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Internal states of model isotropic granular packings.

III. Elastic properties.

Ivana Agnolin and Jean-Noël Roux∗

Laboratoire des Matériaux et des Structures du Génie Civil†, Institut Navier,

2 allée Kepler, Cité Descartes, 77420 Champs-sur-Marne, France

(Dated: May 22, 2007)

In this third and final paper of a series, elastic properties of numerically simulated isotropic pack-
ings of spherical beads assembled by different procedures [1] and subjected to a varying confining
pressure [2] are investigated. In addition to the pressure, which determines the stiffness of contacts
because of Hertz’s law, elastic moduli are chiefly sensitive to the coordination number, the possible
values of which between different microstructures are not necessarily correlated with the density.
Comparisons of numerical and experimental results for glass beads in the 10kPa− 10MPa pressure
range reveal similar differences between dry samples prepared in a dense state by vibrations and
lubricated packings, so that the greater stiffness of the latter, in spite of their lower density, can
be attributed to a larger coordination number. Effective medium type approaches, or Voigt and
Reuss bounds, provide good estimates of bulk modulus B, which can be accurately bracketed, but
badly fail for shear modulus G, especially in low z∗ configurations under low pressure. This is due
to the different response of tenuous, fragile networks to changes in load direction, as compared to
load intensity. The shear modulus normalized by the average contact stiffness, in poorly coordi-
nated packings, tends to vary proportionally to the degree of force indeterminacy per unit volume,
although, unlike in the frictionless case, the level of hyperstaticity does not appear to vanish in the
rigid limit. The elastic range extends to small strain intervals and compares well with experimental
observations on sands. The origins of nonelastic response are discussed. We conclude that elastic
moduli provide access to mechanically important information about coordination numbers, which
escape direct measurement techniques, and indicate further perspectives.

PACS numbers: 45.70.-n, 83.80.Fg, 46.65.+g, 62.20.Fe

I. INTRODUCTION

The mechanical properties of granular materials and
their relations to the packing microstructure are cur-
rently being investigated by many research groups. As a
simple model, long studied for its geometric aspects [3, 4],
the packing of equal-sized spherical balls is also mechan-
ically characterized in the laboratory [5, 6, 7, 8, 9], and
by numerical means, relying on discrete, granular level
modeling [8, 10, 11, 12, 13, 14].

The present paper is the last one in a series of three,
about geometric and mechanical properties of bead pack-
ings obtained by numerical simulations. It focusses
on elastic properties of isotropically compressed sam-
ples. The study is based on the configurations for which
the packing processes and resulting microstructure were
studied in paper I [1], while paper II [2] reported on the
effects of isotropic compressions and pressure cycles.

Elastic properties of granular assemblies are probed
when small stress increments are superimposed on a pre-
stressed equilibrium configuration, either on controlling
very small strains in a static experiment [6, 15, 16, 17] or
in dynamical ones, relying on resonance modes [18, 19,
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and Centre National de la Recherche Scientifique
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20], or sound propagation [6, 7, 15, 17, 20, 21, 22, 23, 24].
Elastic behavior of granular materials is only applica-
ble for very small strain increments, typically of or-
der 10−5 or even 10−6 in usual conditions, i.e., with
sands under confining stresses between 10 kPa and a
few MPa [6, 15, 16, 17]. It has been checked in such
cases that static measurements of elastic moduli, with
devices accurate enough to control such small strains
are consistent with “dynamical” ones, i.e. deduced from
experiments on wave propagation or resonance frequen-
cies. Experimental soil mechanics have achieved a high
level of sophistication, with significant progress over the
last twenty years [25, 26], and accurate measurements
of the mechanical response of granular materials in the
very small strain régime are one example thereof. Co-
incidence of elastic moduli values obtained by different
means is reported, e.g., in [15, 17, 20]. Such moduli
should not be confused with the slope of stress-strain
curves on the scale of the strain level (usually in the 1%
range) corresponding to the full mobilization of internal
friction. Such slopes are considerably smaller than true
elastic moduli (by more than an order of magnitude), and
do not correspond to an elastic, reversible response. In
this respect, the frequent use, for practical engineering
purposes, of a simplified linear elastic behavior supple-
mented with the Mohr-Coulomb criterion for plasticity
and an appropriately dilatant flow rule, as presented in
Ref. [27], should not be misinterpreted. Such crude mod-
els, in which strains are elastic and reversible up to the
maximum deviator stress (full internal friction mobiliza-
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tion), are resorted to in engineering practice when de-
tailed information on the constitutive law of the material
are not available, but the “elastic moduli” introduced in
those caricatured constitutive relations are merely con-
venient parameters enabling one to perform approximate
calculations.

In micromechanical [28, 29] and numerical [8, 12, 30]
studies, elastic properties are associated with the defor-
mations of a fixed contact network, and should therefore
correspond to the “true elastic” behavior observed in the
laboratory for very small strain intervals. Indeed, ex-
cept in very special situations in which the effects of fric-
tion are suppressed and geometric restructuration is re-
versible [31, 32], the irreversible changes associated with
network alterations or rearrangements preclude all kind
of elastic modelling. Elastic properties are therefore at-
tached to one specific contact set, as explained in Sec-
tion II C. Consequently, they are of limited relevance
to the global mechanical behavior and the rheology of
granular materials. Nervertheless, elastic properties are
interesting because they might provide access, in a non-
destructive way, to geometric data on the contact net-
work, such as coordination numbers. Such variables are
still virtually inaccessible to direct measurements, even
with sophisticated visualization techniques, as empha-
sized in paper I [1], but they are very likely, in turn,
to influence the rheological constitutive laws for larger
strains.

This paper is organized in the following way. We first
recall the properties of the model material we are study-
ing (Section II), along with basic definitions and prop-
erties pertaining to the elasticity of granular packings.
Then, useful results on the pressure-dependent internal
states of the various types of configurations introduced
and studied in papers I and II [1, 2] are summarized in
Section III. Next, the values of elastic constants in the
different configuration series, as a function of (isotropic)
confining pressure, are presented in Section IV,where
their relations to internal structure are also discussed.
Section V is devoted to the particular behavior of elastic
moduli in the tenuous contact networks of poorly coor-
dinated configurations. Numerical results are confronted
to experimental ones in Section VI. Some results about
the extension of the elastic range are given in Section VII.
Section VIII discusses the results and indicates some fur-
ther perspectives.

II. NUMERICAL MODEL AND BASIC
DEFINITIONS

Packings of spherical beads are simulated with molec-
ular dynamics, in which equations of motions resulting
from Newton’s laws are solved for the particle positions
and rotations. Thanks to a suitably adapted form of the
Parrinello-Rahman deformable cell molecular dynamics
technique [33, 34], as described in paper I [1], we request
all three diagonal components of the Cauchy stress ten-

sor, denoted as usual as σαα to be equal, in equilibrium,
to prescribed values Σαα, all chosen to coincide with a
pressure P in this study of isotropic states. Differences
between σαα and Σαα entail some evolution in the cell
size parameters. σαα is given in equilibrium by the clas-
sical formula:

σαα =
1

Ω

∑

i<j

F
(α)
ij r

(α)
ij , (1)

where the sum runs over all pairs in contact, F
(α)
ij is the

α coordinate of the force Tij exerted by grain i onto its

neighbor j at their contact, while r
(α)
ij is the α coordinate

of vector rij , pointing from the center of i to the center
of j. From Eqn. (1) one can easily deduce a simple and
useful relation between pressure P = (σ11 + σ22 + σ33)/3
and the average normal contact force 〈N〉 between mono-
sized spheres of diameter a, involving solid fraction Φ and
coordination number z :

P =
zΦ〈N〉
πa2

, (2)

The corresponding dynamical equations used to impose
stresses are described in paper I [1], and we briefly recall
here the essential ingredients of the model for a study
of the elastic response of packings that have been first
assembled and compressed, as reported in papers I and
II. Dynamical aspects of the model, in particular (inertia,
viscous dissipation) play no role in the determination of
elastic moduli, for which our calculations are based on the
building of the stiffness matrix of the contact network.

A. Local stiffnesses

We consider spherical beads of diameter a, with the
elastic properties of glass: Young modulus E = 70 GPa,
Poisson ratio ν = 0.3. They interact in their contacts by
the Hertz law, which states that the elastic normal force
N is proportional to h3/2, h being the normal deflection
of the contact, so that the incremental normal stiffness
dN
dh , with the notation Ẽ = E

1−ν2 , is given by:

KN =
dN

dh
=

Ẽ
√

a

2
h1/2 =

31/3

2
Ẽ2/3a1/3N1/3 (3)

The tangential elastic force is to be incrementally evalu-
ated with a simplified Mindlin-Deresiewicz form [35] on
assuming the tangential stiffness KT to stay proportional
to KN , and hence a function of N :

KT =
2 − 2ν

2 − ν
KN (4)

The tangential force T is constrainted by the Coulomb
condition ||T|| ≤ µN , with friction coefficient µ set to
0.3, and additional conditions are introduced to ensure
thermodynamic consistency and objectivity (see paper
I [1, Sec. II, appendices A and B]).
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All our results will be stated in a form independent of
bead diameter a. All dimensionless results – such as e.g.

ratios of elastic moduli of the granular material to Ẽ –
depend, in addition to ν, on a reduced stifness parameter
we define as

κ =

(

Ẽ

P

)2/3

.

Typical values of contact deflections h scale as κ−1a.
Let Nc denote the number of force-carrying contacts.

In every contacting pair i-j, we arbitrarily choose a
“first” grain i and a “second” one j, and define the rel-
ative dispacement vector δuij as the difference between
the displacement of the contact point as belonging to
solid i and its displacement as a point belonging to solid
j, both regarded as rigid.

In each contact the force Fij that is transmitted from
i to j is split into its normal and tangential components
as Fij = Nijnij + Tij . The static contact law relates
the 3Nc-dimensional contact force increment vector ∆f ,
formed with the values ∆Nij , ∆Tij of the normal and
tangential parts of all contact force increments, to δu:

∆f = K · δu. (5)

This defines the (3Nc×3Nc) matrix of contact stiffnesses
K. K is block diagonal (it does not couple different con-
tacts), and we shall refer to it as the local stiffness matrix.
The 3 × d block of K corresponding to contact i, j, K

ij

is diagonal itself provided friction is not fully mobilized,
and contains stiffnesses KN(hij) and (twice in 3 dimen-
sions) KT (hij) as given by (3) and (4):

KE

ij
=





KN(hij) 0 0
0 KT (hij) 0
0 0 KT (hij).



 (6)

This simple form of K
ij

ignores some non-diagonal terms

that appear when the normal force decreases, or for slid-
ing contacts. Such terms are discussed below and in Ap-
pendix A, and will be shown to be negligible in the con-
text of the study of elastic properties of bead packings.

B. Global rigidity and stiffness matrices

When elastic properties are investigated, small dis-
placements about an equilibrium configurations are dealt
with to first order (as an infinitesimal motion, i.e. just
like velocities), and related to small increments of applied
forces, moments and stresses. We use periodic bound-
ary conditions in our simulations, and the dimensions
Lα (α = 1, 2, 3) of the parallelipipedic simulation cell
are part of the degrees of freedom of the system, while
all three diagonal components of the stress tensor are
externally imposed [1, 2]. We use three strain parame-
ters defined as the relative changes of those lengths, from

their values in a reference state:

ǫα = −∆Lα/Lα

Shrinking strains are positive.
Let us now recall the definition of the rigidity ma-

trix (not to be confused with the stiffness matrix), as
introduced in paper I. The grain center displacements
(ui)1≤i≤n are conveniently written as

ui = ũi − ǫ · ri,

with a set of displacements ũi satisfying periodic bound-
ary conditions in the cell with the current dimensions,
ǫ denoting the diagonal strain matrix with coefficients
ǫα. Gathering all coordinates of particle (periodic) dis-
placements and rotation increments, and strain parame-
ters one defines a displacement vector in a space with
dimension equal to the number of degrees of freedom
Nf = 3n + 3,

U = ((ũi, ∆θi)1≤i≤n, (ǫα)1≤α≤d) . (7)

The normal unit vector nij points from i to j (along
the line joining centers for spheres). The relative dis-
placement δuij , for spherical grains with radius R, reads

δuij = ũi + δθi × Rnij − ũj + δθj × Rnij + ǫ · rij , (8)

in which rij is the vector pointing from the center of the
first sphere i to the nearest image (by the periodic trans-
lation group of the boundary conditions) of the center of
the second one j. The normal part δuN

ij of δuij is the
increment of normal deflection hij in the contact.

The rigidity matrix G is 3Nc × Nf -dimensional, it is
defined by the linear correspondence expressed by rela-
tion (8), which transforms U into the 3Nc-dimensional
vector of relative displacements at contacts δu:

δu = G · U (9)

External forces Fi and moments Γi (at the center) ap-
plied to the grains, and diagonal Cauchy stress compo-
nents Σα can be gathered in one Nf -dimensional load

vector F
ext:

F
ext = ((Fi,Γi)1≤i≤n, (ΩΣα)1≤α≤d) , (10)

chosen such that the work in a small motion is equal to
F

ext ·U. The equilibrium equations – the statements that
contact forces f balance load F

ext – is simply written with
the tranposed rigidity matrix, as

F
ext = T

G · f . (11)

This is of course easily checked on writing down all force
and moment coordinates, as well as the equilibrium form
of stresses:

ΩΣα =
∑

i<j

Fα
ijr

α
ij . (12)
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Given (9), (11) is equivalent to the theorem of virtual
work, as stated in paper I [1].

Returning to the case of small displacements associated
with a load increment ∆F

ext, one may write, to first
order in U,

∆F
ext = K · U, (13)

with a total stiffness matrix K, comprising two parts,

K
(1) and K

(2), which we respectively refer to as the con-

stitutive and geometric stiffness matrices. K
(1) results

from Eqns. 9, 5 and 11

K
(1) = T

G · K · G (14)

K
(2) is due to the change of the geometry of the packing,

and is written down in Appendix B, where it is also shown
to be negligible in general.

To the rigidity matrix are associated the concepts of
force and velocity (or displacement) indeterminacy, of
relative displacement compatibility and of static admis-
sibility of contact forces. Those definitions are given in
paper I, where they are used to discuss the limit of iso-
static packings [32].

C. Grain-level and macroscopic elasticity

We now come to a discussion of the conditions for
which the response to load increments of a prestressed
granular packing in mechanical equilibrium can be de-
scribed as elastic, and explain how macroscopic elastic
moduli are computed in our simulations.

Elasticity implies the existence of an elastic potential,
function of displacements, from which forces are derived.
If force increments are written as linearly depending on
displacements, as in (13), the corresponding stiffness ma-
trix K should be unique (the same for all U vectors)
and symmetric. In the preceding sections, some contri-
butions to stiffness matrix K were found non-symmetric
and dependent on the direction of displacements. This
excludes a strictly elastic response. However, it turns out
that non-symmetric and direction-dependent terms can
be neglected in practice, for reasons recalled or stated be-
low. It is consequently a good approximation to model
the response to small load increment as elastic.

First, the effect on tangential contact force T of a re-
duction of normal deflection h in a contact changes the
symmetric form KE

ij
given in (6) into KR

ij
, as written in

Appendix A (Eqn. A1). We checked (see Appendix A)
that its influence on elastic moduli is negligible in the
isotropic samples we studied.

Full mobilization of friction also leads to a non-
symmetric form of K, which depends on the direction
of displacements (see Eqn (A4) in Appendix A). How-
ever, it is always observed in the practice of MD simula-
tions that once an equilibrium configuration is reached,
the Coulomb criterion is satisfied as a strict inequality

in all contacts. The stiffness matrix is therefore to be
built with the symmetric block of formula (6). One may
object of course that we simplified the Hertz-Mindlin con-
tact laws. More sophisticated models do not treat stiff-
ness ratio KT /KN as a constant, and involve directional
dependence (and slip in part of the contact region) be-
fore ||T|| reaches its maximum value µN . The possible
effects of such more accurate contact laws on the appar-
ent, macroscopic elastic properties are also assessed in
Appendix A, and shown to be very weak.

Finally, the non-symmetric geometric contribution

K
(2) (Appendix B) should be negligible, except of course

when applied to displacements vectors U within the

kernel of the constitutive matrix K
(1). On using the

symmetric diagonal form (6) for all contacts, K will be
symmetric and positive definite. Consequently, in view

of (14), the kernel of K
(1) (the “floppy modes” of the

constitutive stiffness matrix) coincides with the kernel of
G (the “mechanisms”). If non-trivial mechanisms are
present, one should investigate, for a prestressed system,

the effects of the geometric stiffness matrix K
(2) (see Ap-

pendix B). We checked in paper I [1] that bead packings
in equilibrium under prescribed stresses only possess lo-
calized, harmless mechanisms, in the sense that they do
not jeopardize global stability. Such floppy modes can
safely be eliminated, just like the global rigid-body mo-
tions.

To summarize, we shall neglect the geometric stiffness

matrix K
(2), and approximate, within the constitutive

one, the contact stiffness matrix K by its symmetric elas-
tic form, given by (6). In order to evaluate macroscopic
elastic moduli or compliances, one can apply stress in-
crements and measure the resulting strains. With our
choice of boundary conditions and degrees of freedom,
we choose load increments ∆F

ext with all coordinates
set to zero except one of the three last ones, say Ω∆σαα

corresponding to a diagonal stress increment, according
to definition (10). Then we solve the system of equa-
tions (13) for the unknown displacement vector U. Its
3 last coordinates are identified as diagonal strain com-
ponents, according to definition (7). The effective elas-
tic properties of the packing being isotropic, we obtain
ǫα = σα/E∗, and ǫβ = −ν∗σα/E∗ for β 6= α, in which E∗

and ν∗ are the effective macroscopic Young modulus and
Poisson coefficient of the bead packing. On changing α,
and of course on using different samples, one obtains dif-
ferent estimates of those macroscopic properties, which
should coincide in the limit of large systems.

In order to write down bounds on macroscopic elastic
moduli, the following minimization properties are use-
ful [36]. First, solving (13) for U is equivalent to mini-
mizing the following potential energy:

W1(U) =
1

2
U · K ·U − ∆F

ext ·U. (15)

Then, the contact force vector increment ∆f minimizes

W2(∆f) =
1

2
∆f · K−1∆f , (16)
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subject to the constraint that it should be statically ad-
missible with load increment ∆F

ext. Minimal values in
(15) and (16) are opposite to each other, and are identi-
fied in the limit of large systems with the corresponding
macroscopic elastic energy, i.e.

∓Ω

2
ǫ : C : ǫ = ∓Ω

2
∆σ : C−1 : ∆σ,

in which C denotes the 4th rank tensor of elastic mod-

uli. Those variational properties are directly analo-
gous to classical result in elasticity of heterogeneous con-
tinua [37], and will be used in Section IV (technical de-
tails being supplied in Appendix D).

Finally, as explained in Appendix C, there are some
small corrections to elastic moduli due to the effect of
stresses in the configuration to which load increments
are applied, of the order of the equilibrium pressure, and
therefore negligible.

III. SAMPLE PREPARATION AND
COMPRESSION

We summarize here the information about configura-
tiosn assembled by different methods, as studied in paper
I [1], and then isotropically compressed to various level
of pressure, as reported in paper II [2].

Four different configuration series which, as in papers
I and II, we keep referring to as A to D, were prepared
under a rather low pressure (κ = 39000, corresponding
to 10 kPa for glass beads, or κ = 181000, correspond-
ing to 1 kPa), and then quasistatically compressed up to
100 MPa (κ ≃ 80), with friction coefficient µ = 0.3 in the
contacts.

They are characterized in terms of solid fraction Φ, co-
ordination number z (average number of force-carrying
contacts per grain), proportion of rattlers x0 (those
grains do not participate in force transmission at equi-
librium), normal force distribution, friction mobilization,
and geometric data such as distribution of interneighbor
gaps and some local order parameters.

Configurations A, B and D were assembled on com-
pressing a granular gas. Configurations C are obtained
from A and are supposed to mimic, in a simplified way,
the dense states obtained by vibration. Type A sam-
ples are assembled without friction, and correspond to
the ideal “random close packing” state, which according
to te available numerical evidence is uniquely defined,
provided the compaction process is fast enough to avoid
all incipient crystalline order nucleation [1, Section III].
Their solid fraction, accordingly, is slightly below 0.64 at
low pressure, while the coordination number is close to
6, with few rattlers. Type A configurations may thus be
regarded as a simple model for grains that are perfectly
lubricated in the assembling stage, but such that dry in-
tergranular contacts have a frictional behavior (µ = 0.3)
in quasistatic compression. As a variant, another set of
samples was prepared on compressing without friction,

(a) Φ versus P or κ−1

(b) z∗ versus P or κ−1

(c) x0 versus P or κ−1

FIG. 1: (Color online) Evolution of (a) solid fraction Φ, (b)
backbone coordination number z∗ = z/(1−x0) and (c) rattler
fraction x0 in pressure cycle for states A (red), B (blue), C
(black), and D (green).

which we denoted as the A0 series. B states are similar
to A ones, except that they are assembled with a small
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coefficient of friction, µ0 = 0.02, as a crude model for
imperfect lubrication in the fabrication stage. B states
have a smaller density, and a slightly smaller coordina-
tion number. D states are the looser of the four series,
with Φ ≃ 0.593 under 1 kPa, less contacts and more than
10% of rattlers. Remarkably, vibrated C states are nearly
as dense as the RCP one, but their contact networks are
as tenuous as D ones, with even more rattlers. C con-
figurations are thus denser than B ones, but much less
coordinated. All those quantities and their evolution in
a pressure cycle up to 100 MPa, and then back to the
initial value, are graphically shown on Fig. 1. While den-
sity increases with P , so do the coordination numbers,
most notably above a few MPa, but upon decompressing
many contacts are lost and coordination numbers, if ini-
tially high, as in the A and B cases, end up with much
lower values, similar to those of poorly coordinated C and
D states. Solid fraction Φ displays very little hysteresis in
such pressure cycles. A0 (frictionless) states behave very
similarly to A ones. The data of Fig. 1 are merely recalled
here in order to correlate them with the elastic moduli
of the different sample series. Such state parameters and
their evolution are commmented in papers I and II, to
which the reader can refer for more details (e.g., infor-
mation on force distribution and friction mobilization).
A useful notation introduced in paper I, in which such
quantities were used to characterize the width of force
distributions is the following one, for reduced moments
of normal forces N :

Z(α) =
〈Nα〉
〈N〉α . (17)

Another quantity, closely related to Z(5/3) is useful to
evaluate elastic energies from contact forces. If αT de-
notes the ratio of tangential to normal stiffnesses (a con-
stant parameter in our contact model) and if rTN is the

ratio
||T||
N

in any contact, then we define

Z̃(5/3) =
〈N5/3(1 +

5r2

T N

6αT
)〉

〈N〉5/3
. (18)

Such quantities will be used to estimate elastic moduli.
In paper I, we also discussed whether the degree of

force indeterminacy of equilibrated packings could ap-
proach zero in frictinal packings in the rigid, κ → +∞
limit – this being a known property of frictionless sys-
tems (as reviewed e.g., in [32]). While the degree of force
indeterminacy h is directly related to the backbone co-
ordination number z∗ in frictionless packings, for which

h = 3n(1 − x0)(z
∗ − 6), (19)

its value is more exactly evaluated, for non-vanishing in-
tergranular friction coefficients, on defining a slightly cor-
rected value of z∗, denoted as z∗∗:

z∗∗ = z∗ +
2x2

3(1 − x0)
, (20)

where x2 is the proportion of 2-coordinated grains. Such
divalent particles are free to rotate about a line joining
their 2 contact points, and roll on the surfaces of their
two neighbor grains in contact, but those mechanisms
do not lead to instabilities [1]. Then the degree of force
indeterminacy is given by

h =
3

2
n(1 − x0)(z

∗∗ − 4). (21)

x2 values raise to about 2.5% in configurations C and
D, in which the ratio of thedegree of force indetermi-
nacy to the number of backbone degrees of freedom, i.e.,
h/[6n(1 − x0)], does not reach values below 14%. Only
in packings assembled with an infinite friction coefficient,
like in [38] (called Z configurations in paper I) did we ob-
tain nearly vanishing h values (h/[6n(1−x0)] decreasing
to about 3/100).

IV. ELASTIC MODULI

A. Numerical results

Elastic moduli of equilibrated configurations are evalu-
ated as indicated in Section II C. The response to differ-
ent global load increments provides different estimations
of bulk modulus B and shear modulus G, which are av-
eraged over, gathering results from 5 statistically equiv-
alent samples (as we do throughout the present paper),
the error bars on all graphs below corresponding to one
standard deviation on each side of the mean (such error
bars are often smaller than the symbols on the figures).
Fig. 2 displays on logarithmic plots the pressure depen-
dence of shear and bulk moduli in all five series A, A0, B,
C and D during the first compression. Fig. 2 very clearly
shows that the moduli are primarily sensitive to coordi-
nation number, with well coordinated samples A, B (and
A0) displaying larger moduli than C and D, in which the
contact network is more tenuous (see Fig. 1(b) ). Moduli
are much less sensitive to packing fraction Φ (Fig. 1(a)):
C and D results are close to each other at low pressure.
They are not strongly influenced either by the width of
the force distribution: A and A0 states have almost the
same moduli (only some values of G below 100 kPa differ
by more than 5%), whereas the p.d.f. of normal forces
strongly differ as pressure grows (as shown in paper II).

The increase of elastic constants with pressure natu-
rally stems from the dependence of contact stiffnesses
on the force they transmit, as expressed by Eqns. (3)
and (4), and due to relation (2) the typical contact
stiffness grows as P 1/3, which is the expected pres-
sure dependence for macroscopic moduli. Power laws
are often used to relate elastic moduli to confining
stresses [16, 21, 22, 39], and possible origins for the obser-
vation of exponents other than 1/3 have been discussed
by several authors [39, 40]. One possible explanation is
the creation of new contacts under the effect of the in-
crease of the confining pressure, which leads to a denser,
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(a) B versus P

(b) G versus P

FIG. 2: (Color online) Bulk modulus B (a) and shear modu-
lus G (b) versus confining pressure P for series A (red, crosses,
continuous line), A0 (red, round dots, dotted line), B (blue,
asterisks, dotted line), C (black, square dots, continuous line)
and D (green, open squares, dotted line). Note that results for
A, A0 and B are hardly distinguishable. The dashed blue line
marked “KJ” corresponds to some experimental data between
50 and 400 kPa commented in Section VI

stiffer contact network. This mechanism appears in par-
ticular to account for the pressure dependence of elastic
moduli in regular, crystal-like arrays of identical parti-
cles as in the experiments described in Refs. [5] and [7].
Due to the unavoidable slight lattice distorsions one ob-
tains on assembling imperfect and slightly polydisperse
spheres, the contact coordination number, limited, in the
rigid limit κ → ∞, to 4 in 2D and 6 in 3D [32] is smaller
than the nearest neighbor coordination number on the
dense lattices studied (such as 12 for FCC in 3D [5] and

6 for the 2D triangular lattice [7]). This leaves a large
number of neighbor pairs at a distance related to the
width of the particle size distribution, where additional
contacts are induced by higher pressures. This has been
shown by numerical simulations [41] to produce a pres-
sure dependence of moduli closer to P 1/2 in some pres-
sure range, a phenomenon predicted in part by a theory
presented in [42]. With general, amorphous packings, the
situation is different because distances between neighbors
that are not in contact are no longer related to a small
polydispersity parameter, but are distributed, approxi-
mately as a power law in some range (see paper I [1]),
in a way that is characteristic of the disordered geom-
etry. Departures from the P 1/3 scaling are stronger in
low z states (Fig. 2), and also larger in C configurations,
which gain contacts the fastest at growing P , than in
D ones. However, apparent power laws with exponents
larger than 1/3 are observed at very low pressures, when,
from Fig. 1(b), the increase of z with P is rather slow.
Moreover, in the case of C and D systems, the exponent
of the power law fit for the pressure dependence of shear
modulus G is significantly larger (about 0.5) than the one
for bulk modulus B (about 0.4). These features are dis-
cussed in paragraph IVB below. Changes of ratio G/B
as P grows are equivalent to changes of the Poisson ratio
of the granular material, given by

ν∗ =
3B − 2G

6B + 2G
. (22)

ν∗ decreases only slightly as P grows for well coordinated
states A and B, from ν∗ ≃ 0.13 at P=10 kPa to ν∗ ≃ 0.09
under 100 MPa. Its larger variations in poorly coor-
dinated configurations C and D, for which it decreases
from 0.3 to about 0.1 in the same range, corresponds to
G increasing with P faster than B.

B. Simple prediction schemes and relations to
microstructure

The simplest approximation scheme to estimate the
values of elastic moduli, knowing the density and the co-
ordination number, is based on the assumption of homo-
geneous strains (or, equivalently, of affine displacements).
It was introduced, e.g. in [28], and it is also used by
Makse et al. in [12] and [8] (where it is called an effec-
tive medium theory). It amounts to evaluating the stress
increments corresponding to strain ǫ using formula (12),
in which the contact force variations are evaluated, via

Eqn. (5), with relative displacements given by

ui − uj = ǫ · (rj − ri).

Using the isotropy of the distribution of contact orien-
tations, and replacing all normal forces by their average
value in the computation of contact stiffnesses, this re-
sults, using relation (2), in the following estimates, in
which αT denotes the stiffness ratio KT /KN , a constant
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in our contact model.

Be =
1

2

(

zΦẼ

3π

)2/3

P 1/3

Ge =
6 + 9αT

10
Be.

(23)

One thus recovers the expected P 1/3 dependence, and
obtains moduli proportional to (zΦ)2/3. Formulae (23)
also predict a constant G/B ratio, and thus a constant
Poisson ratio:

νe =
6(1 − αT )

26 + 9αT
≃ 0.032 (24)

This latter estimation is considerably smaller than the
measured values which are given above (shortly after
Eqn. 22), as noted in [8]. This essentially stems from
the inaccuracy of the estimated value of G [12], as we
shall see. Eqn. 23 suggests to represent ratios

br =
B

Ẽ2/3P 1/3

gr =
G

Ẽ2/3P 1/3

(25)

as functions of (zΦ)2/3, which is done on Fig. 3. Fig. 3
shows that Ge is a significantly poorer estimate of G than
Be of B, as noted before [12], for samples of type A or B,
and even more so in low coordination number configura-
tions C and D. It also shows that the elastic moduli, as a
first approximation, can be thought of as determined by
z and Φ, the former quantity, as it varies more between
different sphere packings, being the most influential. The
present study can thus be regarded as a first step towards
the formulation of a method to infer coordination num-
bers, which, as we stressed in paper I, are virtually ina-
cessible to direct measurements, from elastic properties.
(It should nevertheless be recalled that the present work
is limited to isotropic configurations, implying isotropy
of fabric as well as isotropy of stresses). Interestingly,
the configurations of lower coordination number obtained
upon decompressing A and B ones after they first reach
a high pressure level yield data points on Fig. 3 that stay
close to the C and D ones corresponding to the same
product zΦ.

An interesting alternative to the direct use of for-
mula (12) is to exploit the variational property expressed
by (15), as explained in Appendix D. This shows that
Be and Ge are upper bounds to the true moduli. Ac-
counting for the distribution of forces and Eqn. (3), those
bounds can be slightly improved, yielding the analogs of
the Voigt upper bound for the macroscopic elastic moduli
of a mesoscopically disordered continuous material:

B ≤ BVoigt = BeZ(1/3)

G ≤ GVoigt = GeZ(1/3),
(26)

where Z(1/3) was defined in (17). Z(1/3) is, by construc-
tion, strictly smaller than 1. For the bulk modulus, one

(a) br versus (zΦ)2/3

(b) gr versus (zΦ)2/3

FIG. 3: (Color online) Reduced moduli, as defined in (25),

in units of Ẽ2/3P 1/3 as functions of (zΦ)2/3, same symbols
and colors as on Fig. 1(a). The estimates given in (23) are
plotted as straight dotted lines. Moduli are plotted for all
configurations in the pressure cycle, showing an approximate
collapse on a single curve.

can also take advantage of the second variational prop-
erty, expressed by (16). As explained in Appendix D, this
requires the use of a trial set of contact force increments
which balance the applied load increment. When the
stress increment is proportional to the preexisting stress,
one may take increments of contact forces that are also
proportional to their values. No such forces balancing
a shear stress are available for isotropically prestressed
configurations. On thus obtains (see Appendix D for de-
tails) a lower bound for B which is analogous to the
Reuss bound for the macroscopic elastic bulk modulus
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of a mesoscopically disordered continuous material. This
lower bound BReuss involves the dimensionless quantity
Z̃(5/3) defined in (18), and enables one to bracket the
bulk modulus:

Be

Z̃(5/3)
= BReuss ≤ B ≤ BVoigt = BeZ(1/3). (27)

The ratio of the upper bound to the lower one is therefore
related to the shape of the distributions of normal forces
and to the mobilization of friction. Fig. 4 displays ra-
tios B/Be, BVoigt/Be, and BReuss/Be versus (growing)
pressure P in configurations A and C. These data show

FIG. 4: (Color online) Ratio B/Be (symbols connected with
continuous line, error bars), and its Voigt and Reuss bounds
(symbols connected by dotted lines) in configurations A (red,
crosses) and C (black, square dots), during compression. B
and D samples respectively behave similarly to A and C.

that in both cases of high (A) and low (C) initial coor-
dination number, the bracketing of B given by (27) is
quite accurate, the relative difference between upper and
lower bounds being below 10% except at the lowest pres-
sure for A, and around 15% for C. The Reuss estimate is
better than the Voigt one in general. It is even excellent
in the A case for all but the two lowest pressure values
studied (as to the highest pressure, for which B appears
to be slightly smaller than its lower bound, we attribute
this to our neglecting the reduction of intercenter dis-
tances between contacting grains in the evaluation of the
bounds). This agrees with previous results: since this
estimate becomes exact when the trial force increments
used are the right ones, it assumes that the shape of the
normal force distribution and the level of friction mobi-
lization do not change with pressure, which was indeed
approximately observed in A samples for all but the low-
est pressure (see paper II).

Yet, for G no Reuss estimate is available, and the use
of the Voigt one with the factor Z(1/3) hardly reduces
the discrepancy between Ge and G. This factor can be
read on Fig. 4, where it coincides with the upper bound;
hence GVoigt is only smaller than Ge by a few percent. It

thus overestimates the true shear modulus by 30 to 40%
in well-coordinated states, and even by a factor of 3 in
poorly coordinated ones at low pressure.

C. Fluctuations and more sophisticated prediction
schemes.

The Voigt or mean field approach ignores fluctuations
in grain displacements and rotations. An indicator of the
amplitude of such fluctuations is the average of squared
particle displacements:

∆2 =
1

n∗||ǫ||2
n∗
∑

i=1

||ũi||2, (28)

with ||ǫ||2 = ǫ21 + ǫ22 + ǫ23, the sum running over the
n∗ = n(1 − x0) force-carrying grains. Fig. 5 displays
the values of ∆2 evaluated in all samples at the different
values of the confining pressure. ∆2 is distributed over
some fairly wide interval in similar configurations, but
is systematically larger for purely deviatoric stress incre-
ments than for isotropic pressure steps and has a clearcut
decreasing trend as a function of backbone coordination
number z∗. (To add data points with lower z∗ on Fig. 5

FIG. 5: (Color online) ∆2, as defined in (28), versus backbone
coordination number z∗, for isotropic stress increments (red
asterisks, green for Z states) and pure deviatoric ones (black
crosses, blue for Z states).

we also used the Z series, infinite friction samples, as
described in paper I and Section III, isotropically com-
pressed and equilibrated at five pressure levels, from 1 to
100 kPa). This is consistent with the approximation that
ignores fluctuations being less accurate for shear stresses
than for isotropic ones.

More elaborate prediction methods for elastic moduli
were proposed. Kruyt and Rothenburg [36, 43] consid-
ered two-dimensional assemblies of non-rotating parti-
cles, and succeeded in applying a variational approach
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such as the one we use for bulk modulus B to the eval-
uation of shear moduli as well. Velický and Caroli [42]
studied the case of an imperfect lattice system with con-
tact disorder, as in the experiments of [5] and the simu-
lations of [41]. Jenkins et al. [29] dealt with frictionless
sphere packings. More recently, La Ragione and Jenk-
ins [44] published an approximation scheme which is di-
rectly comparable to our simulation results, the results of
which are denoted as LRJ below. For completeness, the
corresponding formulae are written down in Appendix E.

Those estimation procedures improve upon the Voigt
assumption that relative displacements are ruled by the
average strain on considering small sets of displacements
and rotations, either associated to one grain, or to a con-
tacting pair. Those degrees of freedom are allowed to
fluctuate while their surroundings abide by the Voigt as-
sumption. Optimal values of the fluctuating variables
are then to be determined on solving the corresponding
system of equilibrium equations for the selected small
set of degrees of freedom. Such approaches necessarily
involve complex treatments of the random geometry of
local grain arrangements, especially on attempting to ex-
press the predicted moduli with a limited amount of sta-
tistical data. In [45] we numerically check some of the
approximations involved, on exactly solving the required
set of local equilibrium problems. We show in [45] that
the discrepancy between observed and predicted shear
moduli is reduced, down to 50% in the worst cases of C
and D samples under low pressures.

Here we now confront the LRJ predictions (see Ap-
pendix E for the complete analytical form) to our nu-
merical data. We observe that the LRJ formulae do not
improve the predictions of bulk moduli over the Voigt and
Reuss bounds (27). Yet, as shown on Fig. 6, the estimates
GLRJ obtained for shear moduli are much better than the
Voigt ones (26). Shear moduli in well-coordinated states
A and B are accurately predicted, while the discrepancy
in poorly coordinated systems C and D, from a factor of
three with the Voigt formula, are down to about 50%-
70% with the LRJ one under the lowest pressure levels.

LRJ formulae yield moduli that are proportional to
average contact stiffnesses (in which we added a factor
of Z(1/3)), with coefficients involving rational functions
of the backbone coordination number z∗, and also the
variance of the fluctuations in the number of contacts of
backbone grains. The LRJ predictions still overestimates
modulus G in poorly coordinated systems, in which we
now test another kind of theoretical prediction.

V. THE CASE OF POORLY COORDINATED
NETWORKS

The specific elastic properties of configuration series C
and D, with their small coordination numbers, are rem-
iniscent of frictionless packings [8, 46], in which a sim-
ilar anomalous behavior of G as a function of pressure
has been reported. Here we review these properties of

FIG. 6: (Color online) Ratio of estimated to measured values
of shear moduli, Gest/G, with Gest = GVoigt (larger values)
and Gest = GLRJ (smaller values), versus P or κ−1, in sample
series A (red), B (blue), C (black) and D (green).

packings with no tangential forces (Section VA), and we
discuss a possible explanation [47], and its applicability
to poorly coordinated frictional packings (Section VB).

A. Frictionless packings

Although samples of series A0 were confined with no
mobilization of friction, elastic moduli shown on Fig. 2
have been computed with tangential elasticity in the con-
tacts, just like, e.g. in Ref. [12]. It is assumed for state
A0 that friction is not mobilized in the preparation pro-
cess, or in other words samples are perfectly annealed
to a state of lowest mechanical energy, but the response
to some stress increment implies tangential forces in the
contacts. Results are of course different if contacts are
still regarded as frictionless on evaluating elastic proper-
ties. Fig. 7 compares this new set of values, which we
denote as A00, to A0 ones. Bulk moduli (Fig. 7(a)) are
only slightly higher (about 10% at low pressure) with
tangential elasticity. A00 values, corresponding to fric-
tionless packings, are the ones already studied in paper
I [1, Section III], where, thanks to the isostaticity prop-
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erty they were well described by a simple prediction. The
Reuss type estimate of B, Eqn. (27) and (23), actually co-
incides with this prediction made in paper I, except that
the values of z and Φ are the ones corresponding to the
current value of the pressure. Both approaches are based
on the assumption that the distribution of force values in
sample series A0, once normalized by the applied pres-
sure level, does not change during isotropic compression.
Hence their success, since this condition is almost exactly
satisfied (as shown in paper II [2]).

The small influence of tangential elasticity on bulk
moduli, which is responsible for the difference in B val-
ues between A0 and A00 series, is not surprising, as both
the Voigt and the Reuss-like approaches, which restrict
the values of B to the interval given by (27), lead to the
assumption of vanishing tangential forces.

The shear modulus, on the other hand, as noted in
refs. [8, 46], is singular in frictionless packings under
isotropic stresses: while values of G in the A0 series
vary approximately proportionally to B, and are of the
same order, as observed above in Sec. IVA, shear mod-
uli of frictionless systems A00 (Fig. 7(b)) are consider-
ably lower, and vary faster with P . This increase is very
well fitted by a power law with exponent 2/3, in agree-
ment with [46]. An explanation for the singular behav-
ior of G is suggested in [47] (see also [48]), as follows.
First, some of the pressure dependence of G is simply
due to the influence of pressure on average contact stiff-
ness, which is proportional to P 1/3Ẽ2/3Z(1/3)(Φz)−1/3,
and one should therefore rather explain the pressure de-
pendence of the ratio of G to this average stiffness. Then
it is argued that this amplitude is proportional to the
degree of force indeterminacy, or to z∗ − 6. More pre-
cisely, the shear modulus should scale as the degree of
force indeterminacy per unit volume, or equivalently as
(z∗ − 6)(1 − x0)Φ. This is the crucial part of the ar-
gument. Leaving aside a discussion of its justification
(which would require detailed calculations of sets of self-
balanced contact forces and response functions within the
contact networks) we check here for its practical validity.
To do so, we define a reduced shear modulus ga as

ga =
Gz1/3

Ẽ2/3P 1/3Z(1/3)(1− x0)Φ2/3
, (29)

and we study its variations with z∗. Finally (see
also [38]), Ref. [47] suggests to evaluate the increase of co-
ordination number with pressure on relating both quan-
tities to the increase in packing fraction above rigidity
threshold ∆Φ. Such a relation between P and ∆Φ in
isostatic frictionless packings was written in [1], with
P ∝ (∆Φ)3/2. The additional ingredient is a scaling form
of the increment of z∗ with ∆Φ:

z∗ − 6 ∝ ∆Φ1/2. (30)

To justify (30), a homogeneous shrinking approximation
is adopted, as in paper II [2], based on the assumption
that the gap-dependent near neighbor coordination num-
ber z(h) grows like z(h) − 6 ∝ h0.5. However, as shown

(a) Bulk modulus.

(b) Shear modulus.

FIG. 7: (Color online) Elastic moduli of samples A0 pre-
pared at different pressures without friction, computed with
(A0) and without (A00) tangential elasticity, A00 results cor-
responding to completely frictionless packings.

in [1] we observed an exponent 0.6 instead, and our data
therefore do not confirm this part of the argument.

Nevertheless, the proportionality of the singular ampli-
tude ga of the shear modulus to z∗−6 is accurately satis-
fied, as shown on Fig. 8. The linear fit of the dependence
of ga on z∗, through the 6 first data points, is very good
and predicts a vanishing modulus for z∗ = 5.994± 0.008.

B. Packings with intergranular friction

In paper I we concluded that frictional packings pre-
pared in low coordination states did not approach iso-
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FIG. 8: Reduced shear modulus ga, defined by (29), in
frictionless configurations A00 versus backbone coordination
number z∗. The straight line is the best linear fit through the
6 leftmost data points.

staticity under low pressure. However, one may test
whether the amplitude ga varies linearly with the degree
of force indeterminacy when it is small enough, even if it
does not approach zero. The Z states, on the other hand
(see Section III and paper I [1]), were prepared with an
infinite friction coefficient and have nearly vanishing force
indeterminacy at low pressure. Fig. 9, in which ga data
for states C, D and Z are plotted versus the corrected
backbone coordination number z∗∗, which determines the
degree of hyperstaticity per degree of freedom by (21),
shows that the linearity is very well satisfied for Z states.

FIG. 9: (Color online) Amplitude ga (Eqn. 29) versus z∗∗, as
defined in (21), in samples of types C (black), D (green) and
Z (5 lower data points, red). The dotted line is a linear fit to
the 4 lowest Z data points. The LRJ predictions are shown
for all three configuration series C, D, Z, as indicated (crosses
joined by dashed lines, same color code).

Z, C and D points lie approximately on the same curve,

showing that the macroscopic modulus is controlled by
z∗∗, in spite of the differences in the structures of states
C, D and Z. (Due to the greater micromechanical changes
observed upon reducing the pressure, the data points per-
taining to C and D states on the decreasing branch of the
pressure cycle of Fig. 1 lie on a different curve, not shown
on the figure.) The linear fit still approximately applies
to the lowest values for D and C. As expected, the linear
fit predicts G = 0 for z∗∗ = 3.99 ± 0.02, i.e., a shear
modulus vanishing proportionnally to the degree of force
indeterminacy. Z configurations have a larger population
of rattlers and divalent grains: x0 ≃ 0.184 and x2 ≃ 0.068
at 1 kPa. Consequently, on fitting ga versus z∗ instead
of z∗∗, ga would appear to vanish unambiguously below
z∗ = 4, for the value z∗ = 3.93 ± 0.02.

Fig. 9 also displays the values of amplitudes ga pre-
dicted by the LRJ formulae [44], as discussed in Sec-
tion IVC. As should normally be expected for such an
estimation procedure, based on the local equilibrium of
one pair of grains embedded in an elastic medium, the
LRJ approach is unable to capture the vanishing of shear
moduli in the z∗∗ → 4 (h → 0) limit, since the rigidity
properties of tenuous networks are determined by more
collective effects. The low level of force indeterminacy
provides a complementary approach to the estimation
schemes evoked in Section IV C to predict the values of
shear moduli in isotropically compressed packings.

We conclude therefore that the proximity of a state
devoid of force indeterminacy, however unreachable, ex-
plains the anomalously fast increase of the shear modulus
with the pressure for low coordination frictional pack-
ings, as observed on Figs. 2 and 3. As to the increase
of the degree of hyperstaticity, or of z∗∗, with pressure,
its prediction seems to be even more difficult than in the
frictionless case. What would be needed is an accurate
prediction of small changes in z∗, which, as observed in [2]
(paper II) the simple homogeneous shrinking assumption
does not provide, due, in particular, but not only, to its
inability to deal with the recruitment of rattlers by the
growing backbone.

The proximity of a “critical” value of the number of
contacts on the backbone also entails specific properties
of the eigenvalues of the stiffness matrix (the “density
of states” in the language of solid-state physics), with a
large excess of soft modes [46, 49]. A similar behavior,
both for the eigenmodes of the stiffness matrix and for
some shear elastic constant was observed in [30] in 2D
simulations of anisotropic states. From this one set of
results in anisotropic packings and from the Reuss ap-
proach to estimate the bulk modulus one may deduce
that the non-singularity of B, as opposed to G, directly
stems from the isotropic state of stress on which load
increments are applied. On increasing P , in a good ap-
proximation (the better the lower the degree of force in-
determinacy), one just rescales the contact force values.
Load increments that are not proportional to the pre-
existing load, on the other hand, tend to produce large
fluctuations (see Fig. 5) and soft responses in poorly co-
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ordinated contact networks.

VI. COMPARISON WITH EXPERIMENTAL
RESULTS

The assembling procedure of states B and C (Sec. III)
can be regarded as idealized models for lubrication and
vibration. Jia and Mills [22, 24] measured sound wave
velocities in glass bead packings, some samples being
densified by repeated taps on the container, and oth-
ers mixed with a very small quantity of a lubricant (tri-
oleine). The beads were placed in a cylindrical container
and then compressed by a piston, transmitting a con-
fining pressure. Velocities of longitudinal and transverse
sound waves propagating in the vertical direction (or-
thogonal to the piston) were measured in the 70 kPa-
800 kPa range. Those velocities, which we denote as
usual as VP and VS , relate for an isotropic material to
bulk and shear moduli and mass density ρ as

VP =

√

B + 4
3G

ρ
and VS =

√

G

ρ
.

Fig. 10 displays the sound velocities in both types
of samples, along with the (often quoted) results of
Domenico [9], measured on a glass bead sample in a
higher pressure range. Within the range of vertical pres-
sure P investigated in the experiments of [22], the pack-
ing fraction of dry beads varies between 0.633 and 0.637,
while lubricated ones are less dense, Φ ranging between
0.613 and 0.617. Sound velocities are nevertheless larger
in lubricated packings.

Comparisons with our numerical data, also shown on
Fig. 10, in spite of the differences in preparation proce-
dures (which are idealized, and involve somewhat arbi-
trary choices of parameters in simulations) and loading
(oedometric compression in experiments, isotropic com-
pression in simulations), reveal some interesting qual-
itative convergences and semi-quantitative agreements.
Specifically, we note that:

• Numerical “lubricated” samples B are also less
dense, but stiffer than numerical “vibrated” sam-
ples C.

• Sound velocities in B samples increase with P
slower than in C ones, like velocities in laboratory
samples prepared by vibration increase slower than
in lubricated ones.

• Numerical C samples are better models for dry ex-
perimental packings assembled by vibration than A
ones.

One may therefore attribute the difference in sound ve-
locities reported in [22] between dry and lubricated pack-
ings to a difference in coordination number, like in nu-
merical states B and C. (Such an interpretation differs

from the one set forth in [22], which relies on the filling
of open interstices by the lubricant).

The traditional numerical route to obtain dense sam-
ples, i.e. the use of a vanishing or low friction coef-
ficient as for systems A and B, fails to reproduce the
elastic properties of dense samples assembled by vibra-
tion. Those appear to be better simulated with the newly
introduced numerical procedure resulting in C samples,
which have a much lower coordination number for the
same density. Laboratory samples with a solid frac-
tion approaching the RCP value might well, especially
if their preparation involves vibrations or tapping, pos-
sess as small a density of force-carrying contacts as our
numerical samples of type C (z ≃ 4.05).

Such a conclusion, in favor of low-coordinated numeri-
cal samples as better models for experimental dense pack-
ings of dry beads than conventional, A-type ones, appears
to contradict the results of Makse et al. [8, 12]. Those
authors simulated what we denoted as the A0 sample se-
ries, and reported good agreements with Domenico’s re-
sults [9] and with their own measurements. We checked
that the agreement between their numerical results and
our A0 data was excellent. We attribute the conflicting
conclusions to their comparison being done in a much
higher pressure range than the one of Jia and Mills’ ex-
periments: as apparent on Fig. 10, the confining pres-
sures in Domenico’s experiments are all above 2 MPa.
Likewise, P values all exceed several MPa in the exper-
iments performed by Makse et al.. In this range, differ-
ences between A and C samples, as apparent on Fig. 10
for sound velocities, as well as on Fig. 1(b) for coordina-
tion numbers, tend to dwindle as P increases. The dis-
crepancy between numerical results on A-type systems
and experimental results on dry bead packings is much
lower under high pressure. Yet, numerical samples of
type C still fit the experimental data better. The appar-
ent exponent in a power-law increase of sound velocities
with P , i.e. the slope on Fig. 10, is, in particular, better
reproduced by C data than by A ones. On discussing
such a high pressure range, one should nevertheless keep
in mind the possible occurrence of non-elastic behavior in
the contacts, as pointed out in [2] (paper II), where the
maximum stress levels in contact regions were estimated.

The fast increase of G as a function of P in C samples
is not observed in the experimental results of Jia and
Mills, Those also, on assuming for simplicity that the
material is isotropic in their experiment, correspond to
larger (0.32 to 0.34) Poisson ratios than in simulations,
which furthermore do not seem to decrease as the pres-
sure grows. However, these data are bound to be affected
by stress anisotropy.

In this respect, a comparison of numerical results with
the data of Kuwano and Jardine [6] is easier, as those
were measured in glass bead samples under isotropic

stress states, from about 50 to 400 kPa. The sam-
ples of Kuwano and Jardine have similar densities to D
ones (Φ ≃ 0.59), and are initially made by air pluvia-
tion. The values of shear moduli are close to the nu-
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FIG. 10: (Color online) Sound velocities VP and VS versus confining pressure P on double logarithmic plot for the experimental
dry (vibrated) and lubricated samples of Jia and Mills, and of Domenico, to which numerical values for simulated states A, B,
C and D are compared.

merical values for C and D states, and vary with P even
faster, as G ∝ P 0.55. The power law fit through these
data correspond to the line marked “KW” on Fig. 2(b).
Kuwano and Jardine, combining static small-strain tests
and sound velocity measurements, could evaluate the 5
independent elastic moduli of the transverse isotropic
granular material assembled under gravity, by a pluvi-
ation procedure. To compare our numerical results, ob-
tained in isotropically assembled systems, with theirs, we
ignored the moderate effect of the fabric anisotropy on
elastic moduli and used the moduli corresponding to a
shear strain in the vertical plane in Fig. 2(b), the shear
modulus in the horizontal plane being about 7% larger.
Another similarity between our results in D or C states
and the data of [6] is the pressure dependence of the
two Poisson ratios νvh and νhh which couple stress and
strain components in 2 different directions that define, re-
spectively, vertical and horizontal planes. Despite some
scatter in the measured values of these ratios, νvh and
νhh show a marked decreasing trend between P=80 kPa
and P=400 kPa. Finally, we compare the Young mod-
uli mesured in [6] in vertical and horizontal directions to
our numerical values in states A to D on Fig. 11. Our

FIG. 11: (Color online) Young modulus in numerical samples
A, A0, B, C, D, labelled with same colors and symbols as on
Fig. 10, compared to fits through data points of Kuwano and
Jardine (dotted lines, KJ) [6], with two sets of values because
of fabric anisotropy.
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numerical values for Young modulus E∗ in systems with
low coordination numbers are similar to those results,
but the pressure variation seems faster (with exponent
∼ 0.6) in experiments.

We conclude therefore that, although more systematic
confrontations with experimental results are necessary,
some features of the moduli in low coordination numeri-
cal packings are apparently observed in the rather loose
glass bead samples of Kuwano and Jardine.

VII. ELASTIC RÉGIME

The elastic moduli which we are presenty discussing
express the relationship between small stress and strain
increments. We now wish to evaluate the elastic range,
and to explore the origins of the breakdown of elasticity
for larger increments. Motivated by comparisons with ex-
periments, we tested the predictions of linear elasticity, as
evaluated with the moduli obtained from the stiffness ma-
trix, versus the full MD simulation for small and slowly
applied load increments, in the case of a triaxial axisym-

metric compression. This test, familiar in geomechanical
engineering [50, 51, 52], consists in increasing one stress
component, say σ1, while the other 2 are kept constant
at the initial value of the isotropic pressure in the ini-
tial state: σ2 = σ3 = P . More often, in the laboratory,
one controls strain component ǫ1 (called “axial strain”)
with the motion of a piston, imposing a constant, slow
strain rate ǫ̇1, while the lateral stresses are maintained
by the pressure of a fluid surrounding the sample, which
is wrapped in an impervious membrane. It is customary
to express the results of such a test with two curves, rep-
resenting, as functions of axial strain, the deviator stress

q = σ1 − σ3 and the volumetric strain ǫv = ǫ1 + ǫ2 + ǫ3,
the initial isotropic state being chosen as the origin of
strains.

One should have in the quasistatic régime (small
enough ǫ̇1), within the linear elastic range, for small
enough ǫ,

q = E∗ǫ1

ǫv = (1 − 2ν∗)ǫ1,
(31)

where E∗ =
9BG

3B + G
and ν∗ (see Eqn. 22) are respec-

tively the Young modulus and the Poisson ratio of the
material in the initial state.

We simulated triaxial compressions for small axial
strains and compared the resulting deviator stress and
volumetric strain curves to (31). To minimize dynamical
effects in simulations of quasistatic behavior, the iner-
tia parameter I was kept below 10−4 or even 10−5 for
the most fragile, low pressure samples. (I is defined by

I = ǫ̇

√

m

aP
with m denoting the mass of one grain, see

papers I and II [1, 2]). Fig. 12 shows the typical results
of such a comparison in the case of one C sample series,

under isotropic initial pressures P growing from 10 kPa
to 1 MPa. This comparison first shows that full MD com-

(a) Deviator stress normalized by P = σ3 versus axial strain
ǫ1, for the five P values indicated.

(b) Volumetric strain −ǫv, showing contractance, versus
axial strain, same P values, growing according to arrow.

FIG. 12: Deviator stress (a) and volumetric strain (b) versus
axial strain in beginning of triaxial compression of a type C
sample. Dots show MD results of triaxial compression while
straight lines have slopes given by (31). The volumetric strain
is shown with an axis oriented downwards to better visualize
the decrease in sample volume, which contrasts with its dila-
tancy for larger strains.

putation results do admit, in excellent appproximation,
as slopes of the tangents to the curves at the origin, the
appropriate values deduced from the evalution of elas-
tic moduli by the stiffness matrix approach, as expressed
by (31). This confirms the statements made in Sec. II C,
and checked in Appendix A about the definition of elastic
moduli: this definition makes sense as a very good ap-
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proximation in spite of the slight directional dependence
of contact stiffness matrix K.

The deviator curves deviate significantly from the ini-
tial tangent straight line in this case for ǫ1 growing
from ∼ 10−5 to ∼ 10−4 as P grows through the in-
vestigated range, between 10 kPa and 1 MPa. This
limit, if expressed with stress ratio q/σ3, shows less vari-
ations with σ3 = P , with a slow increase, starting arount
q/σ3 ≃ 0.05. The volumetric strain curve has an ini-
tial slope which increases with pressure, in agreement
with the results on Poisson ratios (Sec. IVA). Devia-
tions from the linear range of (31) appear a little sooner,
for ǫ1 slightly below 10−6 at 10 kPa, increasing to a few
times 10−5 at 1 MPa.

In the literature on sand properties [6, 15, 16], it is of-
ten observed that the approximately linear elastic range
about a prestressed reference state extends to strains of
order 10−6 or 10−5. On Fig. 13, we plotted the value
of ǫ1 for which the deviator stress starts to deviate from
(31) by more than 5%, versus the confining pressure, for
series A, C, and D. Recalling that most experimental re-

FIG. 13: (Color online) Threshold ǫelas1 above which q differs
from Eǫ1 by more than 5%, versus P , for series A (red), C
(black) and D (green). The dotted line has slope 2/3.

sults are collected in the range 50 kPa≤ P ≤ 1 MPa,
these data confirm the experimental observations [15]
on sands in terms of order of magnitudes for all three
sample series. However, they also witness a systematic
growth of the elastic threshold ǫelas1 with P , roughly as
P 2/3. This suggests a constant elastic deviator interval
relative to the confining pressure, qelas/P , on assuming
E ∝ P 1/3. Figs. 14 and 15 show that the elastic range
is better expressed in that form, as the threshold ratio
qelas/P displays much smaller variations as a function
of P : unlike Fig. 13, those graphs show stress intervals
on a linear scale. Expressing the extension of the linear
elastic régime in terms of strains, as done in the liter-
ature on sands, allows one to gather the different sam-
ple series within the same range of magnitudes around
10−5, provided the confining pressure stays within the
interval that is most often investigated in experiments.

FIG. 14: Stress ratio qelas/P above which q/E differs from
ǫ1 by more than 5%, versus P , for series A.

However, the systematic dependence on pressure is bet-
ter accounted for on expressing the upper limit of the
linear elastic range in terms of stress increments, relative
to the confining stresses. The trend in low-coordinated
systems C and D is an increase of the linear elastic in-

FIG. 15: (Color online) Stress ratio qelas/P above which q/E
differs from ǫ1 by more than 5%, versus P , for series C (black,
lower data points) and D (green).

terval, expressed as a stress ratio, with P . At the lowest
pressure, the smallness of this interval (typically about
10−3 for ratio q/P in D samples under P = 1 kPa) is
characteristic of the larger fragility of tenuous networks,
a phenomenon, once again, reminiscent of the situation
of nearly isostatic force-carrying structures in frictionless
packings under low pressure. In the limit of rigid grains,
frictionless systems should behave as described in [53]:
the deviator stress increments causing exactly isostatic
2D packings of rigid disks to fail and rearrange were found
to approach zero as an inverse power of the number of
particles n in the limit of large systems, n → ∞. Series A
configurations, on the other hand, have decreasing linear
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FIG. 16: (Color online) Deviator stress (black, left axis)
and volumetric strain (red, right axis) versus axial strain in
triaxial compression for small strains, with unloading curves,
in a D sample initially under P=100 kPa. The blue dotted
curves show the results of a calculation with the sole contacts
that are initially present.

elastic intervals as a function of pressure. This is due to
the increase of friction mobilization, which leads to larger
non-elastic terms in the response to load increments.

So far we have been testing the accuracy of linear elas-
ticity, i.e., the predictions of (31) with the initial mod-
uli. It is known from experiments that granular mate-
rials cease to be elastic outside this linear régime. This
may be checked on testing for reversibility in a strain
cycle. The effects of unloading from various points on
the triaxial compression curve are shown on Fig. 16, in
a type D sample with σ2 = σ3 = 100 kPa. On revers-
ing the sign of ǫ̇1, while still maintaining constant lateral
stresses σ2 = σ3, one observes that the unloading curve
starts with a slope close to the initial slope of the load-
ing curve, those common slopes being in fact equal to
the elastic moduli corresponding to the linear response
for very small strain increments. Fig. 16 shows that the
response to a deviator stress is no longer reversible as
soon as it ceases to abide by linear elasticity. Depar-
tures from reversibility amount to a large proportion of
strains for relative stress increments of order 10−1. The
response to an isotropic load increment is much closer
to reversibility, even for much larger stress variations, as
shown on Fig. 17, which displays the stress-strain curve
in an isotropic pressure cycle. As P varies by a factor
of 2, about 93% of the volume increase is recoverable.
Only for the large pressure cycles as depicted on Fig. III
(showing results of paper II [2]) can one observe notable
irreversible changes, in coordination number rather than

FIG. 17: Isotropic pressure increase versus relative volume
change in pressure cycle, P growing from 10 to 20 kPa in C
samples, and then decreasing back to 10 kPa.

in density. One thus finds again that the response to in-
crements in load intensity (here: isotropic compression)
strongly differs from the response to changes in load di-

rection (here: deviator stress).

Returning to deviatoric stress increments, as the onset
of irreversibility coincides with the breakdown of linear-
ity mentioned above, the lack of reversibility shown on
Fig. 16 has two different origins. One is the mobilization
of friction, and the second is the failure of the contact
network: the packing eventually breaks apart and rear-
ranges. In order to detect the occurrence of this latter
kind of event, we computed the response in the begin-
ning of a triaxial compression of some samples with MD
calculations in which only the initially present contacts,
in the isotropic state, are taken into account. One thus
tests the ability of the initial contact network to support
different stress values. One then observes, as shown on
Fig. 16, that the initial contact network proves unable
to support a deviator stress beyond a certain limit: the
q versus ǫ1 curve reaches a maximum if ǫ̇1 is controlled.
This witnesses the propensity of the packing to become
unstable and gain kinetic energy before it finds a new
contact network that is able to support a larger deviator.
This happens the sooner the larger the stiffness param-
eter κ in systems with low coordination numbers. Thus
the corresponding ratio q/σ3 decreases from about 0.2 in
the example of Fig. 16, corresponding to a D sample un-
der 100 kPa, to, typically, 0.1 under 3 kPa, and 0.05 un-
der 1 kPa. In this respect (as for the values and pressure
dependence of shear moduli) low coordination frictional
packings exhibit, in a weakened form, similar singular
behaviors to frictionless ones. The opposite behavior is
that of A-type packings, with a very large coordination
number. As shown on Fig. 18, the irreversibilities are
smaller and the initial contact network proves able to
withstand considerably larger relative deviator stresses,
q/σ3 ∼ 1.1 under 100 kPa. In these respects, the be-
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FIG. 18: (Color online) Analog of Fig. 16 in a sample of type
A. Note the different scales.

havior of A packings under shear is therefore somewhat
intermediate between that of low coordination systems
C or D under not too low confining stress, and the re-
sponse to isotropic pressure increases. The behavior of
A samples under triaxial compression is to a large extent
determined by the response of the initial contact network,
and the rise of deviator q as a function of axial strain is
very fast. This is a typical feature of well-coordinated
packings, as studied in [54]. In Refs. [54] and [55], two
different types of strain are distinguished: those due to
the deformability of contacts, and those stemming from
network failures and rearrangements. As long as the first
type of strains is the only one present, the behavior is
close to that of the inital contact network. Beyond the
stability range of the initial contact network, the effect
of rearrangements dominate [55], strains are produced
by local instabilities which can be described with a rigid
grain model [56].

Refs. [55, 57] clearly show that well-coordinated
isotropic packings (2D analogs of A systems) can sup-
port rather large deviator stress increments in the κ → ∞
limit, whatever the sample size. Systems with lower co-
ordination numbers appear to exhibit intermediate be-
haviors between this one and the “fragility”, defined as
the propensity to rearrange for arbitrary small stress in-
crements in the large system limit [32, 53, 55, 58], of as-
semblies of rigid, frictionless grains. The stability range
of given equilibrium contact networks extends to smaller
stress increment intervals in C or D-like packings, but
we expect it to remain finite for arbitrary low pressure
levels. These properties, and the distinction of two types
of strains, are further explored and discussed in a forth-

coming paper [59].

VIII. CONCLUSIONS AND PERSPECTIVES

Our numerical results can be summarized as follows.
Elastic moduli of granular packings are primarily sen-

sitive to the stress level, via the average contact stiffness,
which is proportional to P 1/3(zΦ)−1/3 under pressure P .
Once this effect is taken into account, important differ-
ences remain between the elastic properties of different
packing structures, and systems assembled with the same
density might exhibit large variations in their moduli,
since those are essentially related to coordination num-
bers. Under isotropic pressures, one should distinguish
between bulk and shear moduli. The bulk modulus, in
all studied configurations, is efficiently evaluated by the
Voigt and Reuss-like bounds, the ratio of which is limited
by the force distribution and does not have wide varia-
tions with the microstructure of cohesionless packings. In
general, we expect a difference between the responses to
changes in load intensity on the one hand, and to changes
in stress direction on the other hand. In isotropic sys-
tems, the latter correspond to purely deviatoric stresses,
the effect of which differs the most from that of hydro-
static pressure increments in low coordination contact
networks. In such cases shear moduli are anomalously
small and increase faster with the confining pressure. In
well coordinated states, such as A and B, one expects
to be able to obtain satisfactory estimates of B and G
moduli on using improvements of the Voigt approxima-
tion, based on locally independent fluctuations about av-
erage strains. Moreover, the additional stiffening effect of
the increase in coordination number, due to compression,
might, for pressures in the MPa range, be reasonably
predicted with the homogeneous shrinking assumption,
or similar refinements thereof. Such schemes neverthe-
less require rather detailed statistical knowledge of local
particle configurations. On the other hand, the shear re-
sponse of low coordination packings, such as C and D, is
better described with reference to a state with no force in-
determinacy, even though hyperstaticity is not observed
to vanish in slowly assembled packings under low pres-
sures, except for unphysically large friction coefficients
(as in the Z configuration series). In the rigid, κ → ∞
limit, shear moduli become proportional to the level of
force indeterminacy, which directly relates to z∗−4, with
a small correction due to divalent particles. The depen-
dence of z∗−4 on pressure seems however difficult to pre-
dict with the necessary accuracy. The phenomena ruling
the departure from linear elastic response are correlated
with z∗ as well. The failure of elasticity and reversibility
appears considerably later, in terms of relative stress in-
crements, for isotropic pressure changes, and, to a lesser
extent, in high coordination packings subjected to devi-
atoric stress paths. In such cases linear elasticity fails
because of frictional forces. Elasticity ceases to apply for
very small shear stress increments in low coordination
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systems, the smaller the closer they are to packings de-
void of force indeterminay. In such cases the predictions
of elasticity also fail because of network fragility, as the
contact structure breaks apart in response to stress in-
creases. Extension of linear elastic régimes observed in
numerical simulations agree semi-quantitatively with ob-
servations on sands. The shape of the stress-strain curves
beyond the elastic range correlates with the coordination
number, with a much stiffer response in well coordinated
packings. On comparing numerical and experimental re-
sults, the low pressure régime of poorly coordinated net-
works corresponds to the lowest pressures for which labo-
ratory results are available. The characteristic features of
this régime, such as G increasing with P faster than B, or
VS faster than VP , are not observed in the data we have
reported here on dense samples, from the experiments of
Jia and Mills [22, 24]. Yet some observations made by
Kuwano and Jardine on looser sphere packings [6] show
similar trends to C and D-state simulations.

The variety of observations corresponding to the same
pressure and density values for the same material con-
firms the sensitivity of elastic moduli to otherwise un-
detectable differences in inner structures. It seems in
particular, although information about the full stress
tensor in the measurements of [22, 24] is lacking, that
packings densified by vibrations or repeated shakes have
a smaller coordination number than lubricated ones, in
spite of a possibly larger density. Additional experimen-
tal results with more detailed information on stresses and
anisotropy of elastic moduli in packings assembled by dif-
ferent procedures, as well as simulations of anisotropic
packings, could enable more quantitative comparisons.

Based on those results, several interesting perspectives
should be pursued in the near future.

On the theoretical side, it seems promising to study
how granular packings, within and outside the elastic
range, deform and destabilize, in more microscopic de-
tail. Basically, packings with few contacts are closer to
failure, and some of their anomalies in elastic properties
correlate with failure mechanisms. Amorphous systems
made of model atoms or molecules at zero temperature
have been characterized, in this respect, in terms of an
intrinsic scale [60, 61], and elementary plastic rearrange-
ment events, the spatial structure of which is similar to
that of nonaffine elastic displacements, have been inves-
tigated [62]. Granular materials have friction, which re-
quires more sophisticated stability analyses of given con-
tact networks [55, 63, 64, 65], interact with much stiffer
force laws, and exhibit characteristic dilatancy properties
and fabric evolutions under strain. It is worth investigat-
ing in greater detail the possible similarities and differ-
ences between their quasistatic rheology and the plastic-
ity of amorphous materials. Characteristic length scales
have also been invoked in relation with the singular elas-
tic properties of frictionless packings [49], which diverge
in the isostatic limit. It should be examined whether such
a length plays a role in nonelastic deformation behav-
iors, and similar investigations should be carried out in

systems with friction, which also exhibit complex, long-
range correlated strain fields [66].

More practical issues which deserve investigations are
how elastic moduli, which can be measured in equi-
librated packings under varying stresses [17], can be
used to infer useful information on their inner structure,
which, in turn, can be exploited to predict their behavior
under larger disturbances. As an example, the coordi-
nation number of an isotropic packing, if it is large, will
result in a stiff response to deviator stress increments,
characteristic of a stable contact network (see Fig. 18 and
Ref. [54]). Numerical simulations of anisotropic stress
and fabric states, of stress paths and large strains, and
further numerically based correlations between elastic
properties and stresses, strains and inner structures are
of course necessary. Finally, the geometry of polydisperse
and non-spherical particles should also be explored. Such
packings might have large populations of rattlers, some
more collective stable floppy modes than in the case of
spheres [67], and different mechanical properties [68].

APPENDIX A: TANGENTIAL ELASTICITY AND
FRICTION

We investigate here the effect on elastic moduli of the
corrections to the contact law advocated in [69] that we
adopted in our simulations, and we also discuss the pos-
sible effects of more sophisticated models, in which the
partial mobilization of friction and the presence of a slid-
ing region within the contact area [35, 70] is taken into
account.

Strictly speaking, those terms preclude the definition
of a perfectly elastic response, which should be reversible
and involve a uniquely defined stiffness matrix.

The simplified law we adopted involves a tangential
stiffness KT depending on the normal deflection h, but
independent of the current mobilization of friction . This
is the same approximation as used in [8, 12]: the value
of KT is the correct one in the absence of elastic relative
tangential displacement, when T = 0.

The rescaling of KT we chose to apply in situations of
decreasing normal force N , in order to avoid energetic
inconsistencies, as explained in paper I [1], means that
the contact stiffness matrix, as written in Section II B,
should be written differently in those case. Specifically,
its block corresponding to contact i, j should be KE

ij
, as

written in (6), if Nij (or, equivalently, hij) is increasing,

but should take another form KR

ij
for a receding pair.

Since KT /KN is constant, and KN ∝ N1/3, one has
then, with nij and Tij/||Tij || as first and second basis
vectors,

KR

ij
=









KN (hij) 0 0
||Tij ||

3Nij

KN(hij) KT (hij) 0

0 0 KT (hij)









. (A1)
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The non-diagonal element of (A1) is smaller than
(µ/3)KN(h) (KN/10 for µ = 0.3), and its effects are
likely limited if friction is not too strongly mobilized, as
should be the case under isotropic loads. Let us denote
as ∆K the correction to the symmetric form of stiffness

matrix K
(1) ≃ K (see Section II B), in which Eqn. (6) is

applied to all contacts, due to this treatment of decreas-
ing normal forces. We solved the linear system of equa-
tions (13), with loads corresponding to different global
stress increments, to first order in the perturbation ∆K:

U ≃ U
(0) + ∆U,

where U
(0) is the solution to the unperturbed problem,

U
(0) = K

−1 ·Fext, and ∆U is the correction:

∆U = −K
−1 · ∆K ·U(0). (A2)

In (A2) one should pay attention to the directional de-
pendence of ∆K (according to whether h increases or
decreases). The first-order correction is therefore not
linear, but depends linearly on the amplitude of load
increment with a coefficient depending on its direction.
We evaluated the resulting correction to the compliance
in the cases of uniaxial (e.g., ∆σ1 > 0 or ∆σ1 < 0
while ∆σ2 = ∆σ3 = 0), isotropic (positive or negative
value of ∆σ1 = ∆σ2 = ∆σ3) and purely deviatoric (e.g.,
∆σ1 = −∆σ2 and ∆σ3 = 0) stress increments. Rela-
tive corrections never exceeded 1%, the largest ones, as
expected, being observed for an isotropic pressure reduc-

tion (which tends to reduce normal contact forces).
Our contact model also introduces an aproximation,

which we now discuss. A more sophisticated version of
the contact law, as used by some authors [10, 71] would
keep track of part of the slip distribution within the con-
tact region. The maximum effect of such slip is to reduce

the tangential stiffness from KT (N), its value for T = 0,
to

K ′
T (N,T) = KT (N)(1 − ||T||

N
)1/3. (A3)

in the “loading” direction (i.e., tending to increase
||T||/N), and for the tangential relative displacements
along T. In order to assess the possible influence on
the simulated elastic properties of our overestimating the
tangential stiffness of the contacts, we computed the elas-
tic moduli for the equilibriated configurations, keeping
the same values of contacts forces, using formula A3 for
all contacts, in both tangential directions (such a calcula-
tion thus implicitly assumes that the force distribution is
not affected by the change in the contact law). It should
be emphasized that it exaggerates the effects of slip and
gradual friction mobilization, as formula A3 gives the
lowest possible value for KT and only applies in specific
loading histories, and for stress increments that tend to

increase ||T||
N . Relative corrections to computed elastic

moduli evaluated with this procedure never exceed 3%.
Consequently, it is a very good approximation to re-

place the contact stiffness matrix K by its diagonal form

given by Eqn. (6), provided friction is not fully mobilized
in any contact.

If condition ||T|| = µN is reached in contact i, j, then
matrix K

ij
has to be written as follows. With the same

choice of basis vectors as for (A1), K
ij

has a “loading”

form KL

ij
given by

KL

ij
=





KN (hij) 0 0
µKN (hij) 0 0

0 0 KT (hij)



 (A4)

and an “unloading” one equal to KE

ij
or to KR

ij
, depend-

ing on whether δuN is increasing or decreasing. If it is
increasing, the loading form KL

ij
should be used if

KT (hij)δu
T
ij ·

Tij

||Tij ||
− µKN(hij)δu

N
ij > 0.

If δuN is decreasing, this condition becomes

KT (hij)δu
T
ij ·

Tij

||Tij ||
+

[ ||Tij ||
3Nij

− µ

]

KN(hij)δu
N
ij > 0.

Note that KL

ij
is a non-symmetric singular matrix of rank

2. As remarked in Section II C, well-equilibrated config-
urations prepared by molecular dynamics do not contain
any contact where the condition ||T|| = µN is exactly
reached.

APPENDIX B: GEOMETRIC STIFFNESS
MATRIX

The geometric term added to the change in intergran-
ular forces entailed by small displacements and rotations
was evaluated in paper I [1]. Here, for completeness,
we write down its contribution to the geometric stiffness

matrix K
(2). Those terms stem from the change in the

direction of previous contact forces. They were carefully
evaluated in general situations of particles of arbitrary
shapes by Kuhn and Chang [63], and by Bagi [64]. Our
results agree with the general expressions written down
in those references, in the simple case of spherical grains.
The radii of the spheres is simply denoted as Ri below
(in our numerical computations, all Ri values are equal
to a/2). In the general case of arbitrary-shaped grains,
both “branch vectors”, joining contact points to parti-
cle centers where moments are evaluated, and particle
surface curvatures, which determine the small changes in
normal directions, affect the results. With spheres, both
quantities simply relate to the radii.

The 6 × 6 block K
(2)

ii
of the geometric stiffness matrix

is a sum over the contacts of grain i,

K
(2)

ii
=
∑

j 6=i

L
ij

,
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each term being given by the expressions written in paper
I [1, appendix B]. Using a system of coordinates with nij

and Tij setting the orientations of the two first axes, one
has:

L
ij

=







































0
Tij

rij
0 0 0 0

0 −Nij

rij
0 0 0 0

0 0 −Nij

rij

Tij

2
0 0

0 0 0 0 0 0

0 0
NijRi

rij
−RiTij

2
0 0

0 −NijRi

rij
0 0 0 0







































(B1)

As to the non-diagonal block K
(2)

ij
, it is obtained from L

ij

on reversing the signs of the coefficients in the three first

columns. Diagonal blocks of K
(2) are therefore clearly

not symmetric, which, in principle, forbids the definition
of an elastic energy. However, each term involving Nij

ot tij in K
(2) is negligible once compared to its coun-

terpart in K
(1), where it is replaced by terms of order

KNa. Generally, K
(2) terms are of relative order κ−1

if compared to the corresponding ones in K
(1). Thus

the geometric stiffness matrix only plays a role for those
directions of displacement vectors belonging to the null

space of K
(1). This is important for frictionless grains, in

which case such floppy modes of the constitutive matrix
are necessarily unstable for spheres, but not so for, e.g.,
ellipsoids [32, 67]. In teh case of frictional spheres we
did not obtain any floppy mode on the backbone, except
for beads with two contacts. However, the corresponding

free motion turns out to belong to the null space of K
(2)

as well in that case [1].
We can therefore safely neglect the geometric part of

the stiffness matrix in all cases studied in the present
numerical work.

APPENDIX C: ELASTICITY OF A
PRESTRESSED SYSTEM

We first deal with an elastic continuum, and recall here
some basic properties which lead to a distinction to be
made, when the reference configuration is prestressed, be-
tween the elastic moduli and the coefficients of the linear
relation between the Cauchy stress tensor and the strains.
Then, returning to our discrete simulations, we discuss
some (small) corrections to be made to our computed
elastic moduli, due to the role of preexisting stresses.

We first consider a uniform displacement gradient ∇u

within an elastic continuous medium (derivatives with
respect to coordinates on the reference, undisturbed con-
figuration). For general displacement fields, the relations

written below apply locally. Linear elasticity assumes
that the free energy density, A/Ω0, evaluated in a ref-
erence configuration (with volume Ω0), is a quadratic
function of the Green-Lagrange strain tensor e, which
expresses material deformation. The first-order term is
written with the Piola-Kirchoff stress tensor in the refer-
ence configuration, π

0
,

P = Ω0π0
: e. (C1)

(The Piola-Kirchoff stress tensor relates to the Cauchy
stress tensor σ as

π =
Ω

Ω0
L

0
· L−1 ·Σ · T

L
−1 · T

L
−1

0
, (C2)

as recalled in paper I. In this expression, L is the diago-
nal matrix containing the cell dimensions along the three
axes, and L

0
denotes its value in the reference configura-

tion). To second order, the free energy associated with
small strains involves the tensor of elastic constants C:

A = Ω0

[

π
0

: e +
1

2
e : C : e

]

. (C3)

Elastic moduli thus appear in the increment of π:

π − π
0

= C : e. (C4)

The Voigt symmetry Cαβγδ = Cγδαβ , eqn. C4, is sat-
isfied by the coefficients of the linear law because those
are second order derivatives. Introducing the notation
F = 1 + ∇u (one has F = L · L−1

0
in the context of the

simulation technique with a deformable cell wa are using
in the present study (see paper I), one has Ω/Ω0 = detF
for the dilation and σ is related to π by Eqn. C2 or

π = (detF)F−1 · σ · T
F

−1. (C5)

To establish (C5), one needs just recall that the power
of internal forces in any motion with uniform Eulerian
strain rate tensor D is

P ′ = Ωσ : D. (C6)

D is the opposite of the symmetric part of the Eulerian
velocity gradient tensor (with our sign convention)

Dαβ = −1

2

(

∂vα

∂xβ
+

∂vβ

∂xα

)

.

xα are here the coordinates in the deformed system, and
derivatives with respect to the coordinates Xα of the
same point in the reference configuration are such that

∂

∂Xβ
=
∑

α

∂

∂xα
· Fαβ . (C7)

Hence the relation between D and ė:

D = T
F

−1 · ė ·F−1.
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Using this relation, and equating P (C1) and P ′ (C6),
for any uniform velocity gradient, one readily derives re-
lation (C5).

Let us now use (C4) and (C5) to write the increment
of the Cauchy stress tensor to first order in displacement
gradient ∇u (needless to distinguish spatial derivatives
in the reference or the deformed configuration at this
stage, as (C7) would introduce second order corrections).
Defining the linearized strain tensor ǫ as

ǫ = −1

2

(

∇u + T∇u
)

,

one obtains:

σ = π
0
−
(

trǫ
)

π
0
−∇u · π

0
− π

0
· T∇u + C : ǫ. (C8)

Therefore, σ is not necessarily a function of the symmet-
ric part of ∇u only. A rigid rotation (for which ∇u is
antisymmetric) might produce a Cauchy stress increment
if π

0
and ∇u do not commute. Likewise, the coefficients

expressing the linear dependence of σ on ∇u do not al-
ways satisfy the Voigt symmetry, and hence one cannot
regard a constant σ as deriving from a potential energy
of external loading. Both conditions (symmetry and de-
pendence on ǫ only are however restored if one restricts
to symmetric displacement gradients, or if π and ǫ share
common principal directions (which is always the case
with our choice of boundary conditions), or of course if
π

0
= P1 is an isotropic tensor. In this latter case, (C8)

relates σ to ǫ, assuming isotropy of the material, with a
tensor of “apparent” elastic moduli B, that has the same

symmetries as C. C, in isotropic systems, can be writ-

ten with a bulk modulus B and a shear modulus G. On
relating σ to ǫ, the apparent moduli (as measured in an
experiment) are B + P/3 and G − P .

Returning now to the isotropic sphere packings we
studied by numerical simulations, it should be specified
that our procedure to compute elastic moduli is based
on a formula for the Cauchy stress tensor, and therefore
the resulting moduli are the elements of matrix B, rather

than C. Then, as a consequence of the stress and forces

that preexist in the initial configuration before elastic re-
sponse is probed, our results should also in principle be
slightly modified. (12) actually gives the increment of the
product Ωσα, from which the contribution ∆Ωσ0

α, due
to volume change ∆Ω = −Ω0trǫ should be subtracted
before dividing by Ω0 if the stress variation is to be ob-
tained. As a consequence of this correction, we should
in principle add P/3 to the value of B obtained with
our calculation procedure. This is a small effect, similar

to that of matrix K
(2), which we have been neglecting

(moduli of the order of 100 MPa for P ∼ 100 kPa).

APPENDIX D: VOIGT AND REUSS BOUNDS
FOR ELASTIC MODULI IN A SPHERE

PACKING

Within the approximation that the stiffness matrix
does not depend on the direction of the stress (or strain)
incremement, and is symmetric (see Section II C and Ap-
pendix A), which fortunately proves accurate (see also
Section VII), the elastic régime can be defined, and the
variational properties (15) and (16) can be used. Vari-
ational properties leading to bounds for moduli are sel-
dom invoked in the context of granular materials. Our
purpose here is to recall how these useful properties are
established and interrelated, and how they can be ex-
ploited. Specifically, we now proceed to

• state variational properties in both stress-
controlled and strain-controlled cases;

• check the equivalence of the two approaches;

• establish the less familiar minimization property for
contact force increments;

• derive the expressions (26), (27) of the bounds for
B and G in the isotropic case.

Variational properties take different forms according to
whether stress increments or strain increments are con-
trolled. The forms corresponding to controlled stress in-
crements were stated in connection with (15) and (16).

If strains ǫ are imposed, then displacement vector U,
which is constrained to correspond to ǫ (this sets the
values of its three last coordinates with our choice of
boundary conditions) should minimize:

E1(U) =
1

2
U ·K · U (D1)

while the contact force increments, vector ∆f , should
equilibrate each grain and minimize

E2(∆f) =
1

2
∆f · K−1 · ∆f − Ω∆σ : ǫ, (D2)

in which the stress increment ∆σ is directly given by
∆f , just like stress components relate to contact forces
in (12).

Minimum values in (15) and (16) are

W ∗
1 = −Ω0

2
∆σ : C−1 : ∆σ

W ∗
2 = −W ∗

1

in the stress-controlled case, when ∆σ is imposed. The
values obtained with trial solutions for displacements or
contact force increments can then be regarded as esti-
mates of those quadratic expressions in ∆σ, and hence
provide estimates of the corresponding compliance ma-
trix C

−1. The meaning of C
−1, in a finite sample, is

specific to the choice of particular boundary conditions.
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In the large sample limit, it is assumed to satisfy the
symmetry properties of the medium, which is statisti-
cally isotropic in the numerical studies reported here.
Moreover, it is also expected to approach the macro-
scopic compliance matrix, whatever the particular choice
of boundary conditions. If, as in our numerical study, we
restrict ∆σ to a diagonal form, and hence regard it as a

vector with three coordinates σα, α = 1, 2, 3, C
−1 is a

matrix S of the form

S =





S11 S12 S12

S12 S11 S12

S12 S12 S11,



 (D3)

with, due to isotropy,

S11 =
1

9B
+

1

3G

S12 =
1

9B
− 1

6G
.

When ∆σ is an isotropic pressure increment ∆P , one
has

W ∗
2 = −W ∗

1 =
Ω0(∆P )2

3B
,

whence an upper bound to B with an estimate of W ∗
1 ,

and a lower bound with an estimate of W ∗
2 .

When ∆σ is of the form (q,−q, 0), then

W ∗
2 = −W ∗

1 =
Ω0q

2

2G
, (D4)

whence an upper bound to G with an estimate of W ∗
1 ,

and a lower bound with an estimate of W ∗
2 .

Minimum values in (D1) and (D2) are

E∗
1 =

Ω0

2
ǫ : C : ǫ

E∗
2 = −E∗

1

in the strain-controlled case, when ǫ is imposed. The val-
ues obtained with trial solutions for displacements or con-
tact force increments can then be regarded as estimates
of those quadratic expressions in ǫ, and hence provide
estimates of the corresponding stiffness matrix C. The

meaning of C, in a finite sample, is specific to the choice

of particular boundary conditions. In the large sample
limit, it is assumed to satisfy the symmetry properties of
the medium, which is statistically isotropic in the numer-
ical studies reported here. Moreover, it is also expected
to approach the macroscopic stiffness matrix, whatever
the particular choice of boundary conditions. If, as in
our numerical study, we restrict ǫ to a diagonal form,
and hence regard it as a vector with three coordinates
ǫα, (α = 1, 2, 3), C can be written as a matrix C of the

form

C =





C11 C12 C12

C12 C11 C12

C12 C12 C11



 = S
−1, (D5)

with, due to isotropy,

C11 = B +
4

3
G

C12 = B − 2

3
G.

When ǫ is an isotropic shrinking strain of the form
(ǫ, ǫ, ǫ), one has

E∗
1 = −E∗

2 =
9Ω0Bǫ2

2
,

whence an upper bound to B with an estimate of E∗
1 , and

a lower bound with an estimate of E∗
2 .

When ǫ is of the form (λ,−λ, 0), then

E∗
1 = −E∗

2 = 2Ω0Gλ2,

whence an upper bound to G with an estimate of E∗
1 , and

a lower bound with an estimate of E∗
2 .

Let us now show that the same form of trial displace-
ments lead to the same estimates of matrices C and S

in the strain-controlled and stress-controlled approaches.
We restrict ǫ and ∆σ to 3-vectors, like in our calculations,
respectively denoted as ~ǫ and ~σ, but we do not immedi-
ately assume isotropy. Let us define trial displacements
of the following form: for each grain i,

ui = −ǫ ·Ri

δθi = ~ω,
(D6)

i.e., we assume an affine displacement field, ũi = 0 in (7),
and attribute to each grain the same spin ~ω.

In the strain-controlled approach, the three coordi-
nates of ǫ are given, while the optimal value of ω is the one
minimizing function E1 restricted to displacement vectors
of the form (D6), which is necessarily a quadratic form:

E1(~ǫ, ~ω) =
Ω0

2

[

~ǫ · L · ~ǫ + 2~ǫ · M · ~ω + +~ω · N · ~ω
]

.

L, M, and N are 3 × 3 matrices such that the quadratic
form is positive definite, and can be evaluated, as we
shall see, as averages over contacts. Minimization of E1(~ǫ)
leads to the optimal choice ~ω∗ for the spin:

~ω∗ = −N
−1 · T

M · ~ǫ, (D7)

whence the approximation to E∗
1 in which the exact stiff-

ness matrix C is replaced by its estimate:

C
Voigt

strain
= L − M · N−1 · T

M (D8)

In the stress-controlled approach, one should minimize

W1(~ǫ, ~ω) = E1(~ǫ, ~ω) − Ω0~σ · ~ǫ,

with respect to both vectors ~ǫ and ~ω, which results in the
best variational estimates:

~ω∗ = −N
−1 · T

M · ~ǫ

~ǫ∗ =
(

L − M ·N−1 · T
M
)−1 · ~σ

(D9)
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On estimating the minimum of W1, and therefore S =

C
−1, this yields

S
Voigt

stress
=
(

L − M ·N−1 · T
M
)−1

(D10)

Eqns. D8 and D10 show that both the strain-controlled
and the stress-controlled approaches yield the same re-
sults, sample by sample, for the Voigt type estimation of
elastic moduli, based on a trial displacement field. As we
did not write down the exact form of the matrices yet,
the same conclusions would have been reached for what-
ever form of a trial displacement vector expressed as a
linear combination of a set of parameters.

Similar conclusions are easily reached for the other two,
Reuss-type, variational properties, based on trial contact
force increments, involving (16) and (D2).

Let us now write down matrices L, M, and N in a
sphere packing with our boundary conditions. Let us
introduce the notations

LN
ij = (Ri + Rj)

2KN
ij

LT
ij = (Ri + Rj)

2KT
ij

for each contact i, j between spheres of radii Ri and Rj ,
and neglect hij in comparison with the radii, as we have
been doing throughout this article. Then one has, for
each pair of indices α, β, 1 ≤ α, β ≤ 3,

Lαβ =
1

Ω0

∑

i<j

[

LN
ij (n

α
ij)

2(nβ
ij)

2 + LT
ij(δαβ − nα

ijn
β
ij)n

α
ijn

β
ij

]

Mαβ =
1

Ω0

∑

i<j

LT
ijǫαδβnγ

ij(n
α
ijδαδ − (nα

ij)
2nδ

ij)

Nαβ =
1

Ω0

∑

i<j

LT
ij(δαβ − nα

ijn
β
ij)n

α
ijn

β
ij

(D11)
In (D11), sums over repeated Greek indices different from
α and β are implied, δαβ is the Kronecker symbol and
ǫαβγ is the Levi-Civittà symbol, expressing the coordi-
nates of a vector product, and index pairs i < j run over
the list of force-carrying contacts between grains labelled
i and j.

An alternative expression of matrix M is, square brack-
ets denoting a matrix commutator,

T
M · ~ǫ =





1

Ω0

∑

i<j

(

LT
ijnij ⊗ nij

)

, ǫ



 (D12)

This shows that the best estimate ~ω∗ obtained in (D7)
for the rotation vector applied to all grains is equal to
zero if the strain tensor and the symmetric fabric tensor
defined as the average of nij⊗nij over contacts, weighted
by LT

ij , share the same eigenvectors. In such cases, M =
0. This conclusion,wich was reached before by Jenkins
and La Ragione [72], and independently by Gay and da
Silveira [73], on directly estimating the stress increments

corresponding to a prescribed strain, is retrieved here as
an illustration of the variational approach.

Returning now to the case of isotropic packings of
monodisperse spherical beads of diameter a, the fabric
tensor is isotropic and the commutator vanishes in (D12),
and matrix L is the Voigt estimate of C. To compute its
terms in the large system limit in isotropic packings, we
use averages over contacts, defined as

〈X〉 =
1

Nc

∑

i<j

Xij

for any quantity X associated with contacts, and we
transform the sums in (D11) using

NC

Ω0
=

3zΦ

πa3
.

Isotropy also ensures independence between stiffness fluc-
tuations and contact orientations, so that one has, e.g.,
for any exponents a and b and coordinate indices α, β,

〈na
αnb

βKN 〉 = 〈na
αnb

β〉〈KN 〉.

Then one has from Eqns. 2 and 3:

〈KN 〉 =
31/3

2
Ẽ2/3Z(1/3)

π1/3aP 1/3

z1/3Φ1/3
,

while 〈KT 〉 = αT 〈KN 〉. Finally, knowing that

〈n4
x〉 =

1

5
and 〈n2

xn2
y〉 =

1

15

for isotropically distributed unit vectors, one gets

CVoigt
11 =

34/3

2

(

zΦẼ

π

)2/3
3 + 2αT

15
Z(1/3)P 1/3

CVoigt
12 =

34/3

2

(

zΦẼ

π

)2/3
1 − αT

15
Z(1/3)P 1/3,

from which expression (26) of BVoigt and GVoigt is readily
derived, since B = (C11+2C12)/3 and G = (C11−C12)/2.

Let us now prove, as announced, the variational prop-
erty for contact force increments, in the stress-controlled
case (the treatment of the strain-controlled approach be-
ing similar). We consider the solution ∆f

∗ to the problem
of minimizing (16) among contact force increment vectors
that balance the applied load increment, i.e. such that

T
G · ∆f = ∆F

ext (D13)

This solution is characterized by the existence of a vector
x of Lagrange multipliers such that

K−1 · ∆f
∗ = G · x,

and (D13) thus entails

T
G · K ·G · x = K · x = ∆F

ext,
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This means that x is the displacement vector solution to
the elastic problem, and that ∆f

∗ = K · G · x is indeed
the corresponding contact force increment vector.

Finally, to establish the Reuss type lower bound
to B, we choose an isotropic stress increment ∆~σ =
(∆P, ∆P, ∆P ) and evaluate W2 for a trial set of contact
force increments chosen, in any sample in equilibrium
under pressure P , as

∆fij =
∆P

P
fij , (D14)

in contact i, j, initially carrying force fij . Such force in-
crements balance the load increase ∆P by linearity of
equilibrium relation (D13). The resulting value of W2,

W2 =

(

∆P

P

)2
1

2Ω0

∑

i<j

N2
ij

KN
ij

+
T

2
ij

KT
ij

is quadratic in ∆P , and yields BReuss, as written in (27),
by comparison with (D4), once the sum is transformed by
the same procedures as in the case of the Voigt bounds,
using the definition of Z̃(5/3) in (18).

No such trial vector of contact force increments
as (D14) is readily available when the applied stress incre-
ment is not proportional to the preexisting stress, which
is isotropic in the present study. In general, in anisotropic
stress states, a similar Reuss-type approach is expected
to provide a lower bound estimate for a certain combi-
nation of elastic moduli, which expresses the response to
proportional load increases.

APPENDIX E: LA RAGIONE-JENKINS
ESTIMATES FOR ELASTIC MODULI [44]

The LRJ formulae give bulk and shear moduli pro-
portional to the product Φz, which stems from the eval-
uation of stresses, and to average stiffnesses 〈KN 〉 and
〈KT 〉. The predicted values BLRJ and GLRJ are conve-
niently written with a factor of BVoigt, as defined in (26).
First, let us define ∆z2

∗ as the variance of the num-
ber of contacts of a backbone grain. Specifically, if xk,
k = 0, 1, 2, ... denotes the proportion of grains with k
force-carrying contacts, one may define

x∗
k =

xk

1 − x0

with k 6= 0 for the backbone (or non-rattler) grains, so
that

z∗ =
∑

k≥1

kx∗
k,

and ∆z2
∗ is then given by

∆z2
∗ =

∑

k≥1

(k − z∗)2x∗
k.

Then, using notations introduced in [44], we define:

ρ =

(

11

12
− z∗

8

)(

1

z∗
− 1

(z∗)2

)

+
∆z2

∗

8(z∗)2

ξ5 = −3

(

11

13
− 3z∗

26

)(

1 − 24

13z∗

)

− 261∆z2
∗

676(z∗)2

ρ∗ = ρ (1 − 2ρ + 2ξ5)

ξ∗5 = ξ5 (1 − 2ρ + 2ξ5) ,

so that the estimates of the moduli read (let us recall
that αT = KT /KN = 2(1 − ν)/(2 − ν))

BLRJ

BVoigt
= 1 − 2(ρ + ρ∗)

GLRJ

BVoigt
=

3

5
(1 − αT ) [1 − 2(ρ + ρ∗)]

+
3

2
αT

[

1 − 2(ρ + ρ∗) +
6

5
(ξ5 + ξ∗5)

]

(E1)

We observed the ratio ∆z2
∗/(z∗)2 to depend on both z∗

and confining pressure. Under low pressure, typical val-
ues are 0.04–0.05 in well-coordinated systems and 0.07-
0.08 in poorly coordinated ones. The evolution of ∆z2

∗

in a pressure cycle are similar to those of friction mobi-
lization and width of the force distribution reported in
paper II [2].

In comparison to [44], we introduced two minor
changes in Eqns (E1). First, a factor Z(1/3) (included
in BVoigt) was added to better evaluate the average con-
tact stiffnesses. Then we specified that the backbone
coordination number, z∗, corrected for the proportion of
rattlers, should be used, rather than the global mechan-
ical coordination number, z, because the elastic moduli
simply coincide with those of the packing stripped of its
rattlers. This precision is necessary because, unlike in
the example calculations of [44], we deal with configura-
tions, such as C and D, with a non-negligible fraction of
rattlers x0.
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