order. It is thus easy to show that, for anyk, {|P|}k ≤ {|P|}k+1. We define{|P|} to be the
limit of the increasing chain...{|P|}k ≤ {|P|}k+1 ≤ {|P|}k+2...:

{|P|} = supk∈N
{|P|}k

Since all operators are continuous with respect to the prefixorder we also have the
following result:

Theorem 1 (Compositionality).The semantics{|P|} is compositional, i.e.{|P | Q|} =
{|P|} ‖π {|Q|}, and so on for all other operators.

4.3 Examples

Example 3.As the first example, consider the processP = a(x).x(u) | a(z).z(v) dis-
cussed in the Introduction. We show in the following the two event structuresE1,E2

associated to the basic threads, as well as the event structure corresponding to{|P|} =
E1‖πE2. Figure 1 shows two intermediate steps involved in the construction of{|P|},
according to the definition of the parallel composition operator.

E1 :

x(u)

a(x)

E2 :

z(v)

a(z)

E1‖πE2 :

x(u) τ z(v)

a(x) τ /o/o/oo/ o/ o/ o/ a(z)

9

(x(u),z(v))

(∗,z(v)) (x(u),∗)

>>
>>

>>
>>

>>
>>

>
/o/o (x(u),z(v)) (∗,z(v))

��
��

��
��

��
��

�

o/ o/ (x(u),∗)

(x(u),∗) /o/o (x(u),a(z))

ooooooo

-m (a(x),z(v))

q1 q1

OOOOOOO
(∗,z(v))o/ o/

(a(x),∗) (a(x),a(z)) /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oo/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ (∗,a(z))

Step 1.E1×E2

bad

(∗,z(v)) hide

55
55

55
55

55
55

/o/o τu=v hide

o/ o/ (x(u),∗)

x(u) /o/o/o
bad

tt
tt

tt
t

-m bad

q1 q1

KK
KK

KK
K z(v)o/ o/ o/

a(x) τx=z /o/o/o/o/o/o/o/o/o/o/o/o/o/o/oo/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ a(z)

Step 2.(E1×E2)[fπ]

Fig. 1. Event structure corresponding toa(x).x(u) | a(z).z(v)

Example 4.As the second example, considerQ = a(w) | P, whereP is the process
above. InQ two different communications may take place along the channel a: either
the fresh namew is sent, and the resulting process is stuck, or the two threads in P can
synchronise as before establishing a private channel for a subsequent communication.
The behaviour ofQ is illustrated by the following event structure which corresponds
to {|Q|} = E3‖π{|P|}, whereE3 = {|a(w) |} is a simple event structure consisting of a
single event labeled bya(w).

x τ z

a(w) τ /o/o/oo/ o/ o/
'g
(h)i *j +k -m .n /o 0p 1q 3s 4t 5u 6v

7wa(x) /o/o/o τ /o/o/o a(z)

Example 5.As a further example, letR= a(x).
(

x(y).y | x(y′).y′
)

| a(z).
(

z(w).(w | w)
)

whose two threads correspond to the following two event structures:

E1 :

y y′

x(y)

JJJJJJ x(y′)

ssssss

a(x)

E2 :

w

JJJJJJ τ /o/o/o/oo/ o/ o/ o/ w

tttttt

z(w)

a(z)

10

Rallows a first communication ona that identifiesx andzand triggers a further synchro-
nisation with one of the outputs overx belonging toE1. This second communication
identifiesw with eithery or y′, which can now compete withw for the third synchro-
nisation. The event structure corresponding to{|R|} = E1‖πE2 is the following; its
construction is shown in Appendix B.

τ

JJJJJJJ τ τ τ

ttttttt

τ /o/o/o/o/o/o/o/o τ

E1 /o/o/o/o/o/o/o/o τ

FFFFFFF

xxxxxxx
E2o/ o/ o/ o/ o/ o/ o/ o/

Example 6.Consider the recursive process, seen in Example 1 in Section2, A(x | z) =
x(z0).A〈z0 | z′〉 | x(z1).A〈z1 | z′′〉, wherez′(n) = z(2n+2) andz′′(n) = z(2n+3). In the
following, we draw the first approximations of the semanticsof P = A〈a | z〉:

{|P|}0 : {|P|}1 : {|P|}2 :

z0(z2) z0(z4) z1(z3) z1(z5)

a(z0) a(z1) a(z0)

BBBBBB

a(z1)

||||||

z2(z6) z2(z10) z4(z8) z4(z12) z3(z7) z3(z11) z5(z9) z5(z13)

{|P|}3 : z0(z2)

CCCCCC

z0(z4)

{{{{{{
z1(z3)

CCCCCC

z1(z5)

{{{{{{

a(z0)

QQQQQQQQQQQ

CCCCCC

a(z1)

mmmmmmmmmmm

{{{{{{

4.4 Properties of the semantics

The operational correspondence is stated in terms of the labelled transition system de-
fined in Section 3.

Theorem 2 (Operational Adequacy).Suppose P
β

−−→ P′ in the π-calculus. Then

{|P|}
β

−−→ ∼= {|P′ |}. Conversely, suppose{|P|}
β

−−→ E ′. Then there exists P′ such

that P
β

−−→ P′ and{|P′ |} ∼= E ′.

The proof technique is similar to the one used in [19], but it takes into account the
generalised relabelling.

As an easy corollary, we get that the semantics is sound with respect to bisimilarity.

Theorem 3 (Soundness).If {|P|} ∼= {|Q|}, then P∼ Q.

The converse of the soundness theorem (i.e. completeness) does not hold. In fact this
is always the case for event structure semantics (for instance the one in [21]), because

11

bisimilarity abstracts away from causal relations, which are instead apparent in the event
structures. As a counterexample, we havea.b+b.a ∼ a | b but{|a.b+b.a|} 6∼= {|a | b|}.

Isomorphism of event structures is indeed a very fine equivalence, however it is, in
a sense behavioural, as it isstrictly coarser than structural congruence.

Proposition 2. If P ≡ Q then{|P|} ∼= {|Q|}

The converse of the previous proposition does not hold:{|(νa)a.P|} ∼= {|0|} = /0 but
(νa)a.P 6≡ 0. As a further counterexample, we have(νa)(a(x).x(u) | a(y).y(v)) 6≡
(νa,b)(a(x).b(u) | a(y).b(v)), but both processes correspond to the same event structure
containing only two eventse1,e2 with e1 ≤ e2 andλ(e1) = λ(e2) = τ.

5 AsynchronousπI-calculus

This section studies theasynchronousπI-calculus [4, 14, 16], whose syntax slightly dif-
fers from that in Section 2 in the treatment of the output.

Processes P,Q ::= ∑i∈I ai(xi).Pi | a(x)P | P | Q | (νa)P | A〈x̃ | z〉

Definition A(x̃ | z) = PA

The new syntax of the bound output reflects the fact that thereis a looser causal connec-
tion between the output and its continuation. A processa(x)P is different froma(x).P
in that it can activate the processP even if the namex has not been emitted yet along
the channela. The operational semantics can be obtained from that of Section 2 by
removing the rule (OUT) and adding the following three rules:

(OUT)

a(x)P
a(x)
−−→ P

(ASYNC)

P
α

−−→ P′

a(x)P
α

−−→ a(x)P′
x /∈ fn(α)

(ASYNCH COMM)

P
a(y)
−−→ P′

a(x)P
τ

−−→ (νx)P′{x/y}

Relying on this LTS, the definition of strong bisimilarity for the asynchronousπI-
calculus is identical to that in Section 2.

5.1 Denotational semantics

The event structure semantics of the asynchronousπI-calculus requires to encode the
output processa(x)P, introducing the following novel operator, calledrooting.

Definition 7 (Rooting a[X].E). LetE be an event structure labelled over L, let a be a
label and X⊆ L be a set of labels. We define the rooting operation a[X].E as the event
structureE ′ = 〈E′,≤′,⌣′,λ′〉, where E′ = E⊎{e′} for some new event e′,≤′ coincides
with≤ on E and for every e∈ E such thatλ(e)∈ X we have e′ ≤′ e, the conflict relation
⌣′ coincides with⌣, that is e′ is in conflict with no event. Finally,λ′ coincides withλ
on E andλ′(e′) = a.

The rooting operation adds to the event structure a new event, labeled bya, which is put
below the events with labels inX (and any event above them).

12

The rooting operation is used to give the semantics of asynchronous bound output.
Given a processa(x)P, every action performed byP that hasx as subject is rooted with
a distinctive label⊥. The resulting structure is composed in parallel witha(x), so that
(i) every action that does not depend onx can synchronise witha(x), and (ii) the actions
rooted by⊥ (i.e. those depending onx) become causally dependent on the actiona(x).

Such a composition is formalised the parallel composition operator‖A
π built around

the generalised relabelling functionf A
π : Pom(L′)×(L⊎{∗,⊥}×L⊎{∗,⊥})−→ L′ that

extendsfπ with the following two clauses dealing with the new labels:

f A
π (X,〈⊥,a(x)〉) = f A

π (X,〈a(x),⊥〉) = a(x)

f A
π (X,〈⊥,∗〉) = f A

π (X,〈∗,⊥〉) = bad

The denotational semantics of asynchronousπI-processes is then identical to that in
Section 4, with a new construction for the output:

{|a(x)P|}k = a(x) ‖A
π ⊥[X].{|P|}k X = {α ∈ L | x is the subject ofα}

Example 7.Let Rbe the processa(y)(a(x).b.y); its semantics is defined by the follow-
ing event structure:

y

66
66

66
66

66
66

a(y) ‖A
π b =

a(x) ⊥

y

::
::

::
::

::
:

b b

τ /o/o/o
'g

(h *j +k ,l -m .n /o 0p 1q 2r 3s 4t
a(x) a(y)

First a new event labelled by⊥ is added below any event whose label hasy as subject.
In this case there is only one such event, labelled byy. Then the resulting event structure
is put in parallel with the single event labelled bya(y). This event can synchronise with
the⊥ event or with thea(x) event. The first synchronisation simply substitutes the label
a(y) for ⊥. The second one behaves as a standard synchronisation.

Example 8.The semantics of the processP = a(y)(n(x) | y) | n(z)(a(w).w) discussed
above is the following event structure:

y

‖π

w
=

y τ w

a(y) n(x) n(z) a(w) n(x) /o/o τ /o/o n(z) a(y) /o/o τ /o/o a(w)

Note that the causality between thea(w) event and thew event is both objectandsub-
ject, and it is due to the prefix constructor. The causality between thea(y) event and the
y event is only object, and it is due to the rooting.

5.2 Properties of the semantics

As for the synchronous case, the semantics is adequate with respect to the labelled
transition system.

13

Theorem 4 (Operational Adequacy).Suppose P
β

−−→ P′ in the π-calculus. Then

{|P|}
β

−−→ ∼= {|P′ |}. Conversely, suppose{|P|}
β

−−→ E ′. Then there exists P′ such

that P
β

−−→ P′ and{|P′ |} ∼= E ′.

The proof is analogous to the synchronous case, with a case analysis for the rooting.

Theorem 5 (Soundness).If {|P|} ∼= {|Q|}, then P∼ Q.

6 Related and Future Work

There are several causal models for theπ-calculus, that use different techniques. There
exist semantics in terms of labelled transition systems, where the causal relations be-
tween transitions are represented by “proofs” which allow to distinguish different oc-
currences of the same transition [3, 10]. In [7], a more abstract approach is followed,
which involves indexed transition systems. In [15], a semantics of theπ-calculus in
terms of pomsets is given, following ideas from dataflow theory. The two papers [6, 11]
present Petri nets semantics of theπ-calculus.

A direct antecedent of this work presented a compositional,sound and adequate
event structure semantics for a restricted, typed variant of the π-calculus [19]. This
subcalculus can embed theλ-calculus fully abstractly [1], but is strictly less expressive
than the fullπ-calculus. The newly generated names of this subcalculus can be statically
determined when typing processes, therefore the semanticspresented there uses the
original formulation of the parallel composition for CCS. The generalised relabelling,
the rooting operator as well as the treatment of recursive definitions are developed first
in the present paper.

A recent work [5] provides an event structure semantics of the π-calculus. How-
ever this semantics does not correspond to the labelled transition semantics, but only to
thereductionsemantics, i.e. only internal silent transitions are represented in the event
structure. For instance, in [5], the processesa(x) and0 have both the same semantics,
the empty event structure. Consequently the semantics is neither compositional, opera-
tionally adequate, nor an extension of Winskel’s semanticsof CCS.

Recently Winskel [24] used event structures in a different way to give semantics to
a kind of value passing CCS. His recent work [23] extends the framework of [24] to
a functor category that can handle new name generation, but does not apply yet to the
π-calculus.

The close relation between concurrent game semantics, linear logic and event struc-
ture semantics of the typedπ-calculus has already been observed in [19, 13, 12]. In both
worlds, the types play an important role to restrict the amount of concurrency and non-
determinism. Based on the present work, it will be interesting to extend the relation to
the untyped, fully non-deterministic and concurrent framework.

Our semantics captures the essential features of the causaldependencies created
by both synchronous and asynchronous name passing. For an extension of free name
passing, we plan to use a technique analogous to the one developed for the asynchronous
πI-calculus. As observed in [3, 10], the presence of free outputs allows subtle forms of
name dependences, as exemplified by(νb)(a〈b〉 | c〈b〉), where a restriction contributes

14

the object causality. A refinement of the rooting operator would be used for uniform
handling name causalities induced by both internal and external mobility.

References
1. M. Berger, K. Honda, and N. Yoshida. Sequentiality and theπ-calculus. InTLCA’01, volume

2044 ofLNCS, pages 29–45. Springer, 2001.
2. M. Boreale. On the expressiveness of internal mobility inname-passing calculi.Theor.

Comp. Sci., 195(2):205–226, 1998.
3. M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in theπ-calculus.Acta

Inf., 35(5):353–400, 1998.
4. G. Boudol. Asynchrony and theπ-calculus. Research Report 1702, INRIA, 1992.
5. R. Bruni, H. Melgratti, and U. Montanari. Event structuresemantics for nominal calculi. In

CONCUR’06, volume 4137 ofLNCS, pages 295–309. Springer, 2006.
6. N. Busi and R. Gorrieri. A petri net semantics for pi-calculus. InCONCUR’95, volume 962

of LNCS, pages 145–159. Springer, 1995.
7. G. L. Cattani and P. Sewell. Models for name-passing processes: Interleaving and causal. In

LICS’00, pages 322–332. IEEE, 2000.
8. P.-L. Curien and C. Faggian. L-nets, strategies and proof-nets. InCSL’05, volume 3634 of

LNCS, pages 167–183. Springer, 2005.
9. P. Degano, R. De Nicola, and U. Montanari. On the consistency of “truly concurrent” oper-

ational and denotational semantics. InLICS’88, pages 133–141. IEEE, 1988.
10. P. Degano and C. Priami. Non-interleaving semantics formobile processes.Theor. Comp.

Sci., 216(1-2):237–270, 1999.
11. J. Engelfriet. A multiset semantics for the pi-calculuswith replication. Theor. Comp. Sci.,

153(1&2):65–94, 1996.
12. C. Faggian and M. Piccolo. A graph abstract machine describing event structure composition.

In GT-VC workshop, ENTCS, 2007.
13. C. Faggian and M. Piccolo. Ludics is a model for the (finitary) linear pi-calculus. In

TLCA’07, LNCS. Springer, 2007.
14. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In

ECOOP’91, volume 512 ofLNCS, pages 133–147. Springer, 1991.
15. L. J. Jagadeesan and R. Jagadeesan. Causality and true concurrency: A data-flow analysis of

the pi-calculus. InAMAST’95, volume 936 ofLNCS, pages 277–291, 1995.
16. M. Merro and D. Sangiorgi. On asynchrony in name-passingcalculi. Math.Struc.Comp.Sci.,

14:715–767, 2004.
17. M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets, event structures and domains, part I.

Theor. Comp. Sci., 13(1):85–108, 1981.
18. D. Sangiorgi. π-calculus, internal mobility and agent passing calculi.Theor. Comp. Sci.,

167(2):235–271, 1996.
19. D. Varacca and N. Yoshida. Typed event structures and theπ-calculus. InMFPS’06, ENTCS,

2006. Full version available atwww.pps.jussieu.fr/∼varacca.
20. D. Varacca and N. Yoshida. The Probabilisticπ-Calculus and Event Structures. InQAPL’07,

ENTCS, 2007.
21. G. Winskel. Event structure semantics for CCS and related languages. InICALP’82, volume

140 ofLNCS, pages 561–576. Springer, 1982.
22. G. Winskel. Event structures. InAdvances in Petri Nets 1986, Part II; Proceedings of an

Advanced Course, volume 255 ofLNCS, pages 325–392. Springer, 1987.
23. G. Winskel. Name generation and linearity. InLICS’05, pages 301–310. IEEE, 2005.
24. G. Winskel. Relations in concurrency. InLICS’05, pages 2–11. IEEE, 2005.
25. G. Winskel and M. Nielsen. Models for concurrency. InHandbook of logic in Computer

Science, volume 4. Clarendon Press, 1995.

15

A Appendix: Proofs

A.1 Definition of the substitution of sequences

Let A(x̃ | z) = PA be a recursive definition. We have that the sequencez contains all
bound names ofPA. In particular the sequencez contains all names of all sequencesz′

that appear inPA. Since all bound names are different, there exists an injective function
f : N → N such thatz′(n) = z(f (n)). Also all bound names ofPA are of the formz(n)
for somen. The processPA{w/z} is defined as follows. For each bound name of the
form z(n) we substitutew(n), and for each sequencez′ we substitute the sequencew′

defined asw′(n) = w(f (n)).
Formally:

– (a(x).P){w/z} = a(y).P{w′/z′}, wherex = z(n), y = w(n), for somen; z′(k) =
z(k) if k < n andz′(k) = z(k+ 1) otherwise;w′(k) = w(k) if k < n andw′(k) =
w(k+1) otherwise.

– (P | Q){w/z} = P{w′/z′} | Q{w′′/z′′} where the sequencesz′,z′′ partition the
sequencez, i.e. there exist two injection functionf ,g : N → N such thatf (N)∩
g(N) = /0, f (N)∪g(N) = N andz′(n) = z(f (n)) andz′′(n) = z(g(n)). Thenw′,w′′

are defined byw′(n) = w(f (n)) andw′′(n) = w(g(n)).
– ((νa)P){w/z} is defined as for the prefix.
– A〈x̃ | z〉{w/z} = A〈x̃ | w〉.

A.2 Proof of Theorem 2

The proof is by induction on the rules of the operational semantics. All cases are rather
straightforward, except the parallel composition and recursion (and output for the asyn-
chronous calculus). For the parallel composition the crucial lemma is the following,
wherey 7→ x is the relabelling functionf (α) = α{x/y} andX is the set of labels withx
as subject.

Lemma 1. Let∼= denote isomorphism of event structures. Let X⊆ L be the set of labels

with subject x. We have thatE1
a(x)
−→E1⌊e1, and E2

a(y)
−→E2⌊e2 if and only if

E1‖E2
τ

−→E1‖E2⌊(/0,e1,e2). Moreover, in such a case, we haveE1‖E2⌊(/0,e1,e2) ∼=
((E1⌊e1)‖(E2⌊e2[y 7→ x]))\X.

The first part of theorem is straightforward: ife1,e2 are minimal inE1,E2, then(/0,e1,e2)
is a minimal event inE1‖E2, and vice versa. Assuming this is the case, one can prove
thatE1‖E2⌊(/0,e1,e2)∼= (E1⌊e1)‖(E2⌊e2). This is done by defining a bijective function
f :E1‖E2⌊(/0,e1,e2)→ ((E1⌊e1)‖(E2⌊e2[y 7→ x]))\X such that bothf and f−1 are mor-
phism of event structures. The definition off and the proofs that it is a isomorphism is
similar to the one found in [20].

A similar lemma is used for the adequacy with respect to the asynchronous prefix.

Lemma 2. LetE ′ = a(x) ‖A
π ⊥[X].E . Then we have that

– E ′ a(x)
−→∼= E

– E
β

−→E⌊e where x is not the subject ofβ, if and only ifE ′ β
−→∼= a(x) ‖A

π ⊥[X].E⌊e

16

– E
a(y)
−→∼= E⌊e, if and only ifE ′ τ

−→E⌊e[y 7→ x]\X

Finally, for the recursion, it is enough to observe that any minimal event of the
denotation of a recursive process must belong to all but finitely many approximations.

B Appendix: Examples from Section 4

We show the construction of the examples of parallel composition.

(y,∗) (y′,∗) (∗,w)

HHHHHHHHH
(∗,τ) /o/oo/ o/ o/ o/ (∗,w)

{{
{{

{{
{{

(x(y),∗)

FF
FF

FF
FF

F

3s 3s 2r 1q 0p /o .n -m ,l +k

(x(y′),∗)
3s 2r 1q 1q 0p /o .n -m -m ,l

(x(y),a(z))

vvvvvvvvv

,l

/o (x(y′),a(z))

jjjjjjjjjjjjjjjjj

+k+k+k+k+k+k+k+k+k+k+k+k+k+k+k+k+k+k+k
E∗ (a(x),z(w)) /o

HHHHHHHHH

r2 r2
(∗,z(w))

(a(x),∗) (a(x),a(z)) /o/o/o/o/o/o/o/o/o/oo/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ (∗,a(z))

Step 1.E1×E2, where the definition ofE∗ is in Figure 2

y y′ w

==
==

==
= τ /o/oo/ o/ o/ w

��
��

��
�

x(y)

>>
>>

>>
>

6v 4t 3s 2r 0p /o .n ,l +k *j (h

x(y′)
6v 4t 3s 2r 0p /o .n ,l +k *j (h

bad

��
��

��
�

+k+k+k+k+k+k+k+k+k+k+k+k+k+k+k+k+k+k
/o bad

pppppppppppp

*j*j*j*j*j*j*j*j*j*j*j*j*j
E∗[fπ] bad /o

==
==

==
=

s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 z(w)

a(x) τx=z /o/o/o/o/o/o/oo/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ a(z)

Step 2.(E1×E2)[fπ], where the definition ofE∗[fπ] is in Figure 2

y y′ w

>>
>>

>>
τ /o/oo/ o/ w

��
��

��

x(y)

CC
CC

CC
x(y′) (E∗[fπ])\X z(w)

a(x) τ /o/o/o/o/o/o/o/oo/ o/ o/ o/ o/ o/ o/ o/ o/ o/ a(z)

Step 3.E1 || E2 where the definition ofE∗[fπ][er]\X is in Figure 2

Table 1.Event structure corresponding to{|R|}

17

E∗
1 E∗

2

(x(y),z(w)) /o/o/o/o/o/o/o/o/o/o/o/o (x(y′),z(w))

(x(y),∗) = hide

8x
8x

8x
8x

8x
8x

8x

(x(y′),∗) = hide

8x
8x

8x
8x

8x
8x

8x

(∗,z(w)) = hide

f&
f&

f&
f&

f&
f&

f&

l, l,

(a(x),a(z))

VVVVVVVVVVVVVVVVVVV

;;;;;;;;;;;;;;;;;;

������������������

hhhhhhhhhhhhhhhhhhhh

Definition ofE∗, whereE∗
1 is shown below andE∗

2 is identical toE∗
1 wherey has been substituted withy′.

(y,w)

{;
{;

{;
{;

{;

/o
4t 3s 2r 1q 1q 0p /o .n -m -m ,l

(y,τ) = bad /o (y,w) = bad

(y,∗) = hide

5u
5u

5u
5u

5u
5u

5u
5u

5u

3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s

(∗,w) = hide

k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+

(∗,τ) /oo/

k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+

(∗,w) = hide

k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+

(x(y),z(w))

�����������������

3333333333333333

SSSSSSSSSSSSSSS

iiiiiiiiiiiiiiiiii

fffffffffffffffffffffffffffffff

dddddddddddddddddddddddddddddddddddddd

Definition ofE∗
1 .

τ

88
88

88
τ τ τ

��
��

��

τ /o/o/o/o/o τ

τ

888888

������

Definition of (E∗[fπ][er])\X

Table 2.Event structure corresponding to{|R|}

18

