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Introduction

The following citation from [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Pag. 107] may be used to introduce this paper:

"In this section it will be shown that in arbitrary cartesian closed categories reflexive objects give rise to λ-algebras and to all of them. The λ-models are then those λ-algebras that come from categories "with enough points". The method is due to Koymans [...] and is based on work of Scott."

The point of the present work, in its first part, is to argue that the "enough points" condition can be relaxed, thus obtaining a λ-model from any reflexive object in a cartesian closed category (ccc, for short), via a definition of the carrier set of this λ-model which is somehow "more generous" than the canonical one.

Let us recall briefly what λ-algebras and λ-models are, taking for granted the notion of combinatory algebra (A, •, k, s):

-A λ-algebra is a combinatory algebra satisfying the five combinatory axioms of Curry [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Thm. 5.2.5].

-A λ-model is a λ-algebra satisfying the Meyer-Scott (or weak extensionality) axiom: ∀x

(a•x = b•x) ⇒ ε•a = ε•b where ε is the combinator s•(k•((s•k)•k)).
Of course, weak extensionality is subsumed by extensionality, expressed by the axiom ∀x (a • x = b • x) ⇒ a = b, so the notions of extensional λ-algebra and extensional λ-model coincide.

We claim that any reflexive object in an arbitrary ccc gives rise to a λ-model, by an appropriate choice of the underlying combinatory algebra.

Before going further, let us remark that our construction does not give anything new for the categories of domains generally used to solve the domain inequality U ⇒U U (see, e.g., [START_REF] Scott | Continuous lattices[END_REF][START_REF] Plotkin | Tω as a Universal Domain[END_REF][START_REF] Kerth | On the construction of stable models of λ-calculus[END_REF]), which do have enough points.

In order to illustrate our claim, let us recall the classic construction of the λ-algebra associated with a reflexive object, and point out where the "enough points" hypothesis comes into play. We recall [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Pag. 108] that an object U has enough points if for all f, g ∈ C(U, U ), whenever f = g there exists a morphism h ∈ C(½, U ) such that f • h = g • h.

If U = (U, Ap, λ) is a reflexive object in a small ccc C, and A is an object of C, then A U = C(A, U ), may be equipped with the following application operator: a • b = ev • Ap • a, b . The applicative structure (A U , •) is canonically endowed with constants k, s in such a way that (A U , •, k, s) is a λ-algebra, and this algebra is a λ-model if U has enough points.

Hence, the choice A = ½ appears as canonical (and it is actually adopted for instance in [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF][START_REF] Asperti | Categories, types and structures. Category theory for the working computer scientist[END_REF]) if U has enough points, since in that case the Meyer-Scott axiom holds independently from the choice of A.

In the general case, keeping the above definition of application, we can prove weak extensionality if A is chosen in such a way that the following diagram is "quasi-commutative", in the sense expressed by Lemma 1, for some f, g:

A Id,g / / A × U A × U f O O Id 9 9 t t t t t t t t t
The terminal object is no longer a candidate, neither are the finite products U n , despite the fact that U n is a retract of U , since the use of an encoding in the definition of f , forces to pair g with the correspondent decoding instead of Id.

We will show in Section 3 that a suitable choice is:

-A = U Var : the countable product of U indexed by the variables of the λcalculus, whose elements may intuitively be thought of as environments, -g = π z : the projection corresponding to a variable z, -f = η z : an "updating" morphism which leaves unchanged the values of all the variables, but z whose new value is determined by applying π 2 .

This approach asks for countable products in C. In practice, this hypothesis does not seem to be very restrictive. Nevertheless, we do claim full generality for this construction. The price to pay is having a quotient over n∈AE C(U n , U ) as carrier set of the λ-model (this approach is sketched in Section 3.2).

Having set up the framework allowing to associate a reflexive object (without enough points) of a ccc with a λ-model, we discuss in Section 5 a paradigmatic example to which it can be applied.

In denotational semantics, ccc's without enough points arise naturally when morphisms are not simply functions, but carry some "intensional" information, like for instance sequential algorithms or strategies in various categories of games [START_REF] Berry | Sequential algorithms on concrete data structures[END_REF][START_REF] Abramsky | Full abstraction for PCF[END_REF][START_REF] Hyland | On full abstraction for PCF: I. Models, observables and the full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and universal game model[END_REF]. The original motivation for these constructions was the semantic characterization of sequentiality, in the simply typed case. As far as we know, most often the study of reflexive objects in the corresponding ccc's has not been undertaken. Notable exceptions are [START_REF] Di Gianantonio | Game semantics for untyped lambda calculus[END_REF] and [START_REF] Ker | A universal innocent game model for the Boehm tree lambda theory[END_REF], where reflexive objects in categories of games yielding the λ-theories H * and B, respectively, are defined. This deserves probably a short digression, from the perspective of the present work: there is of course no absolute need of considering the combinatory algebra associated with a reflexive object, in order to study the λ-theory thereof; it is often a matter of taste whether to use categorical or algebraic notations. What we are proposing here is simply an algebraic counterpart of any categorical model which satisfies weak extensionality.

A framework simpler than game semantics, where reflexive objects cannot have enough points is the following: given the category Rel of sets and relations, consider the comonad M f (-) of "finite multisets". MRel, the Kleisli category of M f (-), is a ccc which has been studied in particular as a semantic framework for linear logic [START_REF] Girard | Normal functors, power series and the λ-calculus[END_REF][START_REF] Amadio | Domains and lambda-calculi[END_REF][START_REF] Bucciarelli | On phase semantics and denotational semantics: the exponentials[END_REF].

An even simpler framework, based on Rel, would be provided by the functor "finite sets" instead of "finite multisets". The point is that the former is not a comonad. Nevertheless, a ccc may eventually be obtained in this case too, via a "quasi Kleisli" construction [START_REF] Hyland | A category theoretic formulation for Engeler-style models of the untyped lambda[END_REF]. Interestingly, from the perspective of the present work, these Kleisli categories over Rel are advocated in [START_REF] Hyland | A category theoretic formulation for Engeler-style models of the untyped lambda[END_REF] as the "natural" framework in which standard models of the λ-calculus like Engeler's model, and graph models [START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF] in general, should live.

As a matter of fact, in Section 5 we define a relational version, in MRel, of another classical model: Scott's D ∞ . Instead of the inverse limit construction, we get our reflexive object D by an iterated completion operation similar to the canonical completion of graph models. In this case D is isomorphic to D ⇒D by construction.

Finally, in Section 6 we show that the λ-model M D associated with D by the construction described above has a rich algebraic structure. In particular, we define two operations of sum and product making the carrier set of M D a commutative semiring, which are left distributive with respect to the application. This opens the way to the interpretation of conjunctive-disjunctive λ-calculi [START_REF] Dezani Ciancaglini | A filter model for concurrent lambda-calculus[END_REF] in the relational framework.

To keep this article self-contained, we summarize some definitions and results used in the paper. With regard to the λ-calculus we follow the notation and terminology of [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]. Our main reference for category theory is [START_REF] Asperti | Categories, types and structures. Category theory for the working computer scientist[END_REF].

Generalities

Let S be a set. We denote by P(S) the collection of all subsets of S and we write A ⊂ f S if A is a finite subset of S. A multiset m over S can be defined as an unordered list m = [a 1 , a 2 , . . .] with repetitions such that a i ∈ S for all i. For each a ∈ S the multiplicity of a in m is the number of occurrences of a in m. Given a multiset m over S, its support is the set of elements of S belonging to m. A multiset m is called finite if it is a finite list. We write [] for the empty multiset and m 1 m 2 for the union of the multisets m 1 and m 2 . The set of all finite multisets over S will be denoted by M f (S).

We denote by AE the set of natural numbers. A AE-indexed sequence σ = (m 1 , m 2 , . . . ) of multisets is quasi-finite if m i = [] holds for all but a finite number of indices i; σ i denotes the i-th element of σ. If S is a set, we denote by M f (S) (ω) the set of all quasi-finite AE-indexed sequences of multisets over S. We write * for the AE-indexed family of empty multisets, i.e., * is the only inhabitant of M f (∅) (ω) .

Cartesian closed categories

Throughout the paper, C is a small cartesian closed category (ccc, for short). Let A, B, C be arbitrary objects of C. We denote by A &B the product3 of A and B, by π 1 ∈ C(A &B, A), π 2 ∈ C(A &B, B) the associated projections and, given a pair of arrows f ∈ C(C, A) and g ∈ C(C, B), by f, g ∈ C(C, A&B) the unique arrow such that π 1 • f, g = f and π 2 • f, g = g. We will write A⇒B for the exponential object and ev AB ∈ C((A⇒B) & A, B) for the evaluation morphism 4 . Moreover, for any object C and arrow

f ∈ C(C & A, B) we write Λ(f ) ∈ C(C, A⇒B) for the (unique) morphism such that ev AB • (Λ(f )&Id A ) =
f . Finally, ½ denotes the terminal object and ! A the only morphism in C(A, ½).

We recall that in every ccc the following equalities hold:

(pair) f, g • h = f • h, g • h Λ(f ) • g = Λ(f • (g × Id)) (Curry) (beta) ev • Λ(f ), g = f • Id, g Λ(ev) = Id (Id-Curry)
We say that C has enough points if, for all f, g ∈ C(A, B),

whenever f = g, there exists a morphism h ∈ C(½, A) such that f • h = g • h.

The pure λ-calculus and its models

The set Λ of λ-terms over a countable set Var of variables is constructed as usual: every variable is a λ-term; if P and Q are λ-terms, then also are P Q and λz.P for each variable z.

It is well known [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Ch. 5] that there are, essentially, two tightly linked notions of model of λ-calculus. The former is connected with category theory (categorical models) and the latter is related to combinatory algebras (λ-models).

Categorical models. A categorical model of λ-calculus is a reflexive object in a ccc C, that is, a triple U = (U, Ap, λ) such that U is an object of C, and λ ∈ C(U ⇒ U, U ) and Ap ∈ C(U, U ⇒ U ) satisfy Ap • λ = Id U⇒U . In this case we write U ⇒ U U . When moreover λ • Ap = Id U , the model U is called extensional.
In the sequel we always suppose that x = (x 1 , . . . , x n ) is a finite ordered sequence of variables without repetitions of length n. Given an arbitrary λ-term M and a sequence x, we say that x is adequate for M if x contains all the free variables of M . We simply say that x is adequate whenever M is clear from the context.

Given a categorical model U = (U, Ap, λ), for all M ∈ Λ and for all adequate x, the interpretation of M (in x) is a morphism |M | x ∈ C(U n , U ) defined by structural induction on M as follows: Combinatory algebras and λ-models An applicative structure A = (A, •) is an algebra where • is a binary operation on A called application. We may write it infix as s • t, or even drop it and write st. Application associates to the left. A combinatory algebra C = (C, •, k, s) is an applicative structure for a signature with two constants k and s, such that kxy = x and sxyz = xz(yz) for all x, y, and z. See, e.g., [START_REF] Curry | Combinatory Logic[END_REF] for a full treatment.

-If M ≡ z, then |z| x = π i , if z occurs in i-th position in the sequence x. -If M ≡ P Q, then by inductive hypothesis we have defined |P | x , |Q| x ∈ C(U n , U ). So we set |P Q| x = ev • Ap • |P | x , |Q| x ∈ C(U n , U ). -If M ≡
We call k and s the basic combinators. In the equational language of combinatory algebras the derived combinators i and ε are defined as i ≡ skk and ε ≡ s(ki). It is not hard to verify that every combinatory algebra satisfies the identities ix = x and εxy = xy.

We say that c ∈ C represents a function f : C → C (and that f is representable) if cz = f (z) for all z ∈ C. Two elements c, d ∈ C are extensionally equal when they represent the same function in C. For example, c and εc are always extensionally equal.

The axioms of an elementary subclass of combinatory algebras, called λmodels, were expressly chosen to make coherent the definition of interpretation of λ-terms (see [START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF]Def. 5.2.1]). The Meyer-Scott axiom is the most important axiom in the definition of a λ-model. In the first-order language of combinatory algebras it becomes: ∀x∀y(∀z(xz = yz) ⇒ εx = εy).

The combinator ε becomes an inner choice operator, that makes coherent the interpretation of an abstraction λ-term. A λ-model is said extensional if, moreover, we have that ∀x∀y(∀z(xz = yz) ⇒ x = y).

3 From reflexive objects to λ-models.

In the common belief, probably coming from [4, Prop. 5.5.7], a reflexive object U in a ccc C may be turned in a λ-model if, and only if, U has enough points, i.e., for all f, g ∈ C(U, U ), whenever f = g there exists a morphism h ∈ C(½, U ) such that f • h = g • h. This trivially holds if C has enough points.

In the main result of this section we show that this hypothesis is unnecessary if we choose appropriately the associated λ-model and in Section 5 we will also provide a concrete example.

Syntactical λ-models

We give now the definition of "syntactical λ-models" [START_REF] Hindley | Lambda calculus models and extensionality[END_REF]. Recall that, by [4, Thm. 5.3.6], λ-models are equal to syntactical λ-models, up to isomorphism.

Given an applicative structure A, we let Env A be the set of environments ρ mapping the set Var of variables of λ-calculus into A. For every x ∈ Var and a ∈ A we denote by ρ[x := a] the environment ρ which coincides with ρ, except on x, where ρ takes the value a. Definition 1. A syntactical λ-model is a pair (A, -) where, A is an applicative structure and -: Λ × Env A → A satisfies the following conditions:

(i) z ρ = ρ(z), (ii) P Q ρ = P ρ • Q ρ , (iii) λz.P ρ • a = P ρ[z:=a] , (iv) ρ F V (M) = ρ F V (M) ⇒ M ρ = M ρ , (v) ∀a ∈ A, M ρ[z:=a] = N ρ[z:=a] ⇒ λz.M ρ = λz.N ρ A syntactical λ-model is extensional if, moreover, ∀a∀b(∀x(a•x = b•x) ⇒ a = b).
Let us fix a reflexive object U = (U, Ap, λ) in a ccc C having countable products 5 . The set C(U Var , U ), where Var is the set of the variables of λ-calculus, can be naturally seen as an applicative structure whose application is defined by u • v = ev • Ap • u, v . Moreover, the categorical interpretation |M | x of a λ-term M , can be intuitively viewed as a morphism in C(U Var , U ) only depending from a finite number of variables.

In order to capture this informal idea, we now focus our attention on the set A U whose elements are the "finitary" morphisms in C(U Var , U ).

A morphism f ∈ C(U Var , U ) is finitary if there exist a finite set J of variables, and a morphism f J ∈ C(U J , U ) such that f = f J • π J , where π J denotes the canonical projection of U Var onto U J . In this case we say that the pair (f J , J) is adequate for f , and we write (f J , J) ∈ Ad(f ).

Given two finitary morphisms f, g it is easy to see that if (f J , J) ∈ Ad(f ) and (g I , I) ∈ Ad(g), then also f •g is finitary and ((f

J •π J )•(g I •π I ), J ∪I) ∈ Ad(f •g).
We are going to show that the applicative structure A U = (A U , •), associated with the reflexive object U, gives rise to a syntactical λ-model M U which is extensional if, and only if, λ • Ap = Id U . To begin with, let us define this applicative structure. Definition 2. Let U be a reflexive object in a ccc C. The applicative structure associated with U is defined by A U = (A U , •), where:

-A U = {f ∈ C(U Var , U ) : ∃J ⊂ f Var, ∃f J ∈ C(U J , U ) such that f = f J • π J }, -a • b = ev • Ap • a, b .
The following technical lemma will be used for defining the syntactical λmodel M U associated with A U .

Lemma 1. Let f 1 , . . . , f n ∈ A U and (f k , J k ) ∈ Ad(f k ) for all 1 ≤ k ≤ n. Given z ∈ Var such that z /
∈ k≤n J k , and η z ∈ C(U Var &U, U Var ) defined by:

η x z = π 2 if x = z, π x • π 1 otherwise,
the following diagram commutes:

U Var Id,πz / / U Var &U f1,...,fn ×Id / / U n &U U Var &U ηz O O Id 8 8 q q q q q q q q q q Proof. Starting by ( f 1 , . . . , f n × Id) • Id, π z • η z , we get f 1 , . . . , f n • η z , π 2 via easy calculations. Hence, it is sufficient to prove that f 1 , . . . , f n • η z = f 1 , . . . , f n •π 1 .
We show that this equality holds componentwise. By hypothesis, we have that, for all 1

≤ k ≤ n, f k • η z = f k • π J k • η z . Since z ∈ J k , we have that π J k • η z = π J k • π 1 (computing componentwise in π J k and applying the definition of η z ). To conclude, we note that f k • π J k • η z = f k • π J k • π 1 = f k • π 1 .
As a matter of notation, given a sequence x of variables and an environment ρ ∈ Env AU , we denote by ρ(x) the morphism ρ(x 1 ), . . . , ρ(x n ) ∈ C(U Var , U n ).

Lemma 2. For all λ-terms M , environments ρ and sequences x, y adequate for M , we have that

|M | x • ρ(x) = |M | y • ρ(y).
Proof. The proof is by structural induction on M . If M ≡ z, then z occurs in, say, i-th position in x and j-th position in y. Then

|z| x • ρ(x) = π i • ρ(x) = ρ(z) = π j • ρ(y) = |z| y • ρ(y). If M ≡ P Q, then |P Q| x • ρ(x) = ev • Ap • |P | x , |Q| x • ρ(x). By (pair), this is equal to ev • Ap • |P | x • ρ(x), |Q| x • ρ(x) which is, by inductive hypothesis, ev • Ap • |P | y • ρ(y), |Q| y • ρ(y) = |P Q| y • ρ(y). If M ≡ λz.N , then |λz.N | x •ρ(x) = λ•Λ(|N | x,z )•ρ(x)
and by (Curry), we obtain

λ • Λ(|N | x,z • (ρ(x) × Id)). Let (ρ 1 , J 1 ) ∈ Ad(ρ(x 1 )), . . . , (ρ n , J n ) ∈ Ad(ρ(x n )).
By α-conversion we can suppose that z / ∈ k≤n J k , hence by Lemma 1 we obtain

λ•Λ(|N | x,z •(ρ(x)×Id)• Id, π z •η z ) = λ•Λ(|N | x,z •ρ[z := π z ](x, z)•η z ). This is equal, by inductive hypothesis, to λ•Λ(|N | y,z •ρ[z := π z ](y, z)•η z ) = |λz.N | y .
As a consequence of Lemma 2 we have that the following definition is sound.

Definition 3. M U = (A U , -), where M ρ = |M | x • ρ(x) for some adequate sequence x.
We are going to prove that M U is a syntactical λ-model, which is extensional if, and only if, U is extensional.

For this second property we need another categorical lemma. Remark that the morphism ι J,x ∈ C(U J∪{x} , U Var ) defined below is a sort of canonical injection. In particular, the morphism λ • Λ(Id U )•! U J∪{x} does not play any role in the rest of the argument.

Lemma 3. Let f ∈ A U , (f J , J) ∈ Ad(f ), x /
∈ J and ι J,x defined as follows:

ι z J,x = π z if z ∈ J ∪ {x}, λ • Λ(Id U )•! U J∪{x} otherwise.
Then the following diagram commutes:

U Var &U f ×Id + + X X X X X X X X X X X X X X X X X X X X X X X X X X X πJ ×Id / / U J &U U J∪{x} ιJ,x / / U Var f,πx U &U Proof.
Since by hypothesis f = f J •π J , this is equivalent to ask that the following diagram commutes, and this is obvious from the definition of ι J,x .

U Var &U πJ ×Id / / U J &U U J∪{x} fJ ×Id ' ' O O O O O O O O O O O O ιJ,x / / U Var πJ ,πx $ $ J J J J J J J J J U &U U J∪{x} fJ ×Id o o Theorem 1.
Let U be a reflexive object in a ccc C. Then:

1) M U is a syntactical λ-model, 2) M U is extensional if, and only if, U is.

Proof. 1) In the following x is any adequate sequence and the items correspond to those in Definition 1. 

(i) z ρ = |z| x • ρ(x) = π z • ρ(x) = ρ(z). (ii) P Q ρ = |P Q| x • ρ(x) = (|P | x • |Q| x ) • ρ(x) = ev • Ap • |P | x , |Q| x • ρ(x). By (pair) this is equal to ev • Ap • |P | x • ρ(x), |Q| x • ρ(x) = P ρ • Q ρ . (iii) λz.P ρ • a = (|λz.P | x • ρ(x)) • a = ev • Ap • λ • Λ(|P | x,z ) • ρ(x), a . Since Ap • λ = Id U⇒U
(v) λz.M ρ = |λz.M | x • ρ(x) = λ • Λ(|M | x,z • (ρ(x) × Id)). Let (ρ 1 , J 1 ) ∈ Ad(ρ(x 1 )), . . . , (ρ n , J n ) ∈ Ad(ρ(x n )).
Without loss of generality we can suppose that z / ∈ k≤n J k . Hence, by Lemma 1 we obtain λ

• Λ(|M | x,z • (ρ(x) × Id) • Id, π z • η z ). By (pair), this is λ • Λ(|M | x,z • ρ(x), π z • η z ) = λ • Λ( M ρ[z:=πz ] • η z ) which is equal to λ • Λ( N ρ[z:=πz ] • η z ) since, by hypothesis, M ρ[z:=a] = N ρ[z:=a] for all a ∈ A U . It is, now, routine to check that λ•Λ( N ρ[z:=πz] •η z ) = λz.N ρ . 2) (⇒) Let x ∈ Var and π x ∈ C(U Var , U ). For all a ∈ A U we have (λ•Ap•π x )•a = ev • Ap • λ • Ap • π x , a = ev • Ap • π x , a = π x • a. If M U is extensional, this implies λ • Ap • π x = π x . Since π x is an epimorphism, we get λ • Ap = Id U . (⇐) Let a, b ∈ A U ,
then there exist (a J , J) ∈ Ad(a) and (b I , I) ∈ Ad(b) such that I = J. Let us set ϕ = ι J,x • (π J × Id) where x / ∈ J and ι J,x is defined in Lemma 3. Suppose that for all c ∈ A U we have (a

• c = b • c) then, in particular, ev • Ap • a, π x = ev • Ap • b, π x and this implies that Ap • a, π x • ϕ = Ap • b, π x • ϕ. By applying Lemma 3, we get Ap • a, π x • ϕ = (Ap • a) × Id and Ap • b, π x • ϕ = (Ap • b) × Id. Then Ap • a = Ap • b which implies λ • Ap • a = λ • Ap • b. We conclude since λ • Ap = Id U .
Note that, by using a particular environment ρ, it is possible to "recover" the categorical interpretation |M | x from the interpretation M ρ in the syntactical λmodel. Let us fix the environment ρ(x) = π x for all x ∈ Var. Then M ρ = |M | x • π x1 , . . . , π xn , i.e., it is the morphism |M | x "viewed" as element of C(U Var , U ).

Working without countable products

The construction provided in the previous section works if the underlying category C has countable products. We remark, once again, that this hypothesis is not really restrictive since all the categories used in the literature in order to obtain models of λ-calculus satisfy this requirement. Nevertheless, there exists an alternative, but less simple and natural, construction to turn a reflexive object U into a syntactical λ-model M U , which does not need this additional hypothesis. We give here the basic ideas of this approach.

Let us consider the set A = I⊂ f Var C(U I , U ) and the equivalence relation ∼ on A defined as follows: if f ∈ C(U J , U ) and g ∈ C(U I , U ), then f ∼ g if, and only if, f • π J = g • π I where π J ∈ C(U I∪J , U J ) and π I ∈ C(U I∪J , U I ). The candidate for the applicative structure A U associated with U is the set A/ ∼ together with a suitable application operator.

We claim that M U = (A U , -), whereis an appropriate interpretation map, is a syntactical λ-model.

A cartesian closed category of sets and relations

It is quite well known [START_REF] Girard | Normal functors, power series and the λ-calculus[END_REF][START_REF] Amadio | Domains and lambda-calculi[END_REF][START_REF] Hyland | A category theoretic formulation for Engeler-style models of the untyped lambda[END_REF][START_REF] Bucciarelli | On phase semantics and denotational semantics: the exponentials[END_REF] that, by endowing the monoidal closed category Rel with a suitable comonad, one gets a ccc via the co-Kleisli construction. In this section we present the ccc obtained by using the comonad M f (-), without explicitly going through the monoidal structure of Rel.

Hence we define directly the category MRel as follows:

-The objects of MRel are all the sets.

-Given two sets S and T , a morphism from S to T is a relation from M f (S) to T , in other words, MRel(S, T ) = P(M f (S) × T ). -The identity morphism of S is the relation:

Id S = {([a], a) : a ∈ S} ∈ MRel(S, S) .
-Given two morphisms s ∈ MRel(S, T ) and t ∈ MRel(T, U ), we define:

t • s = {(m, c) : ∃(m 1 , b 1 ), . . . , (m k , b k ) ∈ s such that m = m 1 . . . m k and ([b 1 , . . . , b k ], c) ∈ t}.
It is easy to check that this composition law is associative, and that the identity morphisms defined above are neutral for this composition.

Theorem 2. The category MRel is cartesian closed.

Proof. The terminal object ½ is the empty set ∅, and the unique element of MRel(S, ∅) is the empty relation.

Given two sets S 1 and S 2 , their cartesian product S 1 &S 2 in MRel is their disjoint union:

S 1 &S 2 = ({1} × S 1 ) ∪ ({2} × S 2 )
and the projections π 1 , π 2 are given by:

π i = {([(i, a)], a) : a ∈ S i } ∈ MRel(S 1 &S 2 , S i ), for i = 1, 2.
It is easy to check that this is actually the cartesian product of S 1 and S 2 in MRel; given s ∈ MRel(U, S 1 ) and t ∈ MRel(U, S 2 ), the corresponding morphism s, t ∈ MRel(U, S 1 &S 2 ) is given by:

s, t = {(m, (1, a)) : (m, a) ∈ s} ∪ {(m, (2, b)) : (m, b) ∈ t} .
We will consider the canonical bijection between M f (S 1 ) × M f (S 2 ) and M f (S 1 &S 2 ) as an equality, hence we will still denote by (m 1 , m 2 ) the corresponding element of M f (S 1 &S 2 ).

Given two objects S and T the exponential object S ⇒T is M f (S) × T and the evaluation morphism is given by:

ev ST = {(([(m, b)], m), b) : m ∈ M f (S) and b ∈ T } ∈ MRel((S ⇒T )&S, T ) .
Again, it is easy to check that in this way we defined an exponentiation. Indeed, given any set U and any morphism s ∈ MRel(U & S, T ), there is exactly one morphism Λ(s) ∈ MRel(U, S ⇒T ) such that:

ev ST • Λ(s), Id S = s. where Λ(s) = {(p, (m, b)) : ((p, m), b) ∈ s}.
Here, the points of an object S, i.e., the elements of MRel(½, S), are relations between M f (∅) and S. These are, up to isomorphism, the subsets of S.

In the next section we will present an extensional model of λ-calculus living in MRel which is a strongly non extensional ccc in the following sense. It is, in fact, possible to prove not only that MRel has not enough points but that there exists no object U = ½ of MRel having enough points.

In fact we can always find t 1 , t 2 ∈ MRel(U, U ) such that t 1 = t 2 and, for all 

s ∈ MRel(½, U ), t 1 • s = t 2 • s. Recall that, by definition of composition, t 1 • s = {([], b) : ∃a 1 , . . . , a n ∈ U ([], a i ) ∈ s ([a 1 , . . . , a n ], b) ∈ t 1 } ∈ MRel(½, U ),

An extensional relational model of λ-calculus

In this section we build a reflexive object in MRel, which is extensional by construction.

Constructing an extensional reflexive object.

We build a family of sets (D n ) n∈AE as follows 6 :

-D 0 = ∅, -D n+1 = M f (D n ) (ω) .
Since the operation S → M f (S) (ω) - We are going to define two operations of sum and product on A D ; in order to show easily that these operations are well defined, we provide a characterization of the finitary elements of MRel(D Var , D). Proposition 2. Let f ∈ MRel(D Var , D) and J ⊂ f Var. Then there exists f J such that (f J , J) ∈ Ad(f ) if, and only if, for all (m, σ) ∈ f and for all x ∈ J, π

|N P | x = {((m 1 , . . . , m n ), σ) : ∃k ∈ AE ∃(m j 1 , . . . , m j n ) ∈ M f (D) n for j = 0...k ∃σ 1 , . . . , σ k ∈ D such that m i = m 0 i . . . m k i for i = 1...n ((m 0 1 , . . . , m 0 n ), [σ 1 , . . . , σ k ] • σ) ∈ |N | x ((m j 1 , . . . , m j n ), σ j ) ∈ |P | x for j = 1...k} -|λz.P | x = {((m 1 , . . . , m n ), m • σ) : ((m, m 1 , . . . , m n ), σ) ∈ |P | x,z },
. . . x n .x i M 1 • • • M k (n, k ≥ 0), then its interpretation is non-empty. It is quite clear, in fact, that [] • • • [] • [ * ] • * ∈ |M | ( 
x (m) = []. Proof. Straightforward.
Hence, the union of finitary elements is still a finitary element. As a matter of notation, we will write a ⊕ b for a ∪ b.

We now recall the definition of semilinear applicative structure given in [START_REF] De'liguoro | Non deterministic extensions of untyped λ-calculus[END_REF].

Definition 4. A semilinear applicative structure is a pair ((A, •), +) such that:

(i) (A, •) is an applicative structure. (ii) + : A 2 → A is an idempotent, commutative and associative operation. (iii) ∀x, y, z ∈ A (x + y) • z = (x • z) + (y • z).
Straightforwardly, the union operation makes A D semilinear.

Proposition 3. (A D , ⊕) is a semilinear applicative structure.

Moreover, the syntactic interpretation of Definition 1 may be extended to the non-deterministic λ-calculus Λ ⊕ of [START_REF] De'liguoro | Non deterministic extensions of untyped λ-calculus[END_REF], by stipulating that M ⊕ N ρ = M ρ ⊕ N ρ . Hence, we get that (A D , ⊕, -) is an extensional syntactical model of Λ ⊕ in the sense of [START_REF] De'liguoro | Non deterministic extensions of untyped λ-calculus[END_REF]. The operation ⊕ can be seen intuitively as a non-deterministic choice.

We define another binary operation on A D , which can be thought of as parallel composition. Definition 5.

-Given σ, τ ∈ D, we set σ τ = (σ 1 τ 1 , . . . , σ n τ n , . .

.). -Given a, b ∈ A D , we set a b = {(m 1 m 2 , σ τ ) : (m 1 , σ) ∈ a, (m 2 , τ ) ∈ b}.
Once again, it is easy to see that produces finitary elements when applied to finitary elements.

Note that A D , equipped with , is not a semilinear applicative structure, simply because the operator is not idempotent. Nevertheless, the left distributivity with respect to the application is satisfied. 

Conclusions and Further works

We have proposed a general method for getting a λ-model out of a reflexive object of a ccc, which does not rely on the fact that the object has enough points. We have applied this construction to an extensional reflexive object D of MRel, the Kleisli category of the comonad "finite multisets" on Rel, and showed some algebraic properties of the resulting λ-model M D . A first natural question about M D concerns its theory. We know that it is extensional, and that M D can be "stratified" following the construction of D = n∈AE D n given in Section 5.1. Not surprisingly, the theory of M D turns out to be H * , the maximal consistent sensible λ-theory. In a forthcoming paper, we show how the proof method based on the approximation theorem, due to Hyland [START_REF] Hyland | A syntactic characterization of the equality in some models for the lambda calculus[END_REF], can be adapted to all suitably defined "stratified λ-models" in order to prove that their theory is H * .

Proposition 5 shows that M D has a quite rich algebraic structure. In order to interpret conjunctive-disjunctive λ-calculi, endowed with both "non-deterministic choice" and "parallel composition", a notion of λ-lattice have been introduced in [START_REF] Dezani Ciancaglini | A filter model for concurrent lambda-calculus[END_REF]. It is interesting to notice that our structure (A D , ⊆, •, ⊕, ) does not gives rise to a real λ-lattice essentially because is not idempotent. Roughly speaking, this means that in the model M D of the conjunctive-disjunctive calculus M ||M = M , i.e., that the model is "resource sensible". We aim to investigate full abstraction results for must/may semantics in M D .

A concluding remark: for historical reasons, most of the work on models of untyped λ-calculus, and its extensions, has been carried out in subcategories of CPO. A posteriori, we can propose two motivations:

(i) because of the seminal work of Scott, the Scott-continuity of morphisms has been seen as the canonical way of getting U ⇒U U . (ii) the classic result relating algebraic and categorical models of pure λ-calculus asks for reflexive objects with enough points.

Our proposal allows to overcome (ii). It remains to be proved that, working in categories like MRel allows to get new interesting classes of models.

  λz.P , by inductive hypothesis we have defined |P | x,z ∈ C(U n &U, U ) and so we set |λz.P | x = λ • Λ(|P | x,z ). It is routine to check that, if M and N are β-equivalent, then |M | x = |N | x for all x adequate for M and N . If the reflexive object U is extensional, then |M | x = |N | x holds as soon as M and N are βη-equivalent.

  and by applying the rules (Curry) and (beta) we obtain |P | x,z • (ρ(x) × Id) • Id, a . Finally, by (pair) we get |P | x,z • ρ(x), a = P ρ[z:=a] . (iv) Obvious since, by Lemma 2, M ρ = |M | x • ρ(x) where x are exactly the free variables of M .

  and similarly for t 2 • s. Hence it is sufficient to choose t 1 = {(m 1 , b)} and t 2 = {(m 2 , b)} such that m 1 , m 2 are different multisets with the same support.

Proposition 1 .

 1 is monotonic on sets, and since D 0 ⊆ D 1 , we have D n ⊆ D n+1 for all n ∈ AE. Finally, we set D = n∈AE D n . So we have D 0 = ∅ and D 1 = { * } = {([], [], . . . )}. The elements of D 2 are quasi-finite sequences of multisets over a singleton, i.e., quasi-finite sequences of natural numbers. More generally, an element of D can be represented as a finite tree which alternates two kinds of layers:ordered nodes (the quasi-finite sequences), where immediate subtrees are indexed by a possibly empty finite set of natural numbers, -unordered nodes where subtrees are organised in a non-empty multiset.In order to define an isomorphism in MRel between D and D ⇒D (which is equal to M f (D) × D) just remark that every element σ ∈ D stands for the pair (σ 0 , (σ 1 , σ 2 ...)) and vice versa. Given σ ∈ D and m ∈ M f (D), we write m • σ for the element τ ∈ D such that τ 1 = m and τ i+1 = σ i . This defines a bijection between M f (D) × D and D, and hence an isomorphism in MRel as follows: The triple D = (D, Ap, λ) where:-λ = {([(m, σ)], m • σ) : m ∈ M f (D), σ ∈ D} ∈ MRel(D ⇒D, D), -Ap = {([m • σ], (m, σ)) : m ∈ M f (D), σ ∈ D} ∈ MRel(D, D ⇒D), is an extensional categorical model of λ-calculus.Proof. It is easy to check that λ • Ap = Id D and Ap • λ = Id D⇒D .5.2 Interpreting the untyped λ-calculus in DIn Section 2.3, we have recalled how a λ-term is interpreted when a reflexive object is given, in any ccc. We provide the result of the corresponding computation, when it is performed in the present structure D.Given a λ-term M and a sequence x of length n, which is adequate for M , the interpretation |M | x is an element of MRel(D n , D), where D n = D & ... & D, i.e., a subset of M f (D) n × D. This set is defined by structural induction on M . -|x i | x = {(([], . . . , [], [σ], [], . . . , []), σ) : σ ∈ D}, where the only non-empty multiset stands in i-th position.

  where [ * ] stands in i-th position). Since MRel has countable products, the construction given in Section 3.1 provides an applicative structure A D = (A D , •), whose elements are the finitary morphisms in MRel(D Var , D), and the associated λ-model M D = (A D , -). This λ-model is extensional by Theorem 1(2).

Proposition 4 .

 4 For all a, b, c ∈ A D , (a b) • c = (a • c) (b • c). Proof. Straightforward. The units of the operations ⊕ and are 0 = ∅ and 1 = {([], * )}, respectively; (A D , ⊕, 0) and (A D , , 1) are commutative monoids. Moreover 0 annihilates , and multiplication distributes over addition. Summing up, the following proposition holds. Proposition 5. -(A D , ⊕, , 0, 1) is a commutative semiring. -⊕ and are left distributive over •. -⊕ is idempotent.

  where we assume that z does not occur in x.Since D is extensional, if M = βη N then M and N have the same interpretation in the model. Note that if M is a closed λ-terms then it is simply interpreted, in the empty sequence, by a subset of D. If M is moreover a solvable term, i.e., if it is β-convertible to a term of the shape λx 1

We use the symbol & instead of × because, in the example we are interested in, the categorical product is the disjoint union. The usual notation is kept to denote the set-theoretical product.

We simply write ev when A and B are clear from the context.

Note that this hypothesis is not so restrictive. All the underlying categories of the models present in the literature, e.g., the Scott continuous semantics[START_REF] Scott | Continuous lattices[END_REF] and its refinements, satisfy this requirement.

Note that, in greater generality, we can start from a set A of "atoms" and take: D0 = ∅, Dn+1 = M f (Dn) (ω) × A. Nevertheless the set of atoms A is not essential to produce a non-trivial model of λ-calculus.