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ISOMETRIES OF CAT (0) CUBE COMPLEXES ARE SEMI-SIMPLE

FRÉDÉRIC HAGLUND

Abstract. We show that an automorphism of an arbitrary CAT (0) cube complex
either has a fixed point or preserves some combinatorial axis. It follows that when a
group contains a distorted cyclic subgroup, it admits no proper action on a discrete
space with walls.
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1. Introduction.

The notion of a space with walls was introduced in [8]. We intended to develop a
common geometric langage for various classical combinatorial structures, like the Davis-
Moussong complex of a Coxeter group (see [4], [9]), simply-connected polygonal com-
plexes all of whose polygons have an even number of sides or CAT (0) cube complexes.
A space with walls is a set V together with a collection H of separating objects: the
walls. It is required that two points are separated by finitely many walls.

This notion was generalized in [3] where the definition of a space with measured walls
was given. Here there is a measure on the set of walls such that the measure of the set
of walls separating two given points is finite. If a group G admits a proper action on a

Date: May 23, 2007.
2000 Mathematics Subject Classification. 20F65, 20F67, (53C21, 20F18).
Key words and phrases. CAT(0) Cube Complexes, Spaces with walls, Baumslag-Solitar Groups.

1



ISOMETRIES OF CAT (0) CUBE COMPLEXES ARE SEMI-SIMPLE 2

space with measured walls then it has the Haagerup property ([3][Proposition 1]). At
the end of their paper the authors of [3] asked :

Question 1.1. Does a discrete group acting properly on a space with measured walls
necessarily admit a proper action on a discrete space with walls ?

The Baumslag-Solitar group BS(m,n) with parameters m,n ∈ N
∗ has the following

presentation:

BS(m,n) := < a, b | bamb−1 = an >

The groups BS(m,n) all act properly on a space with measured walls. We briefly
recall such an action. First we have the action on the (locally finite) Bass-Serre tree
Tm,n of BS(m,n) seen as the HNN -extension of the cyclic group generated by a by
the isomorphism b sending the subgroup 〈am〉 onto the subgroup 〈an〉. This gives an
action on a simplicial tree, thus a discrete space with walls. But this action is not proper
since a fixes a vertex. Now we can also see a as a unit translation of the real line R,
and b as a well-choosen non trivial homothety of R. For example using matrices we

may let A =

(

1 1
0 1

)

, B =

(

eβ 0
0 e−β

)

with (eβ)2 = n
m

, then a 7→ A, b 7→ B induces a

representation of BS(m,n) into PSL(2, R), the isometry group of H
2. Thus BS(m,n)

is represented as a parabolic group of isometries of H
2, in such a way that the subgroup

〈a〉 acts properly. Now H
2 has a natural PSL(2, R)-invariant structure of space with

measured walls (see section 3 in [3]), and it is readily seen that the action of BS(m,n)
on the product space with measured walls Tm,n×H

2 is proper (A. Valette explained this
to me in an oral communication, see also [5])

In this paper we answer in the negative to Question 1.1 by proving the following:

Theorem 1.2. For m 6= n the group BS(m,n) has no proper action on a (discrete)
space with walls.

We want to show that for every action of BS(m,n),m 6= n on a space with walls
(V,H), all orbits of the infinite cyclic group generated by b are bounded. To do so we
consider the CAT (0) cube complex X naturally associated to (V,H) and the induced
action of BS(m,n) on it. This complex was introduced simultaneously in [2, 10], thus
generalizing the previous constructions of [11] and [13].

Let us review some elementary properties of the CAT (0) cube complex X (see [2, 10]
for details). There is an embedding V → X0 which is an isometry when V is equipped
with the wall distance (so d(v, v′) is the number of walls separating {v, v′}) and X0 is
equipped with the combinatorial distance of the 1-skeleton X1. An automorphism f of
the space with walls (V,H) extends to an automorphism f̄ of X. The property of having
bounded orbits is equivalent for f or for f̄ . And the map f 7→ f̄ is an injective extension
morphism Aut(V,H) → Aut(X). It follows that Theorem 1.2 is a consequence of its
analogue for CAT (0) cube complexes:
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Theorem 1.3. For m 6= n the group BS(m,n) has no proper action on a CAT (0) cube
complex.

Theorem 1.3 is easy to prove when the cube complex is finite dimensional. In order
to handle the general case we establish a classification of automorphisms of arbitrary
CAT (0) cube complexes. Our main result is:

Theorem 1.4. Every automorphism of a CAT (0) cube complex acting stably without
inversion is either combinatorially elliptic or combinatorially hyperbolic.

This means that either the automorphism f fixes a vertex, or f preserves a combina-
torial geodesic on which it has a positive translation length δ, and for any vertex v in the
cube complex we have d(v, f(v)) ≥ δ. The condition of acting stably without inversion
is always fullfilled in the cubical subdivision.

In fact, as was suggested to us by C. Druţu, using the fact that amk

= bank

b−1 in
BS(m,n) we see that the subgroup 〈a〉 is distorted, so we can deduce Theorem 1.3 from
the following:

Theorem 1.5. Let Γ denote a finitely generated group containing an element a such
that the subgroup 〈a〉 is distorted in Γ. Then the infinite subgroup 〈a〉 has a fixed point
in every action of Γ on a CAT (0) cube complex. Consequently Γ has no proper action
on a discrete-space with walls.

For example we deduce:

Corollary 1.6. Let H = 〈a, b, c | [a, c] = [a, b] = 1, [b, c] = a〉 denote the (discrete)
Heisenberg group and let H → G denote a morphism which is injective on the distorted
subgroup 〈a〉. Then G has no proper action on a discrete-space with walls.

Note that since the Heisenberg group H is nilpotent it is amenable and thus acts
properly on a space with measured walls (see [3], Theorem 1 (5)). So H itself is an other
negative answer to Question 1.1.

Theorem 1.4 says that when Z acts freely on a CAT (0) cube complex, then there are
invariant axes for Z, each axis being a geodesic isomorphic to the subdivided line. We
conclude with the following natural

Question 1.7. Let Z
n act freely on a CAT (0) cube complex. Does there exist a Z

n-
invariant combinatorially geodesic subcomplex isomorphic to the standard cubulation of
E

n ?

In Section 2 we review some fairly classical facts about the geometry of CAT (0) cube
complex, first considered as combinatorial objects by Gromov in [7]. Thus people familiar
with CAT (0) cube complexes may skip it. We concentrate on the combinatorial distance
between vertices and insist on the role of hyperplanes. All the results of this section are
classical, except that no assumption of finite dimension is made.
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In Section 3 we define the models (elliptic, hyperbolic) for all inversion-free automor-
phisms of a CAT (0) cube complex.

In Section 4 we generalize to arbitrary CAT (0) cube complexes the notion of action
without inversion that occurs so often in the study of groups acting on trees (see [12]). In
particular we show that a group acting on a CAT (0) cube complex has no inversion on
the cubical subdivision (see Lemma 4.2). An automorphism acts stably without inversion
if every power of the automorphism acts without inversion.

In Section 5 we prove that if an automorphism of a CAT (0) cube complex preserves
a combinatorial geodesic then its minimal (combinatorial) displacement in the complex
is the same as on the geodesic.

In Section 6 we prove Theoem 1.4. So we show that an automorphism acting stably
without inversion and without fixed point preserves a combinatorial geodesic.

And in Section 7 we deduce Theorem 1.5.

I would like to thank Estelle Souche, Yves Stalder, Alain Valette, Cornelia Druţu and
Dani Wise for helpfull discussions on this subject.

2. Geometry of CAT (0) cube complexes.

2.1. Cube complexes and non-positive curvature conditions. The following no-
tion of cube complexes is equivalent to the notion of cubical complexes introduced in
[1][Definition 7.32 p 112].

Definition 2.1 (cube complexes). Let X denote some set. A parametrized cube of X

is an embedding f : C → X, where C is some euclidean cube (a cube of a euclidean
space). A face of a parametrized cube f : C → X is a restriction of f to one of the faces
of C. Two parametrized cubes f : C → X, f ′ : C ′ → X are isometric whenever there is
an isometry ϕ : C → C ′ such that fϕ = f ′.

A cube complex is a set X together with a family (fi)i∈I of parametrized cubes fi :
Ci → X such that

(1) (covering) each point of X belongs to the range of some fi

(2) (compatibility) for any two maps fi, fj either fi(Ci) ∩ fj(Cj) = ∅ or fi, fj have
isometric faces fij : Cij ⊂ Ci → X, fji : Cji ⊂ Cj → X such that fi(Cij) =
fj(Cji) = fi(Ci) ∩ fj(Cj)

The cube associated to the parametrized cube fi : Ci → X is the image fi(Ci). Note
that if two parametrized cubes fi : Ci → X, fj : Cj → X have the same image, then by
the compatibility condition above the cubes Ci, Cj are isometric, in particular they have
the same dimension. This dimension, say k, will be called the dimension of the cube
fi(Ci) = fj(Cj): we will say for short that the cube is a k-cube. The 0-cubes are the
vertices, the 1-cubes are the edges, the 2-cubes are the squares ...

The interior of a cube fi(Ci) of X is the image under fi of the interior of Ci (in-
dependant of the parametrized cube fj : Cj → X such that fj(Cj) = fi(Ci) again by
the compatibility condition). Note that by the covering condition each point p of X is
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contained in the interior of some cube, and by the compatibility this cube is unique (we
will denote it by C(p)).

When only one family (fi)i∈I is considered on X we will say by abuse of langage that
X is a cube complex, and we will denote by Xk the union of all k-cubes of X. This is
the k-skeleton of X. More generally a subcomplex of X is a union of cubes of X. Note
that each subcomplex inherits a natural structure of cube complex.

For any two cube complexes X,Y , a map f : X → Y is said to be combinatorial
whenever for each parametrized cube fi : Ci → X, the composite ffi is isometric to a
parametrized cube of Y . In particular such a map sends vertices to vertices, edges to
edges ... Observe that the natural inclusions of subcomplexes are combinatorial. Note
also that a combinatorial map f : X → Y sends the interior of a cube C ⊂ X bijectively
onto the interior of f(C).

The automorphism group of a cube complex X is the set of combinatorial bijections
X → X (this is indeed a subgroup of the permutation group of X).

Example 2.2. Assume that H is a Hilbert space and that C is a collection of unit
euclidean cubes of H, such that for two cubes of C, their intersection is either empty or a
cube of C. Then the union X of all cubes C ∈ C has a natural structure of cube complex
where the parametrized cubes are the inclusion C → X,C ∈ C.

Definition 2.3 (subdivisions). Let C denote some euclidean cube. For short we will
call barycenter of C the barycenter of the set of vertices of C (with equal unit weights).
A vertex of the barycentric subdivision of C is the barycenter bF of some face F of C. A
simplex of the barycentric subdivision of C is the simplex affinely generated by vertices
bF0

, . . . , bFk
, where the faces Fi satisfy F0 ⊂ · · · ⊂ Fk. This defines a simplicial complex

C ′
simpl called the simplicial barycentric subdivision of C, whose geometric realization is

identical with C. Note that any isometry C → D of unit euclidean cubes induces an
isomorphism C ′

simpl → D′
simpl.

Let X denote a cube complex. The simplicial barycentric subdivision of X is the
simplicial complex X ′

simpl whose cells are restrictions of the fi : Ci → X to the simplices
of Ci

′
simpl.

Given two comparable faces F ⊂ G ⊂ C of a eulidean cube, the union of simplices
{bF0

, . . . , bFk
} of C ′ satisfying F ⊂ F0, Fk ⊂ G is in fact a eulidean cube, which we call a

cube of the barycentric subdivision of C. This decomposition of the cube C into smaller
cubes endows C with a structure of cube complex, which we call the cubical subdivision
of C, denoted by C ′. There is still an isomorphism C ′ → D′ induced by any isometry
C → D.

Let X denote a cube complex. The cubical subdivision of X is the cube complex X ′

whose parametrized cubes are restrictions of the fi : Ci → X to the cubes of the cubical
subdivision of Ci.

Definition 2.4 (links of vertices). Let X denote a cube complex, and let v denote some
vertex. The collection of cubes containing v (distinct of {v}) is an abstract simplicial
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complex, whose set of vertices is the set of edges of X containing v. We will denote this
simplicial complex by link(v,X) (the link of v in X).

The cube complex X is combinatorially non positively curved if each vertex link is
flag (that is each complete subgraph is the 1-skeleton of a simplex). We say that X

is combinatorially CAT (0) whenever X is combinatorially non positively curved and
simply-connected. Following Sageev we will rather say cubing instead of combinatorially
CAT (0) cube complex

Definition 2.5 (the pseudometric of a cube complex, see [1] 7.38 p 114). Let X denote
a cube complex. A piecewise geodesic of X with endpoints x, y is a map c : [a, b] → X

such that c(a) = x, c(b) = y, there is a subdivision a = t0 ≤ · · · ≤ tn = b, a sequence
of parametrized cubes f1 : C1 → X, . . . , fn : Cn → X and a sequence of isometries
(ci : [ti−1, ti] → Ci)1≤i≤n satisfying fici = c on [ti−1, ti] for 1 ≤ i ≤ n.

The length of the piecewise geodesic is |b − a|.
We define a pseudometric d on X by setting d(x, y) = the infimum of the lengths of

piecewise geodesics of X with endpoints x, y.

Here are now two results linking the metric and the combinatorial viewpoint on cube
complexes.

Lemma 2.6. The pseudometric d on a combinatorially non positively curved and simply-
connected cube complex X is a geodesic length metric.

Lemma 2.7 ([7]). Let X denote some cube complex. Then X is a combinatorially non
positively curved if and only if the length metric d on X is locally CAT (0). In particular
a cube complex is metrically CAT (0) if and only if it is combinatorially CAT (0).

The two previous lemmas have been established for cube complexes whose cubes have
all dimension ≤ n ; see for example [1]. This result is so classical for people working on
cube complexes that they usually identify the metric condition CAT (0) with its combi-
natorial analogue. But in fact the equivalence between the metric and the combinatorial
condition has never been checked explicitly for general cube complexes. People just take
the combinatorial non positively curvature condition as a definition of ”locally CAT (0)”.
For instance, when Chatterji-Niblo and Nica achieve the geometrization of spaces with
walls ([2, 10]), turning these to CAT (0) cube complexes, they in fact check the combi-
natorial condition, and do not tell us anything about the metric - although Gromov’s
hypothesis of finite dimensionality usually fails. Gerasimov is very near to proving the
Lemmas in full generality, but he does not do it explicitly (see [6]). In a private com-
munication Michah Sageev has told me that Y. Algom, a student of his, had obtained a
proof (unpublished).

We do not insist since in the sequel we will be only concerned with the combinatorial
geometry of CAT (0) cube complexes (or cubings), which we recall in the next section.
Our slogan is: in CAT (0) cube complexes the combinatorial geometry is as nice as the
CAT (0) geometry. In fact the result of this paper is that, in some context, it is even
nicer.
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In the sequel we do not make any restriction on the cubing X: in particular we do not
assume dim X < ∞.

2.2. Hyperplanes, combinatorial distance and convex subcomplexes.

Definition 2.8. A combinatorial path of a cube complex X is a sequence γ = (v0, v1, . . . , vn)
of vertices of X such that for each i = 0, . . . , n−1 either vi+1 = vi or vi+1, vi are the two
(distinct) endpoints of some edge of X. The initial point of γ is v0, the terminal point
of γ is vn and the length of γ is n. If for each i = 0, 1, . . . , n − 1 we have vi+1 6= vi we
say that γ is non stuttering.

When γ = (v0, v1, . . . , vn), γ′ = (w0, w1, . . . , wm) are two combinatorial paths such
that the terminal point of γ is the initial point of γ′ we define as usual the product γ.γ′

to be the path (v0, v1, . . . , vn−1, vn = w0, w1, . . . , wm).
The combinatorial distance between two vertices x, y of a connected cube complex is

the minimal length of a combinatorial path joining x to y. It will be denoted by d(x, y),
and a path of length d(x, y) will be called a (combinatorial) geodesic. We note that
d(x, y) is also the minimal length of a non stuttering combinatorial path joining x to y

(in other words geodesics are non stuttering).
Sequences (pn)n∈Z of vertices of the cube complex such that d(pn, pm) = |m − n| will

also be called (infinite) geodesics.

Definition 2.9 (convex subcomplexes). Let X,Y denote cube complexes and let f :
X → Y denote a combinatorial map. We say that f is a local isometry if for each vertex
v of X the induced simplicial map fv : link(v,X) → link(f(v), Y ) is injective and has
full image (recall that a subcomplex L ⊂ K of a simplicial complex is full whenever each
simplex of K whose vertices are in L in fact belongs to L).

We say that a subcomplex of a cube complex is locally convex if the inclusion map is
a local isometry.

We say that a subcomplex Y of a cube complex X is (combinatorially) convex if it
is connected, and any (combinatorial) geodesic between two vertices of Y has all of its
vertices inside Y .

Remark 2.10. (1) A fundamental property of cubings is that they have plenty of
non-trivial convex subcomplexes.

(2) In fact a connected subcomplex Y ⊂ X of a cubing is locally convex in the sense
of the above definition iff it is geodesically convex for the CAT (0) metric. Thus
there is no confusion with the term convex.

We now introduce the most important tool for studying the combinatorial geometry
of cubings:

Definition 2.11 (walls, hyperplanes). Let X denote any cube complex. Two edges
a, b of X are said to be elementary parallel whenever they are disjoint but contained in
some (necessarily unique) square of X. We call parallelism the equivalence relation on
the set of edges of X which is generated by elementary parallelisms. A wall of X is an
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equivalence relation for the parallelism relation. When an edge e belongs to some wall
W we say that W passes through e, or that W is dual to e. We also say that a cube C

of X is dual to the wall W when C contains an edge e to which W is dual.
Let C denote some euclidean cube of dimension n, and let E denote the ambient

euclidean space. For every edge e of C with endpoints p, q we consider the hyperplane of
E consisting in points which are at the same distance of p and q. Then the intersection
of this hyperplane with C is a euclidean cube, whose cubical subdivision is a subcomplex
of C ′. We denote this subcomplex of C ′ by he, and call it the hyperplane of C dual to
e. Observe that he = he′ iff e and e′ are parallel. Note also that the hyperplane of a
segment consist in its midpoint.

Now let e denote some edge of a cube complex X, and let W denote the wall through
e. For each parametrized cube f : C → X and each edge a of C such that e ‖ f(a), we
consider the image under the induced combinatorial map f : C ′ → X ′ of the hyperplane
ha of C dual to a. The union of all these f(ha) is called a hyperplane of X, it will be
denoted by He, and we will say that He is dual to e. (Note that a hyperplane of X is a
subcomplex of the subdivision X ′.) Clearly He = He′ iff e and e′ are parallel in X. In
other words the set of edges to which a given hyperplane is dual consists in a wall. Thus
walls and hyperplanes are in one-to-one correspondance. We will say that a cube C of
X is dual to some hyperplane H when C contains an edge e to which H is dual.

Let H denote some hyperplane of a cube complex X. The neighbourhood of H is the
union of all cubes dual to H. We will denote it by NH .

Combining results of Sageev we get the following description of hyperplane neighbour-
hoods:

Theorem 2.12. [see [11], ] Let X be a cubing and let H denote some hyperplane of X

with neighbourhood NH .

(1) H separates X into two connected components
(2) NH is (combinatorially) convex in X

(3) NH admits an automorphism σH that fixes pointwise H and exchanges the end-
point of each edge dual to H

Proof. (1) This is Theorem 4.10 in [11].
(2) By the separation property above, it follows that the union of all cubes of NH

disjoint of H consists in the disjoint union of two connected subcomplexes, which
we call the boundary components of NH . Then Theorem 4.13 of [11] tells us that
each boundary component of NH is a combinatorially convex subcomplex. The
combinatorial convexity of NH itself follows immediately, using the fact that H

disconnects X.
(3) We first claim that for each vertex x of NH there exists a unique edge ex dual

to H and containing x. The existence is by definition of NH , and we just have
to check uniqueness. Assume by contradiction that there are two distinct edges
e, e′ containing x and dual to H. Then the endpoints y, y′ of e, e′ distinct from x
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are contained in the same connected boundary component of NH . By Theorem
4.13 of [11] this boundary component is convex. Thus (y, x, y′) is not a geodesic,
so that d(y, y′) ≤ 1. The complex X is simply-connected and its 2-faces are
polygons with even length: it follows that the length mod. 2 of paths in X

depends only on the endpoints. Thus d(y, y′) is even, and we deduce that y = y′,
so that e = e′, contradiction.

Let Q denote any cube of X dual to H. Then by the previous remark any
two edges of Q dual to H in X are in fact parallel inside Q. Let σQ denote
the reflection of Q preserving each edge of Q dual to H, and exchanging the
endpoints of these edges. For Q1 ⊂ Q2 the restriction of σQ2

to Q1 is σQ1
. Thus

the collection of reflections (σQ)Q dual to H defines a reflection σH : NH → NH

with the desired properties.
�

Definition 2.13. Let γ = (x0, x1, . . . , xn) denote a non stuttering path. We first let
(e1, . . . , en) denote the sequence of edges of X such that the vertices of ei are vi−1, vi. A
hyperplane crosses γ iff it is dual to one of the edges ei, and the sequence of hyperplanes
that γ crosses is the sequence (H1, . . . ,Hn) where Hi is the hyperplane of X dual to ei.

The last part of Theorem 4.13 in [11] gives:

Theorem 2.14. Let X denote a cubing. Then a non stuttering path is a combinatorial
geodesic if and only if the sequence of hyperplanes it crosses has no repetition.

In particular the combinatorial distance between two vertices x, y is equal to the number
of hyperplanes of X that separates x and y.

3. Combinatorial translation length.

Let f denote an automorphism of the CAT (0) cube complex X. Then f is an isometry
for the CAT (0) distance, but also for the combinatorial distance.

Definition 3.1. Let f ∈ Aut(X). For every point x ∈ X we denote by δ0(f, x) the
CAT (0) distance between x and f(x). And for every vertex p ∈ X0 we denote by δ(f, p)
the combinatorial distance between p and f(p). We then set δ0(f) = infx∈X δ0(f, x)
and δ(f) = infp∈X0 δ(f, p). We call δ0(f) the CAT (0) translation length of f , and δ(f)
the combinatorial translation length of f . Clearly translation lengths are a conjugation
invariant.

Note that in fact the combinatorial translation length δ(f) is defined for an arbitrary
automorphism f of a graph (which is not necessarily the 1-skeleton of a cubing).

Here is a straightforward proof that Baumslag-Solitar groups BS(m,n) with m 6= n

cannot act properly on a finite dimensional CAT (0) cube complexe X.
Consider the CAT (0) translation length of the element b acting on X. In CAT (0) cube

complexes, finite dimensionality implies that the set of shapes of X is finite: thus every
isometry f satisfies δ0(fn) = nδ0(f) (see [1]). So we see that the relation abma−1 = bn
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implies mδ0(b) = nδ0(b). Thus δ0(b) = 0 and b has a fixed point since there are no
parabolic elements (see [1]). Hence the full infinite cyclic subgroup < b > fixes a point
in X.

I first thought that isometries of arbitrary CAT (0) cube complexes should have a nice
behaviour too. But then I was told the following example by Estelle Souche (it also
appears in an exercise of [1]):

Example 3.2. Consider the Hilbert space ℓ2(Z). Let (ek)k∈Z denote the Hilbert basis

such that ek
n = 1 if n = k and ek

n = 0 otherwise. The set V = Z
(Z) of maps Z → Z

with finite support is a subset of H. We consider the unit cubes of ℓ2(Z) whose vertices
are elements of V , and whose edges are parallel to one of the ek’s: the union of all these
cubes is a CAT (0) cube complex X. Note that X is not finite dimensional.

Define an isometry σ of ℓ2(Z) on the Hilbert basis by σ(ek) = ek+1. The map f :
ℓ2(Z) → ℓ2(Z) defined by f(u) = e0 + σ(u) is an affine isometry of ℓ2(Z). Note that
f(V ) = V and σ preserves (ek)k∈Z, thus f induces an isometry of X.

The isometry f has no fixed point in ℓ2(Z).
For each k ∈ N define a vector uk ∈ X as follows: uk

n = 0 if n < 0 or n > k and

uk
n = 1 − n

k
if 0 ≤ n ≤ k. Then δ0(f, uk) =

√

1
k
, thus δ0(f) = 0.

In the terminology of Bridson-Haefliger ([1]) the isometry f ∈ Aut(X) is parabolic.
Note that δ(f) > 0 since f has no fixed points, and f(0) = e0, so in fact δ(f) =

δ(f, 0) = 1. If we set pn = fn(0) then (pn)n∈Z is a combinatorial infinite geodesic
preserved by f , on which f has unit combinatorial translation length.

Definition 3.3 (elliptic, hyperbolic). Let f ∈ Aut(X). We say that f is combinatorially
elliptic if f has a fixed point in X0. We say that f is combinatorially hyperbolic if f is
not elliptic and f preserves some infinite combinatorial geodesic γ on which it acts as a
non trivial translation. Any such geodesic γ will be called an axis for f .

Example 3.4. Let X denote a single edge. Then the automorphism of X exchanging
the endpoints of the edge is neither elliptic nor hyperbolic.

4. Actions without inversion.

In order to get rid of the trouble caused by automorphisms similar to the one described
in Example 3.4 we first introduce the corresponding notion:

Definition 4.1 (inversions). Let f denote an automorphism of a CAT (0) cube complex
X. Let H denote a hyperplane of X, and let X+,X− denote the two strict half-spaces
defined by H. We say that f has an inversion along H whenever f(X+) = X− (and
thus f(X−) = X+, f(H) = H). We say that f acts without inversion if there is no
hyperplane H such that f has an inversion along H.

We say that the automorphism f acts stably without inversion when f and each power
of f act without inversion.
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And we say that a group G of automorphisms of X acts without inversion if all of its
elements act without inversion. Note that if a group acts without inversion, then any of
its elements act stably without inversion.

Just as in the tree case we have:

Lemma 4.2. Let f denote an automorphism of some CAT (0) cube complex X. Then
f acts without inversion on the cubical subdivision X ′.

Proof. Every edge e of X ′ joins the center of a cube Q(e) of X to the center of one of

its codimension 1 face. For each edge e of X ′, denote by X ′+(e) the strict half-space of
X ′ containing the center of Q(e) but not the center of its codimension 1 face.

For any automorphism f of X and any edge e of X ′ we have f(X ′+(e)) = X ′+(f(e)).

The Lemma follows because if e1, e2 are opposite edges of a square of X ′ then X ′+(e1) =

X ′+(e2). �

Question 4.3. Is there a finitely generated group G acting on a locally compact CAT (0)
cube complex all of whose finite index subgroups have an inversion ?

5. Automorphisms preserving a geodesic.

Proposition 5.1. Let G denote any graph, and let γ denote an infinite combinatorial
geodesic of G. If an automorphism f of G preserves γ then

(1) either f has a fixed point in γ

(2) or f exchanges two consecutive vertices of γ

(3) or there is a number d ∈ Z, d 6= 0 such that

for every n ∈ Z,we have f(pn) = pn+d

and furthermore in that case for every n ∈ Z we have δ(f) = δ(f, pn) = |d|.

Note that the last property shows that for any other f -invariant geodesic γ′, the
translation length of f on γ′ is δ(f) too. Note also that when G is the 1-skeleton of a
cubing, the second possibility in the Lemma above corresponds to an inversion. We thus
get:

Corollary 5.2. Let X denote a cubing. Assume that f ∈ Aut(X) acts without inversion
and is combinatorially hyperbolic. Then f has the same translation length d on each
axis, and in fact d = δ(f). Furthermore for any integer n > 0 the automorphim fn is
hyperbolic, each axis for f being an axis for fn, and we have δ(fn) = nδ(f).

Proof of Lemma 5.3. There is a bijection φ : Z → Z such that f(pn) = pφ(n). Since f is
an automorphism we have |φ(n + 1)− φ(n)| = 1. Thus φ(n) = d + εn, with ε ∈ {−1, 1}.

Assume first ε = −1. Either d is even: then f(p d

2

) = p d

2

. Or d is odd: then f echanges

the adjacent vertices p d−1

2

, p d+1

2

.

Assume now ε = 1. If d = 0 then f fixes each point of γ. Else for every n ∈ Z we have
f(pn) = pn+d. Let us prove in this case that for every n ∈ Z we have δ(f) = δ(f, pn) = |d|.
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Up to replacing (pn)n∈Z by (p−n)n∈Z, we may and will assume that d > 0.
So f acts on γ as a translation of length d. Let x denote any vertex of G. Then

d(p0, f
n(p0)) = nd and by the triangle inequality nd(x, f(x)) ≥ d(x, fn(x)) ≥ d(p0, f

n(p0))−
d(p0, x)− d(fn(p0), f

n(x)) = nd− 2d(p0, x). If we devide by n and let n tend to infinity
we obtain the desired inequality d(x, f(x)) ≥ d.

�

The previous argument on arbitrary graphs is due to Thomas Elsner. Initially we had
proven a more precise result only valid for automorphisms of CAT (0) cube complexes:

Lemma 5.3. Let X denote a cubing and let f be an automorphism of X. Assume that
f preserves an infinite geodesic (pn)n∈Z and f acts by translation pn 7→ pn+d on γ (with
d ∈ N

∗). Then for every vertex p there exists an infinite geodesic (qn)n∈Z preserved by f ,
on which f acts by qn 7→ qn+d, and such that for all n ∈ N we have d(p, qn) = d(q, p0)+n.
In particular d(p, f(p)) ≥ d, so that δ(f) = d.

Proof. Consider the set Γd of all combinatorial geodesics γ′ = (p′n)n∈Z such that f(γ′) =
γ′, and f acts on γ′ by f(p′n) = p′n+d. Pick a vertex p of X. By assumption Γd is
not empty, so there is a geodesic γ ∈ Γd minimizing the distance d(p, γ′). To simplify
notations we denote such a geodesic of Γd by γ = (qn)n∈Z.

Let qn a vertex of γ such that d(p, qn) ≤ d(p, qm) for all integers m ∈ Z. Up to shifting
indices we may assume that n = 0. Consider a geodesic γ′ joining p to qn. Assume that
there exists an integer n ≤ m ≤ n + d such that the path γ′(qn, . . . , qm) is not geodesic.
Observe that necessarily n < m. Choose a minimal such integer m.

By Theorem 2.14 there is a hyperplane H crossing γ′(qn, . . . , qm) at least twice. By
minimality of m the path γ′(qn, . . . , qm−1) is geodesic. Hence again by Theorem 2.14 the
hyperplane H separates {qm−1, qm} and crosses γ′(qn, . . . , qm−1) exactly once. In fact H

cannot cross (qn, . . . , qm−1) since (qn, . . . , qm) is geodesic.
Then the maximal subpath γH of γ′(qn, . . . , qm) containing qn and not crossed by H

is contained in the geodesic γ′(qn, . . . , qm−1) so γH has to be geodesic.
Observe that by maximality the endpoints of γH are in NH ; the terminal point is

qm−1. By Theorem 2.12(2), NH is convex, thus we have in fact γH ⊂ NH . In particular
(pn, . . . , pm−1) ⊂ NH . Let (q′n, . . . , q′m−1) ⊂ NH denote the symmetric of (qn, . . . , qm−1)
with respect to H (note that q′m−1 = qm+1). Then qn and q′n are adjacent by an edge
dual to H. The hyperplane H crosses twice the path γ′(qn, q′n). Thus (by Theorem 2.14)
we have d(q, q′n) < d(q, qn).

The product path (qn, q′n)(q′n, . . . , q′m−1)(qm, . . . , qn+d) is still a geodesic joining qn to
qn+d = f(qn). We denote by (q′′i)n≤i≤n+d the vertices of this path. For any integer k ∈ Z

we define q′′k = f q(q′′r) with q, r uniquely defined by n ≤ r < n+d and k = r+qd. Then
γ′ = (q′′n)n∈Z is a well-defined infinite path because f(qn) = qn+d. Note that if k ≡ n [d]
then qk = q′′k. So γ′ is an infinite geodesic because it has a geodesic interpolation.

By construction f(γ′) = γ′ and f(q′′n) = q′′n+d. Thus γ′ ∈ Γd. This contradicts the
minimality of d(p, γ).
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It follows from the previous argument that γ′(qn, . . . , qn+d) is geodesic. Thus d(p, qn+d) =
d(p, qn)+d. By triangular inequality d(p, f(p)) ≥ d(p, qn+d)−d(qn+d, f(p)) = (d(p, qn)+
d) − d(f(qn), f(p)) = d. Thus δ(f, p) ≥ d and clearly d = δ(f, p) for any vertex of a
geodesic γ ∈ Γd.

�

6. Classification of automorphisms acting stably without inversion.

Our main technical result is the following:

Lemma 6.1. Let f denote an automorphism of some CAT (0) cube complex X. Let p

denote a vertex of X such that δ(f) = δ(f, p). If f and each power of f act without
inversion then for any integer n ≥ 0 we have d(p, fn(p)) = nδ(f).

The condition “without inversion” is necessary in view of Example 3.4. The condition
“stably without inversion” is also necessary: consider an order four rotation of a square.

Proof. We may assume δ(f) > 0. We then argue by contradiction. So assume that there
is a vertex p and a positive integer n such that δ(f) = d(p, f(p)) and d(p, fn(p)) 6= nδ(f).
By triangular inequality we always have d(p, fn(p)) ≤ nδ(f). Thus d(p, fn(p)) 6= nδ(f)
means d(p, fn(p)) < nδ(f). Consider a pair (p, n) with the smallest possible integer n.
Observe that n ≥ 2.

Fix a combinatorial geodesic γ0 = (p0 = p, p1, . . . , pδ = f(p)). Set γi = f i(γ0). The
path γ = γ0γ1 . . . γn−1 joins p to fn(p), and is not a geodesic. Thus by Theorem 2.14
there exists a hyperplane H of X crossing at least twice the path γ.

By minimality of n the subpaths γ0γ1 . . . γn−2 and γ1γ2 . . . γn−1 are geodesic. Thus
by Theorem 2.14 the hyperplane H crosses these subpaths of γ only once. This implies
that H crosses γ0 once, H crosses γn−1 once and H does not cross at all the subpath
γ1γ2 . . . γn−2.

The path γ contains three maximal subpaths not crossed by H. Two of these subpaths
contain the endpoints of γ and we let γH denote the third one (in the middle). We now
choose the hyperplane H crossing twice γ such that the length of γH is minimal. Then
we claim that the corresponding subpath γH is a geodesic: for else there would be a
hyperplane H ′ crossing twice γH , hence also γ, and we would have γH′ ⊂ γH , γH′ 6= γH ,
contradicting the minimality of the length of γH .

Note that by maximality of the subpath γH the endpoints of γH are in NH (not
separated by H). By Theorem 2.12(2) the neighbourhood NH is convex, thus we have
γH ⊂ NH . Let σH denote the path of NH symmetric to γH with respect to H. The
initial vertex of σH is one of the vertices pi of γ0. Let q′ denote the vertex of σH adjacent
to f(p); the edge joining q′ to f(p) is dual to H. We let q denote the vertex adjacent to
p such that f(q) = q′, and we denote by K the hyperplane dual to the edge a joining q

and p.
By symmetry inside NH (see Theorem 2.12(3)) we see that the vertex f(q) is on a

geodesic from p to f(p). Let γ′ denote the part of this geodesic from p to f(q): it has



ISOMETRIES OF CAT (0) CUBE COMPLEXES ARE SEMI-SIMPLE 14

length δ(f)−1. Consider now the path γ′′ = (q, p)γ′. The length of this path is δ(f), and
it joins q to f(q). Thus in fact d(q, f(q)) = δ(f) and (q, p)γ′ is a geodesic. In particular
the hyperplane K separates {q, f(q)}.

Consider now the product path γ′′f(γ′′) · · · fn−2(γ′′) joining q to fn−1(q), and of length
(n−1)δ(f). Since d(q, f(q)) = δ(f), by minimality of n we see that γ′′f(γ′′) · · · fn−2(γ′′)
has to be a geodesic. In particular the hyperplane K separates {q, fn−1(q)}.

We claim that in fact K separates {q, fn−1(p)}. Otherwise K separates fn−1(p)
and fn−1(q). Thus K is dual to the edge fn−1(a). Since K is also dual to a we get
fn−1(K) = K. But since K separates {q, fn−1(q)} we see that fn−1 has an inversion
along K, contradiction.

Since K separates {q, fn−1(p)}, when we apply f we see that H separates {f(q), fn(p)}.
Thus H does not separate {f(p), fn(p)}. This is a contradiction, because, as we already
noticed, the path γ1γ2 . . . γn−1 is a geodesic, and it is crossed exactly once by H.

�

Corollary 6.2. Assume that f ∈ Aut(X) acts stably without inversion and has no fixed
point. Then f is combinatorially hyperbolic. More precisely f has an axis through each
vertex p minimizing d(p, f(p)). For any integer n ≥ 0, each axis for f is an axis for fn

and δ(fn) = nδ(f).

Proof. Let p denote any of the vertices of X such that d(p, f(p)) = δ(f). For brevity we
write δ(f) = d.

Let γ0 = (x0, x1, . . . , xd) denote any combinatorial geodesic from p to f(p) (so that in
particular xd = f(x0)). For any integer k ∈ Z we define pk = f q(xr) with q, r uniquely
defined by 0 ≤ r < d and k = r + qd. Note that for k = 0, 1, . . . , d we have pk = xk, and
for an arbitrary k we have f(pk) = pk+d. Thus γ = (pk)k∈Z is an infinite path. The map
x 7→ d(x, f(x)) achieves its minimal value at p = p0, and thus at each vertex pkd, k ∈ Z.
By Lemma 6.1 it follows that the finite subpath (pk)k1d≤k≤k2d is a geodesic (for any pair
(k1, k2) ∈ Z

2 with k1 ≤ k2). Thus γ is an infinite geodesic, and by construction γ is
invariant under f .

We conclude by applying Corollary 5.2.
�

We have proved:

Theorem 6.3. Every automorphism of a CAT (0) cube complex acting stably without
inversion is either combinatorially elliptic or combinatorially hyperbolic.

Remark 6.4. Let f denote an automorphism of a CAT (0) cube complex X. Assume
that f has an inversion along a hyperplane H of X. Then either f is elliptic on X ′ and
the set of its fixed point is contained in the subcomplex H ⊂ X ′, or f is hyperbolic on
X ′ and all the axes of f are inside H.

7. Applications.

We now prove Theorem 1.5 of the Introduction.
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Proof. So let a ∈ Γ denote an infinite order element such that |an|
n

→ 0. Assume Γ acts
on a CAT (0) cube complex X. We claim that a has a fixed point in X, so that the
action of Γ is not proper.

By Corollary 6.2 we have δ(an) = nδ(a).

Now for any decomposition g = s1 . . . sk we clearly have δ(g) ≤
∑i=k

i=1 δ(si). Consider
a geodesic decomposition an = s1 . . . skn

on the finite set S of generators of Γ. We deduce

δ(an) ≤ kn maxs∈S δ(s). Since lim kn

n
= 0 and δ(an) = nδ(a) we have δ(a) = 0, which

concludes the proof.
�
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