N
N

N

HAL

open science

Interpreting a Finitary Pi-Calculus in Differential
Interaction Nets
Thomas Ehrhard, Olivier Laurent

» To cite this version:

Thomas Ehrhard, Olivier Laurent. Interpreting a Finitary Pi-Calculus in Differential Interaction Nets.
CONCUR 2007, Sep 2007, Lisboa, Portugal. pp.333-348, 10.1007/978-3-540-74407-8 . hal-00148816

HAL Id: hal-00148816
https://hal.science/hal-00148816
Submitted on 14 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00148816
https://hal.archives-ouvertes.fr

Interpreting a Finitary Pi-Calculus in Differential
Interaction Nets

Thomas Ehrhard and Olivier Laurent

Preuves, Programmes & Systémes
Université Denis Diderot and CNRS

Abstract. We propose and study a translation of a pi-calculus without
sums nor replication /recursion into an untyped and essentially promotion-
free version of differential interaction nets. We define a transition system
of labeled processes and a transition system of labeled differential in-
teraction nets. We prove that our translation from processes to nets is
a bisimulation between these two transition systems. This shows that
differential interaction nets are sufficiently expressive for representing
concurrency and mobility, as formalized by the pi-calculus.

Introduction

Linear Logic proofs [Gir87] admit a proof net representation which has a very
asynchronous and local reduction procedure, suggesting strong connections with
parallel computation. This impression has been enforced by the introduction of
interaction nets and interaction combinators by Lafont in [Laf95].

But the attempts at relating concurrency with linear logic (e.g. [EW9T7],
[AM99], [Mel06], [Bef05], [CF06] based on [FMO05]...) missed a crucial feature
of true concurrency, such as modelled by process calculi like Milner’s 7-calculus
[Mil93,SWO01]: its intrinsic non-determinism. Indeed, all known logical systems
had either an essentially deterministic reduction procedure — this is the case
of intuitionistic and linear logic, and of classical systems such as Girard’s LC
or Parigot’s Ay or an excessively non-determinitic one, as Gentzen'’s classical
sequent calculus LK, which equates all proofs of the same formula.

However, many denotational models of the lambda-calculus and of linear
logic admit some form of non-determinisms (e.g. [Plo76,Gir88]), showing that
a non-deterministic proof calculus is not necessarily trivial. The first author
introduced such models, based on vector spaces (see e.g. [Ehr05]), which have
a nice proof-theoretic counterpart, corresponding to a simple extension of the
rules that linear logic associates with the exponentials.

In this differential setting, the weakening rule has a mirror image rule called
coweakening, and similarly for dereliction and for contraction, and the reduction
rules have the corresponding mirror symmetry. The corresponding formalism
of differential interaction nets has been introduced in a joint work by the first
author and Regnier [ER06]".

! Note that, in this differential linear logic, the two additive connectives @ and & are
identified, but this does not prevent the system from having good logical properties,

In a joint work with Kohei Honda [HLOT7|, the second author proposed a
translation of a version of the m-calculus in proof-nets for a version of linear logic
extended with the cocontraction rule (as we now understand). The basic idea
consists in interpreting the parallel composition as a cut between a contraction
link (to which several outputs are connected, through dereliction links) and a
cocontraction link, to which several promoted receivers are connected. Being
promoted, these receivers are replicable, in the sense of the 7-calculus. The other
fundamental idea of this translation consists in using linear logic polarities for
making the difference between outputs (negative) and inputs (positive), and of
imposing a strict alternation between these two polarities. This allows to recast
in a polarized linear logic setting a typing system for the m-calculus previously
introduced by Berger, Honda and Yoshida in [BHY03]. This translation has two
features which can be considered as slight defects: it accepts only replicable
receivers and is not really modular (the parallel composition of two processes
cannot be described as a combination of the corresponding nets).

Principle of the translation. The purpose of the present paper is to continue
this line of ideas, using more systematically the new structures introduced by
differential interaction nets?.

The first key decision we made, guided by the
structure of the typical cocontraction/contraction cut A
intended to interpret parallel composition, was of as-
sociating with each free name of a process not one, v v
but two free ports in the corresponding differential
interaction net. One of these ports will have a !-type A A
(positive type) and will have to be considered as the
input port of the corresponding name for this process, v
and the other one will have a ?-type (negative type)
and will be considered as an output port.

We discovered structures which allow to combine
these pairs of wires for interpreting parallel composi-
tion and called them communication areas: they are
obtained by combining in a completely symmetric way cocontraction and con-
traction cells. There are communication areas of any “arity” (number of pairs of
wires connected to it). The communication area of arity 3 can be pictured as in
Figure 1, where cocontraction cells are pictured as !-labeled triangles and con-
traction cells as ?-labeled triangles. The ports corresponding to the same pairs
are the principal ports of antipodic cells.

Fig.1. Communication
area

and this identification — which results from non-determinism — does not extend to
the multiplicative connectives: ® and % are distinct.

2 One should mention here that translations of the m-calculus into nets of various
kinds, subject to local reduction relations, have been provided by various authors
(cf. the work of Laneve, Parrow and Victor on solo diagrams [LPVO01], of Beffara
and Maurel [BMO05]|, of Milner on bigraphs [JMO04|, of Mazza [Maz05] on multiport
interaction nets etc.). But these settings have no clear logical grounds nor simple
denotational semantics.

Content. We first introduce differential interaction nets, typed with a recur-
sive typing system (introduced by Danos and Regnier in [Reg92] and which
corresponds to the untyped lambda-calculus) for avoiding the appearance of non
reducible configurations. These nets are finitary in the sense that they use only
a weak form of promotion. In this setting, we define a “toolbox”, a collection
of nets that we shall combine for interpreting processes, and a few associated
reductions, derived from the basic reduction rules of differential interaction nets.
We organize reduction rules of nets as a labeled transition system, whose ver-
tices are nets, and where the transitions correspond to dereliction/codereliction
reduction. Then we define a process algebra which is a polyadic 7-calculus, with-
out replication and without sums. We specify the operational semantics of this
calculus by means of an abstract machine inspired by the machine presented
in [AC98, Chapter 16]. We define a transition system whose vertices are the
states of this machine, and transitions correspond to input/output reductions.
Last we define a “translation” relation from machine states to nets and show that
this translation relation is a bisimulation between the two transition systems.

1 Differential interaction nets

Interaction nets have been introduced by Lafont [Laf95] as a generalization of
linear logic proof nets. A signature of interaction nets is a set of symbols, each
of them being given with an arity and a typing rule. A net is made of cells. In a
net, each cell v bears exactly one symbol, and has therefore an arity n; the cell
~ must have n auwziliary ports (numbered from 1 to n) and one principal port
(numbered 0). A net can also have free ports. Specifying the net consists last in
giving its wiring, which is a partition of its ports in 2-elements sets (the wires).
Typing the net means associating a formula of some linear logical system with
each of its oriented wires in such a way that, when reversing the orientation of
the wire, the formula be turned to its orthogonal. Of course, the typing rule
attached to each cell of the net must also be respected by the typing.

See also [ER06] for an introduction to differential interaction nets.

1.1 Presentation of the cells

Our nets will be typed using a type system which corresponds to the untyped
lambda-calculus. This system is based on a single type symbol o (the type of
outputs), subject to the following recursive equation o = 20" %8 0. We set ¢ = o*,
so that t=lo® ¢t and o =7 % o.

In the present setting, there are eleven symbols: par (arity 2), bottom (arity
0), tensor (arity 2), one (arity 0), dereliction (arity 1), weakening (arity 0),
contraction (arity 2), codereliction (arity 1), coweakening (arity 0), cocontraction
(arity 2) and closed promotion (arity 0). We present now the various cell symbols,
with their typing rules, in a pictorial way. The principal port of a cell is located
at one of the angles of the triangle representing the cell, the other ports are
located on the opposit edge. We put often a black dot to locate the auxiliary
port number 1.

1.1.1 Multiplicative cells. The par and tensor cells, as well as their “nullary”

versions bottom and one are as follows:
7 lo

_ o L o L
s Fe B [
1.1.2 Exponential cells. They are typed according to a strictly polarized
discipline. Here are first the why not cells, which are called dereliction, weakening
and contraction:

G
e > >
i

and then the bang cells, called codereliction, coweakening and cocontraction:
lo
o : lo : lo ::1 : lo
lo

1.1.3 Closed promotion cells and the definition of nets. The notion
of simple net is then defined inductively, together with the notion of closed
promotion cell.

Given a (non necessarily simple) net s with only one free port we

lo

introduce a cell @%

A simple net is a typed interaction net, in the signature we have just defined.

A net is a finite formal sum of simple nets having all the same interface.
Remember that the interface of a simple net s is the set of its free ports, together
with the mapping associating to each free port the type of the oriented wire of
s whose ending point is the corresponding port.

Let £ be a countable set of labels containing a distinguished element, 7 (to be
understood as the absence of label). A labeled simple net is a simple net where
all dereliction and codereliction cells are equipped with labels belonging to L.
We require moreover that, if two labels occurring in a labeled net are equal, they
are equal to 7. All the nets we consider in this paper are labeled. In our pictures,
the labels of dereliction and codereliction cells will be indicated, unless it is 7,
in which case the (co)dereliction cell will be drawn without any label.

2 Reduction rules

We denote by A the collection of all simple nets and by N(A) the collection of
all nets (finite sums of simple nets with the same interface).

A reduction rule is a subset R of A x N(A) consisting of pairs (s, s’) where
s is made of two cells connected by their principal ports and s’ has the same
interface as s. This set can be finite or infinite. Such a relation is easily extended
to arbitrary simple nets (s R t if there is (so,u; + -+ 4+ u,) € R where sg is
a subnet of s, each u; is simple and t = t; + --- + t,, where t; is obtained by
replacing so by u; in s). This relation is extended to nets (sums of simple nets):
s1+ -+ + s, (where each s; is simple) is related to s’ by this extension R™ if
s = s+ -+ s, where, for each i, s; R s} or s; = s;. Last, R* is the transitive
closure of R*.

2.1 Defining the reduction

2.1.1 Multiplicative reduction. The first two rules concern the interaction
of two multiplicative cells of the same arity.

7 7 7
~m = ~m
o o o c
where ¢ stands for the empty simple net (not to be confused with the net 0 €

N(A), the empty sum, which is not a simple net). The next two rules concern
the interaction between a binary and a nullary multiplicative cell.

i);o‘”’“‘m i) ‘”‘“M
So here the reduction rule (denoted as ~»y,) has four elements.

2.1.2 Communication reduction. Let R C £. We have the following re-

ductions if I,m € R.
L i L L
4;>4I?'»w;>»A<‘II»;>A— ~c,R >

m

So the set ~»¢ g is in bijective correspondence with the set of pairs (I,m) with
ImeRandl=m=I]l=m=r.

2.1.3 Non-deterministic reduction. Let R C L. We have the following
reductions if [€ R.

”
L I 'L
4;>4I?'>4;>4<‘II:§:: ~nd,R
I
1
) lo 0
4;>4I!’>4;>4<‘II:§:: ~nd,R
lo
L i o lo
b ~nd,r 0 } 4 ~nd,r 0

2.1.4 Structural reduction.

°
. i
II.> ~rg
i

2.1.5 Box reduction.

At w —()

Observe that the reduction rules are compatible with the identification of the
coweakening cell with a promotion cell containing the 0 net. Observe also that
the only rules which do not admit a “symmetric” rule are those which involve
a promotion cell. Indeed, promotion is the only asymmetric rule of differential
linear logic.

One can check that we have provided reduction rules for all possible redexes,
compatible with our typing system: for any simple net s made of two cells con-
nected through their principal ports, there is a reduction rule whose left member
is s. This rule is unique, up to the choice of a set of labels, but this choice has
no influence on the right member of the rule.

2.2 Confluence

Theorem 1. Let R,R' C L. Let R C A x N(A) be the union of some of the
reduction relations ~>¢ r, ~nd,R’ s ~m, ~>s and ~y. The relation R* is confluent
on N(A).

The proof is essentially trivial since the rewriting relation has no critical pair
(see [ER06]). Given R C L, we consider in particular the following reduction:
~ R =~ Unig 1 UnsgUnspUnong R We set ~rq =~y (“d” for “deterministic”)
and denote by ~q the symmetric and transitive closure of this relation.

Some of the reduction rules we have defined depend on a set of labels. This
dependence is clearly monotone in the sense that the relation becomes larger
when the set of labels increases.

2.3 A transition system of simple nets

2.3.1 {l,m}-neutrality. Let [and m be distinct elements of £\ {7}. We call
(I, m)-communication redez a communication redex whose (co)dereliction cells
are labeled by I and m. We say that a simple net s is {l, m}-neutral if, whenever
S~ m) s’, none of the simple summands of s’ contains an (I, m)-communication
redex.

Lemma 1. Let s be a simple net. If s “”ifl m} s' where all the simple summands
of s' are {l,m}-neutral, then s is also {I, m}-neutral.

2.3.2 The transition system. We define a labeled transition system D,
whose objects are simple nets, and transitions are labeled by pairs of distinct
elements of £\ {7}. Let s and ¢ be simple nets, we have s L, ¢ if the following
holds: s M?Lm} $1 + s3 + -+ + s, where sy is a simple net which contains
an (I, m)-communication redex (with dereliction labeled by m and codereliction
labeled by /) and becomes ¢ when one reduces this redex, and each s; (for i > 1)
is {l, m}-neutral.

Lemma 2. The relation ~q C A X A is a strong bisimulation on Dg.

3 A toolbox for process calculi interpretation

3.1 Compound cells

3.1.1 Generalized contraction and cocontraction. A generalized con-
traction cell or contraction tree is a simple net v (with one principal port and
a finite number of auxiliary ports) which is either a wire or a weakening cell or
a contraction cell whose auxiliary ports are connected to the principal port of
other contraction trees, whose auxiliary ports become the auxiliary ports of ~.
Generalized cocontraction cells (cocontraction trees) are defined dually.

We use the same graphical notations for generalized (co)contraction cells as
for ordinary (co)contraction cells, with a “¥” in superscript to the “!” or “?”
symbols to avoid confusions. Observe that there are infinitely many generalized
(co)contraction cells of any given arity.

3.1.2 The dereliction-tensor and the codereliction-par cells. Let n be
a non-negative integer. We define an n-ary cell as follows. It will be decorated
by the label of its dereliction cell (if different from 7).

o o> [>5

lo v @ j

The number of tensor cells in this compound cell is equal to n. One defines dually
the 1% compound cell.

3.1.3 The prefix cells. Now we can define the compound cells which will
play the main role in the interpretation of prefixes of the w-calculus. Thanks to
the above defined cells, all the oriented wires of the nets we shall define will bear
type 7t or lo. Therefore we omit types and draw all wires with an orientation
corresponding to the ?7¢ type.

The n-ary input cell and the n-ary output cell are defined as

with n pairs of auxiliary ports.

Prefix cells are labeled by the label carried by their outermost dereliction-
tensor or codereliction-par compound cell, if different from 7, the other codereliction-
par or dereliction-tensor compound cells being unlabeled (that is, labeled by 7).

3.1.4 Transistors and boxed identity. In order to implement the sequen-
tiality corresponding to sequences of prefixes in the m-calculus, we shall use the
unary output prefix cell defined above as a kind of transistor, that is, as a kind
of switch that one can put on a wire, and which is controlled by another wire.

This idea is strongly inspired by the translation of the m-calculus in the calculus

of solos®.

These switches will be closed by “boxed identity cells”,
which are the unique use we make of promotion in the
present work. Let I be the “identity” net of Figure 2.

Then we shall use the closed promotion cell labeled by

I >

3.2 Communication tools

3.2.1 The communication areas. Let n > —2. We
define a family of nets with 2(n 4+ 2) free ports, called
communication areas of order n, that we shall draw using
rectangles with beveled angles. Figure 3 shows how we
picture a communication area of order 3.

A communication area of order n is made of n+ 2 pairs
of (n + 1)-ary generalized cocontraction and contraction
cells (717,71)y -+, (W41, Vg 1), with, for each i and j such

B
>

Fig. 2. Identity

Fig. 3. Area of or-
der 3

that 1 <i < j <n+42, awire from an auxiliary port of %* to an auxiliary port
of o and a wire from an auxiliary port of v, to an auxiliary port of *y;-r.

So the communication area of order —2 is the empty net ¢, and communica-
tion areas of order —1, 0 and 1 are respectively of the shape

<

e B

>

> VAV

3.2.2 Identification structures. Let n,p € N and let f : {1,...,p} —
{1,...,n} be a function. An f-identification net is a structure with p + n pairs
of free ports (p pairs correspond to the domain of f and, in our pictures, will
be attached to the non beveled side of the identification structure, and n pairs
correspond to the codomain of f, attached to the beveled side of the structure)
as in Figure 4(a). Such a net is made of n communication areas, and on the j’th
area, the j’th pair of wires of the codomain is connected, as well as the pairs
of wires of index 4 of the domain such that f(i) = j. For instance, if n = 4,
p=3, f(1) =2, f(2) =3 and f(3) = 2, a corresponding identification structure
is made of four communication areas, two of order —1, one of order 0 and one

of order 1, as in Figure 4(b).

% It is shown in [LV03] that one can encode the 7-calculus sequentiality induced by
prefix nesting in the completely asynchronous solo formalism: the idea of such trans-
lations is to observe that, in a solo process like P = vy (u(z,y) | y(...)) | @, the first
solo must interact before the second one with the environment Q.

% % %
(a) Notation (b) Example (¢) Reduction

Fig. 4. Identification structures

3.3 Useful reductions.

3.3.1 Aggregation of communication areas. One of the nice properties
of communication areas is that, when one connects two such areas through a pair
of wires, one gets another communication area; if the two areas are of respective
orders p and ¢, the resulting area is of order p + ¢, see Figure 5.

M;: :

Fig. 5. Aggregation

3.3.2 Composition of identification structures. In particular, we get
the reduction of Figure 4(c).

3.3.3 Port forwarding in a net. Let ¢ be a net and p be a free port of ¢.
We say that p is forwarded in t if there is a free port ¢ of ¢ such that ¢ is of one
of the two following shapes:

3.3.4 Forwarding of derelictions and coderelictions in communication
areas. The following reduction shows that derelictions and coderelictions can
meet eachother, when connected to a common communication areas. Let [,m €

o) et
l m> “

i=1

where N is a non-negative integer (actually, N = (p + 1)?) and, in each simple
net t;, both ports r and 7’ are forwarded.

3.3.5 General forwarding. Let [€ L. The following more general but less
informative property will also be used: one has

= = &

where in each simple net u;, the port r is forwarded (see 3.3.3). Of course one
also has a dual reduction (where the dereliction is replaced by a codereliction,
and the generalized contraction by a generalized cocontraction).

3.3.6 Reduction of prefixes. Let [,m € L. If we connect an n-ary output
prefix labeled by m to a p-ary input prefix labeled by [, we obtain a net which
reduces by ~¢ (;.,) to a net u which reduces by MZET} to 0 if n # p and to simple
wires, in Figure 6(a), if n = p.

3.3.7 Transistor triggering. A boxed identity connected to the principal
port of a unary output cell used as a “transistor” turns it into a simple wire as
in Figure 6(b).

—
=
~e{lym} U '\’)a b q ,\/)6
=
(a) Prefixes interaction (b) Transistor triggering

Fig. 6. Prefix reduction

4 A polyadic finitary w-calculus and its encoding

The process calculus we consider is a fragment of the m-calculus where we have
suppressed the following features: sums, replication, recursive definitions, match
and mismatch. This does not mean that differential interaction nets cannot in-
terpret these features®. Let A be a countable set of names. Our processes are
defined by the following syntax. We use the same set of labels as before.

— nil is the empty process.

— If P, and P; are processes, then P; | P, is a process.

— If Pis a process and a € N, then va - P is a process where a is bound.

— If Pis a process, a, by, ...,b, € N, the names b; being pairwise distinct and
if l € £, then @Q = [lJa(by ...by) - P is a process (prefixed by an input action,
whose subject is a and whose objects are the b;s; the name a is free and each
b; is bound in @ and hence a is distinct from each b;).

— If P is a process, a,by,...,b, € N and | € L, then [lJa(b;...b,) - P is a
process (prefixed by an output action, whose subject is @ and whose objects
are the b;s). This construction does not bind the names b;, and one does not
require the b;s to be distinct. The name a can be equal to some of the b;s.

The purpose of this labeling of prefixes is to distinguish the various occurrences
of names as subject of prefixes. The set FV(P) of free names of a process P and
the a-equivalence relation on processes are defined in the usual way.

* Replication can be interpreted using exponential boxes, sums are probably related
to the unique additive connective of differential linear logic.

A labeled process is a process where all prefixes are labeled, by pairwise
distinct labels, all these labels being different from 7. If P is a labeled process,
L(P) denotes the set of its labels. All the processes we consider in this paper are
labeled.

4.1 An execution model

Rather than considering a rewriting relation on processes as one usually does,
we prefer to define an “environment machine”, similar to the machine introduced
in [AC98, Chapter 16]°.

An environment is a function e : Dome — Codom e between finite subsets of
N. A closure is a pair (P, e) where P is a process and e is an environment such
that FV(P) C Dom(e). A soup is a multiset S = (Py,e1)---(Py,en) of closures
(denoted by simple juxtaposition). The set FV(S) of free names of a soup S is
the union of the codomains of the environments of S. The soup S is labeled if
all the P;s are labeled, with pairwise disjoint sets of labels. A state is a pair
(S, L) where S is a soup and L is a set of names (the names which have to be
considered as local to the state) and we set FV(S, L) = FV(S) \ L.

The state (S, L) is labeled if the soup S is labeled. All the states we consider
are labeled. One defines the set £(.S, L) of all labels of the state (S, L) as the
disjoint union of the sets of labels associated to the processes of the closures of

S.

4.1.1 Canonical form of a state. We say that a process is guarded if
it starts with an input prefix or an output prefix. We say that a soup S =
(P1,e1) - (Pn,en) is canonical if each P; is guarded, and that a state (S, L) is
canonical if the soup S is canonical. One defines a rewriting relation ~»c,, which
allows to turn a state into a canonical one.

((nil,€)S, L) ~can (S, L)
((va - P e)S, L) ~can (P, e[a— a'])S, LU {a'})
(P Q,e)S, L) ~ecan ((P,e)(Q,e)S, L)

where, in the second rule, a’ € N\ (L U Codom(e) U Codom(S)). One shows
easily that, up to a-conversion, this reduction relation is confluent, and it is
clearly strongly normalizing. We denote by Can(S, L) the normal form of the
state (S, L) for this rewriting relation. Observe that if (S, L) ~>cn (T, M) then
FV(T,M) C FV(S,L).

4.1.2 Transitions. Next, one defines a labeled transition system S;. The
objects of this system are labeled canonical states and the transitions, labeled

5 The reason for this choice is that the rewriting approach uses an operation which
consists in replacing a name by another name in a process. The corresponding op-
eration on nets is rather complicated and we prefer not to define it here.

by pairs of labels, are defined as follows.

(([l]a(bl; bn) - Pe)([m]a’ (b ...b)) - P’ e")S, L)
LT Can((Pyefby — €' (), ..., by — € (V)] (P',€))S, L)

if e(a) = ¢/(a’). Observe that if (S, L) -2 (T, M) then FV(T, M) C FV(S, L).

4.2 Translation of processes

Since we do not work up to associativity and commutativity of contraction and
cocontraction, it does not make sense to define this translation as a function from
processes to nets. For each repetition-free list of names aq,...,a,, we define a
relation Z,, 4, from processes whose free names are contained in {a1,...,a,}
to nets ¢ which have 2n + 1 free ports af,a9,...,al,a’ and c as in Figure 7(a).
The additional port ¢ will be used for controlling the sequentiality of the reduc-
tion, thanks to transistors. Reducing the translation of a process will be possible
only when a boxed identity cell will be connected to its control port. This is
completely similar to the additional control free name in the translation of the
m-calculus in solos, in [LV03|°.

Clearly, if P and P’ are a-equivalent, then P Z,, o, sift P’ Ty, . 4, s.

n

4.2.1 Empty process. One has nil Z, ;. tif ¢ is as in Figure 7(b).

4.2.2 Name restriction. One hasva-P Ty, ., tiff t is as in Figure 7(c),
with s satisfying P Zop,....5, S

4.2.3 Parallel composition. One has P, | P» Tby,...b, t iff the simple net
t is as in Figure 7(d), where Py Ty, ., t1, P2 Ty, 5, t2 and v1,...,7, are
communication areas of order 1.

4.2.4 Input prefix. Let! € L. Assume that a,bq,...,b,,c1,...,c, are pair-

wise distinct names and let @ = [lJa(by...b,) - P. One has Q Zy,,....c, t if all

the free names of P are contained in a,by,...,by,c1,...,¢cp and if ¢ is as in Fig-
ure 7(e), where « is a communication area of order 1 and where s is a simple net

which satisfies P Zo b, ... bn,c1,0000p S-

5 There is a simple interpretation of of solo diagrams into differential interaction nets,
which uses only our toolbox without promotion so that solo diagrams can be seen
as an intermediate graphical language which can be implemented in the low level
differential syntax. Our translation of the m-calculus results from an analysis and a
simplification of the composed translation “m-calculus — solo diagrams — differential
nets”. The simplification results from some rewiring and from the use of the boxed
identity cells which is easily replicable. The translation of solos into differential nets
leads to cycles (which appear when a name is identified with itself) which are avoided
in the present direct translation. Well behaved conditions on solos for avoiding such
cycles are introduced and studied in [ELO7].

c
b1 br,
(a) Notation (b) Empty process

1%

q n .
0 bl bn

(f) Output prefix

Fig. 7. Process and state translation

4.2.5 Output prefix. Let [e L. Let by,...,b, be a list of pairwise distinct
names and let @ = [[]bs)(bs(1)---bs(q)) - P, where f:{0,1,...,q} — {1,...,n}
is a function. One has @ Zy,, . 1, t if all the free names of P are contained in
bi,...,b, and if ¢ is as in Figure 7(f), where 4, ..., 7, are communication areas
of order 1, § is an f-identification structure and where s is a simple net which
satisfies P 7y, ... 4, S.

4.2.6 States. Let S = (Pp,e1)...(Pn,en) be a soup and by,...,b, be a
repetition-free list of names containing all the codomains of the environments

€1,...,en. One has S Zy, , tif, for some simple nets s; (i = 1,..., N) one has
P; Ib§ vi Si where by, ... bl is arepetition-free enumeration of the domain of
seensbly i

ei, and t is obtained by connecting the pair of free ports of s; associated to each
b, to the corresponding pair of free port of an identification structure associated
to the function e defined by e(b%) = e;(bL), see Figure 7(g).

Last, if we are moreover given L C A and a repetition-free list of names
b1, ..., by containing all the free names of the state (S, L), one has (S, L) Ty, .. s,
w if one has S Ty, . b, c1,....c, t for some repetition-free enumeration cy, ..., ¢, of
L (assumed of course to be disjoint from b1, .. .,b,) and u is obtained by plugging

communication areas of order —1 on the pairs of free ports of ¢ corresponding
to the ¢;s.

5 Comparing the transition systems

We are now ready to state a bisimula‘ciog7 theorem. Given a repetition-free list
b1,...,b, of names, we define a relation Z;, . ;, between states and simple nets
by: (S,L) Zo,,...p
and sg ~q S.

s if there exists a simple net sg such that (S, L) Zp, ... 5, So

n n

Theorem 2. The relation ibl,..,,b
transition systems Sy and Dy.

is a strong bisimulation between the labeled

n

Conclusion. The main goal of this work was not to define one more translation
of the m-calculus into yet another exotic formalism. We wanted to illustrate by
our bisimulation result that differential interaction nets are sufficiently expres-
sive for simulating concurrency and mobility, as formalized in the w-calculus.
We believe that differential interaction nets have their own interest and find
a strong mathematical and logical justification in their connection with linear
logic, in the existence of various denotational models and in the analogy be-
tween its basic constructs and fundamental mathematical operations such as
differentiation and convolution product. The fact that differential interaction
nets support concurrency and mobility suggests that they might provide more
convenient mathematical and logical foundations to concurrent computing.

References

[AC98] Roberto Amadio and Pierre-Louis Curien. Domains and lambda-calculi, vol-
ume 46 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1998.

[AM99] Samson Abramsky and Paul-André Melliés. Concurrent games and full com-
pleteness. In Proceedings of the 14th Annual IEEE Symposium on Logic in
Computer Science. IEEE, 1999.

[Bef05] Emmanuel Beffara. Logique, Réalisabilité et Concurrence. PhD thesis, Uni-
versité Denis Diderot, 2005.

[BHY03] Martin Berger, Kohei Honda, and Nobuko Yoshida. Strong normalisability
in the pi-calculus. Information and Computation, 2003. To appear.

[BM05] Emmanuel Beffara and Frangois Maurel. Concurrent nets: a study of prefixing
in process calculi. Theoretical Computer Science, 356, 2005.

[CF06] Pierre-Louis Curien and Claudia Faggian. An approach to innocent strate-
gies as graphs. Technical report, Preuves, Programmes et Systémes, 2006.
Submitted for publication.

" We are not using transition systems and bisimulation in the standard process theo-
retic way, for analyzing the possible interactions of processes with their environment.
On the contrary, we use them for describing and comparing the internal reductions
of processes and nets, thanks to labels.

[Ehr05]

[ELO7]
[ERO06]

[EW97]

[FMO5]

[Girs7]
[Girss)
[HLO7]|
[IM04]

[Laf95]

[LPVO01]

[LV03]

[Maz05]

[Mel06]
[Mil93]
[Plo76]
[Reg92]

[SWo1]

Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer
Science, 15(4):615 646, 2005.

Thomas Ehrhard and Olivier Laurent. Acyclic solos. Submitted, 2007.
Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theo-
retical Computer Science, 2006. To appear.

Uffe Engberg and Glynn Winskel. Completeness results for linear logic on
petri nets. Annals of Pure and Applied Logic, 86(2):101 135, 1997.

Claudia Faggian and Francois Maurel. Ludics nets, a game model of con-
current interaction. In Proceedings of the 20th Annual IEEE Symposium on
Logic in Computer Science, pages 376 385. IEEE Computer Society, 2005.
Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1 102,
1987.

Jean-Yves Girard. Normal functors, power series and the A-calculus. Annals
of Pure and Applied Logic, 37:129 177, 1988.

Kohei Honda and Olivier Laurent. An exact correspondence between a typed
m-calculus and polarized proof-nets. In preparation, 2007.

Ole Jensen and Robin Milner. Bigraphs and mobile processes (revised). Tech-
nical report, Cambridge University Computer Laboratory, 2004.

Yves Lafont. From proof nets to interaction nets. In J.-Y. Girard, Y. Lafont,
and L. Regnier, editors, Advances in Linear Logic, pages 225-247. Cambridge
University Press, 1995. Proceedings of the Workshop on Linear Logic, Ithaca,
New York, June 1993.

Cosimo Laneve, Joachim Parrow, and Bjérn Victor. Solo diagrams. In Pro-
ceedings of the Jth conference on Theoretical Aspects of Computer Science,
TACS’01, number 2215 in Lecture Notes in Computer Science. Springer-
Verlag, 2001.

Cosimo Laneve and Bjorn Victor. Solos in concert. Mathematical Structures
in Computer Science, 13(5):657 683, 2003.

Damiano Mazza. Multiport interaction nets and concurrency. In Proceedings
of CONCUR 2005, number 3653 in Lecture Notes in Computer Science, pages
21 35. Springer-Verlag, 2005.

Paul-André Melliés. Asynchronous games 2: the true concurrency of inno-
cence. Theoretical Computer Science, 358(2):200-228, 2006.

Robin Milner. The polyadic pi-calculus: a tutorial. In Logic and Algebra of
Specification, pages 203—-246. Springer-Verlag, 1993.

Gordon Plotkin. A powerdomain construction. STAM Journal of Computing,
5(3):452 487, 1976.

Laurent Regnier. Lambda-Calcul et Réseauz. Thése de doctorat, Université
Paris 7, January 1992.

Davide Sangiorgi and David Walker. The pi-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

