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Abstract

We consider triangular arrays of Markov chains that converge weakly to a diffusion process. Second
order Edgeworth type expansions for transition densities are proved. The paper differs from recent
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1 Introduction.

Recently, there was some activity on Edgeworth-type expansions for dependent data. In most approaches
higher order expansions have been derived by application of classical Edgeworth expansions for inde-
pendent data. The approaches differ in their main idea how the dependence structure can be reduced
to the case of independent data. For sums of independent random variables and for functionals of such
sums the theory of Edgeworth expansions is classical and well understood in a very general setting (see
Bhattcharya and Rao (1976) and Gotze (1989)). For models with dependent variables three approaches
have been developed where the expansion is derived from models with sums of independent random vari-
ables. In the first approach mixing properties are used to approximate the Markov chain by a sum of
independent random variables and it is shown that their Edgeworth expansion carries over to the Markov
chain up to a certain accuracy. The mixing approach was first used by Gotze and Hipp (1983) and it
was further applied to continuous time processes in Kusuoka and Yoshida (2000) and Yoshida (2004).
Under appropriate conditions Markov chains can be splitted at regeneration times into a sequence of i.i.d.
variables. This fact has been used in Bolthausen (1980, 1982) to get Berry-Esseen bounds for Markov
chains. For the statement of Edgeworth expansions the regenerative method has been used in Malinovskii
(1987), Jensen (1989), Bertail and Clemencon (2004) and Fukasawa (2006a). The higher order Edgeworth
expansions have been used to show higher order accuracy of different bootstrap schemes, see Mykland
(1992),Bertail and Clemencon (2006) and Fukasawa (2006b).

Both approaches, the mixing method and the regenerative method only have been used for Markov
chains with a Gaussian limit. In this paper we study Markov chains that converge weakly to a diffusion
limit. For the treatment of this case we make use of the parametrix method. In this approach the
transition density is represented as a nested sum of functionals of densities of sums of independent
variables. Plugging Edgeworth expansions into this representation will result in an expansion for the
transition density. Thus as in the mixing method and in the regenerative method the expansion is
reduced to models with sums of independent random variables.

The parametrix method permits to obtain tractable representations of transition densities of diffusions
and of Markov chains. For diffusions the parametrix expansion is based on Gaussian densities, see Lemma,
1 below, and standard references for the parametrix method are the books of Friedman (1964) and
Ladyzenskaja, Solonnikov and Ural’ceva (1968) on parabolic PDE [see also McKean and Singer (1967)].
For a short exposition of the parametrix method, see Section 3 and Konakov and Mammen (2000).
Similar representations hold for discrete time Markov chains X}, 5, see Lemma 3 below. The parametrix
method for Markov chains was developed in Konakov and Mammen (2000) and it is exposed in Section
3.2. In Konakov and Mammen (2002) the approach was used to state Edgeworth-type expansions for
Euler schemes for stochastic differential equations. Related treatments of Euler schemes can be found in
Bally and Talay (1996 a,b), Protter and Talay (1997), Jacod and Protter (1998), Jacod (2004), Jacod,
Kurtz, Meleard and Protter (2005) and Guyon (2006).

In this paper we study triangular arrays of Markov chains Xy (k > 0) that converge weakly to
a diffusion process Ys (s > 0) for n — oo. We consider the Markov chains for the time interval
(0 <k <n). The corresponding time interval of the diffusion is (0 < s < T'). The term h = T//n denotes
the discretization step. We allow that 7" depends on n. In particular, we consider the case that T — 0
for n — oo. Furthermore, we allow nonhomogeneous diffusion limits.

Weak convergence of the distribution of scaled discrete time Markov processes to diffusions has been
extensively studied in the literature ( see Skorohod (1965) and Stroock and Varadhan (1979)). Local limit
theorems for Markov chains were given in Konakov and Molchanov (1984) and Konakov and Mammen
(2000, 2002). In Konakov and Mammen (2000) it was shown that the transition density of a Markov
chain converges with rate O(n~'/?) to the transition density in the diffusion model. For the proof there
an analytical approach was chosen that made essential use of the parametrix method.

The main result of this paper will give Edgeworth type expansions for the transition densities of the
Markov chains Xy, (0 < k < n). The first order term of the expansion is the transition density of the



diffusion process Yy (0 < s < T). The order of the expansion is o(h~!7%) with § > 0. Related results
were shown in Konakov and Mammen (2005). The work of this paper generalizes the results in Konakov
and Mammen (2005) in two directions. The time horizon T is allowed to converge to 0 and also cases
are treated with nonhomogeneous diffusion limit. Small time asymptotics is done for two reasons. First
of all it allows approximations for the joint density of values of the Markov chain at an increasing grid
of points. Secondly, it is motivated by statistical applications. In statistics, diffusion models are used
as an approximation to the truth. They can be motivated by a high frequency Markov chain that is
assumed to run in the background on a very fine time grid and is only observed on a coarser grid. If
the number of time steps between two observed values of the process converges to infinity this allows
diffusion approximations (under appropriate conditions). This asymptotics reflects a set up occurring
in the high frequency statistical analysis for financial data where diffusion approximations are used only
for coarser time scales. For the finest scale discrete pattern in the price processes become transparent
and do not allow diffusion approximations. The statistical implications of our result will be discussed
elsewhere. The mathematical treatment of nonhomogeneous diffusion limits with time horizon 7" going to
zero contributes some additional qualitatively new problems. In this case some additional terms appear
that explode for T' — 0 and for this reason these terms need a qualitatively different treatment as in the
case with fixed 7. The nonhomogeneity adds an additional term in the Edgeworth expansion. See also
below for more details.

The paper is organized as follows. In the next section we will present our model for the Markov chain
and state our main result that gives an Edgeworth-type expansion for Markov chains. Connections with
previously known results are also discussed in Section 2. In Section 3.1 we will give a short introduction
into the parametrix method for diffusions. In Section 3.2 we will recall the parametrix approach developed
in Konakov and Mammen (2000) for Markov chains. Technical discussions, auxiliary results and proofs
are given in Sections 4 and 5.

2 The main result: an Edgeworth-type expansion for Markov

chains converging to diffusions.
We consider a family of Markov processes in R? that have the following form
Xis1h = Xpp +m (kb Xp) h+ Vi p, Xop =2 €RY k=0,...,n—1. (1)

The innovation sequence (gi,h)izl _,, is assumed to satisfy the Markov assumption: the conditional
distribution of §k+17h given the paét ’Xkﬁ = 2k, ..., Xo,n = To depends only on the last value Xy, = xj
and has a conditional density g (kh, zk, -). The conditional covariance matrix corresponding to this density
is denoted by o(kh,xy) and the conditional v — th cumulant by x, (kh,zr). The transition densities of
(Xin)i—;,., are denoted by py (0,kh, z,-). The time horizon T' = T'(n) < 1 is allowed to depend on n
and h = T'/n is the discretization step.

We make the following assumptions.

(A1) Tt holds that [p,yq(t,x,y)dy=0for 0 <t <1, z € R

(A2) There exist positive constants o, and o* such that the covariance matrix o (t,2) = [ yy” ¢ (t, 2, y) dy
satisfies
o, <0 o (t,z)0 < o*

for all ||| =1 and ¢ € [0,1] and = € R%.



(A3) There exist a positive integer S’ and a real nonnegative function v (y) , y € R satisfying sup,era ¥ (y) <
oo and [pa Iyl ¥ (y) dy < oo with S = (S + 2)d + 4 such that

|DYq(t,z,y)| < ¢ (y), t[0,1], z,y e R |v[=0,1,2,3,4
and
|D%q (t,z,y)| < (y), t€[0,1], 2,y € R |v| =0,1,2.

Moreover, for all 2,y € R, h > 0,0 < t,t + jh < 1,5 > jo, with a bound jy that does not depend
on x,t,
|D2q") (t,9)| < €20 (77/2y) vl = 0,1,2,3
for a constant C' < co. Here ¢\9) (¢, z,y) denotes the j-fold convolution of ¢ for fixed z as a function
of y:
A o) = [ @Dt udalt + (G~ Dby — e

gM(t,x,y) = q(t, 2, y).
Note that the last condition is motivated by (A2) and the classical local limit theorem. Note also that
for 1 < j < jo
[l ¢ty < G 9)

(B1) The functions m (¢, ) and o (¢,x) and their first and second derivatives w.r.t. ¢ and their derivatives
up to the order six w.r.t. x are continuous and bounded uniformly in ¢ and x. All these functions
are Lipschitz continuous with respect to  with a Lipschitz constant that does not depend on ¢. The
functions x, (¢, x), |v| = 3,4, are Lipschitz continuous with respect to ¢ with a Lipschitz constant
that does not depend on z. A sufficient condition for this is the following inequality

/d(1+||Z||4)|q(t,$,2’)*q(tlwa,Z”dZ§C|t*t/|,0§t7t/§ 15
R

with a constant that does not depend on x € R%. Furthemore, DYo (¢, 2) exist for |v| < 6 and are
Holder continuous w.r.t.  with a positive exponent and a constant that does not depend on ¢.

(B2) There exists s <  such that liminf, . T'(n)n* > 0.

The Markov chain X p, see (1), is an approximation to the following stochastic differential equation
in R :
dY, =m(s,Yy)ds + A(s,Ys)dW,, Yo =z € R? s €0,T),
where (W), is the standard Wiener process and A is a symmetric positive definite d x d matrix such
that A (s,y) A (s,y)" = o (s,y). The conditional density of Y3, given Yy = z is denoted by p(0,¢,z,").
We will use the following differential operators L and L:

d

1 0? f(s, (s, t,x,y
Lf(s,t,z,y) = 3 Z Uz‘j(SJ) G (’)x +Zmz 8, ) I, ),
i,j=1 ? J [
d
= 1 0% f(s,t,x,y) (s,t,2,y
Li(stay) =5 O il ot i SEAL. LU @
4,J=1 Rt i=1 v



To formulate our main result we need also the following operators

d d

1 801'3‘(5,5”) a2f (S,t,l‘,y) am1(57x) af (S,t,l’,y)
L/f(sj t7 Z, y) = 5 ijZ:1 68 axzax] + ; as axl
d d
, LN 00(5.0) P (5. 80) | Oma(s.2) O (s.t.0)
L'f(s,t,v,2) = 5 ”Zﬂ Js D, 0 + ; Os ox; ' )

and the convolution type binary operation ® :

t
f®g(s) t’l.’y) = / du f(sﬂu) ‘r?Z)g(u’ t’ Z’y) dz'
s R4

Konakov and Mammen (2000) obtained a nonuniform rate of convergence for the difference p;, (0, T, z, -)—
p(0,T,z,-) as n — oo in the case T < 1. Edgeworth type expansions for the case T' < 1 and homogenous
diffusions were obtained in Konakov and Mammen (2005). The goal of the present paper is to obtain
an Edgeworth type expansion for nonhomegenous case which remains valid for the both cases T' < 1 or
T = 0(1). The following theorem contains our main result. It gives Edgeworth type expansions for py,.
For the statement of the theorem we introduce the following differential operators

EUWJJW%ZE:K%%QDﬁ@m%w,

|v|=3

At = 3 D b g0,y

v
|v|=4

Furthermore, we introduce two terms corresponding to the classical Edgeworth expansion (see Bhat-
tacharya and Rao (1976))

~ Y}/ S’t’ y) V=
mstry) = (-9 Y 2 Dt ay) ()
lv|=3 )
Ta(s, t,x,y) = (t—s)ZMDV~(st$ )
2{8, 1, T, Y bt v PSS, 1, T, Y
2
1 Yl/ S’t)y 1% =~
+§(t - 5)2 Z %DI p(sataxay)’ (5)
lv|=3 ’
where
1 t
Xo(s,t,y) = —s X, (u, y)du

and y,(t,z) is the v — th cumulant of the density of the innovations ¢(¢,z,-). The gaussian transi-
tion densities p(s,t,z,y) are defined in (6). Note, that in the homogenous case x,(u,y) = x,(y) and
X, (s, t,y) = x, (y), where x,(y) is the v — th cumulant of the density ¢(y, -).

Theorem 1. Assume (A1)-(A3), (B1)-(B2). Then there exists a constant 6 > 0 such that the following
expansion holds:

(17

z,y€ R4

S/
)X#M&ﬂ%m—MQﬂ%w




7]?/1/27_(_1(07 Ta €T, y) - h’7T2(07 Ta €T, y) = O(h’1+6)7
where S'is defined in Assumption (A8) and where

7T1(0,T,$,y) = (p®.7:1[p])(0,T,x,y),
7T2(0,T,£L',y) - (p®]-"2[p])(0,T,x,y) +p®f1[p®}—1[p]](0,T,z,y)

1 1 ~
+§p ® (L~l2( - L2)p(0aTa xz, y) - §p ® (L/ - L/)P(Oa Ta-ray)-

Here p(s,t,x,y) is the transition density of the limiting diffusion Ysand the operator L, is defined as E,
but with the coefficients “frozen” at the point x. The norm ||| is the usual Euclidean norm.

Remark 1. The terms of the Edgeworth expansion have subgaussian tails and are of order n=1/2 or

n~1, respectively:

2
—x

h1/27r1(0,T,x,y) < O VP72 exp | —C yﬁ ,
y—x 2

|ho (0, T, z,y)| < Cin T~ 4%exp |-Cy Wis ],

with some positive constants C; and Cs.

Remark 2. If the innovation density ¢(t,z,-) and the conditional mean m(t,z) do not depend on
x then we are in the classical case of independent non identically distributed random vectors. We now
show that then the Edgeworth expansion of Theorem 1 coincides with the first two terms of the classical
Edgeworth expansion h'/27(0, T, x,y) + hi2(0, T, x,y). Note first that in this case L, = L, L/ = L’ and
p(s,t,z,y) = p(s,t,x,y) where p is defined in (6) with o(s,t,y) = o(s,t) = fst o(u)du and m(s,t,y) =
m(s,t) = f: m(u)du. This gives

100, Tz, y) = /ds/ (0, s, x,v) ZX” Drp(s, T, v,y)dv

|v|=3
_ Xl/ v =~ ~
. / X)) [ 0,52 005(5, 7.0,
|v|=3
= - Z |X1/ 0 T Zﬁ(ovTazay)
|v|=3
T_ v
=D %0 D)DIFO.T,2,y) = 71 (0, T, z,y),
=3 "
P F1[p|(s, T, z,y) /du/ S, Uy Z, W) ZX” u, T, w,y)dw
|v|=3 :
Z—Z/ Xy (1 )duD"p(sty T—5) Z Xy(s.T) Dp(s, T, z,y),
v!
lv|=3""% |v|=3
‘F[p®fl[ﬂ](s TZ,y Z D Z (S,T,Z,y)
|v|=3 : v |=3



—res Y IR ),

v!

lv|=3,]v'|=3
PR Fpl(0,T,z,y) +p® Fi1[p @ F1[p)](0, T, x,y) = ZX”OT 2(0,T,z,y)
|v|=4
T
+/O ds/ﬁ(O,s,x,z)(Tfs) Z X’;(!S)MDV*V p(s, T, z,y)dz

v =3,|v|=3

YV(O’T) v~ 11 T T v+v’
=73 X0, e+ Y [ ) | e du ) dsDE (s T ay),
lv|=4 : lv]|=3,|v"|=3 0 s

For v = v/ we have

/OT X (8) (/ST Xo/ (u)du) ds = %/OT /OT Y, ()X, (u)dsdu = T?QXV(O,T)YV((),T)_
For v # v we get
/OT X (8) (/ST X (u)du> ds + /OT X, (8) (/&T Xu(u)du> ds

T T

:/0 / DX ()0 (1) + X, (8) X, (w)] dsdu
1 /T yT

=3 /0 /O [, (8) X0 (1) + X, (8)x, ()] dsdu

T2
= _YV(Oa T)Yl// (07 T) + Xv (07 T)Xz/ (07 T)

2

From these equations we obtain

ﬁ@fQ[ﬁ](O,T,SC,y)+§®f1[ﬁ®f1[ﬂ(0,T7$,y)
2

Yu O,T T2 Xl/ 0 T 14 =~
-7y} % DIB(0, T, wy) + 53 D >Dz p(0, T 2,y)
=2 IvI=3

=m2(0, T, 2, y).

This shows the claim that we get for this case the first two terms of the classical Edgeworth expansion.

Remark 3. If x,(t,7) = 0 for |v| = 3 and for t € [0,T] x R? then it holds that F; = 0. The Theorem
1 holds with

(0, T,z,y) = O,
1 1 ~
m2(0,T,z,y) = (p® F[p))(0,T,2,y) + SP® (L? = L*)p(0,T, x,y) — P ® (L' = L"p(0, T, z,y).

If in addition x,(t,z) = 0 for |v| = 4 then the first four moments of the innovations coincide with the
first four moments of a normal distribution with zero mean and covariance matrix o (¢, ). In this case we
have F5 = 0 and we have

(0, T 2,y) = 0,
1 1 ~
WQ(O,T,Z',’]J) = §p®(Li*L2>p(O,T7:C7y)7 §p®(L/7L/)p(O,T,Z',y)



and the first two terms of the Edgeworth expansion do not depend on the innovation density. In particular,
it holds that x, (t,z) = 0 for |v| = 3,4 for Markov chains that are defined by Euler approximations to
diffusions. Thus, an Edgeworth expansion for the Euler scheme holds with the same 71 and 73 as just
defined. For the homogenous case we have that L' = L’ = 0 and we obtain for the Euler scheme in this
case

m(0,T,z,y) = 0,

1
(0, T2,y) = 5p® (LI = L*)p(0,T,2,y).

This result for 7' = [0, 1] under Hormander’s condition on a diffusion matrix was obtained by Bally and
Talay (1996).

Remark 4. We now shortly discuss an application of our result to statistics. Assume that one observes
a Markov process X1 p, ..., X, p at time points k, 2k, ..., nk. That means we assume that a high frequency
Markov chain runs in the background on a very fine time grid but that it is only observed on a coarser grid.
This asymptotics reflects a set up occurring in the high frequency statistical analysis for financial data
where diffusion approximations are used only for coarser time scales. For the finest scale discrete pattern
in the price processes become transparent that could not be modeled by diffusions. The joint distribution
of the observed values of the Markov process is denoted by P,. We assume that this joint distribution
can be approximated by the distribution of (Y1, ...,Y;,) where Y7, ..., Y,, are the values of a diffusion on the
equidistant grid kh, 2kh, ...,nkh. The joint distribution of (Y7, ..., Y,,) is denoted by Qp,. According to our
theorem the one-dimensional marginal distributions of P, can be approximated by the one-dimensional
marginal distributions of (). Under appropriate conditions the Li-norm of this difference is of order
k~1/2. This implies that the Li-norm of the difference between the joint distributions P, and Qp, is of
order nk~'/2. That means the diffusion approximation is only accurate if k£ > n?, i.e. only if the grid of
observed points is very coarse in comparison to the grid on which the Markov process lives. Only in this
case it can be guarantied that a statistical inference that is based on the diffusion model is accurate. Or
put it in another way, data that come from the Markov model could not be asymptotically statistically
distinguished from diffusion observations. Our results help to analyze what may go wrong if & > n? does
not hold. The (signed) transition densities p + h'/2m; + hry given in the statement of Theorem 1 define a
joined (signed) measure Rj. According to Theorem 1, the marginal distributions of R;, approximate the
one-dimensional marginal distributions of P}, with order o(k~'~%). One may conjecture that under some
regularity assumptions the exact order is k~3/2. This implies that ||P, — Rp||; is of order nk=3/2. Thus,
this approximation is appropriate as long as k > n?/3. This is a much more acceptable assumption.
Now, one can check which statistical procedures behave differently under the models @}, and Rj,. These
procedures may lead to erroneous conclusions for the Markov data.

3 The parametrix method.

3.1 The parametrix method for diffusions.

We now give a short overview on the parametrix method for diffusions. For any s € [0,T], 2,y € R? we
consider the following family of "frozen” diffusion processes

A, =m(ty)dt+ A (t,y)dWy, Yo =2, s<t<T.

Let pY (s,t,x,-) be the conditional density of Y, given Y, = z. In the sequel for any z we will denote
p(s,t,x,z) = p* (s,t,x,2), where the variable z acts here twice: as the argument of the density and as
defining quantity of the process Y;.



The transition densities p can be computed explicitly

Bs.twy) = (2m) " (deto (s, ,9)) 7
1 _
<o (5o -mls ) o Gt s meen)), O

where

st = [ i) = [ e

Note that the following differential operators L and L correspond to the infinitesimal operators of Y or
of the frozen process Y, respectively, i.e.

Lf(s,t,w,y) = lim B E[f(s,£,Y (s + h),y) | Y(s) = 2] = f(s,t,2,9)},

Lf (s toy) = Jim b HELf (5,8, (5 1)) | V() =] = (s, t,,9)}:

We put -
H=(L-L)p
Then
4 -
1 32}7 (Sata‘r?y)
H = 3 j ~Tij T Ox0r;
(s,t,2,9) 5 ijzzjl (0ij (5,2) — 7ij (5,9)) Bz:0z;
p(s:t,zy)

+ (my (s,2) —m; (s,y))

:M&

8:01-

7,j=1

In the following lemmas the k- fold convolution of H is denoted by H*). The following results have been
proved in Konakov and Mammen (2000).

Lemma 1. Let 0 < s <t <T. It holds

pls,ta,y) =Y @ HO (s,t,2,y).
=0

Lemma 2. Let 0 < s <t <T. There are constants C and C; such that

|H(Sﬂ t,.fC,y)| < Clp71¢c,p(y - SC)

and .,
7@ HM (s ¢ ’ <crti__P —
P& (S, ,ZC,y) = 1 F(1+%)¢C,p(y -T)a
where g =t — 5, b, (u) = p~I9c(u/p)and
exp(=C [[ul|*)

Ay e e T



3.2 The parametrix method for Markov chains.

We now give a short overview on the parametrix method for Markov chains. This theory was developed
in Konakov and Mammen (2000). For any 0 < jh < T, x,y € R? we consider an additional family of
“frozen” Markov chains defined for jh < ih < T as

Xiv1n = Xin +m (ih,y) h+ \/EEHL;N Xjp=z€R j<i<n, (7)

where EJ— TLh ,En , 1s an innovation sequence such that the conditional density of ZZ 41,5 given the past

Xih = i, ..., Xo0,n = 2o equals to q (ih,y,-). Let us introduce the infinitesimal operators corresponding
to Markov chains (1) and (7) respectively,

Luf (jh, kh,2,y) = h™! </ph (b, (G + 1) hyx,2) f((G+ 1) h,kh, z,y)dz — f((j +1) h,khaw»y))
and

Lyf (jh, kh, ,y) = </ (Fh, J+1)h$Z)f((j+1)h,kh,z,y)dzf((j+1)h,kh,x,y)>,

where p} (jh, j'h,x,-) denotes the conditional density of )Zj,,h given fg,h = z. Similarly as above, for
brevity for any z we write py, (jh, j'h, z, z) = Df (jh,j'h, x, z) , where the variable z acts here twice: as
the argument of the density and as defining quantity of the process X ;. For technical convenience the

terms f ((j + 1) h, kh, z,y) on the right hand side of L, f and th appear instead of f (jh,kh, z,y).
In analogy with the definition of H we put, for k& > j,

Hi, (jh, khy2,y) = (Ln = Ln) B (b, kb2, y)

We also shall use the convolution type binary operation ®; which is a discrete version of ®:
g®n [ (Gh,kh,z,y) Zh/ (jh,ih,x, 2) f (ih, kh, z,y) dz,

where 0 < j < k < n. We write g ®p, H,(lo) =g and g ®p H}(f) = (g Rn H}(ffl)) ®p, Hy, for r > 1. For the

higher order convolutions we use the convention Zi: ;=0 for [ < j. One can show the following analog
of the ”parametrix ” expansion for p, [see Konakov and Mammen (2000)].

Lemma 3. Let 0 < jh < kh <T. It holds

k—j
prGh,khyx,y) =3 pn @n HY (b, kh, 2, y),
r=0

where
ﬁh(jhajha xz, y) = ph(kha khv Zz, y) = 5(y - :C)
and § is the Dirac delta symbol.
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4  Some technical tools.

4.1 Plugged in Edgeworth expansions for independent observations.

In this Section we will develop some tools that are helpful for the comparison of the expansion of p (see
Lemma 1) and the expansion of p; ( see Lemma 3). These expansions are simple expressions in p or
Dn, respectively. Recall that p is a Gaussian density, see (6), and that p, is the density of a sum of
independent variables. The densities p and p, can be compared by application of the classical Edgeworth
expansions. This is done in Lemma 5 and this is the essential step for the comparison of the expansions
of p and pp. Lemmas 4 and 7 contain technical tools that will be used below. Lemma 7 contains bounds
on derivatives of py that will be used at several places in the proof of Theorem 1. Its proof makes use of
Lemma 6 that is a generalisation of a result in Konakov and Molchanov (1984) (Lemma 4 on page 68).
Lemma 5 is a higher order extension of the results from Section 3.3 in Konakov and Mammen (2000).

For the formulation of the lemmas we need some additional notations. Suppose that X € R? is a
random vector having a density ¢(x),x €R?, EX = 0,Cov(X,X) = X, where ¥ be a positively definite
d x d matrix . Denote A = |la;;|| = ¥7'/? and let x,(Z) be a cumulant of the order v = (v1, ..., v4) of
a random vector Z € R?, ¢(x) denotes a function in R? such that DY¢(z) exist and are continuous for
lv| =4, and A=t = Hain =»1/2,

Lemma 4. The following relation holds for s =3 and for s =4

JAX)DYo(z Xu D”(b (Ax)
> —X >
lvi=s vl=s

where z = Ax.
Denote

k-1 k-1
115 (y) = hzm(ih,y),‘/},k(y) = hzo(ih,y)- (8)

Proor oF LEMMA 4. For |v| = 3,v = (v1,...,vq), each cumulant x, (AX) is a linear combination of
X, (X) with |u| = 3 and with coefficients depending only on a;;. It follows from the following relation

X, (AX) = p,(AX) = /(anxl + ot a1g2q0)"t X X (@121 + oo+ a1g74) 4 q(x)dX.

Analogously, from the usual differentiation rule of a composite function and from the relation ¢(z) =
d(Az) , x = A7z, it follows that DY¢(z) = DY ¢(Ax) is a linear combination of DY ¢(Az) with coefficients
depending only on a*. As a result of such substitutions we obtain that

AX 1< !
>0 LLEDPEE 23| Y el ()

V=3 pril PV

<| %(aﬂ)ui...(ajd)u’dpg/qa(AX)

\,u,’| 3:u’1 :u‘d
1 d 21
: Iz Iz
+W Z Z fig)efty laljl adjailxwrez (X)
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Z Z a1 ) (al)aa™ DR e p(AX)

=1 =2

1
+§ Z Z Z a’l] aufailakqx‘quelJreq (X)

C{igitky (L=t jul=1 P

. Z > @@ M DL (A X)

=1 =1 P

where Z{#J} ( Z{#jik}) denotes the sum over all different pairs (triples) of i,j € {1,2,...,d} (of 4,5,k €
{1,2,...,d}) and e; € R denotes the vector whose i—th coordinate is equal to 1 and other coordinates are
zero. Collecting the similar terms in the last equation we obtain that for v = 3eg, v’ = 3¢; the coefficient
before y, (X)D¥ ¢(AX) is equal to gi(arat +. Faaral®)® = §6p, for v =eq+2e,, v = €1 + 2e,, , g # 1,
the coefficient before x,,(X) DY ¢(AX) is equal to & (aigal +...4+a44a!?) (a1,a" +...+agra™)? = L810.m,
in particular , for I = n the last expression is equal to zero. For v =e;+ e, + e,V =€y +er +en
q # 7,q #n,T # n, the coefficient before x, (X)D? ¢(AX) is equal to (a1,a9 " + ...+ agqa? ?) x (a1,0” " +
.+ adTa’”/d)x (alna”,1 + ..+ adna"/d) = 04q'0rrOnn . This proves lemma for |v| = 3. The proof for
|v| =4 is quite similar. For this case we use the relation which enabes to express a cumulant y, (AX) as
i, (AX) plus a second order polynomial of the moments p,,(AX), |/| = 2. A necessary correction term
for p,(X) to get a x, (X) comes from the derivation of D¥¢(z). This completes the proof of the lemma.

Lemma 5. The following bound holds with a constant C for v = (v1,...vp)T with 0 < || <6

DYpu(jh, kh,z,y) — DYp(jh, kh,z,y) — VAD'%1 (jh, kh, x,y) — hD %5 (jh, kh, z,y)
< Ch*2p=2 My — 2)
for all j < k,xand y. Here DYdenotes the partial differential operator of order v with respect to

z= Vj,_kl/Q(y)(y —x—p; . (y)). The quantity p denotes again the term p = [h(k — ]2 and the functions
71 and T are defined in (4) and (5). We write C];(~) = p~9¢*(-/p) where

[+ 12"

k() = .
S TR TSR

PROOF OF LEMMA 5. We note first that py(jh, kh, z,) is the density of the vector

$+M_]k +h1/2zgz+1 h>s

=Jj

where, as above in the definition of the “frozen” Markov chain Y;,, 21 +1,n 18 @ sequence of independent
variables with densities q(ih,y, ), p; ,(y) = Zf:_jl hm(ih,y). Let fn(-) be the density of the normalized

sum
—1/2
h1/2 / Z§z+1 h-*

12



Clearly, we have

Bn(ih, kh,@,-) = det [V ()] fud Via@)] 2 [ = 2 = )]}
We now argue that an Edgeworth expansion holds for f,. This implies the following expansion for
ﬁh(jha kh) z, )

Pr(jh, kh,x,-) 9)
S5-3
= det [Vi ()] 2 [D (k= )72 Po(=6  {Rp DAV 2 [ = 2 = ()]}
r=0

k= A7 22001 + [V 2L - 2 — |17

with standard notations, see Bhattacharya and Rao (1976), p. 53. In particular, P, denotes a product of
a standard normal density with a polynomial that has coefficients depending only on cumulants of order
< r+ 2. Expansion (9) follows from Theorem 19.3 in Bhattacharya and Rao (1976). This can be seen as
in the proof of Lemma 3.7 in Konakov and Mammen (2000).

It follows from (9) and Condition (A3) that

|ﬁh(]h7 kha IL',y) - ﬁ(]hv kha IL',y) 7h'1/2%1(jh5 khvxvy) - h%Q(‘]ha khvxvy)
3/2 ,—3,S—|v|
< Ch32p3¢5 My — ), (10)
where

Bjh, kh, z,y) = det [V 1 (y)] /2 (2m)~#/2

exp{~ 5~ 7 — 1)) Wik ™ (0~ 7 — (),

F1(jh, kb, 2, y) = —p~ 1 det [Vin(y)] T X"%’:(y)ngb{[vj,k(y)rl” (v -2 )}
lv|=3 ’
Fa(jh, kb, 2, y) = p~2 det V()] | S0 %’@Dw{[m(mrw (v -~ 1))}
|v|=4 ’
A L’:(”D o {Virw) ™ =2 = ) |
|v|=3

_ k—1 —1/27%
where Xu,j,k(y) = ﬁ Zi:j Xu,j,k,i(y)a Xu,j,k,i(y) = v—th cumulant of p[V;x(y)] / §i+1,h = PM X

{v—th cumulant of [Vj,k(y)]fl/2 EZ—Jth}, and DY¢(z) denotes the v—th derivative of ¢ with respect to
z=1V; k(y)]_l/2 (y—x—p;(y)) . It follows from the (conditional) independence of Ei+1,hai =J, e k=1,
that X, x(y) = £oh /% x x, (AX), where A = B2 [Vj,(y)] Y/ = 7128 = Cou(X, X), X =
Zf:_jl Eiﬂ,h. By Lemma 4 for s = 3,4

Xo.j 1 J(AX)
S Raprot) = oty 8 U D)

lv|=s ’ |v|=s

0 Y 2 b Aty - o yuw)

lv]=s

0 Y 2 Do) ), (1)

|v|=s

13



where we put ¢, (z) = ¢(h~'/%2),%,(X) = ﬁ Zi.:jl X, (ih,y). Tt follows from (11) and the condition

B1 that up to the error term in the right hand side of (10) the functions 7; and 7y coincide with
the functions m; and 75 given at the beginning of Section 4. For v = 0 the statement of the lemma
immediately follows from (10). For v > 0 one proceeds similarly. See the remark at the end of the proof
of Lemma 3.7 in Konakov and Mammen (2000).

Lemma 6. Let L(d) be the set of symmetric matrices, and for 0 < A\~ < AT < 0o let Dy+ - C L(d)
be the open subset of L(d) that contains all A € L(d) with A\"I < A < \TI. For A € L(d) define
A= A(A) as the symmetric solution of the equation A2 = A. Then for any k,l,i,7 < d and A € Dy+ 5~
we have that with a constant C,, depending on m

Gma-j (A)’ = —

- <o (AT @Gm 2 192

TR < i (12
Here a;;(A) are the elements of A= A(A).

PROOF OF LEMMA 6. For m = 1 the lemma was proved in Konakov and Molchanov (1984) (see Lemma
4). Suppose now that (12) holds for m < [. From the equality AA = A we obtain for m =141

d(AA) = (dH1A)A + ( s ) (d'A)dA + .. + ( e ) dA(d'A) + A(dHA) = 0,

where d denotes elementwise differentiation of a matrix with respect to a fixed element of A. This implies

(A A)A+ AdT1A) = — ( e ) (d'A)dA — .. - ( s ) dA(d'A). (13)

Denote the symmetric matrix in the right hand side of (13) by A. Then equality (13) determines a linear
operator £ mapping d'*1A to A. In the linear space of symmetric d x d matrices we introduce the scalar
product (X,Y) = trace(XY). The operator ¢ determines a quadratic form

(0X, X) = trace[(X A + AX)X] = 2trace[ X AX] > 2v/ A\~ trace[X X] = 2V/ A~ (X, X),

where in the inequality we have used that A — VAT positive definite implies that X (A — VA 1)X =
XAX — VAT XX is positive definite. Similarly, we get (£X, X) < 2VAT(X, X). Hence,

X
2o~ < |lf]) = sup PEL < o0\ /3%

x#o [ X] ~
and i )
Vit << s
We obtain .
la" Al < 2\/}\—_IIAII~

Using the induction hypothesis we get from (13)
||dl+1A|| < Cl+1(/\_)(2l+1)/2.

This completes the proof.
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From Lemmas 5 and 6 we get the following corollary. The statement of the next lemma is an extension
of Lemma 3.7 in Mammen and Konakov (2000) where the result has been shown for 0 < |b| < 2,a = 0.

Lemma 7. The following bound holds:
| Dy DB (ih, khyx,y)| < Cpml=PIca1 (y — )

for all j <k, for all x and y and for all a,b with 0 < |a| + |b| < 6. Here, p = [(k—j)h]'/2. The constant
S has been defined in Assumption (A3).

PROOF OF LEMMA 7. For two matrices A and B with elements a;; or by, respectively where a;;(B) are

4 < Cforalll1<i,j<d1<k,Il<d. Toobtain the

smooth functions of by; we write ‘2_3’ < Cif | 2%

Ob

assertion of the lemma we have to estimate the derivatives D3 DYz, where z = Vj;;m Wy —z— 1, (y))-

Note that z = z(ijkl/Q, I k> T, Y), Where Vj;:/Q = ijkl/Q(y) and ;= p; 1 (y). For Il =1,..,6 it follows

from condition (B1) and (8) that

04 (y) 'Vix(y)
J,k <02 J»ky‘<02. 14
@t | = Ty [T 0
It follows from Lemma 6 that
81‘/‘1/2
(aVJ,k)l < Cpf(Qlfl)/2. (15)
J,k

From inequalities (3.16) in Konakov and Mammen (2000) and from the representation of an inverse matrix
in terms of cofactors divided by the determinant we obtain that

1y, —1/2
8‘@77,6 < Cp D), (16)
@OV
ok
From (14)-(16) and from the chain rule we get
alV'7k1/2 (y)
W <cp . (17)

Now, Lemma 5 implies the assertion of Lemma 7.

4.2 Bounds on operator kernels used in the parametrix expansions.

In this Section we will present bounds for operator kernels appearing in the expansions based on the
parametrix method. In Lemma 8 we compare the infinitesimal operators Ly, and Lj, with the differential
operators L and L. We give an approximation for the error if, in the definition of Hj, = (Lp— ih)ﬁh, the
terms Ly, and Ly, are replaced by L or L, respectively. We show that this term can be approximated by
K, + My, where K, = (L — i)ﬁh and where M), is defined in Remark 5 after Lemma 8 . The bounds
obtained in Lemma 9 will be used in the proof of our theorem to show that in the expansion of p; the
terms py, Qp H,(IT) can be replaced by pp @, (Kp, + Mh)(’”).

Lemma 8. The following bound holds with a constant C

|Hh(.7ha khal'ay) - K;z(.jha khal'ay) - Mflz(.jha khal'ay) - Rh(jha khaxvy”
< CRP2p Iy — )
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with Cf as in Lemma 5 for all j <k, x and y. For j<k — 1 we define

K} (jh, kh,z,y) = (L — L)A(x), M}, (jh, kh, =, y)
= My 1(jh, kh, 2, y) + My o(Gh, kh, 2, y) + M}, 5(Gh, kh, 2, y),

. Dy Mz . .
M1 (Gh, kb, y) = 02> ———%—l(xuohwx)A*xVOhwyD,
s V!
. DiX(x . .
My 2(jh, kh,z,y) = h Y ——;}l(xuwhuw‘*xyohﬁﬂh
lv|=4

. h ~
M}/L,3(-7h/’ khal'ay) = §(L¢2( - L2))‘(‘T)’

DYA(z) &

Ry (jh, kh,x,y) = h3/? Z o Z velme(jh, 2)p, . (jh,2) — me(Gh, y)u, ., (Gh,y)]
lv|=4 ’ r=1
1< . , , _
+5 Z ;Z(mk@h,x) —mg(jh,y)) Vk/q(jh,x,e)h £ (0)
lv|=5 k=1

x [ /0 (1 —w)*D" Az + uﬁ(e))du] o + / q(jh, z,0)h" () { /0 (1 — w)*uD"te* \(z + uﬁ(e))du] d@}
+h% Y %,(x) > VN ) m” (Gl @)y (G, ) = mY (R ), (B, )],

lv|=4 Cov=2

Here L, is defined as L but with the coefficients “frozen” at the point z, e, denotes a d-dimensional vector
with the r-th element equal to 1 and with all other elements equal to 0. Furthermore, for |v| =4, |V'| = 2

we define
N(v,v') = X[V 1=1]+x[(v—v)1=1] 2

)

where x(-) is the indicator function. We put m(x)” = mq(x)** -...-mg(x)¥ and m(x)” =0, v! =0. We
define p,(t,x) = [2"q(t,z,z)dz and p,(t,z) = 0 if at least one of the coordinates of v = (v1,...,vq) is
negative. We use also the following definitions

Az) = pu((Gj+ Dh kh,z,y),
h() = m(jh,y)h+ 0n'/2.

Here again p denotes the term p = [h(k fj)]l/Q. For j =k — 1 we define
K}/L(jh’ k:h,ac,y) = Rh(jha k:h,ac,y) = Mh,Q(jha k:h,ac,y) = M}/L,3(jh’ k:h,ac,y) =0

and

M (jh khy,y) = b2/ [ {jh 2, b= 2y — 2 = mljh.alh) } —q {jh.y,h™ 2y — = = mljh,yin) }] .

PROOF OF LEMMA 8. As in the proof of Lemma 3.9 in Konakov and Mammen (2000) we have

Hh(jhakhawvy) = H}%,(jhakhawvy) - H}%(jhakhawvy)a
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where
Hi (jh,kh,z,y) = h™* /q(jh, z,0) Az + h(0)) — \(z)]db, (18)

H3(ih b .9) =0 [ iy O/ + FO)) - @), (19)
h(0) = m(jh,z)h + 60hY% h(0) = m(jh,y)h + Oh'/2.
For [A(z + h(0)) — A(z)] and [A(z + h(0)) — A(z)] in (18), (19) we use now the Taylor expansion up to
order 5 with remaining term in integral form. To pass from moments to cumulants we use the well known

relations (see e.g. relation (6.11) on page 46 in Bhattacharya and Rao (1986)). After long but simple
calculations we come to the conclusion of the lemma.

Remark 5. We show now that the function Kj,(jh, kh,z,y) + M,'Lg(jh, kh,z,y) in Lemma 8 is equal to
Kn(jh,kh,z,y) + &(L? = 2LL + L*)A(z) + M}/ 5(jh, kh, =, y) where

Mllv,l,B(jha kh,x,y) = _h2 Z W(L—E)DHA(IL‘) (20)
|ul=2 '
_ Lo g ) MOV i T
3;3/0 (1-9) dé/q(ah,y,e) m (L — L)YD*X(z + Sh(6))d6.

Thus in Lemma 8 we can replace K7 (jh, kh, z,y) + M| (jh, kh,z,y) by K, (jh, kh,z,y) + My (Gh, kh, z,y)
where Kp,(jh, kh,z,y) = (L — L)pn(jh, kh,z,y), Mp(jh,kh,z,y) = %(Lf —2LL + L*)\(z) + M}/, M} =
Mpa(jh, kb, y) + My 2(3h, kh, 2,y) + M)/ 3(jh, kh, 2, y) and

max{|Mj,(jh, kh,z,y)|, [Mn(jh, kh, z,y)|} < Cp~'(,(y — ),
p? = kh — jh. To show this we note that

Bu(ih, kh, z,y) = / 4Gty 0\ + 1(0))do).

where h(6) = m(jh,y)h + h'/20. From the Taylor expansion we get

m*(jh,y

Pr(ih,kh,z,y) = A@)+hLAx)+h> > 7'>D”/\(x)
=z
1 h(0)# ~
3y / (1- 6)2d6/q(jh,y,9)h(9') DFA(x + 5(6))d6
=30 e
and, hence,
From
h(L? — LL)A(x) + Mj, 3(jh, kh,2,y) = h(L* — LL)A(z) + g(Lf — L)A(z)

= g(Li —2LL + L)\(x)



and from the definitions of the operators L, L and L, and from the Lipschitz conditions on the coefficients
m(t,x) and o(t,z) we obtain that

‘g(Lf —2LL + LY)A(x)| < Chp3¢,(y — ). (22)
Analogously, we have
h2 Z m”(i{lay) (L*Z)DH)\(SC) < C’th_st(yfx), (23)
[pu|=2 '
) N
3 Z / (1— 5)2d5/q(jh,y, 9)}‘(5')” (L — L)D*X(z + 8h(0))d8| < Ch*/?p~*¢ (y — z). (24)
|ul=3 "0 '

Now (21)-(24) imply the assertion of this remark.

Lemma 9. The following bound holds:

> P @n (K + My, + Ri) (0, T,2,9) = Y pn @n (Kn + My)!7(0, T, 2, y)
r=0 r=0

< C(e)hn™HeC5 1 (y — x), (25)

where lim, o C(e) = +o0.
PrOOF OF LEMMA 9. For r = 1 we will show that for any € > 0
[pr ®@n (K + Mp + Rp)(0, kh, 2, y) — pr ®n (Kn + Mp)(0,kh, z,y)|

~ _ _ 1
= |Pn @n Ra(0, kh, 2, y)| < CHPP2(kh) 722 B (5, ) (y — ), p* = kb (26)

Clearly, to estimate pj, ®j Rp(0,T,x,y) it is enough to estimate
k—2
=02k / B (0, kh, 2, 2) (£ (7, 2) — F(jhy ) D25 (G + 1), kb, 2, y)dz
§=0

for v, |v| =4, and
k—2

L = W) h / Bn(0, jh, @, 2)(f (iR, 2) = f(ih,y)) / q(jh. z,0)h" = ()

=0
1
X / (1 —u)*DYX(z + uh(0))dudfdz
0

for v,|v| =5, 1 < k < d. Here f(t,z) is a function whose first and second derivatives with respect to x
are continuous and bounded uniformly in ¢ and z. After integration by parts we obtain

k—2
I, = —h3/2Zh/D?ﬁh(O,jh,x,z)(f(jh,z) — f(Gh,y)) DY pr((j + 1)h, kh, z,y)dz

=0

k—2
+h*2Y b / D10, jh,x, 2) D% f(jh, 2) D% B ( + Db, kh, z,y)d=
=0

k—2
+h*2 Y h / Bn(0, jh,x, 2) DS f(jh, 2) DY By (j + 1)h, kb, 2,)dz
=0
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for 1 <1,s < d. Hence,

k—2

TARYeE) Y —
=0

mép(y — ) < Ch¥?7% (kh)~ 1/Q“B(— )y — ). (27)

In the same way after integration by parts we get with 1 <[,s <d.

I, = h2]§h/11 d/d9 h,y)ht/2 + 0y = | D& (0, jh h ih
2 ; u)*du (m(jh,y)h"'* + Pn(0,jh, x, 2)(f(jh, 2) = f(Gh,y))

7=0

1
xq(jh, z,0) DY~ pp((j + 1)h, kh z+uh(9),y)dz+h22h/ (1 —u)4du/d9(m(jh,y)h1/2 + @)=
x /DES [0, jh, @, 2)D f(jh, 2)a(jh, 2, 0)] DY == Fp((j + 1)h, kh, z + uh(0), y)d=

fh2zh / (1 u)! / d6(m (i1, )W 1 6) 15 (0, jh, . 2) (G 2) — F(Ghy)

><D§’q(jh, 2,0)D" =y ((j + 1)h, kh, z + uh(0), y)dz. (28)

It follows from (28) that
- _ 1
o] < CRY272 (k)™ 2B (3, £)¢ ) (y — ). (29)
Claim (26) follows now from (27) and (29). For r > 2 we use the identity
ﬁh ®hn (Kh + Mh + Rh)(r) (07 Ta x, y) - ﬁh Qn (Kh + Mh)(r) (07 Ta x, y)
= [ﬁh ®n (Kp + My, + Rp)" ™ — b, @, (Kp, + Mh)(rfl)} ®n (Kp + Mp)(0,T,2,y)

+pn @n (K + My, + Ry) Y @y, RL(0,T, z,y)
— T+ 11 (30)

For r = 2 we obtain from (26) and simple estimate |(Kp + My)(jh, kh, z,y)| < C’p2_1§§2 (y — 2),p% =
kh — jh,

| = |[pr @n (Kn+ Mp + Rp) — pr @ (Kp + Mp)] @p (Kp + Mp)(0, kh, 2, y)|
k—2
1
< C?p3/?- “B(3 €)Y h(jh) M= (kh — jh) 1/2/4‘,)1 (z— )¢5 (y — 2)dz
7=0

< 02h3/2—63<§, B e + D )

2 )

with p? = kh. For r > 3 we obtain by induction

i = ] [ﬁh ©n (K + My, + Ri) ™Y — B @, (Kn + My) "=V @5, (Kn + Mp)(0, kh, ,y)
1 1 1 1 -1
< ORPTB(G6)B(G e+ 5)- Bl + T L) (k) D25y — )
< F(E)h3/2_EM(kh)a+(T 2)/2§“ ( — ) (31)

I'(e+3)
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with p? = kh. To estimate IT we use the following estimates

|D2DE B (jh, kh,m,y)| < Cp~ 1= PICS=Iol (y — &), | DAy (jh, kb, 2,2 +0)| < CCH(v),  (32)
|D5(Ky + My, + By)(jh, kh,z +v,2)| < Cp (5 (v). (33)

The inequalities (32) and (33) are obtained by using the same arguments as is the proof of Lemma 7.
Using these inequalities and mimicking the proof of Theorem 2.3 in Konakov and Mammen (2002) we
obtain the following bounds for r =0, 1, ...

’chD;ﬁh ®n (K + My + Rp)" (0, kh, z,y)

< O (kR P B B, 5) B, 2Ty — @)
< RO oyttt — ), en

Inequality (34) allows us to estimate IT = [py, @y, (K + M}’ + Rp)" V] @y, Ry (0, kh, z,y). For this it is
enough to estimate

W25 b [ B (K4 M+ Ba) ") (0,h 2, 2)
X DVBn((j + Dy kb, 2,9)(f (R 2) = [ (G0, y))dz (35)

for r > 2 ,|v| = 4, and
n—2
S= [ (4 My R) N0, o, 2) (e 2) = 1)
7=0

x / q(ih, z,0)h" ¢ (6) / (1 = w)*D"pr((G + 1)h, kh, z + uh(0), y)dudfdz (36)
0

for r > 2, |v| =5,1 <1 <d. Here f(t,z) is a function whose first and second derivatives with respect
to x are continuous and bounded uniformly in ¢ and x. The upper bound for (35) follows from (34) by
integration by parts exactly in the same way as it was done to obtain the upper bound for I, see (27).
This gives the estimate

RS h/[ﬁh @n (Kn + My, + Ry)T (0, jh, z, 2)
xDVpr((j + 1)k, kh, z,y)(f(jh, 2) = f(jh,y))d=

< r(epntr B e 25y — ). 37)

The upper bound for (36) follows from (34) by integration by parts in the same way as it was done to
obtain an upper bound for I, see (29). This gives for (36) the same estimate as in (37) and, hence,

11| < Cr(g)h3/2—fM(kh)aw—?)/%f (y — ). (38)

L(=)

The assertion of the lemma follows now from (26), (30), (31) and (38).



Lemma 10. Let A(s,t,z,y), B(s,t,x,y),C(s,t,x,y)be some functions with absolute value less than
C(t — s)7Y2¢"=(y — x) for a constant C' and an integer > S'd. Then

> A@n (B+C)(ih, jh,x,y) =Y Aoy BT (ih, jh, z,y)
r=0 r=0

=" [A® O] @4 [C @n €7 (ih, jh, 2, y),
r=1

where & = Y2 B,
ProOOF OF LEMMA 10. Under the conditions of the lemma all series are absolutely convergent. The

assertion of this lemma is a consequence of the linearity of the operation ®; and of the possibility to
permutate the terms in absolutely convergent series.

5 Proof of Theorem 1.

We now come to the proof of Theorem 1. Main tools for the proof have been given in Subsections 3.1,
3.2,4.1 and 4.2. From Lemmas 1 and 2 we get that

p(0,T,2,y) =Y p® H(0,T,2,9) + o(h* T /7y — ).

r=0
With Lemma 3 this gives
p(0,T,2,y) — pr(0, T,2,y) =T1 + ... + T7 + 0(h2T)¢C7ﬁ(y —x), (39)
where
T = iﬁ@HWo,T,z,y)—iﬁ@h H(0,T,z,y),
r=0 r=0
T, = Zn:ga @n HM(0,T,z,y) — iﬁ ®n (H + My + VhN)"(0,T, 2,y),
r=0 r=0
T; = Zp@h (H + M +VhN)(0,T, z,y) zn:ﬁ (H + My, +VhN) (0, T, 2, y),
r=0 =0
T, = ZP@h (H + My, +VhN) (0, T, 2,y) — z": n (Kn + M) (0, T, 2, y),
r=0 =0
Ts = iﬁ @n (Kn + Mp) (0, T, 2,y) fZﬁh @n (K + Mp) (0, T, 2, ),
r=0 r=0
Ty = iﬁh ®n (K + Mp) (0, T, z,y) — iﬁh @n (K + My, + Rp) (0, T, 2, ),
r=0 r=0
T, = iﬁh ©n (K + My + Rp) (0, T, z,y) — iﬁh @n H(0,T, 2, y).
r=0 r=0
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Here we put Ny(s,t,z,y) = (L — Z)%l(s,t, x,Y).
We now discuss the asymptotic behaviour of the terms T, ..., Tr.

Asymptotic treatment of the term T;.
We start from the recurrence relations for r = 1,2, 3, ...

(ﬁ@ HW) (0, jh, 2, y) — (13 ®n H(T)) (0, jh, 2, )

— [(ﬁ@ H(T_l)) ®H— (ﬁ@ H(T—”) ®n H} (0,7h, z,y)

+[(Feu") — (Fon B @4 H(0,5h,2,y).

(40)

By summing up the identities in (40) from r = 1 to oo and by using the linearity of the operations ® and

®n we get
(p_pd) (0,jh,$,y) = (p®H_p®h H) (0,jh,$,y)
+(p7pd) Oh H(Ov.jhv'rvy)v

where we put
o0

p(ih,i'h,x,y) = (B @ HO)(ih, i'h,x,y).
r=0

By iterative application of (41) we obtain
(p*pd) (Oﬂjhﬂz?y) = (p® H 7p®h H) (Oﬂjh5z7y)

+(p@ H—pe, H) @, ®(0,5h,z,y),

where ®(ih,i'h, z,2') = H(ih,i'h,z,2") + H @, H(ih,i'h,z,2') + ... = > 02, H") (ih,i'h, 2, 2').

By application of a Taylor expansion we get

J—1 L+ 1)h
;/h du/Rd A (u) — A (ih)] dv

=1 (i+1)h
=> / (u — ih)du / N (ih)dv
i—o Jih Rd
J=1 L(i+1)h 1
3 / (u — ih)>2 / (1) / N'(5) o, dvdddu,
i—o Jih 0 R4

where A (u) = p(0, u, z,v)H (u, jh,v, ), 8; = si(u,i,d,h) = ih + §(u — ih).
Note that

0
/ N (ih)dv = / —p(0, 8, 2,v) |s=in H(ih,jh,v,z)dv
Rd R4 85

0
+/ p(O,z’h,z,v) H(s,jh,v,z) |S:ih dv = / Ltp((),z'h,:r,v)
R4 88 R4

<(L = Dtih, hyo, o~ [ p(0,ihz,0)(L - DIfih, v, 2)

R4
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—Hy(ih, jh,v, 2))dv = / p(0, ih,x, 0) Hy (ih, jh, v, 2)dv
Rd

+/ p(0,ih, z,v)(L* — 2LL + L*)p(ih, jh, v, 2)dv, (45)
Rd

where Hi(s,t,v, z) is defined below in (53). We get from (45)

(Z+1)h h
3 / (u — ih)du / N(ih)dv = o @ H)0, i, 2, 2)
= Jin R4 2

h .
+§(p O Ao)(o,jh,ZE,Z), (46)
where Ay (s, jh,v,z) = (L* — 2LL + L*)p(s, jh,v, z). The direct calculation shows that

d
Ao(s,jh,v,z) = i Z (qu(s,v) - qu(s,z))(UTl(s,U) - UTl(SaZ))

p,q,m,l=1

OP(s, jh,v,2) | o
Xm + ) ;l(opq(s,v) — 0pg(8,2)) (M (5,0) —me(s, 2))

~ . d ~ .
83p(55]h5v?z) + 1 Z o (S U)aarl(sav) agp(sv.]hvvvz)
2 pg\=»

0vp0vq 0V, Ovp 0vq0v,0v;

+(<2), (47)
p,q,r,l=1
where we denote by (< 2) the sum of terms containing the derivatives of p(s, jh, v, z) of the order less or
equal than 2. Note that for a constant C' < co and any 0 < € < %

_(p Sn Hl)(oﬂjh;z?z)

2

h
‘ < Choe i (2 — ),

h . . (1/2—¢
’5(17 ®n Ao)(0, jh,x,2)| < Cle)h2j= 12D, —p (2 — ). (48)

First inequality (48) follows from (B1) and the well know estimates for the diffusion density p and for
the kernel Hy . The second inequality (48) follows from (B1), (47) and the following estimate

hix 8 3p(ih, jh, v, 2)
5; ‘/ (0,ih, @, 0vq0v,0v; dv‘

3193500 4 2
Sh 3°p(0, jh, x, z) Zh/ GpOthv)a (zhjhvz)dv
2 0400, 00 Vg 0v,- 01y
h? 83§(0,jh,z,z) 1/2 :—(1/2—¢)
o |ZA%Je S E) —(1/2=e) (= (z— ). 4
<5 ’ 0,00, 00 +Ch'/7j (235)¢C,\/_Jh (z — ) (49)

Now we shall estimate the second summand in the right hand side of (44). Clearly
" 0 : 9
A (S) = @p(o,s,x,v)H(s,]h,v,z)JrQ%p(O,s,:r,v)

2

0
X — (sghvz)+p(05zv)as

EP H(s, jh,v, 2). (50)

23



Using forward and backward Kolmogorov equations we get from (50) after long but simple calculations

J=1 a(i+1)h 1
> / (u — ih)? / (1—46) / N'(8) |sms, dvdddu
i—g Jih 0 R4
J=1 ,(i+1)h 1 4
— Z/ (u— z‘h)2/ (1-9) Z/ p(0, 5, 2,0)Ar(s, jh, v, 2) |s—s, dvdddu, (51)
i=0 7 ih 0 k=17 B
where B B _
Ay(s,jh,v,z) = (L* — 3L°L 4+ 3LL* — L*)p(s, jh, v, 2),
A2 = (LlH + 2LH1)(S,jh,U,Z),
As(s,jh,v,2) = [(L — L)Ly + 2(Ly — L1)L]p(s, jh, v, 2),
Ay(s,jh,v, z) = Ha(s, jh,v, 2). (52)
and

Hi(s,t,v,2) = (L — L)p(s, t,v, 2)

7 3

dloij(s,v) B dloii(s,2)\ 0%p(s,t,v,2)
Os! 0s! Ov;0v;

. _
iy (81m¢(8,v) B 3lmz‘(5az>> op(s,tv,2) (53)

Os! Os! Ov; ’ T

Using integration by parts and the definition (52) of Ay, A5 and Ay it is easy to get that for any 0 < e < 1/2
and for k = 2,3,4

J=1 L(i+1)h 1

Z/ (u— ih)Q/ (1- 6)/ (0, s,2,0) Ak (s, jh,v, 2) |s=s;, dvdddu

o Jin 0 Rd
< CEN* b, yir (2 — ). (54)

For k = 1 we shall prove the following estimate for any 0 < & < %

J=1  (i+1)h 1
Z/ (u— ih)2/ (1- 6)/ (0, s,2,0)A1(s,jh, v, 2) |s=s; dvdddu
= Jin 0 R
< Ch™ 60 m (2 — ). (55)

Note that the function A;(s,jh, v, z) can be written as the following sum

d

. 1
Ay (s, jh,v,2) = 3 > (04(5,0) = (8, 2)) (0pg(5,0) = Opg(s, 2)) (010 (s, v)
i,7,0,q,l,r=1
9%p(s, jh,v, 2) 3 d
—0un(s, Z))aviavjavpavqavzavr * ZMPZ”:I(U”(S’ v) = 0ij(s,2))(0pq(s,v)

s~ d
0 p(S,]h,U,Z) +% Z Jij(S,U)aqu(s’v>

~0pa(s,2)(mals,v) —mals, 2) o5 S s O

1,5,P,9,l,r=1
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°p(s, jh, v, 2)
0v;0v,0vg0v 0V,
where we denote by (< 4) the sum of terms containing the derivatives of p(s, jh, v, z) of the order less or

equal than 4. By (B1) and (56) it is clear that the estimate for the left hand side of (54) for k = 1 will
be the same up to a constant as for the following sum for fixed p, ¢, r, [

3 (+1) ! 0*p(s, jh, v, 2)
—ih)? 1—-6 0 Ls—s.ddéd
Z/h (u=ih) /0 ( )/de( 8, 2:0) Dvp0v, 0OV, ls=s: dvdddu

i=0 "

(o1r(s,v) = o1r(s, 2)) +(<4), (56)

After integration by parts w.r.t. v, and with the substitution hw = (u — ¢h) in each integral we obtain

J=1 LG+1)h 1 A~/ -
Z/ (u— ih)Q/ (1- 5)/ p(O,s,x,v)M |s=s; dvdddu
0 Rd

o Jin 0vp0vq0v; 0V,

J—1 L(i+1)h 1 s
Z/ (u— z’h)Q/ (1) ap(0, s,2,v) 0°p(s, jh,v, z) (o, dvdédu
i=0 Vi 0 R vy O0vg0v,0vy

1

Jj—
1
< Ch? (1-9) E h ddd
P / / = N T

3/2—¢ §)/2< 1 1
< Ch¥* e s (2 / / Z Ern o oy —dddw

<Ch3/2 E(b / de/ 1/2 Edé/(] Lh dt
o (2 VG~ Dh —t]-

< Chj‘(l/Q‘E)B(§, €)oo, 7w (2 — ), (57)

where B(p,q) is a Beta function and ¢ , (z — ) is defined in Lemma 2. As we mentioned above (55)

follows now from (57). By (B2), (44), (46), (47), (49), (54) and (55) we obtain for any 0 < & < 3 and
i=1,2,..n

(p® H —p®y H)(0,T,2,2)] < Ce)h'*n~ 127, (2 — ). (58)

We use now the following estimate for ®(ih,i'h, z, z") that was proved in Konakov and Mammen (2002)
(formula (5.7) on page 284)

o 1
|®(ih,i'h, z,2")| < C — ihqﬁc’\/i/hﬂ.h (' —2). (59)

From (B2), (44), (46), (57), (58) and (59) we obtain the following representation
J h h
(p - P ) (OaTaxay) = 5(]7 Qn Hl)(OaTaxay) + 5(]7 Qn Ao)(O,T,(E,y)

h h
+§(p ®n Hi @5, @) (0,T,z,y) + E(P ®pn Ao @p ©)(0,T,7,y)

+R(0,T,2,y), (60)
where for any 0 < e < 1/2

|R(0, T, 2,y)| < C(e)(h¥*% + hn~ V2N, = (y — @)
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= b0 yr (Y — @) o(h'*?),

This representation implies that

h ~ g
T o= Slp@n(L® = 20L+ L)p @y 9))(0,T,2,y)

h ~
+5lp@n (L= L)p @ @](0,T,z,y) + Rr(0, T, 2, y), (61)
where for any 0 < e < 1/2
|Rr(0,T,2,y)| < Ce)hn™ "6 ymly — 2) < C()h' ¢ 7y — ) (62)

for 6 > 0 small enough and where ®(s,t,z,y) = > =, H")(s,t,x,y). Here the summand H)(s,t,z,v)
is introduced to shorten the notation. By definition we suppose that g @, H® (s,t,z,y) = g(s,t, x,y) for
a function g. Note, that in the homogenous case ¢;;(s, ) = 0;5(x), m;(s, x) = m;(x) and thus the second
summand in (61) is equal to 0.

Asymptotic treatment of the term To. We will show that

T, =3 p&n HO(0,T,2,y)+ > p @ (H + My, + VAN) (0, T, 2, y)
r=0 r=0

+> P @n (H+ My2) " (0,T,2,y) + Y p@n (H + M} 5)"(0,T,2,y)
r=0 r=0

< Chn ¢ yly — ) (63)

with some positive § > 0. Note that it is enough to consider the case r > 2 because for r = 1,2 the

left hand side of (63) is equal to zero. Note that (63) immediately follows from the following bounds for
r=23,..

P @n (H + M} + VhN) (0,1, z,y)
—p@n (H + My + My + VEN) (0, T, 2,9)
7[23 O (H + M}/L/,?))(T) 723 Qn H(T)](OﬂTv'rvy)
cr -

< C(s)h?’/HEWT?’E+ > ( (v — @), (64)
2

and

P @n (H + My + My + VAN (0, T, z,y)
—p @ (H + My + VRN (0, T, z,y)
*[ﬁ ®n (H + Mh,?)(r) - 23 Qhn H(T)](Ov Ta €z, y)
< Ol L Tl =) (65)
2

for all sufficiently small e > 0 with a constant C(e) that fulfills lim._,q C(e) = 4o00. First we prove
the bound (64). Denote the expression under the sign of the absolute value in (64) by I',.. Note that
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'y =T1 = 0. For r > 2 we make use of the following recurrence formula
Ty = Doy @y H o+ [p@n (H+ M+ VAN))
—p@n (H + M1 + Myo + VEN) V| @, (M} + VhN))

+ []3 @n (H+ My 1+ Mpo+VhN)D — @, (H + M;’1/73)(T71)] ®n My 5
— [ II+III (66)

We start with bounding /7 . First we will give an estimate for
}ﬁ ®n (H + My + VhND) ™ = 5@y, (H + Mp,1 + Mp2 + \/ENI)(T_U‘ : (67)

For r = 2 we have p @, M}/ 3(0, kh, z,y). It follows from (20) that it is enough to estimate

k—2
J1 = h2 ZO h /ﬁ(oa Zha €T, U)(f(lh, U) - f(lhv y))Dgﬁh((Z + 1)h7 kha v, y)d’U (68)

for |v| =4 and
k—2 1
Jo = k2N " ko[ (0, ih, x, ih,v) — f(ih, ih,v,0)0" [ (1—6)?
D> [ 0.ih o) (7Giho) = fin) [ atinv.00” [ =)

x DVFerteap, (i + 1)h, kh, v + 6h(6), y)dddodv (69)
for |v| = 3. Here f(t,x) is a function with DY f(¢,z),|v| = 0,1,2,3 bounded uniformly in (¢,z). An
estimate for J; follows from (27). This gives

1] < OR2#(kh)= B3, )¢Sy — ). (70)

The estimate for J> can be obtained analogously to the estimate of Is (see (29)). By integrating by parts
we get

k—2 1
Jo = h3/22h/ (1f5)2d5/d9~9”/D§l+e<1[§(0,ih,:c,v)
i=0 “0
x(f(ih,v) = f(ih,y))g(ih, v,0)|Dypn((i + 1)h, kh,v + 6h(8), y)dv.

The derivative

Dsl+eq [ﬁ(ovlhvxvv)(f(Zhﬂ ’U) - f(lhvy))Q(’thvv 9)]
is a sum of 9 summands. By using integration by parts once more for all summands which contain
DEp(0,ih, z,v) with |u| < 2, we obtain

_ - - 5—

|| < Ch/? 25(%(1/*96)/1/)(9) 16117 (=72 6]~ + 1)df

k—2
h

i=1

1 1 3/2—2¢ 2e—1,+5-3/
i X (oh —ih)—= <Ch B(e,e)(kh) Cm(y x) (71)
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— 3/2-2 —1,45-3
for any & € (0,1/4). It follows from (70) and (71) that for r = 2 (67) does not exceed Ch3/2=2¢ B(¢, ¢)(kh)® (m(y—
x). For r > 3 we use the recurrence relation

P@n (H + Mj/ + VAN = p @y (H + My + Mz + VAN,
= |p®n (H+ M + VRN —p@p (H + My + My + VAN) "2

@n(H + M}/ + VAND) + [p ®n (H + My + Myz + VAN "2 @5, M}/ 5
=7 +1IT. (72)

From (72) we obtain for r =3

N

-2
' < Ch3/2_2€B(5,5)Cf/;—:(y—x) h(ih)*~Y(kh — ih)~1/2
1

_ 1 _ _
< Ch? 263(5,5)3(5,5)(%)6 VA (y — ).
To estimate 11’ we use the following estimates
’Dng(H + Mp1 + My + VAN (jh, kh, z, v)’ < Cptlel=lle (v — @), (73)
‘DQ(H + M1 + My + VRN (jh, kh, z, 2 + U)‘ < Cpflgp(v — ). (74)

To prove (73) one can use the following estimates for the summands in Mp, 1, My 2 and \/ENl

x

(W2 DD (DL (G + Db, by @, 0) (£ (s @) = (R, 0)))| < Cp™ E (0 — ), ] = 3,

x

‘h1/2D§D3 [DyFerteapy((j + 1)h, kb, 2,0)p*(f (jh, x) = f(jh, v))] \ < Cp~ el PI¢ (v —2), v] = 3,

|hD5 D} [Dypn((G + Db, khy2,0)(f (jhy @) = f(ih,o)]| < Cp™ 7171 (0 — ), |v] = 4,

for a function f(t,x) with |a|+|b| derivatives w.r.t. x that are uniformly bounded w.r.t. ¢. These estimates
are direct consequences of Lemma 7. To prove (74) one can use the following estimates for the summands
in Mh,l;Mh,2 and \/ENl

’h1/2DZ [D;ﬁh((] + 1)h7 kh; z,y) |y:z+v (f(]h,:c) - f(]h; T+ ’U))]’ S Cpilcf;(v - JS), |V| = 3;
|hD% [DEpn((j + Db, kh, 2, y) ly—ato (f(Gh,x) = f(jh,x+0))]| < Cp~ ¢, (v — ), |v| =4,
[W2 DL Dyt apy (4 1)y kb, 2,0) Lymaro p2(F (s @) = F (iR +0)]| < Cp'¢, (0 —a), || = 3.

Again, these estimates follow from the estimates obtained in the proof of Lemma 7. Note that with
—1/2 —1/2 .
2V P Wy ), 2 y) = Vi P (0)(y — = — w1y 4(y)) it holds

9z
dy

C‘@z C
< Z

~pllox| T p

and that with z(Vkal/Q(:E + ), pj (T +0), 2,2 +0) = ijkl/Q(:z: +v)(v = pj (z +)) it holds

—1/2
ov,,
ox

0z
—1/2
ov,,

0z
or| —

aﬂj,k
Ox

} 0z
aﬂj,k

< C(llvll+ 1),
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Now with the inequalities (73),(74) we can proceed like in the proof of Theorem 2.3 in Konakov and
Mammen (2002). This gives the following estimate for r = 3,4, ...

DEDY[P @ (H + My + Myo + VRN "] (Gh, kh, z,v)

o b (o — ). (75)

< C"B(1, %) X ... x B(

Now we denote p1,,» = pQp (H + Mp1+ Mp 2+ \/ENl)(T),ﬁO = p. To estimate py ,_2 @p M,’L’,3 it is enough
to make the same calculations with integration by parts as it was done above for J; and Js. This gives

|II/| S |ﬁ1,7"72 ®h M,’L’,3(O,kh,z,y)‘ (76)
< CRPEB(LS)BA 4+ 2 Sy x o x BU+ =2 (=2 k)t (v —a)
- ) 2792/ " 2 9 5 VER
and by induction
s 1 11 r—3 1 ra
|I'] < CTh3/272 B(e, 5)B(g + 3 5) X ... X B(e + —5 5)B(5,5)(kh)8+ 7 (v — ), (77)

r = 3,4,.... Comparing (76) and (77) we obtain that for r >3
P®n (H + M}, +VaND) ™D — p @y (H + My + My o+ VAN

1 11 r—3 1 r—4
r13/2—2 r=a
< CTh3/*7% B, §)B(€ +5 5) X ... X B(e + — i)B(E,E)(k:h)EJr 2 (v —x). (78)

From (78) we get the following estimate for IT

1 11 —9 1
|1 < C"h¥/2 "% B(e, ) B(e, 5)B(e + 5,5) X - x Bl + . 5

r—3

T (v —2a). (79)

)T€+
To estimate 11 note that the following inequalities that are similar to (73), (74),(75) hold for H + M} ,,
|DDL(H + My 3)(jh, kh,2,v)| < Cp~t71o1=1I¢ (v — 2),
| DL(H + M} 5)(jh, kh, @+ )| < Cp~'¢ (0 — 2),
| DeDF@n (H + ML) ](h, kb2, 0)|

r+1 1
2 2

i 1 T—|a|—
<CB(1,5) . x B( )prlal=Il¢ (v — ). (80)
To prove the last three inequalities it is enough to get the corresponding estimates for summands in M, ,’1’73
(see (20)). These estimates can be proved by the same arguments as used in the proofs of (73), (74), and
(75). To estimate IT1 we have now to estimate p1 , ®p, M}’;g and pa, @p M,’{ﬁ3 where

52,7" = ﬁ@h (H + M}lg)(r)-
Using integration by parts and inequality (80), we obtain for ps,—1 ®p M}/ ; the same estimate as for

fog "
P1,r Oh Mh13

’52,7‘ n, Mllv,l,B(Oa kha z, y)’

- _ 1 r+1 1 r r—2
< OTh?? 263(175) X --~XB(T,§)B(§7€)(kh)€+ 7 Cymn(y — )
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for i = 1,2. Hence for r = 2,3, ...

11| < ’51,r—1 n M,’;g(O, kh, x,y)‘ + ‘172,r—1 n M}/{,s(oa khal'ay)’
r 1 r—1 r—3
LB ) ¢ty — o). (81)

1
< CTh3/*ER(, 5) X o X B

From (66), (79) and (81) we get for r = 2,3, ...

3o 1 r—21 s
IT,.(0, kh, z,y)| < C"h*/?>7% B(e,e)B(e, 5) X ... x B(e + —5 5)(1<;h)8+ = (v — ).
In particular,
FS T —
00,7, y)| < w3222 O _qevszte gy ron3. (82)

['(2) (e + 554)

for any ¢ € (0,1/4). Now we estimate the left hand side of (65). Denote the expression under the sign
of the absolute value in (65) by F,.. Note that Fg = F1 = 0. For » > 2 we make use of the following
recurrence formula

Fr = Fra@nH+ {ﬁ@;l (H + My, + My 2 + VAN,
~p@p (H + My + VEN) "D @ (M1 + My + VRN,)

+ [17®h (H + My, +VAN)"™Y — 5, (H + Mh,l)(T_l)} ®n Mp 2
= I+II+1I1I.
We start again from the estimation of
Ay =p&n (H+ My1+ Mo+ VAN — 5@y, (H + My, + VAN,

For r = 2 we have A1 = (p ®1, Mp2)(0, kh,z,y). It is enough to estimate

k—2
Jo= 0 b [ B, 0)(h,o) = £, y) DL (i + D, v, )do
i=0
for |v| = 4. Analogously to (27) we obtain that

—€ - € 1
5] < CRY(kh) 24 B (5, )¢y — o)

and, hence,
[A1] < ORI (k)24 B, )¢Sy — ). (8)
For r > 3 we use the recurrence relation
A1 = Ar_o®p (H+ My, + My o+ VhNy)
+|P@n (H + Mp,1 + VRN "2 | @) M2
= I'+1I. (84)

From (83) and (84) we obtain for r = 3

E
]

1
| < CRYB(5.)C Yy — @) D h(ih)* /2 (kh — ih)~'/2

%

W' =*B(3,2)B(5 & + 5)(kh) Sy — ). (85)

Il
=]

IN
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To estimate 11’ we use the following inequality for r = 3,4, ...

DEDY[p @ (H + My1 + VRN T"=2(jh, kh, x,v)

1 r—11 —2_|a|—
<C"B(1,2) x ... S)pr2lal=lle () — g).
<C B(1,2)>< x B( 5 ,2)p Cp(v—m) (86)
This inequality follows from (75). We have
[II'| < Ch* = B(1,e)(kh) ¢Sy — ). (87)

Comparing (85) and (87) we obtain that [As| <C?h'~*B(3,e)B(5.c+ %)(kh)sg‘\s/m(y —z). By induction
we easily get for r = 2,3...
1 r—2

1
|A,_1(0,kh,z,y)| < CThHB(i,s) X ... X 3(5,5 + 5

r—3
Y(kh)=H 2 (S (y — ). (88)
To estimate
Ar_1 ®@n (Mp1 + My + VRNY)

it is enough to estimate

k—2
Ji=h'"2>"h / Ar—1(0,ih, z,0)(f(ih,v) = f(ih,y))Dypr((i + 1)h, kh, v,y)dv
=0

for |v| =3,

k—2

Js = hZh/AT_l(O,ih,x,v)(f(ih,v) — f(ih,y)) DY ((i + 1)h, kh, v, y)dv
=0

for |v| =4, and
k—2
Jo=h'?>" h/AT_l(O,ih,x,v)(f(ih,v) — f(ih,y))(kh — ih) DY e teap(ih, kh, v, y)dv
=0

for |v| = 3. It follows from (88) that

—2 —1
L )Ble,e + -

r—3

)(kh)* = (Y (y — ).

1 1
[Ja| < C’ThS/Q’QEB(E,s) X oo X B(§,€+ 5

Clearly, the same estimate holds for J5 and Jg . Thus we obtain

-2 -1
T2 )B(E,E—I—T

r—3

)(kh)? 5T (Y (y — ).

1 1
|11} < CTh?’/Q_QEB(i,g) X x B(5,e +

Now we give an estimate for 171. We write
B, 1=p&n (H~+ M1+ VhN)"™Y — 5@, (H+ M)V,
Using the recurrence equation
B,_1=Br_2®p (H+ My + VANY) + P @ (H + My )" @y VhNy, By = 0

we obtain that

r—2
1T =" sy @n VAN @4 (H + My 1 + VRN ™72 @), My, 2(0, T, 2, y), (89)
=0

31



where ps; =p®p (H + Mhﬁl)(l). To estimate 1117 it is enough to estimate a typical term in the last sum.
Thus we have to estimate

n—2 k—1 Jj—1
e h/ { Zh{/Zh/ﬁgJ(O,ih,x,w)(jh —ih)DErentenih, ih,w, 2)
k=0 j=0 i=0

% (g(ih,w) — g(ih, z))dw} (H + M1 + VAN "==D (i, kh, 2, v)dz}(f(kh, v) — f(kh,y))
xDypn((k + 1)k, T,v,y)dv.

To estimate this term we apply two times an integration by parts in the internal integral f ...dw and then
we make two times an integration by parts in [ ...dv. We also use the following estimates

‘DiDgﬁs,l(O,ih,%w)’
1 I+1 1 1—la|—|b]
1 .\ b=la] = b
< C'B(1, 5) X oo X B(T, 5)(zh) > (v —x),
}Dng(H + My + VAN "D (ih, kh, 2, v)}
ri—o 1 1 1 r—1-3 ., \roiza—lal—|bl
<ot 23(5,5)><...><B(§,T)(kh—m) 2 Cymmmn(v — 2)
for 0 <! <r — 3 with B(%, 0) = 1. This gives the following estimate for any 0 < <r —3,r > 2

’53,1 @n VhN; @5 (H + My 1+ VhN) T2 @5 My, 5(0,T, z,y)

F(E) e Tgs —x
mT3 * Cﬁ(y )- (90)

< Crh3/2—38

For | = r — 2 we have to estimate
P32 @n VAN, @5 My 2(0,T, z,y).

This is a finite sum of terms corresponding to the different summands in Ny, and Mj, 2. To estimate a
typical term

n—2 k—1
WS [ {300 [ Farma0, b w) (kb = )DL o i .
k=0 =0

% (g(ihw) = g(ih, v))dw }(f(kh,v) = f(kh,y)) Dipn((k + Db, T,v,y)dv

again we apply integration by parts and after direct calculations we obtain the following estimate for
r=2,3,..

P32 @n VAN, @5 My 2(0,T, z,y)

F(E—F%) 2 1 € %74

The inequalities (64) and (65) follow now from (82), (90) and (91).

< Cﬂ‘h3/2—36

Asymptotic treatment of the term Ts3. We will show that

o0

> pen (H+ A0, T,2,y) = pon H(0,T,2,y)
r=0 r=0

T3 —
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< Chnf‘;cﬁ(y —x), (92)
where A = M}/ — My, = —2(L2 — 2LL + L*)\(x). Write
C. = p&n(H~+ M+ VhEN)"(0,T,z,y)
—p @n (H + My, + VRN (0, T, z,y)
—[p@n (H+ A" —pe, HD)(0,T, x,y).

Similarly as in (66) we have the following recurrence relation
Cr = Croy @ H+ 5@y (H+ My + VANG) ™D
—p @n (H + My, + VAN) "=V | @5, (M} + VAN,)

+ [ﬁ @n (H + My +VAN) "D — s, (H + A)“*”} ®n A
= I+II+III. (93)
With the notation
D1 =p@p (H+ My, +VhN) ™Y — pey, (H+ A
we get
Dy_y =Dy @u (H + My + VhNy) + pn @n (H + A2 @ (My, — A+ VRN,
Iterative application gives
III = D, 1®,A
r—2
= > Paa®n (M — A+ VAN @y (H + My, + VRN "2 @5, A0, T, 2, y),
1=0
where py; = p ®;, (H + A)D. This sum can be estimated in exactly the same way as the sum in (89).
This gives for r = 2,3, ...

|I11] < C(s)h3/2_25%T35+ e Jr(v — ). (94)
2

To estimate I we write
By =p&n (H+ M +VhN)"Y — 5@y, (H+ M, + VhN;)"=V,
For r = 2 we have F; = p ®, A and analogously to (70)

—€ e— 1
|Ex| < ORI (kh)*="/2B (5, £)C Sy — ).

2
For r > 3 similarly as in (72) we use the recurrence relation
Ery = Er_o®, (H+ M +VhN,)+ [pon (H+ M, +VhN) "2 @), A
= I'+1I.

The terms I’ and I1" have a similar structure as the corresponding terms in (84) and they can be estimated

similarly. This gives the following estimates for r = 2,3, ...

r—2
2

1 1
|E._1] < C’“hHB(E,e)><...xB(§,sJr
11| = |Ey @n (M} + VRN, T, ,y)

)(kh)= 2 ¢Sy — @),

e O e
C(e)h*>7? WT?’ T (v —a).
2

IN
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The claim (92) follows from (93), (94) and the last two inequalities.

Asymptotic treatment of the term Ty. We will show that

T, = > penHD0,T,2,y) (95)

r=1
_Zﬁ®h [H + hN2](T)(OaTaxay) + RZ((E,y),
r=1

with No(s,t,@,y) = (L — L)T2(s,t,2,y), |R; (z,y)| < Chn“sgfﬁ(y — z) for 6 > 0 small enough and with
a constant C' depending on §. For the proof of (95) it suffices to show that for § small enough

> "5 @n (H + My, + VAN: + hNo) (0, T, 2,y) (96)

r=1

- Zﬁ ®h (Kh + Mh)(r)(OaTa (E,y)

r=1
Z E hn76<?/f(y - SC),
k= 2
Z n (H + My, + VEND) (0,7, z,y) (97)

= " @n (H + My + VAN, + hN2) (0, T, z,y)

r=1
- Z Qhn H(T)(O T zay Z H+hN2]( )(O,T,z,y)]
r=1 r=1
S Ck —6 S
< Z Tk Chn™°Cp(y — ).
k=1 (2)
Denote D3 =0 and
DS,m(O;jh;z?y) = Zﬁ®h (Kh+Mh)(T)(07]h7x7y)
r=1

P ®p (H + My, +VhNy +hN2)(0, jh, x,y).

|
iz

Then (96) can be rewritten as
1D3.0(0,T,2,y)] < Chn™°¢3(y — 2).

We now make iterative use of

D3 = D31 @n (H+ My, + VAN + hN2) + gm_1, (98)
form=1,2,..., where
gm(0,jh,2y) = — | p@n (Kn+ M) | @4 (H — Ky + VRN, + hN2)(0, jh, 2, y)
r=0

= Sh,m Qn (L - E)dh(oajha :r,y)
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with

gO(Ov.jhvxvy) = 7ﬁ®h (Hth‘F\/ENl+hN2)(07jh7x7y)a
dyn = pn—p— Vhi, — b,
Shan(0,ih,2,y) = Y p@n (Kn+ My)"(0,ih,2,y).
r=0

Iterative application of (98) gives

n—1
DB,H(O) T,.’I],y) = Z gr ®h (H + Mh + \/ENI + hNQ)(n_T_l)(Oa T,.’L',y)-
r=0
To prove (96) we will show that
9r Qpn (H + Mh + \/ENl + hNQ)(niril)(Ov Ta €z, y) (99)
n—r _6 S
< @hn Corly — ).

For this purpose we decompose the left handside of (99) into four terms

> h/gT(O, ih, 2, u)(H + My, + VhNy 4+ hNo) ™=V (ih, T, u, y)du,
0<i<n/2

as = Y, BN //Sm(o,kzh,x,v)(L— L)dy (kh,ih,v,u)
n/2<i<n  0<k<i/2
X (H 4+ My, + VhNy + hN2) ™ "=D(ih, T, u, y)dvdu,

arg = > B //(LT — L") 8} (0, kh, z, v)dp, (kh, ih, v, u)

n/2<i<n  /2<k<i—n®’

Qp.1

)

X (H 4+ My, + VhNy + hN2) ™"~ D (ih, T, u, y)dvdu,
aa = > BN //(LT — L") 8} (0, kh, z, v)dp, (kh, ih, v, u)
n/2<i<n  j—nd <k<i—1

X (H 4 My, + VhNy + hN2) "D (ih, T, u, y)dvdu.

Here LT and LT denote the adjoint operators of L and E, and ¢’ satisfies inequalities 2s¢ < ¢’ < %(1 — ),
where s is defined in (B2). For the proof of (99) it suffices to show for | =1,2,3,4

5 e 1 n—r—11 g
la,y| < hn7°C B(1,§) X ... ><B(72 ,i)gﬁ(y—x) (100)
Cn—r :| 6.8
< —— | hn™°C y—x
e | St =)

for some ¢ > 0.
Proof of (100) for | = 2. Note that k <¢/2,i > n/2 imply ¢h —kh > %. The claim follows from
the inequalities

max{|Kp(ih, jh, z,y)|, | My (ih, jh, z,y)|, |VEN: (ih, jh, 2, y) (101)

\hNa(ih, jh, x,y)l , |[H(ih, jh, =, y)[}
< C’p_lqp(yf:c) with p? = jh —ih for 0 <i < j <mn,
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|Sh,m(0, khy @, v)| < CC5 2 (v — ), (102)

‘(L — L)dn(kh, ih,v,u)| < Ch3/2(ih — kh) =258 (u —v) (103)
— OV Sy ),
‘(H + My, + VANT + hN3) "D (ih, T, u, y) (104)
11 n—r—21
n—r n—r—23 S—2
<C""p B(§a§)x---XB(Ta§)C\/m(y_u)
C'n/—T . _ _
< {W] (T —ih) 202y — )

forn—r—3=-1,0,1,...,n—3 with p?> = T —ih. We put B(3,0) = 1). Inequality (101) follows from the
definitions of the functions Kj, ..., H. Inequalities (102) and (104) can be proved by the same method
as used in the proof of Theorem 2.3 in Konakov and Mammen (2002) (pp. 282 - 284). Inequality (103)
follows from the inequality ih — kh > %, Lemma 5 and the arguments used in the proof of Lemma 7.

Proof of (100) for | = 3. Note that n/2 < i,k > i/2 imply kh > L. We use the following inequalities

(i (kh i, v, u)| < CRP2(ih — kh) 732520 (u =), (105)
(LT = L)1 (0, ki, ,0)| < CT1CS 2 (0 — ),
he Y (LT — L7) 8. (0, kh, 2, v)dy, (kh, ih, v, u)dv (106)
i/2<k<i—nd’
1

3/2 —1 - o

< CR32T > h(ih—kh)3/2<m(u )
i/2<k<i—nd’
/ oy J2—3/2, (1-5")/
3/2m—1 3/2n—3/2, (1-6")/2

< Chn™""¢ si(u — ),

where 6" = §' /2 — » > 0. Claim (100) for [ = 3 now follows from (106) and (104).
Proof of (100) for | = 4. For i —n® <k <i—1,n/2 < i we have ih > T/2, kh > T/3, (i — k) < n®
for sufficiently large n. The integral

’

/(LT - ZT)Sh,T(Ov kha €T, v)ﬁh(khv Zhv v, ’U,)d’l)

is a finite sum of integrals. We show how to estimate a typical term of this sum. The other terms can be
estimated analogously. We consider for fixed j,1

/ 02Sh.r(0,kh,z,v)
8’Uja’l)l

(01(kh,v) — 0 ji(kh,u))h~4? (107)

i—1
I 0 DS )
=k

B / 025 (0, kh,z,v)

Ov;0uy b~V

x[oji(kh,u* — \/Ew) - Ujl(kh,u)]q(i_k)(kh,u, w)dw,
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where u* = u — hzl k v m(lh,u). Now using a Tailor expansion we obtain that the right hand side of
(107) is equal to

028y, (0, kh, , u* L, 0285, (0, kh, z,u* — 6v/hw)
3 ) 3 ) d5
/ { O0v;0v; \/_lzl vl / O0v;0v

y {\/ﬁ 3 [w+ \/EZEU:} m(lh’u)]uDZle(kh u)

lv]=1

+2hz [w + VR Y2 m(ih, u))”

v!
|v|=2
1—1
/ Dioji(kh,u— 6Vhw — 6h» _ m(lh u))d&] ¢ (kh, u, w)dw.
=k

Note that

9?5 +(0,kh, z,u ) .
7\/_/ dv;ou (wp + \/Egmp(lh, w))g" M (kh, u, w)dw

025 (0, kh, , u*) <=
_p 2D Ih
dv;0v; ;mp( u)

0?Sh+(0, kh, z,u* )
h/ B0;901 Jr\/_Zmp (lh,u)) qur\/_qu (lh,u)) (108)

=k

1
x { / DZo ju(kh,w)dd + / [D;ojl(kh,u — 5Vhw
0

féhz (Ih,u)) D;oﬂ(kh,u)] dé}q(ik)(kh,u,w)dw

_ haQSh’T(O’ k:h, T, u*)

8vj8vl u Jl(kh U)/wpwqq(i_k)(kh’u,w)dw
028 (0, kh, 2, u*) <= -1
+h* 8(1) O, ) Zmp(lh,u) qu(lh,u) +R,
1=k 1=k

where by (A3') we have for jo < (i — k) < n%,w' = (i — k)~/?w

0%85,.(0, kh, z, u* / - ,\3
IRl < Ch¥? vév‘aw )‘/(n‘s P2 |+ O(T 21240 ) (! ydu!
J
< ORC g (u — x) (W50 4 1) ~3/2=1/2+30'/2 / [’ ||? 1 (w)duw’ (109)
<

Chn71/2+”/2+35//2§m(u —x) < C’hnil/Q(l*B‘s/*%)Cm(u - )

We obtain analogously

i—1 193 *
S0, kh,z,u — 6vhw)
h +vh Ih,w)) Doy (kh ’ do
/wp(wq \/_;mq( su))Dytoji( ’U)/o O0vp0v;0v;
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xqF) (kh, u, w)dw
8U]l(kzh u) 32Sh(0, kh, z,u*)
Ouq Ov,0v;0v;

/wpwqq(i_k) (kh,u,w)dw + R,

where )
|R| < Chn~1/2A=30=32)¢ oy — x),1 — 36" — 35> 0

and, for 1 — 38 — 2> 0

3
h3/2/ / 0 Sp,r (0, kb, v, u* — 5vhw) o
O0vp0v;0v;
/ 9%0 1 (kh,u — 6v/hw — 5hzl kmq(lh u))d5
0 Ou,Oug

(1,4 VS (U )+ VA S (U, ) (0, 0)

=k =k
< Chn—1/2(1—35’—2%)gm(u _ x)

For 1 <i—k < jp the same estimates remain true because the following bound holds

/ ol 49 (¢, 2, w)dw < Clo).

(110)

(111)

The same estimates hold for p(kh,ih,v,u) with qﬁ(i*k)(kh,u,w) instead of ¢"~*)(kh,u,w), where
¢(kh,u,w) is a gaussian density with the mean 0 and with the covariance matrix equal to o(kh,u).
The first two moments of ¢~% and qﬁ(l_k) coinside so after substraction we obtain uniformly for

i—nd <k<i-1

oo > // S (0, kh, 2, v)

n/2<i<n i—nd <k<i—1

(ph(khv Zhv v, ’LL) - (kh’a Zha v, u))dv
X (H + My, + VhNy + hNo) "D (ih, T, u, y)du
|: Cn—r
S e BY
L(*=5=)

To estimate the other terms in dj,(kh,ih, v, u) we need bounds for the following expressions

} hT3/2n—3/2(1—u—55’/3)<m(u — ).

S /(LT — ET)Sp (0, ki, @, 0)VR(ih — kh)
i—nd <k<i—1
x Dy p(kh,ih,v,u)dv for |v| =3,
ooy (LT — LT)Sy, (0, kh, 2, v)h(ih — kh)
i—nd <k<i—1
x Dy p(kh,ih,v,u)dv for |v| =4,
oy (LT — L") S} (0, kh, 2z, v)h(ih — kh)?
i—nd <k<i—1

x DY p(kh,ih,v,u)dv for |v| = 6.
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We have

heo > (LT — L7)S),. (0, kh, z,v)Vh(ih — kh) (113)
i—nd <k<i—1

Dyp(kh,ih,v,u)dv|

= Y Dertea(LT — L)), (0, kh, 2, v)Vh(ih — kh)
i—nd <k<i—1

Dy~ %ap(kh,ih,v, u)dv‘

y h
< OT 2% B3/? ———( (u—=x
a - 5’<Zk<'—1 MCM( )

< Chn7(17%735’/2)<m(u —x).

Clearly, the same estimate (113) holds for |v| =4 and |v| = 6. Now (100) for I =4 follows from this
remark and (112) and (113).
Proof of (100) for 1 = 1. Note that for this case T — ih > T/2.

ag= > h > // )8h (0, kh, 2, v) (114)

0<i<n/2 0<k<i—1
xdp(kh,ih,v,u)Up - (ih, T, u, y)dvdu

= Z / — L")8}, (0, kh, z,v)

0<k<n/2—1

X > b du(kh,ih,v,u) W, (i, T, u,y)du
k+1<i<k+ns’

+ > b du(khyih,v,u) g (ih, T, u, y)du o do,
k+n5’<i§n/2
where we denote
Wy, (ih, Tyu,y) = (H + My + VANy + hNo) """ D (ih, T, u, y).

We consider

1—1

Z / —d/2 (z k)(kh u,h™ 1/2[ U—th lh u)])\Ilhr(Zh T, u y)d

k+1<i<k+nd’ 1=k
1—1
= > ok / ¢ (kh,v,w) + VR Y (w4 VR m(lh, )’ Dig ™ (kh, v,w)
k+1<i<k4nd’ lv|=1 1=k

RS m(lh, w))” .
+h Z ('LU + \/_Zl:k m( ,U)) qu(sz) (k/’h, 'U,'LU)

V!
lv|=2

13p3/2 Z w+\/_21 km(lh u))”

lv|=3
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1 1—1
X / (1= 06)>Dsq ") (kh, v+ 6h'*w + k> m(lh, u), w)da}

0 1=k
i1
x { Wy, . (ih, T, v,y) + Vh Z (w+ \/EZm(lh, u))’ Dy Wy, . (ih, T, v,y)
lv|=1 =k

o Z w—l—\/_z:zykm(lh )" DyVp e (ih, T, v,y)

lv]=2

+313/2 3" (w+ Vh Y2 m(lh, w)”

V!

v|=3
1 i—1
X / (1-— 6)2DZ\I/h7T(ih,T, v+ 6hY 2w + 6h2m(lh, u),y)dé} dw
0 1=k

This integral is a sum of 4 x 4 = 16 integrals. We estimate only two of them. Other integrals can be
estimated by similar methods. First, we estimate

> / C=R) (kh, v, w) Uy, (ih, T, v, y)dw > AWy (ih, T, v, y)dw.
k+1<i<k+nd’ k4+1<i<k+4+nd’

Note that we get the same term when we replace ¢ =) (kh, v, w) by AL (kh,v,w). After the replacement
this term disappears. Second, we estimate

Z /<zk>khvwfzw+fz (1, w))” Dy Wi, (ih, T, v, y)dw

k+1<z<k+n5' lv|=1
1—1
= K Z Y DyU(ih,T,v,y) /q(i_k) (kh, v, w)[w; + VE>_ m;(lh,v)
J=1 k4+1<i<k+nd’ P
+O(hn® ||w|| + h3/2n*" ) dw
d 1—1
- h2z Z Df)quhﬂ“(ith’vay)zmj(lhav)
J=1 k+1<i<k4n®’ 1=k

d
+O (WY > h|DP W .(ih, T,v,y)]

J=1 g4+1<i<k+nd’

d
40 (192550 Y R T )] [ o v o] do
J=1 k4+1<i<k+ns’

d i—1
- hQZ Z ngqjth(ith’vay)zmj(lhav) + R,
7=1 k+1<i<k+nd’ 1=k
where -
17l < ﬁTUth_g/% "=y — ).

The first term in the right hand side of this equation will be the same if we replace ¢(*=%) (kh,v,w) by
gb(’_k)(kh,v,w). After the replacement this term disappears. For a proof of this equation we consider
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the function u(w) that is defined as an implicit function and we used the following change of variables

i1
2w =u—v— th(lh,u)
1=k

to obtain

fz (1h, u(w \FZ lhv+0(( k:)||w||+h3/2(ifk)2)

because of (i — k) < n’ . By similar methods we get

Z /\/_m (kh,ih,v,u) + hma(kh,ih, v, w)| Uy, -(ih, T, u, y)du (115)
k+1<i<k+ns’

< crr fun—3/2+28 +3/2

==y n Cor=m(y — ).

It remains to estimate
Z h | dp(kh,ih,v,u)%y, (ih, T, u, y)du.
k+n5/<i§n/2

From (104) and (105) we obtain

S b [ du(khyih, v, )Wy (ih, Tyu, y)du (116)
k4+nd <i<n/2

[ cn—r T/2 du
< | T’1/2h3/2/ -
M= whins'n (U — kKRY372 Cyr=mr(Y — v)

B Cnfr _ o
< =ty | T 2hn S/QC\/T—kh(y*U)
L D(=5—)]
Cn—r h _ "
S | pram=gy | ™ V2= (v — ).
L= ]

Now we substitute the estimate (116) into (114). This gives the following estimate for any 0 < € < s

n/2-1

E h (LTfET)Shm(O,kh,:c,v) (117)
/
k=1

S b [ du(khyih, v, )W) (ih, Ty u, y)du
k+n5’<i§n/2
on-r n/2
[ BT }hn““ IRy h(kh) T (Y — @)
k=1

<06 |5 (fnfl)} e I
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For k = 0 we get with Sy (0,0, z,v) = d(x — v) where §(-) is the Dirac function that

> hQ//Sh,T(o,o,x,v)(L—Z)dh(o,ih,u,u)wh,T(ih,T,u,y)du
1<i<i/2
<06 |

] hn_(l/Q_E)Cﬁ(y — ).

This completes the proof (100) for I = 1. The estimate (97) may be proved by the same arguments as
were used in the treatment of T3.

Asymptotic treatment of the term Ts. We will show that,
Ts = f\/EZﬁ ®n (H + My + \/EN1)(T)(0,T,ZE,y)
r=0

—hYy o @ HD(0,T,2,y) + Ra(z,y), (118)
r=0

where |Rp(x,y)| < Chn_VC\S/%Q(y — z) for some v > 0. Note that with Sj(s,t,z,y) = Y (K +

M) (s,t,2,y) the term Ty can be rewritten as
T5 = (ﬁ*ﬁh)(O,T,SC,y) =+ (ﬁiﬁh) O Sh(O,T,:C,y)-

We start by showing that for » < § < 17T% uniformly for z,y € R

h Z (Pn — 0)(0, jh, z,uw)Sp(Gh, T, u, y)du| < O(hn71/2(17”745))g‘\3/%2(y — ) (119)
1<j<n?

for 6 small enough. For the proof of (119) we will show that uniformly for 1 < j < n° and for =,y € R?

/ﬁh(oajha ZL',U)Sh(jh,T, u,y)du = Sh(jtha x, y)

+O[h1/2T71/2n71/2+5 + h1/2T71 + n5/2h1/2]<;9/%2(y _ x), (120)

/ 50, b, 2, u)Sn (b, Ty u, y)du = Sh(jh, Tz, )
+O[h1/2T_1/2n_1/2+5 4 hl/QT—l 4 né/QhI/Q]CA?/%Q(y . 1') (121)

Claim (119) immediately follows from (120)-(121). For the proof we will make use of the fact that for all
1<j<n®andforall 7,y € R? and |v| =1

|D%SK(jh, T, 2, y)| < C(T — jh)~'¢ (122)

\S/%(y — ).

Claim (122) can be shown with the same arguments as in the proof of (5.7) in Konakov and Mammen
(2002). Note that the function ® in that paper has a similar structure as Sj,. For 1 < j < n’ the bound
(122) immediately implies for a constant C’

|DESK (G, T 2, y)| < C'T7 52 (y — ). (123)
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We have 5y, (0, jh, x,u) = h=%2¢D[0,u, h~/?(u — x — B 3JZ} m(ih, u))]. Denote the determinant of the
Jacobian ;natrix of u — hZf;& m(ih,u) by Ap. From the condition (A3) and (123) we get that for
1<j<n

/ﬁh((), Jjhyz,w)Sp(jh, T, u,y)du

j—1
= /hid/Qq(j) (0,0, h ™Y 2 (1 — 2 — th(ih,u))]Sh(jh, T, u,y)du
=0
j—1 j—1
= /q(j)(O, x4+ ht?w + hz m(ih, u(w)), w) ’A;l‘ Sp(h, T,z +h'?w+h Z m(ih, u(w)), y)dw
i=0 1=0

= / [¢9(0,z,w) + O~ 20 2)(|wl + 1) (i~ 2w)][1 + O(iR)][Sk (jh, T, 2, y)

O TN (y = @)L+ RS2 o] =) (]| + 1)]dw

_ Sh(jh,T,Z',y) + O[h1/2T71/2n71/2+5 + h1/2T71 + h1/2n6/2]<f/%2(y - ZL')

with v = u(w) in f;& m(ih,u) defined by the Inverse Function Theorem from the substitution w =

h=12(u — oz — hzg;é m(ih,u)). This proves (120). Claim (121) follows by similar arguments. From

(119) we get that for § < 15% (with > defined as in (B2))

T5 = (ﬁ*ﬁh)(O,T,Z',y) +h Z /(ﬁ—ﬁh)((),]h,z,u)Sh(jT,u,y)dqu Rh(zay)

né<j<n

with |Rp,(z,y)| < O(hn’l/Q(l’”"“;))Cf/%Q(y — z) . We now make use of the expansion of pj, — p given in
Lemma 5. We have with p = (jh)'/2 > h'/2n?/?

hy hRp? / C5 (= 2)Sp(jh, T u,y)du| < CHAT=n=0" Y~ p=2+2 / ¢S w = @) (G, T, 0, )| du,

j=ns j=n?
(124)
where 6" < 16(1 —6)71,2 6" = § + 266" — 26’ Now we get that
B2 []Gi - 0SuGh T )| du < CBE DTS B -0 (129

j=nd

for a constant C. This shows that for &' > 0 small enough

Ts = —[Vh7E + hw](0,T,z,y)
—h Y [ [VEF A+ D70, jh, 2, 1) Su(jh, T, u, y)du + Ry (2, y)
né<j<n

with |R} (z,y)] < O(hn’(‘;”*"/m)(‘\g/;(y — ) with a constant in O(-) depending on §’. It follows from
(119), (124) and (125) that

o0

Ts = — Y _[Vhwy + hite] @n (Kn + Mp)"(0, T, 2,y) + Ry (2, y), (126)
r=0
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where |R}(z,y)| < O(hn’(‘;”’“/Q))(‘\g/%Q(y — z). Now we apply Lemma 10 with A = VA7, B = H +
M1+ VhNy,C = (K, — H — VhNy) + (My — Mp1) to

=Y Vhir @n (Kn + Mp) (0,7, 2,y) + Y Vhits @n (H + My1 + VhND) (0, T, 2,y) (127)
r=0 r=0
and with A = hme, B=H,C = (Kh — H)+ Mp, to
= Wiy @n (K + Mp) (0, T, 2,y) + Y by @, H(0,T, 2, y). (128)
r=0 r=0

The estimate (118) follows from (125), (127), (128), Lemma 10 and Lemma 5 .

Asymptotic treatment of the term Tg. By application of Lemma 9 we get that

ITs| < C(e)hn™ /225y — w).

Asymptotic treatment of the term T7. From the recurrence relation for r = 2,3, ...
Ph ®n (Kn + My + Rp,) (0,7, 2,y) — pr @n Hy (0,7, z,y)
= [ﬁh ®n (K + My + Rp)" ™Y~ @n Hy "7V | @5, Hy (0,7, 2,y)
+[Pn ®n (K + My + Rp)" Y @5 (Ky + My, + Ry — Hp))(0,T, 2, y)
and from Lemma 8 with r = 1 we get by similar arguments as in the proof of Lemma 9 that

T < CR3PT™2¢(y — ) = Chn ™ 2¢% 0 (y — ).

Plugging in the asymptotic expansions of Ti,...,T7. We now plug the asymptotic expansions of 11, ..., 17
into (39). Using Lemma 10, Theorem 2.1 in Konakov and Mammen (2002) we get

pr(0,T,x,y) — p(0,T, 2, y)

=V [F1+p' @n R1] @1 20, T, 2, )
+h{ (7o + 71 @5 ® @5 Ry + p% @1 R + p @4 Rs] @4 (0, T, 2,)
+p* @n (R @1 )P (0,7, 2,9)

30 (L2 = D)0, T,,y) — gpen (L~ E)p'(0.T,,1) |

2
LO(RIC sy — ), (129)
where
piGihihay) = > pey H(ih,i'h, z,y),
r=0
§Rl(satv'rvy) = Nl(s,t,x,y)+M1(S,t,:r,y)fﬁl(s,t,x,y),
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§R2(S,t,$,y) = N2(S € y)+H1(s,t,x,y)fﬁl(s,t,:p,y),

XV S, ZL' S,y ~

Rs(s, t,w,y) = Y Xl )DZp(s,t,x,y),
lv|=4

X, (8, )

Ml(satv'rvy) = Z s S t 7y)5
|v|=3

7 Xy (s y

Ml(satv'rvy) = Z s Dxp S, )
lv|=3

Hl(s,t,x,y) = Z XV i x Duﬂ-l(s t T y)
lv|=3

Ms ity = 3 ’“T;”Dms,t,x,y).
lv|=3 )

Note that for the homogenous case and T" = [0,1] (129) coincides with formula (53) on page 623 in
Konakov and Mammen (2005).

Asymptotic replacement of p? by p. It follows from (42), (57) and (58) that
|0 = p)(ih jh, v, 2)| < CEWN' T (jh = ih)™™1 20 fos(z — @) (130)

for any 0 < & < 1/2. Using (130) and making an integration by parts we can replace p? by p in (129).
For example the operator L? — L? is an operator of order three. Applying integration by parts we get for
lv| =3

n—1

1—e 1 1
C(e)h ; h R T @.h)l == Ovr(y — )

C( )h1/2 25T25 1/2B(€ e+ = )(b\f( )

IN

/DZP(O, ih,x,z)(p" — p)(ih, T, z,y)dz

IN

By (B2) we have 0 < 3 < 1 — 4e. This implies
h —(1/2—2e—3
=p®n (L2 — L*)(p* — p)(0, T, x, y)' < C(e)hTPn= 272226 n(y — x)

3
< CE)h'"™¢ m(y — )

for some 0 < § < 1/2. The other terms in (129) containing p? can be estimated analogously. Thus we get
the following representation

ph(O,T,Z',y) *p(O,T,SC,y)

= \/E[%l +p®h, %1] ®h (I)(OaTa‘T’y)
+h{ (T2 + 71 @p @ @p Ry +p @p o +p @p N3] @1, (0,7, 2,)
+p ®h (%1 ®h (I))(2) (OaTa (E,y)

1 1 ~
+§p O (Li - L2)p(0aTa ZC,y) - ip O (Ll - Ll)p(O’T, ZC,y)} + O(h1+6cﬁ(y - ‘T))

In the further analysis we make use of the following binary operation ®j},. This operator generalizes the
binary operation ® introduced in Konakov and Mammen (2005). For s € [0,t — h] and t € {h,2h,....,T}
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the operation ®), is defined as follows

fehgtag) = S h [ flsihn2gliht sz,

s<jh<t—h

Note that for s € {0, h, 2h, ..., T} the two operations ®} and ®j, coincide.

Asymptotic replacement of (p2pR;)@p®(0,T, x,y) by pR(R;@,P)(0,T, z,y) = (p@R;)2r®(0, T, x,y),i =
17 25 37 [p Qhn (%1 Qn q))] Oh (%1 Qn q)) (O,T, z, y) by p & [(§Rz~®;z (I)) ®;7, (%1 ®;1 (I))](OvTa za,vy)v p Ohn (LE -
LQ)p(O, T x, y) by P& (Lz - LQ)p(O, T x, y) and D Dhn (LI - Ll)p(o, T, x, y) by P& (LI - L/)p(o, T x, y)

These replacements follow from the definitions of R;,7 = 1,2, 3, and can be proved by the same method
as in the treatment of T7. There an estimate for the replacement error of p ®, H by p ® H is given.
Linearity of the operation ®j, implies that it is enough to consider the functions p ®;, & where $(u, ¢, z,v)
is a function that has one of the following forms:

Xl/(u’ﬂ Z) B Xl/(u’ﬂ ’U)
V!

Xo (U, 2) — X, (u, v)
V!

(L — L)71(u,t, z,v) or (L — L)7a(u,t, z,v).

Y )

DZp(u,t, z,v) with |v] = 3,4,

D¥7(u,t, z,v) with |v] =3,

We consider the case S(u,t, z,v) = (L — Z)%l(u,t, z,v). The other cases can be treated similarly. It is
enough to consider a typical term of (L — L)71(u,t, z,v). We will give bounds for

jh jh _
/ du / p(0,u, 2, 2) ( / xy(w,v)dw> DY(L — L)p(u, jh, 2, v)dz
0 u

Jj—1 jh "
-3 / p(0,ih, z, z) < / X, (w, v)dw) DY(L — L)p(ih, jh, z,v)dz
i=0 v

ih

Jj— (i+1)h
= / (u—ih)du//\'(ih)dz
J=1  (i+1)h 1
+> / (u — ih)%du / (1-9) / N'(5) |szs, dzdddu (131)
0

i=0 Vi

where A(u) = p(0,u, z, 2) (fjh Xu(w,v)dw) DYH (u, jh, z,v),s; = ith + 0(u — ih). As in the treatment of
T, we obtain that

j—1

(i+1)h
> / (u— ih)du / N (ih)dz
ih

hiz, [t
== Zh/ Xl,(s,v)ds/p(O,ih,x,z)DZAO(ih,jh,z,v)dz

ni 1 jh
+§Zh/ xu(s,v)ds/p(O,ih,x,z)DZHl(ih,jh,z,v)dz
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hJ
_§ Z hXV(ZhaU) /p(oa ’Lh,ZC,Z)DZH(’Lh,jh,Z,U)dZ, (132)

where
Ao(s,jh,z,v) = (L2 —2LL + z2)~(s jh,z,v),
Olai(s,z) 8lo~(s v)\ 9%p(s,t,z,v)
b2t _ = ij ij\9 s by 2y
1(s,t,2,v) le ( D5l ) 02102

=

d'm (s, 2) 8lmi(s,v) op(s,t, z,v)
os! 0s! 0z

for | = 0,1,2 with Hy = H. The differential operator Ay was introduced before equation (47). It is a
fourth order differential operator. From the structure of this operator and from (132) it is clear that it is
enough to estimate

n—1 j—1 ih
h J
= B g h/ E h/h xy(s,v)ds/ (0,ih, z, 2) DY THp(ih, jh, z,0)dz®(jh, T, v, y)dv (133)
§=0 i=0 Vi

for |v| = 3,|u| = 3. To estimate (133) we consider three possible cases: a) jh > T/2,ih < jh/2 =
jh—ih >T/4Db) jh > T/2,ih > jh/2 = ih > T/4 ¢) jh <T/2 = T — jh > T/2. In the case a) we
apply integration by parts. This transfers two derivatives to p(0,ih, z, z). This gives

hjfl jh
EZh/ Xy(s,v)ds/Dszrel (0,ih, x, z) DY Tk =C15(ih, jh, 2,v)dz
i=0 ik

g du
1-2
< Ch 8/0 ul—e (jh_u)l—a(’b\/j_h(viz)

< Cle)h' > (i) * (v — x)

and
T
du
1-2
[l < C(e)h E/o m@/ﬂy—@
< C(E)h3/4T1/2n_(1/4_26_"/2)¢ﬁ(y _ )

< ClETVPR 0 iy — @), (134)

where 6 = (1/4 — 26 — 5/2) > 0 if 56 < 1/2 —4e, 0 < & < 0,05 (see the condition (B2)). In the case b)
we apply integration by parts and transfer four derivatives to p(0,ih, x, z). This gives the same estimate
as in (134). At last, in the case c) we make an integration by parts and transfer three derivatives to
®(jh,T,v,y) and one derivative to p(0,ih,x, z). This gives the same estimate as in (134). To pass from
DEp(ih, jh, z,v) to DEP(ih, jh, z,v) we use the following estimate

|DED(ih, jh, z,v) + Dy p(ih, jh, z,v)| < C¢ sr=m (v — 2).

Clearly, the same estimate (134) holds true for the other summands in the right hand side of (132). This
gives

=
3 Z /Zh/ X, (s,v)ds /p(O,ih,x,z)D‘Z’Hl(ih,jh,z,v)dz@(jh,T,v,y)dv
=0
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IN

C( )T1/2 6h3/4+6¢ ( :C)

Jj—1

Mlb‘

h/xv (th,v Z / (0,ih,z, z)DYH (ih, jh, z,0)dz®(jh, T, v, y)dv
i=0
< C( )T1/2 6h3/4+6¢ﬁ(y _ .’L')

We now estimate the second summand in the right hand side of (131). Similarly as in (50) we obtain

J=1  L(i+1)h 1
> / (u—ih)2du / (1-9) / N'(5) |s=s, dzdddu
i 0

i=0 /h
J=1  L(i+1)h 1 4 jh

= Z/ (u— ih)z/ (1- 6)2/ XV(T,v)dT/p(O,s,:c,z)Dz"Ak(s,jh,z,v) ls=s; dzdddu
i—=0 Jih 0 k—=1YS

J (i+1)h 1
- Z/ (u— ih)Q/ (1—=9)x,(s,v) /p((), s,x,2)DY Ao(s, jh, 2,0) |s=s, dzdddu
% 0

i=0 /ih

J=1 L(i4+1)h 1
72/ (U*Zh)2/ (1*5))(”(5,’0)/p(o,S,:L',Z)D:Hl(S,]h,Z,’U) |S:Si dzdddu
0

i=0 Vi

J=1  L(i4+1)h 1
fz/ (uﬂ'h)?/ (1f5)M/p(O,s,x,z)DZH(s,jh,z,v) |o—s, dzdddu, (135)
0

i=0 /i ds

where the operators A;,i = 1,2,3,4, are defined as follows:

Ai(s,jh,z,v) = (L*—3L*L+3LL? — L*)p(s, jh, z,v),
As(s,jh,z,v) = (L1H +2LHy)(s,jh,z,v),
As(s,jh,z,v) = [(L—L)Ly+2(Ly — L1) Lp(s, jh, z,v),
Ay(s,jh,z,v) = Ha(s,jh,z,v).

The operator A; was introduced in (51). For this operator it is enough to estimate for fixed p, ¢, 7,1
J=1  (i+1)h 9451 .
p(s’ jh’ Z’ /U)
—ih) (1-94 )d 0 DY | —7— ] |s=s, dzdddu.
3 [, o =05 [t [z (GRS o i
As in (56) we obtain that this term does not exceed
Ce)n* 22 (1h)* ™1 i (v — ). (136)

It follows from the explicit form of these operators that the same estimate (136) holds for Ay, A3 and Ay.

The other three terms in the right hand side of (135) do not contain the factor fsjh X, (7,v)dr and they
can be estimated separately. Clearly, it is enough to estimate the term containing Ag. The remaining
two summands are less singular. From the explicit form of Ay (compare also (46)) we obtain that it is
enough to estimate for fixed ¢, 1,7

J=1 L(i+1)h 1 3~
S [ e [a-onten) [0 (TEEEEDY (i) e, dedid
0

i—0 ih 8anzlazr
Analogously to (47) we get that this term does not exceed

C(e)R' > (jh)* 6 (v — ). (137)
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Now from (131), (134), (135), (136) and (137) we obtain that
[p®n (L — L)1) @, (0, T, z,y) —p ® [(L — L)71 &}, ®|(0, T, ,y)

< ChY*0¢ sy — x) (138)

for some § > 0. The other replacements can be shown analogously. Thus we come to the following
representation

pr(0,T,2,y) —p(0,T, z,y)

= Vh[71®), ®0,T,z,y) +p (R @) 8)(0,T,z,y)]
+h [T @, (0, T, 2,y) +p @ (R2 @), ®)(0,T,2,y) +p n (N3 @}, ®)(0,T,2,9)]
+h ([T @), @ +p® (R ®), ®)] @), (R @), )(0,T,z,y)

h h ~
+5p® (L = L?)p(0, T, 2,y) — 5p ® (L = L)p(0, T, y) + O ¢y (y — ). (139)
We now further simplify our expansion of p, — p. We start by showing the following expansion

ph(oa T,:c,y) - p(oa T,:c,y)
= \/E(p®]:1[pA])(O’Taxay) + h(p®]:2[pA]) (O,T,,T,y)
+h’(p®f1[p®f1[pA]]) (O,T,Z',y)

h h -
+5p® (L = LP)p(0, T, 2,y) — 5p ® (L = L)p(0, T, 9) + O ¢y (y — ), (140)
where for s € [0,¢t — h],t € {h,2h,...,T}
pa(s,t,zy) = (P, 2)(s,t,2,y)
= Btz 3 b [ B b 0t v

s<jh<t—h
Here &, = H+ H ®), H+ H ®), H ®} H + .... We now treat the term p® z%l(s,t,z,y).

p®z%1(3,t,x,y) = /dT/ 8,7, x,v)(t —T) Z XVT (Zvﬁ(TataUay))d’U

lv]=3

-y /dv [/ 5,7,2,0) (/t Xo (1, y)dU) (,%Dzﬁ(nt,v,y)df

lv]=3

e S e

[v|=3 lv|=3
= IT+1II. (141)

By integrating by parts w.r.t. the time variable we obtain for I.

t
T / o ot 70 (ol ) D23 0, 2

||3

op(s, T, z,v)

t
/ Dvp T, t v y) (#/ XU(U,y)dU—p(S,T,.’L',U)XU(T,y)) dT]
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1 t t t
= =Y — fa [p@,” ,v) ( / xl,(u,y)dU> DY b v,y
l/! 2 s+t 2

|v|=3
1 ¢ o
+ Z _| Xu(u7y>du D,Up(S,t,IL',y)
lv|=3 s
1 s;t t
+ Z —|/ dr (/ xl,(u,y)du) /LTp(s,T,x,v)DZﬁ(T,t,v,y)dv
v!
|v|=3 s T
1 s;t
o Z J/ X,/(T7y)d7—/p(S,T,SC,’U)DZﬁ(T,t,?%y)dv, (142)
lv|=3 7%

For the second term we get

1 s+t ! v Stt
=% E/p(S,T,OU,U) <ﬂ+t xy(u,y)dU> Dyp(—5—t,0,y)dv

|v|=3 2

1 ' ' T U~
+ ;/Sgt dr (/T xu(uvy)du) /L p(s, 7, x,0) Dyp(7,t, v, y)dv

lv]=3

1 _
B Z V'/ Xy(Tvy)dT/p(S,T,SC,’U)LZp(T,t,U,y)d’U, (143)
. s+t
2

lv|=3
From (141)- (143) we have
PR Z%l(s,t, x,y) =7T1(s,t,2,y) + p® LT1(s,t,2,y) —p® Ml(s, t,,y).
This shows that
T1(s,t,2,y) + p @ Ri(s,t,x,y) = T1(s,t, 2, 9)

+p @ Ly (s,t,2,y) — p® LE1 (s, t,2,y) +p® Mi(s,t,2,y) — p@ My(s,t,2,y)
=p® M(s,t,x,y). (144)
It follows from (144) and the definitions of the operations ® and ®), that
VR [F1L @), ®(s,t,,y) + (0 © R1) @, B(s,1,2,)]
= Vh(7F1 +p@R1) @), (s, t,2,y)
= Vh(p ® My) @}, ®(s,t,2,y)
=vh Z h/(p®Ml)(S,jh,x,z)@(jh,t,z,y)dz

0<jh<t—h

A Z h/ V:h du/p(s,u,x,v)Ml(u,jh,v,z)dv] ®(jh,t,z,y)dz

0<jh<t—h

=V Z h/ Ustdux[s,jh]/p(s,u,x,v)Ml(u,jh,v,z)dv} ®(jh,t, z,y)dz

0<jh<t—h

t u,v _ o .
Vi [ [pan) XX pr | ST s bl [ B 00tz )z | do

|v|=3 0<jh<t—h
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t
X \U, V) )
= \/E/ du/p(s,u,:z:,v) X Z %Dv}m(u,t,v,y)dv
s \

v|=3
= Vh(p ® F1)[pal(s, t, 2, y). (145)

Here, x[s, jh] denotes the indicator of the interval [s, jh]. Using similar arguments as in the proof of (145)
one can show that

h [%2 ®;z (I)(Svta IL',y) =+ (p o2 §R2) ®;z (I)(Svta ZL',y) +p Qn (§R3 ®;z (I))(Svta :r,y)]
= h(p ® Fa)pal(s, t,z,y) + hp @ I} @), D(s,t,x,y). (146)

For the first two terms in the right hand side of (139) we obtain from (145) and (146)

Vh[F1 @), @(0,T,2,y) + (p® R1) @), ®(0,T,z,y)]
+h (T2 @), ©(0,T,2,y) + p® (Re @), ®)(0, T, z,y) + p @n (R3 @), )(0,T, z,y)]
= Vh(p @ F1)[pal(0, T, 2,y) + h(p @ Fo)[pal(s. t,,y) + hp @ I1; @), B(s,t,2,y). (147)

Using (145) we get

hlT @), @ +p@ (R @), ®)] @), (R @), )(0,T,2,y)
= h(p ® Filpal) @}, (R @), ©)(0,T,z,y)
= hp @ Fi [pa @}, (R1 @}, )] (0, T, z,y).

Note that

t
U, V) e
hp @ 11 @}, ®(s,t,z,y) = h/ du/p(s,u,x,v) Z %Dv[m @}, ®|(u,t,v,y)
s lv|=3 )

= e Flm @ (s, b2, y).
For the proof of (140) it remains to show that

hp @ Fi[m1 @), ® + pa @), (R1 @), )](0,T, z,y)

= h(p@ Filp @ Filpall) (0,T,z,y) + O(h' ¢ sy — ). (148)
We will show that
hp ® Fi(p — pa) @), (R1 @), ®)](0, T, z,y) = O(h' ¢ sz (y — x)), (149)
hp ® fl[p ®;1 (§R1 ®;1 (I))](O,T, €z, y) - hp & ‘Fl[p o2 (§R1 ®;1 (I))](O,T, €z, y)
= O(h'*°¢ 7y — @) (150)

Claim (148) follows from (149), (150) and (145). The estimate (150) can be shown similarly as in the
proof of (138). An additional singularity arising from the derivatives in the operator Fi[] can be treated
by using the additional factor A in (150). To estimate (149) note that from the definition of £; and ®

(R @}, @)(jh, T, 2,y)| < Cle)h™*(T = jh)* b =y (151)

Then we use the following estimate which can be proved by the same method as in the treatment of 77,
where an estimate for (p — p?)(0, jh, z,y) was obtained.

[(p — pa)(u, jh,v, 2)| < ChM2¢ rp—(z — v). (152)

o1



From (151) and (152)

|(p = pa) @ (R, @) (u, T, v, 9)| < CER* (T —u)d yr=yly —v) (153)

For an estimate (149) it is enough to estimate a typical summand of the sum of the detailed representation
of the left hand side of (149). E.g., for |v| =3 we have to estimate

h/OTdu/p(o,u,x,v)WD”[ > /p pa)(u, jh,v,z)

{jiu<jh<T—h}

X (W1 @), @)(jh, T, 2, y)dz]dv
T/2 T
- h/ ...+h/
0 T/2
=I1+1I.

For an estimate of 11 we apply integration by parts and transfer three derivatives to p(0, u, x v)w
Using (153) we obtain the following estimate

T
—e (T_u)a
11| < C(e)h3/? /m ——dud p(y — )
< CEPPETG sy — ). (154)

For the treatment of I we consider two cases: a) jh —u > T/4 and b) jh —u <T/4 = T — jh > T/4.
Similarly as in (42) the difference h(p — pa) can be represented as
h(p — pa)(u,jh,v,2) = h(p @ H — p ®)}, H)(u, jh, v, z)
+h(p® H — p @), H) &}, P1(u, jh,v, 2)

i*h
fh/ d’r/ u, 7,0, 2 YH (7, jh, 2’ 2)dz’

(i+1)h
+h Z / dT/()\(T, 2') = A(ih, 2"))dz" + h(p®@ H — p @), H) @), ®1(u,jh,v,z)

—Jin
i=j
=TI +1II' +1ITI, (155)

where A\(7,2") = p(u, 7,v,2")H (7, jh, 2, 2), ®1(th, jh, 2'z) = H(ih, jh, 2'z)+ H®} H(ih, jh,2'z)+...,j* =
J*(u) = [#] + 1. Here [z] is equal to the integral part for noninteger x and equal to x — 1 for integer x.
For I, case a), we have jh — 7 > T/5 for n large enough. With the substitution v + v’ = 2z’ we obtain

j*h
‘Dgh/ dT/p(u,T,U,z')H(T,jh,z',z)dz'

J*h
= |D5h/ d’r/p(u,'r,v,v+v')H(T,jh,v+v',z)dv'

ik dr 27—2
<ch [ g0 e ) < ORT 20 (= v)
<On"*¢ spma(z —v) = CT* W —y(z — (156)

For the proof of (156) we used the following estimate from Friedman (1964) (Theorem 7, page 260)

v)
(19
- Cl]
v N < _ a/2 .
|Dyp(u, 7,v,0+0")| < C(1 — u) exp <T—u))
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For [I'(u,jh,v,z)(R ®), ®)(jh, T, z,y)dz, case b), it is enough to estimate for [v| = 3

j*h 82~ N l
h/ ‘”/ p(t, 70,0+ ) ou(r, 0 + 1) — ou(r, 2Dy, TPTI V£ 2) g
“ Ov]0vy,

x (Ry @), @)(jh, T, 2, y)dz. (157)

For an estimate of this term we transfer five derivatives from p to (R ®), ®)(jh, T, z,y) and we use the
following estimate for |u| =5

|Dyyb(7, jh,v + v, 2) + DEP(T, jh, v+, 2))
< C(ih— 1)~ r=r(z — v —0).
We obtain that (157) does not exceed

C*h—TINT 20 iy —v) < CRITOT 0= (=0-T/2 oy )
0(h1+6T1_6)¢\/ﬂ(y — ). (158)

We used that for any 0 < § < 1 it holds that » < 2_—726, see condition (B2). For an estimate of
JII'(u,jh,v, z) (R @), ®)(jh, T,z y)dz we use the decomposition (43). For getting an estimate for the
terms in I1’ that contain the first derivatives \'(ih, 2') we use the identity (45) and similar arguments as
already used in the estimation of [ I'(u, jh, v, z)(R1 ®), ®)(jh, T, z,y)dz. The estimate for terms in 11’

containing second derivatives A (ih, 2') follows from (53) and (54). Finally, for 111’ the same estimates
hold because of smoothing properties of the convolution ...®, ®1(u, jh,v, z). This implies (149) and, hence,
the expansion (140).

Asymptotic replacement of pa by p. Now, we compare hp ® Fa[pa](0,T, z,y) with hp ® F2[p](0,T, z,y).
Note that for 2;c < § < 2,|v| =4

< CR(T — 1) 6 7y — @)

hJ
h / du / p(0, 4,2, 2) X, (s 2) DYp(u, T, 2, ) dz
0
2

n 8 —4i Fes
< O e < O ) (139

< CR'TOTEATEEG oy — ). (160)

T

n [ du [ D0, 2 o T 2 )
T—h?

The same estimates hold for pa (u, T, z,7). Hence, it suffices to consider u € [h°, T — h°]. We now treat

T—h?
h/ du/p(O,u,x,z)XV(u,z)DZ(p—pA)(u,T,z,y)dz
h

s

T/2 T—h
:h/ ...+h/ .=1+411. (161)
hé T/2

By using (152) we get

T—h°
i = | / du / DY [p(0,u, 2, 2)x, (1, 2)](p — pa)(u, T 2, )z
T/2
< O ¢ r(y — o) = Ch¥P7T7¢ rly — )

Ch'™* ¢ yply — x),7 >0 (162)
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For u € [h®,T/2] it holds that

T/2
1 = / du [ DLIp(0. w25, (0, 2] — pa) (0. T, 2,0)d

Ch3270¢ m(y — ). (163)
Note that the condition § < 2 implies that 3/2 —§ > 1. It follows from (159)-(163) that

hp @ Fa[pal(0, T, z,y) — hp @ Fo[p)(0, T, z,y) = O(h* ¢ m(y — z)). (164)

IN

For the proof of
hp @ Filp ® Filp — pal] = O(h' ¢z (y — z))
we consider a typical summand for fixed v, |v| = 3,

h/OT du/p(O,u,x,z)Xu(u,z)DZ VUT dT/p(u,T,Z,’U)XV(T,U)DZ(p—pA)(T,T,U,y)d’U] d=.  (165)

As before it suffices to consider the integrals for u € [h%, T — h°]. The integral in (165) is a sum of four

integrals

T/2 (T+u)/2

L= / du/D/ /
T/2 T

L = h / du / / /
h? (THu
T—ho (T+u)/2

I3 = h/ du/...DZ d’r/
T/2

T

I, = / du/ .D¥ dT/ (166)

T/2 (T+u)/2

Note that in the integrand in I5 it holds that 7 — u > T'/4. By applying integration by parts w.r.t. v and
(152) we get

B

|I| < Ch3>™*T*¢ =(y — ). (167)

Furthermore, in the integrand in I, it holds that v > T/2,7 —u > h%/2,T — u > h?. Using integration
by parts w.r.t. z we obtain

L < CR¥P2OT™26 iy — @) < CT#PRP771270 (y — ), (168)
where, by our choice of §, 3/2 — 5¢/2 — 6 > 1. For an estimate of I3 we use the representation

(p—pa)(r,T,v,y) = (p®@ H —p®j), H)(1,T,v,y)
+(p@ H —p®), H) @) ®1(1,T,v,y)

]h
/ / 7, 8,0,w)H (s, T,w,y)dw

—|—§[p 5, (Hy + A0))(7, T, v, )

L n=l DR 4
+§Z;* /ih (t —ih) / (1—~ I;/p 7,8, 0, W) Ag (8, T, w, ) |s—ihtry(t—in) dwdydt,
+p @ H —p @) H) &) 21(7,T,0,9), (169)
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where j* = j7*(7) = [r/h] + 1. As above [z] denotes the integer part for nonintegers x and it is equal to
x — 1 for integers x. The quantities H; and Ay, k = 0,1,2, 3,4, have been defined (52) and

4 (ih,i'h, z,2") = H(ih,i'h,z,2") + H @), H(ih,i'h,z,2") + ....

To estimate DY (p — pa)(7,T,v,y) we note that

J*h
h DZ/ ds/p(T,s,v,w)H(s,T,w,y)dw

Jj*h
=h DZ/ ds/p(r,s,v,v—l—w’)H(s,T,v+w’,y)dw’
o ds 2-26
< Ch/ mfb\/ﬁ(y —v) S Ch* ¢ 7—(y — ). (170)

Furthermore,

h? h? . .
?Dg[p(g);m Hl](T,T,’U,y)‘ = TDZ Z h/p(Tajhavaw)Hl(jhavavy)dw
7<jh<T—h

h2
<GSl X n [ DU+ )G T+ 0 )

T<jh<T—h3 /2

h2 d v+e;+e . INT~/ - ! !
+5 c§ : Y h/Dw/ *Ip(7, jh, v, v +w)]p(ih, T, v+ w', y)dw
i,k=1T—h%/2<jh<T—h

< OW2g oy —v) + Ch25/2¢ o (y — v). (171)
Because of the structure of the operator Ay it is enough to estimate for fixed 4,1, k

h? y e . 32ﬁ(jh,T,v+w’,y)
7Dv Z h/Dw’ip('r,jh,v,erw’) o] dw'. (172)
T7<jh<T—h

With the same decomposition as in (171) we obtain that (172 ) does not exceed

Ch?=/2¢ m—(y — v). (173)
From (171) and (173) we obtain that
h? 1
= 1Dvp @), (Hy+ Ao)l(r, T, 0, y)| < ChYY 6 ey — v) (174)

for some v > 0. It remains to estimate the last summand in (169). It follows from the structure of the
operators Ag, k = 1,2,3,4, that it is enough to estimate

n—1 (i+1)h 1 4 a4~ T /
Z / (t - ’Lh)Q / (1 - ’Y) Z / DZ |:p(7-a 5,0,V + wl) p(s’ Xl ,y) |s:ih+’y(t7ih) dwldlydt
— Ji 0 —

/ / / /
=5 Jin Ow; Ow; Ow;, 0w,

(175)
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for fixed i, j, p, q. As above, we obtain that (175) does not exceed

Ch? e S ! 1 dryd
‘WT*—T@*“)/O : / ( *”;ﬁ [ih — ) T haP2 [(n— )b — b2

= Ch26 - (y v)/o 22/0 - Y. (176)

{i:j* h<ih<r+hd /4}

+Ch2¢m(y—v)/01z2/01(1 -) Z

{i:7+hd JA<ih<T—h}

=I"+11". -
Now,
2, —56/2 oot .
e _ B b he———dvd
{i:j*h<ih<T+h%/4}
< on o [ [0 e
- VT—7\Y =V z RSl __ i
’ 0 % (ghsingrins/ay [(ih — 7) + yh2]'~*

< C(E)h2*8755/2¢\/T__T(y_U). .

Using inequality (h — yz)h —ith = (n — i)h — yzh > h(1 — vz) > h(1 — ) we obtain that

1 1
II"| < Chh™"2¢ 7=(y —v) /0 2 /0 dy > h
{i:74+h?®/4<ih<T—h}
< ORI ey — ). (179)

Now from (169), (170), (174), (175), (178) and (178) we obtain that
Dy (p@ H —pj, H)(1,T,v,y)| < Ch'¢ 7=y —v) (180)

for some positive . The last summand in the right hand side of (169) admits the same estimate (180)
because of the smoothing properties of the operation ®),. Hence,

|Dy(p = pa)(1, T, v,y)| < Ch7¢ 7= (y — v). (181)

Making the change of variables v = z + v into (165) we get that the integral w.r.t. v is equal to

T
Dy l/ d’r/p(u,T,z,z+v’)XV(T,v)DZ(p—pA)(T,T,z+v’,y)dv' . (182)

Taking into account (181) and applying integration by parts in (182) we obtain that (182) does not exceed

T od ChY
ont [ b rmaly = 2) € <= ety =) (183)

From (165) and (183) we obtain that

[I3| < Ch'7 ¢ m(y — ).
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The estimate for I3 can be proved analogously to the estimate for 3. Thus, we proved that

hp @ Filp @ Filp — pal] = O(W' ¢ sy — x)).

The estimate

W2p@ Filp — pal = O(W' ¢ sy — )

can be proved by using the same decomposition of p — pa. This completes the proof of Theorem 1.
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