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Interpreting a Finitary Pi-Cal
ulus in Di�erentialIntera
tion NetsThomas Ehrhard and Olivier LaurentPreuves, Programmes & SystèmesUniversité Denis Diderot and CNRSAbstra
t. We propose and study a translation of a pi-
al
ulus withoutsums nor repli
ation/re
ursion into an untyped and essentially promotion-free version of di�erential intera
tion nets. We de�ne a transition systemof labeled pro
esses and a transition system of labeled di�erential in-tera
tion nets. We prove that our translation from pro
esses to nets isa bisimulation between these two transition systems. This shows thatdi�erential intera
tion nets are su�
iently expressive for representing
on
urren
y and mobility, as formalized by the pi-
al
ulus.Introdu
tionLinear Logi
 proofs [Gir87℄ admit a proof net representation whi
h has a veryasyn
hronous and lo
al redu
tion pro
edure, suggesting strong 
onne
tions withparallel 
omputation. This impression has been enfor
ed by the introdu
tion ofintera
tion nets and intera
tion 
ombinators by Lafont in [Laf95℄.But the attempts at relating 
on
urren
y with linear logi
 (e.g. [EW97℄,[AM99℄, [Mel06℄, [Bef05℄, [CF06℄ based on [FM05℄. . . ) missed a 
ru
ial featureof true 
on
urren
y, su
h as modelled by pro
ess 
al
uli like Milner's π-
al
ulus[Mil93,SW01℄: its intrinsi
 non-determinism. Indeed, all known logi
al systemshad either an essentially deterministi
 redu
tion pro
edure � this is the 
aseof intuitionisti
 and linear logi
, and of 
lassi
al systems su
h as Girard's LCor Parigot's λµ � or an ex
essively non-determiniti
 one, as Gentzen's 
lassi
alsequent 
al
ulus LK, whi
h equates all proofs of the same formula.However, many denotational models of the lambda-
al
ulus and of linearlogi
 admit some form of non-determinisms (e.g. [Plo76,Gir88℄), showing thata non-deterministi
 proof 
al
ulus is not ne
essarily trivial. The �rst authorintrodu
ed su
h models, based on ve
tor spa
es (see e.g. [Ehr05℄), whi
h havea ni
e proof-theoreti
 
ounterpart, 
orresponding to a simple extension of therules that linear logi
 asso
iates with the exponentials.In this di�erential setting, the weakening rule has a mirror image rule 
alled
oweakening, and similarly for dereli
tion and for 
ontra
tion, and the redu
tionrules have the 
orresponding mirror symmetry. The 
orresponding formalismof di�erential intera
tion nets has been introdu
ed in a joint work by the �rstauthor and Regnier [ER06℄1.1 Note that, in this di�erential linear logi
, the two additive 
onne
tives ⊕ and & areidenti�ed, but this does not prevent the system from having good logi
al properties,



In a joint work with Kohei Honda [HL07℄, the se
ond author proposed atranslation of a version of the π-
al
ulus in proof-nets for a version of linear logi
extended with the 
o
ontra
tion rule (as we now understand). The basi
 idea
onsists in interpreting the parallel 
omposition as a 
ut between a 
ontra
tionlink (to whi
h several outputs are 
onne
ted, through dereli
tion links) and a
o
ontra
tion link, to whi
h several promoted re
eivers are 
onne
ted. Beingpromoted, these re
eivers are repli
able, in the sense of the π-
al
ulus. The otherfundamental idea of this translation 
onsists in using linear logi
 polarities formaking the di�eren
e between outputs (negative) and inputs (positive), and ofimposing a stri
t alternation between these two polarities. This allows to re
astin a polarized linear logi
 setting a typing system for the π-
al
ulus previouslyintrodu
ed by Berger, Honda and Yoshida in [BHY03℄. This translation has twofeatures whi
h 
an be 
onsidered as slight defe
ts: it a

epts only repli
ablere
eivers and is not really modular (the parallel 
omposition of two pro
esses
annot be des
ribed as a 
ombination of the 
orresponding nets).Prin
iple of the translation. The purpose of the present paper is to 
ontinuethis line of ideas, using more systemati
ally the new stru
tures introdu
ed bydi�erential intera
tion nets2.
!

? ?

?

! !

Fig. 1. Communi
ationarea
The �rst key de
ision we made, guided by thestru
ture of the typi
al 
o
ontra
tion/
ontra
tion 
utintended to interpret parallel 
omposition, was of as-so
iating with ea
h free name of a pro
ess not one,but two free ports in the 
orresponding di�erentialintera
tion net. One of these ports will have a !-type(positive type) and will have to be 
onsidered as theinput port of the 
orresponding name for this pro
ess,and the other one will have a ?-type (negative type)and will be 
onsidered as an output port.We dis
overed stru
tures whi
h allow to 
ombinethese pairs of wires for interpreting parallel 
omposi-tion and 
alled them 
ommuni
ation areas : they areobtained by 
ombining in a 
ompletely symmetri
 way 
o
ontra
tion and 
on-tra
tion 
ells. There are 
ommuni
ation areas of any �arity� (number of pairs ofwires 
onne
ted to it). The 
ommuni
ation area of arity 3 
an be pi
tured as inFigure 1, where 
o
ontra
tion 
ells are pi
tured as !-labeled triangles and 
on-tra
tion 
ells as ?-labeled triangles. The ports 
orresponding to the same pairsare the prin
ipal ports of antipodi
 
ells.and this identi�
ation � whi
h results from non-determinism � does not extend tothe multipli
ative 
onne
tives: ⊗ and � are distin
t.2 One should mention here that translations of the π-
al
ulus into nets of variouskinds, subje
t to lo
al redu
tion relations, have been provided by various authors(
f. the work of Laneve, Parrow and Vi
tor on solo diagrams [LPV01℄, of Be�araand Maurel [BM05℄, of Milner on bigraphs [JM04℄, of Mazza [Maz05℄ on multiportintera
tion nets et
.). But these settings have no 
lear logi
al grounds nor simpledenotational semanti
s.



Content. We �rst introdu
e di�erential intera
tion nets, typed with a re
ur-sive typing system (introdu
ed by Danos and Regnier in [Reg92℄ and whi
h
orresponds to the untyped lambda-
al
ulus) for avoiding the appearan
e of nonredu
ible 
on�gurations. These nets are �nitary in the sense that they use onlya weak form of promotion. In this setting, we de�ne a �toolbox�, a 
olle
tionof nets that we shall 
ombine for interpreting pro
esses, and a few asso
iatedredu
tions, derived from the basi
 redu
tion rules of di�erential intera
tion nets.We organize redu
tion rules of nets as a labeled transition system, whose ver-ti
es are nets, and where the transitions 
orrespond to dereli
tion/
odereli
tionredu
tion. Then we de�ne a pro
ess algebra whi
h is a polyadi
 π-
al
ulus, with-out repli
ation and without sums. We spe
ify the operational semanti
s of this
al
ulus by means of an abstra
t ma
hine inspired by the ma
hine presentedin [AC98, Chapter 16℄. We de�ne a transition system whose verti
es are thestates of this ma
hine, and transitions 
orrespond to input/output redu
tions.Last we de�ne a �translation� relation from ma
hine states to nets and show thatthis translation relation is a bisimulation between the two transition systems.1 Di�erential intera
tion netsIntera
tion nets have been introdu
ed by Lafont [Laf95℄ as a generalization oflinear logi
 proof nets. A signature of intera
tion nets is a set of symbols, ea
hof them being given with an arity and a typing rule. A net is made of 
ells. In anet, ea
h 
ell γ bears exa
tly one symbol, and has therefore an arity n; the 
ell
γ must have n auxiliary ports (numbered from 1 to n) and one prin
ipal port(numbered 0). A net 
an also have free ports. Spe
ifying the net 
onsists last ingiving its wiring, whi
h is a partition of its ports in 2-elements sets (the wires).Typing the net means asso
iating a formula of some linear logi
al system withea
h of its oriented wires in su
h a way that, when reversing the orientation ofthe wire, the formula be turned to its orthogonal. Of 
ourse, the typing ruleatta
hed to ea
h 
ell of the net must also be respe
ted by the typing.See also [ER06℄ for an introdu
tion to di�erential intera
tion nets.1.1 Presentation of the 
ellsOur nets will be typed using a type system whi
h 
orresponds to the untypedlambda-
al
ulus. This system is based on a single type symbol o (the type ofoutputs), subje
t to the following re
ursive equation o = ?o⊥�o. We set ι = o⊥,so that ι = !o ⊗ ι and o = ?ι� o.In the present setting, there are eleven symbols: par (arity 2), bottom (arity
0), tensor (arity 2), one (arity 0), dereli
tion (arity 1), weakening (arity 0),
ontra
tion (arity 2), 
odereli
tion (arity 1), 
oweakening (arity 0), 
o
ontra
tion(arity 2) and 
losed promotion (arity 0). We present now the various 
ell symbols,with their typing rules, in a pi
torial way. The prin
ipal port of a 
ell is lo
atedat one of the angles of the triangle representing the 
ell, the other ports arelo
ated on the opposit edge. We put often a bla
k dot to lo
ate the auxiliaryport number 1.



1.1.1 Multipli
ative 
ells. The par and tensor 
ells, as well as their �nullary�versions bottom and one are as follows:
•

o

o
?ι � •

!o

⊗

ι

ι
⊥

o
1

ι1.1.2 Exponential 
ells. They are typed a

ording to a stri
tly polarizeddis
ipline. Here are �rst the why not 
ells, whi
h are 
alled dereli
tion, weakeningand 
ontra
tion:
?

ι ?ι
?

?ι
?

?ι
?ι

?ιand then the bang 
ells, 
alled 
odereli
tion, 
oweakening and 
o
ontra
tion:
!

o !o
!

!o
!

!o
!o

!o1.1.3 Closed promotion 
ells and the de�nition of nets. The notionof simple net is then de�ned indu
tively, together with the notion of 
losedpromotion 
ell.Given a (non ne
essarily simple) net s with only one free port os weintrodu
e a 
ell s!
!o .A simple net is a typed intera
tion net, in the signature we have just de�ned.A net is a �nite formal sum of simple nets having all the same interfa
e.Remember that the interfa
e of a simple net s is the set of its free ports, togetherwith the mapping asso
iating to ea
h free port the type of the oriented wire of

s whose ending point is the 
orresponding port.Let L be a 
ountable set of labels 
ontaining a distinguished element τ (to beunderstood as the absen
e of label). A labeled simple net is a simple net whereall dereli
tion and 
odereli
tion 
ells are equipped with labels belonging to L.We require moreover that, if two labels o

urring in a labeled net are equal, theyare equal to τ . All the nets we 
onsider in this paper are labeled. In our pi
tures,the labels of dereli
tion and 
odereli
tion 
ells will be indi
ated, unless it is τ ,in whi
h 
ase the (
o)dereli
tion 
ell will be drawn without any label.2 Redu
tion rulesWe denote by ∆ the 
olle
tion of all simple nets and by N〈∆〉 the 
olle
tion ofall nets (�nite sums of simple nets with the same interfa
e).A redu
tion rule is a subset R of ∆ × N〈∆〉 
onsisting of pairs (s, s′) where
s is made of two 
ells 
onne
ted by their prin
ipal ports and s′ has the sameinterfa
e as s. This set 
an be �nite or in�nite. Su
h a relation is easily extendedto arbitrary simple nets (s R t if there is (s0, u1 + · · · + un) ∈ R where s0 isa subnet of s, ea
h ui is simple and t = t1 + · · · + tn where ti is obtained byrepla
ing s0 by ui in s). This relation is extended to nets (sums of simple nets):
s1 + · · · + sn (where ea
h si is simple) is related to s′ by this extension RΣ if
s′ = s′1 + · · ·+ s′n where, for ea
h i, si R s′i or si = s′i. Last, R∗ is the transitive
losure of RΣ.



2.1 De�ning the redu
tion2.1.1 Multipli
ative redu
tion. The �rst two rules 
on
ern the intera
tionof two multipli
ative 
ells of the same arity.
• •� ⊗

?ι ?ι

o

o

;m
o o

?ι

⊥
o

;m ε1where ε stands for the empty simple net (not to be 
onfused with the net 0 ∈
N〈∆〉, the empty sum, whi
h is not a simple net). The next two rules 
on
ernthe intera
tion between a binary and a nullary multipli
ative 
ell.� 1

o

;m

?ι

o

?ι

o 1

!

;m

!o

ι

⊗ ⊥

!o

ι

?

⊥So here the redu
tion rule (denoted as ;m) has four elements.2.1.2 Communi
ation redu
tion. Let R ⊆ L. We have the following re-du
tions if l, m ∈ R.
? !

ι ι?ι
;c,R

ι

l mSo the set ;c,R is in bije
tive 
orresponden
e with the set of pairs (l, m) with
l, m ∈ R and l = m ⇒ l = m = τ .2.1.3 Non-deterministi
 redu
tion. Let R ⊆ L. We have the followingredu
tions if l ∈ R.

?

?

?

?

ι ?ι

?ι?ι

!? +

l

l

;nd,R

?ι

l

!

!

!

!

! ?
o !o

!o

!o

+

l

l

;nd,R
l

? !
ι ?ι

l
;nd,R 0 ! ?

o !o

l
;nd,R 02.1.4 Stru
tural redu
tion.

?ι

?ι

?ι
?

!

!

! ;s !

!o

!o

!o
?

?

? ;s

?ι
? ;s εs! ?

?ι

?ι

?ι

;s

s!

s!

s!

?ι
? ! ;s ε ? !

?ι

?ι

?ι
?ι

?ι

;s

!

!

?

?



2.1.5 Box redu
tion.
?

ι ?ι
s;bs!

lObserve that the redu
tion rules are 
ompatible with the identi�
ation of the
oweakening 
ell with a promotion 
ell 
ontaining the 0 net. Observe also thatthe only rules whi
h do not admit a �symmetri
� rule are those whi
h involvea promotion 
ell. Indeed, promotion is the only asymmetri
 rule of di�erentiallinear logi
.One 
an 
he
k that we have provided redu
tion rules for all possible redexes,
ompatible with our typing system: for any simple net s made of two 
ells 
on-ne
ted through their prin
ipal ports, there is a redu
tion rule whose left memberis s. This rule is unique, up to the 
hoi
e of a set of labels, but this 
hoi
e hasno in�uen
e on the right member of the rule.2.2 Con�uen
eTheorem 1. Let R, R′ ⊆ L. Let R ⊆ ∆ × N〈∆〉 be the union of some of theredu
tion relations ;c,R, ;nd,R′ , ;m, ;s and ;b. The relation R∗ is 
on�uenton N〈∆〉.The proof is essentially trivial sin
e the rewriting relation has no 
riti
al pair(see [ER06℄). Given R ⊆ L, we 
onsider in parti
ular the following redu
tion:
;R = ;m∪;c,{τ}∪;s∪;b∪;nd,R. We set ;d = ;∅ (�d� for �deterministi
�)and denote by ∼d the symmetri
 and transitive 
losure of this relation.Some of the redu
tion rules we have de�ned depend on a set of labels. Thisdependen
e is 
learly monotone in the sense that the relation be
omes largerwhen the set of labels in
reases.2.3 A transition system of simple nets2.3.1 {l, m}-neutrality. Let l and m be distin
t elements of L\{τ}. We 
all
(l, m)-
ommuni
ation redex a 
ommuni
ation redex whose (
o)dereli
tion 
ellsare labeled by l and m. We say that a simple net s is {l, m}-neutral if, whenever
s ;

∗
{l,m} s′, none of the simple summands of s′ 
ontains an (l, m)-
ommuni
ationredex.Lemma 1. Let s be a simple net. If s ;

∗
{l,m} s′ where all the simple summandsof s′ are {l, m}-neutral, then s is also {l, m}-neutral.2.3.2 The transition system. We de�ne a labeled transition system DLwhose obje
ts are simple nets, and transitions are labeled by pairs of distin
telements of L \ {τ}. Let s and t be simple nets, we have s

lm
−→ t if the followingholds: s ;

∗
{l,m} s1 + s2 + · · · + sn where s1 is a simple net whi
h 
ontainsan (l, m)-
ommuni
ation redex (with dereli
tion labeled by m and 
odereli
tionlabeled by l) and be
omes t when one redu
es this redex, and ea
h si (for i > 1)is {l, m}-neutral.Lemma 2. The relation ∼d ⊆ ∆ × ∆ is a strong bisimulation on DL.



3 A toolbox for pro
ess 
al
uli interpretation3.1 Compound 
ells3.1.1 Generalized 
ontra
tion and 
o
ontra
tion. A generalized 
on-tra
tion 
ell or 
ontra
tion tree is a simple net γ (with one prin
ipal port anda �nite number of auxiliary ports) whi
h is either a wire or a weakening 
ell ora 
ontra
tion 
ell whose auxiliary ports are 
onne
ted to the prin
ipal port ofother 
ontra
tion trees, whose auxiliary ports be
ome the auxiliary ports of γ.Generalized 
o
ontra
tion 
ells (
o
ontra
tion trees) are de�ned dually.We use the same graphi
al notations for generalized (
o)
ontra
tion 
ells asfor ordinary (
o)
ontra
tion 
ells, with a �∗� in supers
ript to the � !� or �?�symbols to avoid 
onfusions. Observe that there are in�nitely many generalized(
o)
ontra
tion 
ells of any given arity.3.1.2 The dereli
tion-tensor and the 
odereli
tion-par 
ells. Let n bea non-negative integer. We de�ne an n-ary 
ell as follows. It will be de
oratedby the label of its dereli
tion 
ell (if di�erent from τ).
?⊗

!o

!o

?ι

⊗

⊗

⊗

1

?

!o

!o

!o

ι ?ι

•

•

•

•

=... l

lThe number of tensor 
ells in this 
ompound 
ell is equal to n. One de�nes duallythe !� 
ompound 
ell.3.1.3 The pre�x 
ells. Now we 
an de�ne the 
ompound 
ells whi
h willplay the main role in the interpretation of pre�xes of the π-
al
ulus. Thanks tothe above de�ned 
ells, all the oriented wires of the nets we shall de�ne will beartype ?ι or !o. Therefore we omit types and draw all wires with an orientation
orresponding to the ?ι type.The n-ary input 
ell and the n-ary output 
ell are de�ned as
!�?⊗

?⊗

!

•• ......... =
ll

?

!�
!� ?⊗

•• ......... =
llwith n pairs of auxiliary ports.Pre�x 
ells are labeled by the label 
arried by their outermost dereli
tion-tensor or 
odereli
tion-par 
ompound 
ell, if di�erent from τ , the other 
odereli
tion-par or dereli
tion-tensor 
ompound 
ells being unlabeled (that is, labeled by τ).3.1.4 Transistors and boxed identity. In order to implement the sequen-tiality 
orresponding to sequen
es of pre�xes in the π-
al
ulus, we shall use theunary output pre�x 
ell de�ned above as a kind of transistor, that is, as a kindof swit
h that one 
an put on a wire, and whi
h is 
ontrolled by another wire.



This idea is strongly inspired by the translation of the π-
al
ulus in the 
al
ulusof solos3. ��?⊗

⊥

o•Fig. 2. IdentityThese swit
hes will be 
losed by �boxed identity 
ells�,whi
h are the unique use we make of promotion in thepresent work. Let I be the �identity� net of Figure 2.Then we shall use the 
losed promotion 
ell labeled by
I !: I ! .3.2 Communi
ation tools

3Fig. 3. Area of or-der 3
3.2.1 The 
ommuni
ation areas. Let n ≥ −2. Wede�ne a family of nets with 2(n + 2) free ports, 
alled
ommuni
ation areas of order n, that we shall draw usingre
tangles with beveled angles. Figure 3 shows how wepi
ture a 
ommuni
ation area of order 3.A 
ommuni
ation area of order n is made of n+2 pairsof (n + 1)-ary generalized 
o
ontra
tion and 
ontra
tion
ells (γ+

1 , γ−
1 ), . . . , (γ+

n+1, γ
−
n+1), with, for ea
h i and j su
hthat 1 ≤ i < j ≤ n + 2, a wire from an auxiliary port of γ+

i to an auxiliary portof γ−
j and a wire from an auxiliary port of γ−

i to an auxiliary port of γ+
j .So the 
ommuni
ation area of order −2 is the empty net ε, and 
ommuni
a-tion areas of order −1, 0 and 1 are respe
tively of the shape

?∗

!∗

!∗ ?∗

!∗?∗

!∗ ?∗

?∗ !∗

?∗!∗3.2.2 Identi�
ation stru
tures. Let n, p ∈ N and let f : {1, . . . , p} →
{1, . . . , n} be a fun
tion. An f -identi�
ation net is a stru
ture with p + n pairsof free ports (p pairs 
orrespond to the domain of f and, in our pi
tures, willbe atta
hed to the non beveled side of the identi�
ation stru
ture, and n pairs
orrespond to the 
odomain of f , atta
hed to the beveled side of the stru
ture)as in Figure 4(a). Su
h a net is made of n 
ommuni
ation areas, and on the j'tharea, the j'th pair of wires of the 
odomain is 
onne
ted, as well as the pairsof wires of index i of the domain su
h that f(i) = j. For instan
e, if n = 4,
p = 3, f(1) = 2, f(2) = 3 and f(3) = 2, a 
orresponding identi�
ation stru
tureis made of four 
ommuni
ation areas, two of order −1, one of order 0 and oneof order 1, as in Figure 4(b).3 It is shown in [LV03℄ that one 
an en
ode the π-
al
ulus sequentiality indu
ed bypre�x nesting in the 
ompletely asyn
hronous solo formalism: the idea of su
h trans-lations is to observe that, in a solo pro
ess like P = νy (u(x, y) | y(. . . )) | Q, the �rstsolo must intera
t before the se
ond one with the environment Q.
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n1(a) Notation −1

1

0−1(b) Example ;
∗
s

f

g

g ◦ f

. . .

. . .

. . .

. . .

. . .(
) Redu
tionFig. 4. Identi�
ation stru
tures3.3 Useful redu
tions.3.3.1 Aggregation of 
ommuni
ation areas. One of the ni
e propertiesof 
ommuni
ation areas is that, when one 
onne
ts two su
h areas through a pairof wires, one gets another 
ommuni
ation area; if the two areas are of respe
tiveorders p and q, the resulting area is of order p + q, see Figure 5.
p + q ...... p ;

∗
sq ... ...Fig. 5. Aggregation3.3.2 Composition of identi�
ation stru
tures. In parti
ular, we getthe redu
tion of Figure 4(
).3.3.3 Port forwarding in a net. Let t be a net and p be a free port of t.We say that p is forwarded in t if there is a free port q of t su
h that t is of oneof the two following shapes:

?∗

p

q...
· · ·

... !∗

p

q

· · ·

......3.3.4 Forwarding of dereli
tions and 
odereli
tions in 
ommuni
ationareas. The following redu
tion shows that dereli
tions and 
odereli
tions 
anmeet ea
hother, when 
onne
ted to a 
ommon 
ommuni
ation areas. Let l, m ∈
L, then

?

!

!

?

?! ! ?
ti

r r′
;

∗
{l,m}

· · ·

p + 1 p +

N∑

i=1

· · · · · ·

l l lmm

mwhere N is a non-negative integer (a
tually, N = (p + 1)2) and, in ea
h simplenet ti, both ports r and r′ are forwarded.3.3.5 General forwarding. Let l ∈ L. The following more general but lessinformative property will also be used: one has
?

... ui

r ...?∗? ;
∗
{l}

N∑

i=1

l...... p
l



where in ea
h simple net ui, the port r is forwarded (see 3.3.3). Of 
ourse onealso has a dual redu
tion (where the dereli
tion is repla
ed by a 
odereli
tion,and the generalized 
ontra
tion by a generalized 
o
ontra
tion).3.3.6 Redu
tion of pre�xes. Let l, m ∈ L. If we 
onne
t an n-ary outputpre�x labeled by m to a p-ary input pre�x labeled by l, we obtain a net whi
hredu
es by ;c,{l,m} to a net u whi
h redu
es by ;
∗
{τ} to 0 if n 6= p and to simplewires, in Figure 6(a), if n = p.3.3.7 Transistor triggering. A boxed identity 
onne
ted to the prin
ipalport of a unary output 
ell used as a �transistor� turns it into a simple wire asin Figure 6(b).
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tion I ! ?

•
;

∗
∅(b) Transistor triggeringFig. 6. Pre�x redu
tion4 A polyadi
 �nitary π-
al
ulus and its en
odingThe pro
ess 
al
ulus we 
onsider is a fragment of the π-
al
ulus where we havesuppressed the following features: sums, repli
ation, re
ursive de�nitions, mat
hand mismat
h. This does not mean that di�erential intera
tion nets 
annot in-terpret these features4. Let N be a 
ountable set of names. Our pro
esses arede�ned by the following syntax. We use the same set of labels as before.� nil is the empty pro
ess.� If P1 and P2 are pro
esses, then P1 | P2 is a pro
ess.� If P is a pro
ess and a ∈ N , then νa · P is a pro
ess where a is bound.� If P is a pro
ess, a, b1, . . . , bn ∈ N , the names bi being pairwise distin
t andif l ∈ L, then Q = [l]a(b1 . . . bn) ·P is a pro
ess (pre�xed by an input a
tion,whose subje
t is a and whose obje
ts are the bis; the name a is free and ea
h

bi is bound in Q and hen
e a is distin
t from ea
h bi).� If P is a pro
ess, a, b1, . . . , bn ∈ N and l ∈ L, then [l]a〈b1 . . . bn〉 · P is apro
ess (pre�xed by an output a
tion, whose subje
t is a and whose obje
tsare the bis). This 
onstru
tion does not bind the names bi, and one does notrequire the bis to be distin
t. The name a 
an be equal to some of the bis.The purpose of this labeling of pre�xes is to distinguish the various o

urren
esof names as subje
t of pre�xes. The set FV(P ) of free names of a pro
ess P andthe α-equivalen
e relation on pro
esses are de�ned in the usual way.4 Repli
ation 
an be interpreted using exponential boxes, sums are probably relatedto the unique additive 
onne
tive of di�erential linear logi
.



A labeled pro
ess is a pro
ess where all pre�xes are labeled, by pairwisedistin
t labels, all these labels being di�erent from τ . If P is a labeled pro
ess,
L(P ) denotes the set of its labels. All the pro
esses we 
onsider in this paper arelabeled.4.1 An exe
ution modelRather than 
onsidering a rewriting relation on pro
esses as one usually does,we prefer to de�ne an �environment ma
hine�, similar to the ma
hine introdu
edin [AC98, Chapter 16℄5.An environment is a fun
tion e : Dom e → Codom e between �nite subsets of
N . A 
losure is a pair (P, e) where P is a pro
ess and e is an environment su
hthat FV(P ) ⊆ Dom(e). A soup is a multiset S = (P1, e1) · · · (PN , eN) of 
losures(denoted by simple juxtaposition). The set FV(S) of free names of a soup S isthe union of the 
odomains of the environments of S. The soup S is labeled ifall the Pis are labeled, with pairwise disjoint sets of labels. A state is a pair
(S, L) where S is a soup and L is a set of names (the names whi
h have to be
onsidered as lo
al to the state) and we set FV(S, L) = FV(S) \ L.The state (S, L) is labeled if the soup S is labeled. All the states we 
onsiderare labeled. One de�nes the set L(S, L) of all labels of the state (S, L) as thedisjoint union of the sets of labels asso
iated to the pro
esses of the 
losures of
S.4.1.1 Canoni
al form of a state. We say that a pro
ess is guarded ifit starts with an input pre�x or an output pre�x. We say that a soup S =
(P1, e1) · · · (PN , eN ) is 
anoni
al if ea
h Pi is guarded, and that a state (S, L) is
anoni
al if the soup S is 
anoni
al. One de�nes a rewriting relation ;can whi
hallows to turn a state into a 
anoni
al one.

((nil, e)S, L) ;can (S, L)

((νa · P, e)S, L) ;can ((P, e[a 7→ a′])S, L ∪ {a′})

((P | Q, e)S, L) ;can ((P, e)(Q, e)S, L)where, in the se
ond rule, a′ ∈ N \ (L ∪ Codom(e) ∪ Codom(S)). One showseasily that, up to α-
onversion, this redu
tion relation is 
on�uent, and it is
learly strongly normalizing. We denote by Can(S, L) the normal form of thestate (S, L) for this rewriting relation. Observe that if (S, L) ;can (T, M) then
FV(T, M) ⊆ FV(S, L).4.1.2 Transitions. Next, one de�nes a labeled transition system SL. Theobje
ts of this system are labeled 
anoni
al states and the transitions, labeled5 The reason for this 
hoi
e is that the rewriting approa
h uses an operation whi
h
onsists in repla
ing a name by another name in a pro
ess. The 
orresponding op-eration on nets is rather 
ompli
ated and we prefer not to de�ne it here.



by pairs of labels, are de�ned as follows.
(([l]a(b1 . . . bn) · P, e)([m]a′〈b′1 . . . b′n〉 · P

′, e′)S, L)
lm
−→ Can((P, e[b1 7→ e′(b′1), . . . , bn 7→ e′(b′n)])(P ′, e′)S, L)if e(a) = e′(a′). Observe that if (S, L)

lm
−→ (T, M) then FV(T, M) ⊆ FV(S, L).4.2 Translation of pro
essesSin
e we do not work up to asso
iativity and 
ommutativity of 
ontra
tion and
o
ontra
tion, it does not make sense to de�ne this translation as a fun
tion frompro
esses to nets. For ea
h repetition-free list of names a1, . . . , an, we de�ne arelation Ia1,...,an

from pro
esses whose free names are 
ontained in {a1, . . . , an}to nets t whi
h have 2n + 1 free ports aι
1, a

o
1, . . . , a

ι
n, ao

n and c as in Figure 7(a).The additional port c will be used for 
ontrolling the sequentiality of the redu
-tion, thanks to transistors. Redu
ing the translation of a pro
ess will be possibleonly when a boxed identity 
ell will be 
onne
ted to its 
ontrol port. This is
ompletely similar to the additional 
ontrol free name in the translation of the
π-
al
ulus in solos, in [LV03℄6.Clearly, if P and P ′ are α-equivalent, then P Ia1,...,an

s i� P ′ Ia1,...,an
s.4.2.1 Empty pro
ess. One has nil Ib1,...,bn

t if t is as in Figure 7(b).4.2.2 Name restri
tion. One has νa ·P Ib1,...,bn
t i� t is as in Figure 7(
),with s satisfying P Ia,b1,...,bn

s.4.2.3 Parallel 
omposition. One has P1 | P2 Ib1,...,bn
t i� the simple net

t is as in Figure 7(d), where P1 Ib1,...,bn
t1, P2 Ib1,...,bn

t2 and γ1, . . . , γn are
ommuni
ation areas of order 1.4.2.4 Input pre�x. Let l ∈ L. Assume that a, b1, . . . , bn, c1, . . . , cp are pair-wise distin
t names and let Q = [l]a(b1 . . . bn) · P . One has Q Ia,c1,...,cp
t if allthe free names of P are 
ontained in a, b1, . . . , bn, c1, . . . , cp and if t is as in Fig-ure 7(e), where γ is a 
ommuni
ation area of order 1 and where s is a simple netwhi
h satis�es P Ia,b1,...,bn,c1,...,cp

s.6 There is a simple interpretation of of solo diagrams into di�erential intera
tion nets,whi
h uses only our toolbox without promotion so that solo diagrams 
an be seenas an intermediate graphi
al language whi
h 
an be implemented in the low leveldi�erential syntax. Our translation of the π-
al
ulus results from an analysis and asimpli�
ation of the 
omposed translation �π-
al
ulus→ solo diagrams→ di�erentialnets�. The simpli�
ation results from some rewiring and from the use of the boxedidentity 
ells whi
h is easily repli
able. The translation of solos into di�erential netsleads to 
y
les (whi
h appear when a name is identi�ed with itself) whi
h are avoidedin the present dire
t translation. Well behaved 
onditions on solos for avoiding su
h
y
les are introdu
ed and studied in [EL07℄.
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ess and state translation4.2.5 Output pre�x. Let l ∈ L. Let b1, . . . , bn be a list of pairwise distin
tnames and let Q = [l]bf(0)〈bf(1) . . . bf(q)〉 ·P , where f : {0, 1, . . . , q} → {1, . . . , n}is a fun
tion. One has Q Ib1,...,bn
t if all the free names of P are 
ontained in

b1, . . . , bn and if t is as in Figure 7(f), where γ1, . . . , γn are 
ommuni
ation areasof order 1, δ is an f -identi�
ation stru
ture and where s is a simple net whi
hsatis�es P Ib1,...,bn
s.4.2.6 States. Let S = (P1, e1) . . . (PN , eN) be a soup and b1, . . . , bn be arepetition-free list of names 
ontaining all the 
odomains of the environments

e1, . . . , eN . One has S Ib1,...,bn
t if, for some simple nets si (i = 1, . . . , N) one has

Pi Ibi
1
,...,bi

ni

si where bi
1, . . . , b

i
ni

is a repetition-free enumeration of the domain of
ei, and t is obtained by 
onne
ting the pair of free ports of si asso
iated to ea
h
bi
k to the 
orresponding pair of free port of an identi�
ation stru
ture asso
iatedto the fun
tion e de�ned by e(bi

k) = ei(b
i
k), see Figure 7(g).Last, if we are moreover given L ⊆ N and a repetition-free list of names

b1, . . . , bn 
ontaining all the free names of the state (S, L), one has (S, L) Ib1,...,bn

u if one has S Ib1,...,bn,c1,...,cp
t for some repetition-free enumeration c1, . . . , cp of

L (assumed of 
ourse to be disjoint from b1, . . . , bn) and u is obtained by plugging




ommuni
ation areas of order −1 on the pairs of free ports of t 
orrespondingto the cjs.5 Comparing the transition systemsWe are now ready to state a bisimulation7 theorem. Given a repetition-free list
b1, . . . , bn of names, we de�ne a relation Ĩb1,...,bn

between states and simple netsby: (S, L) Ĩb1,...,bn
s if there exists a simple net s0 su
h that (S, L) Ib1,...,bn

s0and s0 ∼d s.Theorem 2. The relation Ĩb1,...,bn
is a strong bisimulation between the labeledtransition systems SL and DL.Con
lusion. The main goal of this work was not to de�ne one more translationof the π-
al
ulus into yet another exoti
 formalism. We wanted to illustrate byour bisimulation result that di�erential intera
tion nets are su�
iently expres-sive for simulating 
on
urren
y and mobility, as formalized in the π-
al
ulus.We believe that di�erential intera
tion nets have their own interest and �nda strong mathemati
al and logi
al justi�
ation in their 
onne
tion with linearlogi
, in the existen
e of various denotational models and in the analogy be-tween its basi
 
onstru
ts and fundamental mathemati
al operations su
h asdi�erentiation and 
onvolution produ
t. The fa
t that di�erential intera
tionnets support 
on
urren
y and mobility suggests that they might provide more
onvenient mathemati
al and logi
al foundations to 
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