N

N

Probabilistic pi-calculus and Event Structures
Daniele Varacca, Nobuko Yoshida

» To cite this version:

Daniele Varacca, Nobuko Yoshida. Probabilistic pi-calculus and Event Structures. QAPL 2007, Mar
2007, Braga, Portugal. pp.147-166. hal-00148936

HAL Id: hal-00148936
https://hal.science/hal-00148936
Submitted on 23 May 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00148936
https://hal.archives-ouvertes.fr

Probabilistic 7-Calculus and Event Structures

Daniele VaraccaNobuko Yoshida

a PPS - Université Paris 7, France
b Imperial College London, UK

Abstract

This paper proposes two semantics of a probabilistic vagathe 7-calculus: arinterleaving semantics terms of Segala
automata and sue concurrent semanticé terms of probabilistic event structures. The key tecahpoint is a use diypes

to identify a good class of non-deterministic probabitidtiehaviours which can preserve a compositionality of tireljzh
operator in the event structures and the calculus. We shavperational correspondence between the two semantics. Thi
allows us to prove a “probabilistic confluence” result, whageneralises the confluence of the linearly typedalculus.

Keywords: Event structures, probabilistic processes;alculus, linear types

1 Introduction and motivations

Probabilistic models for concurrency have an extensiegdiure: most of the studies con-
cern interleaving modelslp,25,9], but recently, true concurrent ones have also been stud-
ied [18,1,28,31]. This paper presents an interleaving and a true concusemiantics to a
probabilistic variant of ther-calculus. The variant we consider is similar to the ones pre
sented in 14,6], yet contains important differences. The main differengbich motivates
all the others, is the presencetgpes

The various typing systems for mobile processes have beesiageed in order to pro-
vide disciplines to control non-deterministic behaviostatically and compositionally. In
probabilistic concurrency, a restriction of non-deterisim becomes more essential, for ex-
ample, for preservation of the associativity of paralleihgmsition or to guarantee freedom
from any specific scheduling policie2§]. This paper performs an initial step towards a
“good” typing discipline for probabilistic name passinghish can preserve expressive-
ness and can harmonise with existing probabilistic coreursemantics and programming
languages32,10,7].

We present a typing system for the probabilisticalculus, inspired from a linear typ-
ing systems for ther-calculus B,35]. The linearly typedr-calculus can embed a family
of A\-calculifully abstractly Linearly typed processes enjoy several interesting ptigzse

L Work partially supported by EPSRC grant GR/T04724/01, ahiRAroject ParSec ANR-06-SETI-010-02.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

In particular they are guaranteed to tenfluent that is the computation they perform is
deterministic. In the true concurrent setting, confluerae loe viewed as absence of con-
flicts, orconflict freenessin a conflict free system, one can have different partiasydor
instance because one chooses to execute different sulnsyst@wever, under some basic
fairness assumptions, and if we abstract away from the ondehich concurrent events
happen, the system will always produce the same run.

In [30], we extend the linear-calculus by adding a nondeterministic choice. The typ-
ing system no longer guarantees conflict freeness, but tlie gemeral behavioural prop-
erty of confusion freenessThis property has been studied in the form of free choice Pet
Nets 3,8]. Confusion free event structures are also known as condai structurest],
and their domain-theoretic counterpart are the concreteailts [L7]. In a confusion free
system, all nondeterministic choices &ealisedand are independent from any other event
in the system. In the probabilistic settingg], the intuition is that local choices can be re-
solved by a local coin, or die. The result i8g show that probabilistic confusion free
systems ar@robabilistically confluent We have argued that confluence entails the prop-
erty of having only one maximal computation, up to the ordecancurrent events. It is
then reasonable to define probabilistic confluence as thgepsoof having only one maxi-
mal probabilistic computation, where a probabilistic cartgtion is defined as a probability
measure over the set of computations.

We provide an interleaving and a true concurrent semantichis probabilisticr-
calculus. The interleaving semantics is given as Segatarait. P5], which are an opera-
tional model that combine probability and nondeterminidine nondeterminism is neces-
sary to account for the different possible schedulings efitlilependent parts of a system.
The true concurrent semantics is given as probabilistioesteuctures28]. In this model,
we do not have to account for the different schedulings, hatlleads to the probabilistic
confluence result (Theoref?2), one of the main original contributions of this work.

In order to relate the two semantics, we show how a probébikvent structure gen-
erates a Segala automaton. This allows us to show an opebtiorrespondence between
the two semantics.

Types play an important role for a compositional semantid¢sch is given as a clean
generalisation of Winskel’s original event structure satits of CCS B2] to the-calculus.

In this sense, this work offers a concrete syntactic reptesien of the probabilistic event
structures as hame passing processes, closing an openng&880]. The work opens a
door for event structure semantics for probabilisticalculi and programming languages,
using the probabilistic linear-calculus as an intermediate formalism.

Due to the space limitation, the proofs are omitted and samemmobabilistic materials
are left to B0,29.

2 Segala automata

To give an operational semantics to the probabilisticalculus we us&egala automataa
model that combines probability and nondeterminism. Segatomata can be seen as an
extension both of Markov chains and of labelled transitigstems. They were introduced
by Segala and Lynch2p,25]. A recent presentation of Segala automata can be found
in [27]. The name “Segala automata” appears firs@in [

2

In the initial statexq there are three possible transition groups,
corresponding to its three hollow children. The left-most

e
transition group ino{—;;>xi}iez wherel = {1, 2},
a a1 = a,az = bandpi = pa = 1/2. The right-most

transition group iszo{ Hajil’]’}je‘] whereJ = {0, 5},

pj
//1/2 1/3/\2/3 1—e ap = a,as = bandpg =e,p5s =1 —¢.

T1e 0\ er3 T4® OI;

’ N ’ \

Fig. 1. A Segala automaton

2.1 Notation

A probability distributionover a finite or countable set is a function¢ : X — [0, 1]
such that) "+ &(z) = 1. The set of probability distributions oveX is denoted by
V(X). By Z(X), we denote the powerset &f. A Segala automatoover a set of labels
A is given by a finite or countable set of stat&stogether with a transition functiot :
X — Z(V(A x X)). This model represents a process that, when it is in a state
nondeterministically chooses a probability distributiom ¢(x) and then performs action
a and enters in statg with probability (a, y).

The notation we use comes frort4]. Consider a transition functioh Whenever a
probability distribution{ belongs ta:(x) for a stater € X we will write

a{ —5=witier 1)
wherez; € X, i # j = (a;, xi) # (aj,x;), and€(a;, z;) = p;. Probability distributions
in ¢t(z) are also calledransition groupsof .

A good way of visualising probabilistic automata is by usaiternating graphsif3].
In Figurel, black nodes represent states, hollow nodes represesitioangroups.

2.2 Runs and schedulers

An initialised Segala automaton, is a Segala automaton together withté gtatery. A
finite pathof an initialised Segala automaton is an elemer{tinx V(X x A) x A)*X
written asxoéiaixy ... Epany, such that, 1 € t(x;). An infinite path is defined in a
similar way as an element X x V(X x A) x A)~.

The probability of a finite path := x¢&1a121 . . . &ranzy, IS defined as

IT Giai).

1<i<n

The last state of a finite pathis denoted by(7). A pathr is maximalif it is infinite or if
t(l(r)) = 0.

A schedulerfor a Segala automaton with transition functiois a partial function?” :
(X x V(X x A) x A)*X — V(X x A) such that, ift(I(7)) # () then.”(7) is defined
and.” (1) € t(I(r)). A scheduler chooses the next probability distributionpwimg the
history of the process. Using the representation with adtieng graphs, we can say that,
for every path ending in a black node, a scheduler choosesfdris hollow sons.

Given an (initial) state;y € X and a schedule#” for t, we consider the seB(t, x¢, .

3

of maximal paths, obtained fronby the action of’. Those are the pathgéi1a1x1 . . . Epanay
such that; 1 = Y (zo&1a121 - . . &aiz;). The set of maximal paths is endowed with the
o-algebra.# generated by the finite paths. A scheduler induces a pratyalrieasure on
7 as follows: for every finite path, let K (7) be the set of maximal paths extending
Define(» (K (7)) = I(7), if 7 € A(t,z0,.7), and0 otherwise. It can be prove@$]
that(> extends to a unique probability measure.sn

Given a set of label$? C A we define(»~(B) to be(«(Z), whereZ is the set of all
maximal paths containing some label fratn

3 A probabilistic 7-calculus

3.1 Syntax and Operational Semantics

We assume the reader is familiar with the basic definitionshefr-calculus R1]. We
consider a restricted version of thecalculus, where only bound names are passed in
interaction. This variant is known ad-calculus P4]. In the typed setting has the same
expressiveness as the full calcul@d][The labelled transition semantics of thecalculus

is simpler than that of the full calculus and its labels maa&urally corresponds to those of
event structures. Syntactically we restrict an output &fthim (v §)z (). P (where names

in g are pairwise distinct), which we write(y).P.

We extend this framework to a probabilistic version of th&egks, where the output
is generative, while the input is reactive. Reactive ingusimilar to the “case” construct
and selection is “injection” in the typea-calculi. The formal grammar of the calculus is
defined below withp; € [0, 1].

P =& ini(0i)- P | T@ieppiini(s).F | P1Q | (vz)P | O | lz(g).P
x &7 ini(7;).P; is a reactive input, and no probability is attached to itsese
Z @, riini(y;).P; is a generative output, and the events are given probaliityted by
thep;, P | Q is a parallel composition z) P is a restriction andz(g).P is a replicated
input. When the input or output indexing set is a singletonuse the notatior:(y).P
or z(y).P; when the indexing set finite, we can writ¢in; (y1).P1 & ... & ing,(yn).P)
or Z(p1iny (y1).-P1 @ pning,(¥n).-P,). We omit the empty vector an@t for example,a
stands fora().0. The bound/free names are defined as usual. We assume thes imam
vectory are pairwise distinct. We use,, and= for the standardv and structural equiva-
lences P1,15].

The operational semantics is given in terms of Segala autgomesing the notation
defined in () in Section 2. The labels we use are of the following form:

a,f o= zin(y) | Tingy) | zpry(§) | Tpr(7) | T
(branching) (selection) (offer) (request) (synchrondat

With the notation above, we say thatis the subjectof the labels, denoted asubj (),
while § = u1,...,y, are theobjectnames, denoted as;(3). For branching/selection
labels, the index is thebranchof the label. The notationi'n;” comes from the injection
of the typedi-calculus.

The rules for deriving the transitions are presented in Fedu The partial operation
e on labels is defined as followstin;(7;) ® Tin;(y;) = xpr,(y) e Tpr,(y) = T, and

4

Zin; (g

T,y piini(¥i)- P{4%>P}Z€1 x & icr ini(Pi). P{%Pj}
(). P{-ZP | ()P} 3(j).P{EEL Py
P{—->Pz‘}z’el subj(B;) # « P{—->Pi}iel

(va)P{—5=(wz)Plier P|Q{—5=P | Qlies
P{—5&Pi}ier Q{—1>Qi} obj(i) =5 P=aP P{—2Qi}icr

PQ{—2% (v §) (P | Qi)}ier P{—%Qi}ier

Fig. 2. Segala automaton for the probabilisticCalculus

undefined otherwise. In particular, the generative outgatlronises with the reactive
input, and a synchronisation step takes place, with theghitity chosen by the output
process.

3.2 Linear types for the probabilistic-calculus

This subsection outlines a basic idea of the linear typea fomobabilisticr-calculus.

The linear type discipline3,35] controls a composition of processes in two ways: first,
for each linear name there are a unique branching input amitjae selecting output; and
secondly, for each replicated name there is a unique stateéplicated input (offer, or
server) with zero or more dual outputs (request, or client).

Let us consider the following example where branching atelc§en provide proba-
bilistic behaviour, preserving linearity:

Q1 ®f 7 (pini.b @ (1 — p)ing.c) | a.(in;.d & iny.€)
Q1 is typable, and we have eith€ —— (b | d) or Q %_Z; (c|€). The following process
is also typable:

Q2 def @.(pini.b @ (1 — p)ing.b) | a.(in;.d & iny.€)

since whichever branch is selectéds used once. Howeveét.b | a.c | a is untypable as
linear outpu@ appears twice. As an example of the offer-request constieirus consider
the following process:

def

Q3 =!a(r).T.(pin; @ (1 —p)iny) |a@(x)x.(iny.d & ing.@) | @(z)x.(iny.f & iny.g)

Q3 is typable since, while output atappears twice, a replicated inputatppears only
once. Note that under the replication preserves the linearity after eagbdation ata.
On the other hand,b.a | ! b.¢ is untypable becauskis associated with two replicators.
In the context of deterministic processes, the typing sygiearantees confluence, in the
presence of nondeterminism it guarantees confusion fescBé].

Channel types are inductively made up from type variablesaation modes: thimput
modes|, !, and the duabutput modeg, ?. Then the syntax of types is given as follows:

5

To= &ier () [@i)T B I B 1]
(branching) (selection) (offer) (request) (closed)

where7 is a tuple of types.

Branching types represent the notion of “environmentalic#io several choices are
available for the environment to choose. Selection typpeesent the notion of “process
choice”: some choice is made by the process, possibly pilidiedally. In both cases
the choice is alternative: one excludes all the others. rQffges represent the notion of
“available resource”: | offer to the environment someththgt is available regardless of
whatever else happens. Request types represent the nbticongurrent client”: | want
to use an available resource. The closed type is used tosegra channel that cannot be
composed further.

We write M D(7) for the outermost mode af. Thedual of 7, written 7, is the result
of recursively dualising all action modes, wiftbeing self-dual. A type environmeiftis
a finite mapping from channels to channel types. Sometimewilierite « € I" to mean
x € Dom(T).

Types restrict the composability of processes? iis typed under environmeit;, Q) is
typed undet’; and ifI'y, I's are “compatible”, then a new environmdnt ® I'; is defined,
such thatP | @ is typed undel’; ® T's. If the environments are not compatible, © I'; is
not defined and the parallel compaosition cannot be typednE&lly, we introduce a partial
commutative operation on types, defined as follows

() &icr (7)) © Bjer W) =1

(i) (1)o@ = @)

(i) (7)* ©(r)" = ()
Then, the environmert; © I's is defined homomorphically. Intuitively, the rule (i) says
that once we compose input-output linear channels, thenghdrecomes uncomposable.
The rule (ii) says that a server should be unique while riiles@ys that an arbitrary number
of clients can request interactions. Other compositioesuadefined.

The rules defining typing judgmenf3 > I" (wherel" is an environment which maps a
channel to a type) are identical to the affinealculus B] except a straightforward modi-
fication to deal with the generative output, which is defingdhe same rule for confusion
free processes irB[], without any additional complexity due to the probabililyhe rules
are presented in Figuig In (Par),['; ® I's guarantees the consistent channel usage like
linear inputs being only composed with linear outputs, étc(Res), we do not allowy,

? or |-channels to be restricted since they carry actions whigleextheir dual actions
to exist in the environment. (WeakOut) and (WeakCl) weakéh ®&-names or[-names,
respectively, since these modes do not reqfuirther interaction. (LIn) and (LOut) ensure
thatz occurs precisely once. (RIn) is the same as (LIn) exceptibditee linear channels
are suppressed. This is because a linear channel underatémii could be used more than
once. (ROut) is similar with (LOut). Note we need to apply @ék®ut) before the first
application of (ROut).

We then obtain a typed version of the operational semantiagstricting the actions
that are not allowed by the type environment. Informally aticen is allowed by an envi-

2 to simplify the notation we omit thiethat denotes polyadicity

6

Pol,a:7 ag¢l MD(r)="] PoT z¢T

wa)PoT Res 050 Zero W WeakCl
Pol,ji:7% agl PoT z¢T
~ — LOut —————= WeakOut
@@, piini(5:) P> Toa: @ (7)) PoT,x: (1)
Pol,gi:7 agl Piely (i=1,2)
— — LIn Par
a&icrini(@)-Piv T a: &cp (i)t P Pa>T1 0T
Polg:7 ag¢gl Y(x:1)el.MD(r)=" PoT,a: (7)%,5:7
RiIn ROut
la().P>T,a: (7) a(§).PoT,a: (7)°

Fig. 3. Linear Typing Rules

ronment if the subject of the action has a branching, selear server type. The formal
definition can be found in29]. For example, the output transition atin @ | a.0 is not
allowed sincez is linear so that is assumed to interact with ondyO, not with the external
observer. The typed automato®, > F{%Pi >1';}ier, is defined by adding the con-
straint:

if P{—2>P;},cr andT allows; foralli € I then P»T{—2> P> T,},c; The na-
ture of the typing system is such that for every transitioougy, either all actions are al-
lowed, or all are not, and therefore the above semantics lisdetned.

3.3 Example of a probabilistic process

We consider the model of traffic lights from2%. Let a be a driver, and let
inreq, inye11, ingreen represent colours of the traffic light. The process.q(y) rep-
resents the traffic light signalling to the driver it is red,tlhe same time communicating
the namey of the crossing. The behaviour of the driver at the crossingither braking,
staying still, or driving (inprake, 1nsti11, iNdrive)-

A cautious driver is represented by the process:

Dg =a &ie{red,yell,green} 1n2(y)PZ W|th Pred = @(0.2inbrake D 0.8instill)
Pyell = y(o'ginbrake % 0-1j-ndrive)

Pgreen - y(indrive)

A cautious driver watches what colour the light is and bebaaecordingly. If it is red,
she stays still, or finishes braking. If it is yellow, mostdii she brakes. If it is green, she
drives on.

A driver in a hurry is represented by the process

D?L =a &ie{red,yell,green} 1n2(y)QZ W|th Qred = §(0.3inbrake D 0.6insti11 D 0.1indrive)
dell — y(o-linbrake S¥ 0-9].-ndrive)

Qgreen = g(indrive)

This is similar to the cautious driver, but he is more likedydrive on at red and yellow. In
fact, both have the santgpe they check the light, and they choose a behaviour:

D?’ ‘DZ >a: &ie{red,yell,green} (Gaje{brake,still,drive}()T)l

where &, (1) is a branching type which inputs a value of typeand @, (7:)! is a
selection type which selects a braniclith a value of typer;. Note that the type actually
states that the driver chooses the behavilter seeing the light. We can represent two
independent drivers:

D2 = (va,d’)(@ingea(y).R | D¢ | d/ingreen(y).R | DY)

where B = y &, fpraxe,sti11,arive} 10i() represents the traffic light accepting the be-
haviour of the driver. We have thd?2 has two transition groups, corresponding to the
two drivers. Note that linearity and confusion-freedomy@uarantees that each driver can
perform only one of three actions, i.e. eitherake, still or drive at any one time.

4 Probabilistic event structures

We now present the model of probabilistic event structutieat we use to give an alter-
native semantics to the probabilisticcalculus. Probabilistic event structures were first
introduced by Katoenlfg], as an extension of the so callbdndleevent structure. A prob-
abilistic version ofprime event structures was introduced i28]. Below we start from
basic definitions without probability.

4.1 Basic definitions

An event structures a triple& = (E, <,—) such that
e Fis a countable set @vents

e (F, <) is a partial order, called theausal order
« foreverye € E, the sefe) := {¢’ | ¢/ < ¢}, called theenabling sebf e, is finite;

e — is an irreflexive and symmetric relation, called tbenflict relation satisfying the
following: for everyey,eq, e3 € Eif e1 < es ande; — e3 thenes — eg.

The reflexive closure of conflict is denoted by We say that the conflict; — e3 is in-
herited from the conflicte; — e3, whene; < eq. If a conflicte; — es is not inherited
from any other conflict we say that it immediate denoted bye; —,, e2. The reflexive
closure of immediate conflict is denoted ky,. Causal dependence and conflict are mu-
tually exclusive. If two events are not causally dependemtim conflict they are said to
be concurrent A labelled event structures an event structure’ together with a labelling
function\ : E — L, whereL is a set of labels.

8

We introduce an interesting class of event structures winaxgy choice isocalised To
specify what “local” means that we need the notiorcelf, a set of events that are pairwise
in immediate conflict and have the same enabling sets.

Definition 4.1 A partial cell is a setc of events such that, e’ € c impliese =, ¢ and
[e) = [¢/). A maximal partial cell is called eell. An event structure isonfusion freef its
cells are closed under immediate conflict.

Equivalently, in a confusion free event structure, the réfke closure of immediate
conflict is an equivalence with cells being its equivalenesses.

4.2 Probabilistic event structures

Once an event structure is confusion-free, we can assagiatebability distribution with
some cells. Intuitively it is as if, for every such cell, wevkaa die local to it, determining
the probability with which the events at that cell occur.

We can think of the cells with a probability distribution generative while the other
cells will be calledreactive Reactive cells are awaiting a synchronisation with a gpiver
cell in order to be assigned a probability.

Definition 4.2 Let & = (F, <,—) be a confusion free event structure, &tbe a set of
cells of & and letG’ be the set of events of the cells (. The cells inG are called
generative The cells not i are calledreactive A cell valuationon (&, G) is a function
p: G’ — [0,1] such that for every € G, we have) " .. p(e) = 1. A partial probabilistic

event structurés a confusion free event structure together with a cellatdun. It is called
simply probabilistic event structuréd G’ = E.

This definition generalises the definition given 28], where it is assumed thé&t’ = E.
Note also that a confusion free event structure can be seeprababilistic event structure
where the set is empty.

4.3 Operators on event structures

Several operations can be defined on event structures.

e prefixinga.&'. This is obtained by adding a new minimum event, labelled.bgonflict,
order, and labels remain the same on the old events.

* prefixed sumd_,; a;.&;. This is obtained by disjoint union of copies of the eventistr
turesa;.&;, where the order relation is the disjoint union of the ordere labelling
function is the disjoint union of the labelling functiongycathe conflict is the disjoint
union of the conflicts extended by putting in conflict everptevents in two different
copies. It is a generalisation of prefixing, where we add d@ralrreactive cell instead
of an initial event.

* probabilistic prefixed sun) _,_; p;a;.&;, whered; are partial probabilistic event struc-
tures. This is obtained as above, but with the condition ttimainitial cell is generative,
and that the probability of the new initial events are

e restriction& \ X whereX C A is a set of labels. This is obtained by removing frém

all events with label inX and all events that are above one of those. On the remaining

events, order, conflict and labelling are unchanged.
9

« relabelling&’[f]. This is just composing the labelling functiorwith a functionf : L —
L. The new event structure has thus labelling function.

e parallel composition The parallel composition of eventustres is not so simple to
define, due to the possibility of synchronisation among &svefor lack of space we skip
the details, that can be found i83,29,30].

Intuitively, events in the parallel composition are therggeof the two event structures,
plus some new event representing synchronisation. Forelléabevent structures with
labels in L, the labels of the synchronisation events are obtained \@gnahronisation
algebrasS, a partial binary operatioms defined onl.. If the labels of the two synchronising
event ardy, I5, the syncronisation event will have laligles I5, if defined, orelse it will be
restricted away. The simplest synchronsation algebranaya undefined and represents
the absence of synchronisation. In this case the paralieposition can be represented as
the disjoint union of the sets of events, of the causal orderd of the conflict. This can be
also generalised to an arbitrary family of event structyes$;;. In such a case we denote
the parallel composition g9, &;.

All constructors above, except the parallel compositioresprve the class of partial
probabilistic event structures. In the next section we gmes typing system, which is
designed to allow parallel composition to preserve tha<sla

4.4 Typed event structures

In this section we recall the notion of type for an event stices, which was defined ir2p).
Types and type environments for event structures are i3y those of ther-calculus,
but they recursively keep track of the names communicateaigaithe channels. They are
generated by the following grammar:

A= y1:01,-..,Yn:0n

7,0 n= &ie]ri | @ie]ri |®z‘eIFi| Lﬂz‘elri | 1
(branching) (selection) (offer) (request) (closed type)

A type environment” is well formedif any name appears at most once. Only well formed
environments are considered for typing event structurde iftuition behind the types is
similar to ther-calculus. The main difference is that offer is not reséitto a replicated
server, but represents different concurrent resources.

Given a labelled confusion free event structdt®n w-calculus labels (defined in Sec-
tion 3), we can define whe# is typed in the environmerit, written as€’>1". Informally, a
confusion free event structue@ has typel” if cells are partitioned in branching, selection,
request, offer and synchronisation cells, all the non-Bymtisation events of” are repre-
sented in" and causality irg’ refines the name causality implicit In This means that if
namey appears inside the type of a nameany event whose subjectgsmust be causally
related with en event whose subjectris

The types are designed so that the parallel compositionpafdhyevent structures will
also be typed. To define the parallel composition, we usedlh@rfing same synchronisa-
tion algebra used in Secti® xin;(y;) eZin;(y;) = xpr,;(y)eTpr,(y) = 7, and undefined
otherwise. Moreover, the parallel composition of two tymeent structured’; > I'; and

10

Zrin}]' ~~~ Tyink? Tzini' ~~~T3ind? Z1

T\bpr1<zl> bpr, (z1)

aing (x1) ~~~rrrmmn aing (z2)

Fig. 4. A typed event structure

E5 > 15 is defined only when the environmehit ® I's is defined, and in such a case the
parallel composition has type; ® I'; The formal definition of® is similar to the corre-
sponding notion for ther-calculus, but it is recursively applied to the object namiéss
designed to preserve the well formedness (linearity) oetingronment. The details can be
found in [29,30].

To type a partial probabilistic event structure, we typesitaeanon probabilistic event
structure. We also make sure that only the branching cedlsesctive, as they are waiting
to synchronise with a dual selection cell.

Definition 4.3 Let& = (E, <-— X\, G, p) be a partial probabilistic event structure. We say
that& > I, if the following conditions are satisfied:

e &> T as for the non-probabilistic case;
e (includes all cells, except the branching ones.

From the fact that the parallel composition of typed evenicstires is typed, one can
easily derive that the parallel composition of typed pralistic event structures?9] is still
a probabilistic event structure, and that it is typed.

4.5 Example of typed event structure

Figure4 represents a typed (partial) probabilistic event strietie I', where

I'=a:&cp12 @i Bregin0) b1 Ouepiy(zi t Wiepy ()

Immediate conflict is represented by curly lines, while edwsder proceeds upwards
along the straight lines. The selection caifin;, 77in, andTziny, T2iny are generative.
The branching celbin;(x1),aing(x9) is reactive. Every other cell is generative, and
contains only one event, that has probability 1. We can satethie causality irs” refines
the name causality ib': for instance,’ forces the labels with subjeat to be above the
label ain;(x;), but does not force the causal link between the events &bblain;(z;)
andb(z;). Note also that the synchronisation event is not repredentthe type.

5 Event structure semantics of the probabilisticr-calculus

This section presents the event structure semantics of-ttaculus and its properties As
in [30], the semantics is given by a family of partial functiofis]”, parametrised by a

11

“choice function”p, that take a judgment of the-calculus and return an event structure.
The “choice function”p assigns to every bound name a set (possibly a singletongst fr
distinct names. The parametrisation is necessary becagséculus terms are identified
up to a-conversion, and so the identity of bound names is irrelgewahile in typed event
structures, the identity of the object names is importaigéoAsince servers are interpreted
as infinite parallel compositions, every bound name of assenust correspond to infinitely
many names in the interpretation.

The semantics is defined as in the non probabilistic cag9e As an example, we list
the semantics of the selection:

[@Dic; piini(%:)-Piv Tsa: @, (7)]F = e piaini(Z). [Bi[Z:/5:] > T, 2« 7]
wherez; = p(g;) andp; is p restricted to to the bound names@f We can see that syntac-
tic prefix is modelled using the prefixing operator of eventiciures, while the parameter

p chooses an instantiation of the bound names.
The main property of the typed semantics is that all denotedtestructures are typed.

Theorem 5.1 Let P be a process andl' an environment such thd > I". Suppose that
[P >T']” is defined. Then there is a environménsuch thatfl P > I']” > A.

This theorem means that all denoted event structures aeedhpartial probabilistic event
structures. Note that the set of generative cells inclulleychronisation cells. Therefore
a closed process denotes a probabilistic event structure.

Corollary 5.2 The event structurgP > (]* is a probabilistic event structure.

This implies that there exists a unique probability measawer the set of maximal
runs 8]. In other words, for closed processes, the scheduler arfilyences the order of
independent events, in accordance with the intuition thatbgilistic choice are local and
not influenced by the environment.

6 Event structures and Segala automata

In this section we show a formal correspondence between&agmmata and probabilistic
event structures.

6.1 From event structures to Segala automata

Definition 6.1 Let & = (F, <,—, \) be a labelled event structure and ¢dbe one of its
minimal events. The event structufde = (E', <',—/ X) is defined by:E' = {¢’ €
E | e’ X 6}, S/:§|El, vl:\‘/‘E“ and)\/ =)\E/.

Roughly speakingé’| e is & minus the event, and minus all events that are in conflict
with e. We can then generate a Segala automata on event strucsUi@oas:
&q —;17%5'_62’}2’6[
if there exists a minimal generative cell= {¢;, | i € I}, such thatp(e;) = p; and
A(e;) = a;. We also put
E{—=E e}
12

/e A 11)4 V"3/4 5"

N S N

o'1/3 AP o'"2/3
Fig. 5. A probabilistic event structure
ﬂ/
o) —19 []
/ 4
0/ []) i il [)
/3 51

\ON4. 06”/.
T~ a1

1
® ——= 07y

Fig. 6. The corresponding Segala automaton

if there exists an event belonging to a minimal reactive cell, such theie) = a. The
initialised Segala automaton generated by an event steuétus the above automation
intialised at£’.

A probabilistic event structure (where every cell is getieed generates a somewhat
“deterministic” Segala automaton. The general formalisadf this property requires sev-
eral technicalities (see§], for instance). Here we state a simplified result. Consider
a schedulety for a Segala automatoft, zo). We say that¥ is fair if for every path
T € ABlt,x9,.”), there does not exist a transition grogpand an indexj, such that
¢ € t(x;) forall i > j, and¢ is never chosen by”.

Theorem 6.2 Let & be a probabilistic event structure, and consider the Segatamaton
generated as above. For every set of labBlsand for every fair schedulers”, 7, we

haveC s (B) = (7 (B).

In a non-probabilistic confluent system, all (fair) resawuos of the nondeterministic
choices give rise to the same set of events, possibly inrdifteorder. In this sense we can
see Theoren.2 as expressing probabilistic confluence.

Figure5 shows an example of a (partial) probabilistic event stmgctrhe generative
cells are{a/, "}, {3",+"} and the probability is indicated as superscript of the label
Figure6 shows the Segala automaton corresponding to the eventustwaf Figureb.

6.2 The adequacy theorem

There is a correspondence between the two semantics arglbotticulus. Itis formalised

by the following theorem, which shows the correspondende/dxn the Segala automata
semantics defined in Secti@ and the Segala automaton derived from the event structure
semantics, as described above.

13

Theorem 6.3 Let= denote isomorphism of probabilistic event structures.
SupposeP > I'{ —g} P;>T;}ier inthem-calculus. Then there exists p; such that

[P >T]” is defined and] P > T']*{ % ~ [P o 1] bier -
Conversely, supposgP > I']*{ %)@@i}iel , for somep. Then there exisP;, p; such

that P> T{—> P> T\ Bitic; and[P, > T\ Gi]7 = &, foralli € 1.

The proof is analogous to the one for the non-probabilistisecp9] by induction on the
operational rules, the difficult case being the parallel position.

6.3 Example of probabilistic confluence

Theorem6.3 and Theorem6.2 together show that the linearly typed probabilistie
calculus is “probabilistically confluent”.

To exemplify this, consider a proces$$such thatP > a : ,.;. This is a process
that emits only one visible action, whose subject.ig~or every; € I we can define the
probability P emitsain; asp(ain;) for some fair scheduler”. By Theorem6.2, we
have that this probability is independent from the schegstewe can define it ggain;).
This independence from the scheduling policy is what wepralbabilistic confluence.

Note also that it can be shown that, ; p(ain;) < 1. When the inequation is strict,
the missing probability is the probability that the procdsgs not terminate. This reason-
ing rely on the typing in that there exist untyped procesbas are not probabilistically
confluent. For instance consider

(l/b)(b | b.a ®i€{1,2} p;in; | b.a @ie{l,Q} qiini)
The above process also emits only one visible action, whalsiea isa. The probability
of @in; is p1, or ¢1, depending on which synchronisation takes place, i.e.ru#ipg on the
scheduler. Note, however, that this process is not typable.

7 Related and future work

7.1 Related work

This paper has provided an event structures semantics fanbalpilistic version of ther-
calculus. ltis the first true concurrent semantics of a podlstic 7-calculus. Related work
with true concurrency models for thecalculus and (confusion-free) event structures are
already discussed ir8D,29]. There, the importance of confusion freeness and the use of
types in event structures is also discussed in depth. Anmhent event structure semantics
of the r-calculus was presented if][

The natural comparison is with the probabilistic-calculus by Herescu and
Palamidessil4]. Their and our calculi both have a semantics in terms of Begiaomata,
while we also provide an event structure semantics. The keyupconstruction is the
typing system, which allows us to stay within the class objtuilistic event structures.

Our typing system is designed to provide a “probabilisticabnfluent” calculus, and
therefore their calculus is more expressive, as it allows-canfluent computations. At
the core of their calculus, there is a renormalisation obphnlities, which is absent in our

14

VARILLALSDI LRy & VAL

setting, i.e. in our calculus, all probabilistic choicee bcal, and are not influenced by the
environment.

A simpler calculus, without renormalisation, is presenitedl6]. This version is very
similar to ours, in that all choices are local; in fact, thetpcol example presented if][
(via an encoding into our calculus) is linearly typable. Veédidve we could apply a typing
system similar to ours to the calculus B],[prove the same results in this paper and identify
a good class of probabilistic name-passing behaviours.

7.2 Future work

We have shown a correspondence between event structur&egath automata. We would
have liked to extend this correspondence to a categorigahetion between two suitable
categories, ideally extending the setting presente83h [t is possible to do so, by a simple
definition of morphisms for Segala automata, and by extentiie notion of probabilistic
event structures. Unfortunately neither category hasymts] which are used i8] to
define parallel composition. The reason for this is nordfiand it is has to do with the
notion of stochastic correlation, a phenomenon alreadyudised in 28] in the context of
true concurrent models. This issue needs to be investidatter.

The linearly typedr-calculus is the target of a sound and complete encodingsnaf f
tional language 3,34]. Our traffic light example in Section 5 suggests that oucuiais
captures the core part of the expressiveness representéte ltochastic Lambda Cal-
culus R2. We plan to perform similar encodings in the probabilistiersion, notably
the probabilistic functional languaged], probabilistic A-calculus LO] and Probabilis-
tic PCF [7]. Since the linear type structures are originated from gaemantics 16],
this line of study would lead to a precise expressive analpsitween the probabilistic
event structures, Segala automata, probabilistic progriag languages and probabilistic
game semantics/], bridged by their representations of or encodings intdoptalistic 7-
calculi. Finally, there are connections between eventsiras, concurrent gama(Q], and
ludics [11,12] that should be investigated also in the presence of pribebi

References

[1] Samy Abbes and Albert Benveniste. Probabilistic models true-concurrency: branching cells and distributed
probabilities for event structuretnformation and Computatiqr204(2):231-274, 2006.

[2] Falk Bartels, Ana Sokolova, and Erik de Vink. A hierarchf probabilistic system types. IElectronic Notes in
Theoretical Computer Scienceolume 82. Elsevier, 2003.

[3] Martin Berger, Kohei Honda, and Nobuko Yoshida. Seguadity and ther-calculus. InProcceedingss of TLCA'Q1
volume 2044 oLNCS pages 29-45, 2001.

[4] Gérard Berry and Pierre-Louis Curien. Sequential dfhars on concrete data structure heoretical Computer
Science20(265-321), 1982.

[5] Roberto Bruni, Hernan Melgratti, and Ugo Montanari. Bustructure semantics for nominal calculi. Pmoceedings
of 17th CONCURvolume 4137 oLNCS pages 295-309. Springer, 2006.

[6] Kostas Chatzikokolakis and Catuscia Palamidessi. Aé&aork to analyze probabilistic protocols and its appiarat
to the partial secrets exchange. Rrmoceedings of Symposium on Trustworthy Global Compu65 volume 3705
of LNCS Springer, 2005.

[7] Vincent Danos and Russell S. Harmer. Probabilistic gaemantics. ACM Transactions on Computational Logic
3(3):359-382, 2002.

[8] Jbrg Desel and Javier EsparZaee Choice Petri NetsCambridge University Press, 1995.

15

VARILLALSDI LRy & VAL

[9] Josée Desharnais, Abbas Edalat, and Prakash Panangaénulation for labelled markov processemformation
and Computation179(2):163-193, 2002.

[10] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklic Probabilistic lambda calculus and quantitative pragra
analysis.Journal of Logic and Computatior2005. To appear.

[11] Claudia Faggian and Francois Maurel. Ludics nets, aegaradel of concurrent interaction. RProceedings of 20th
LICS, pages 376-385, 2005.

[12] Claudia Faggian and Mauro Piccolo. A graph abstracthimecdescribing event structure composition Pioceedings
of the GT-VC workshq®006. Short paper.

[13] Hans HanssorTime and Probability in Formal Design of Distributed sysgeRhD thesis, Uppsala University, 1991.

[14] Mihaela Herescu and Catuscia Palamidessi. Probtbilisynchronousr-calculus. InProceedings of 3rd FoSSaCS
volume 1784 oLLNCS pages 146-160. Springer, 2000.

[15] thel ggnda and Nobuko Yoshida. On reduction-basedes® semanticsl heoretical Computer SciencE51(2):385—
435

[16] J. Martin E. Hyland and C.-H. Luke Ong. On full abstractifor PCF: I, I, and Ill. Information and Computatign
163(2):285-408, 2000.

[17] Gilles Kahn and Gordon D. Plotkin. Concrete domaifiseoretical Computer Sciencg21(1-2):187-277, 1993.

[18] Joost-Pieter KatoenQuantitative and Qualitative Extensions of Event StrueguiPhD thesis, University of Twente,
96.
[19] Kim G. Larsen and Arne Skou. Bisimulation through prbttiatic testing. Information and Computatiqrd4(1):1-28,
1991.
[20] Paul-André Melliés. Asynchronous games 2: The truecaarncy of innocence. |IRroceedings of 15th CONCUR
pages 448-465, 2004.
[21] Robin Milner. Communicating and Mobile Systems: The Pi CalculDambridge University Press, 1999.

[22] Norman Ramsey and Avi Pfeffer. Stochastic lambda ¢agcand monads of probability distributions. Proceedings
of 29th POPL.pages 154-165, 2002.

[23] Grzegorz Rozenberg and P.S. Thiagarajan. Petri nedsicBnotions, structure, behaviour. @urrent Trends in
Concurrencyvolume 224 olLNCS pages 585-668. Springer, 1986.

[24] Davide Sangiorgizr-calculus, internal mobility and agent passing calclieoretical Computer Sciencg67(2):235—
271, 1996.

[25] Roberto SegalaModeling and Verification of Randomized Distributed Raedel SystemsPhD thesis, M.1.T., 1995.

[26] Roberto Segala and Nancy Lynch. Probabilistic sinimnmforé)robabmstlc processeslordic Journal of Computing
2(2):250-273, 1995. An extended abstract appeaRraceedings of 5th CONCURJppsala, Sweden, LNCS 836,
pages 481-496, August 1994.

[27] Mariélle Stoelinga. An introduction to probabilistautomata. Bulletin of the European Association for Theoretical
Computer Science’8:176-198, 2002.

[28] Daniele Varacca, Hagen Volzer, and Glynn Winskel. Ritmlistic event structures and domairBCS 358(2-3):173—
199, 2006. Full version of the homonymous paper in CONCUR4200

[29] Daniele Varacca and Nobuko Yoshida. Event structuggses and ther-calculus. Technical Report 2005/06, Imperial
College London, 2005. Available atmv. doc. i c. ac. uk/ “var acca.

[30] Daniele Varacca and Nobuko Yoshida. Typed event sirestand ther-calculus. InProceedings of XXIl MFPS
ENTCS, 2006.

[31] Hagen Vélzer. Randomized non-sequential processerolceedings of 12th CONCURolume 2154 of NCS pages
184-201, 2001. Extended version as Technical Report 02S28RC - University of Queensland.

[32] Glynn Winskel. Event structure semantics for CCS ardteel languages. IRroceedings of 9th ICALR/olume 140
of LNCS pages 561-576. Springer, 1982.

[33] Glynn Winskel and Mogens Nielsen. Models for concuesenin Handbook of logic in Computer Scienasmlume 4.
Clarendon Press, 1995.

[34] Nobuko Yoshida, Martin Berger, and Kohei Honda. Stravigrmalisation in ther-Calculus. InProceedings of
LICS'01, pages 311-322. IEEE, 2001. The full versioddaurnal of Inf. & Comp., 191 (2004) 145-202, Elsevier.

[35] Nobuko Yoshida, Kohei Honda, and Martin Berger. Lingaand bisimulation. IFFoSSaCs02volume 2303 oLNCS
pages 417-433. Springer, 2002.

16

	Introduction and motivations
	Segala automata
	Notation
	Runs and schedulers

	A probabilistic -calculus
	Syntax and Operational Semantics
	Linear types for the probabilistic -calculus
	Example of a probabilistic process

	Probabilistic event structures
	Basic definitions
	Probabilistic event structures
	Operators on event structures
	Typed event structures
	Example of typed event structure

	Event structure semantics of the probabilistic -calculus
	Event structures and Segala automata
	From event structures to Segala automata
	The adequacy theorem
	Example of probabilistic confluence

	Related and future work
	Related work
	Future work

	References

