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Yves Lafont & Francois Métayér
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Abstract

We prove that for any monoidl/, the homology defined by the second author by means of polygraphic resolutions
coincides with the homology classically defined by means of resolutions b fréenodules.

1 Introduction

Since the work of Squier and others [Ani86, Squ87, Kob90], we know that monoids presented by a finite, termi-
nating and confluent rewriting system satisfy a homological finiteness condition. This has two consequences:

¢ the possibility to prove negative results, e.g. examples of monoids having a decidable word problem, but no
presentation satisfying the above conditions;

e on the positive side, the construction of explicit resolutions from such presentations. See for example [DL03]
for a recent application of similar methods to compute the homology of gaussian groups.

Now rewriting systems quite naturally lead#ecategories, as follows. Lét/ be a monoid presented by a system
(3, R) of generators and rewrite rules.3f denotes the set of words on the alphabeRR C ¥* x X* is a set of
ordered pairs of words. A rewrite rule: x — y applies to any wordizv with v, v € 3*, defining a reduction step
ulv : uxv — uyv. ThusR generates a sét* of reduction pathdetween words, whose elements are composable
sequences of one-step reductions, up to suitable commutation rules (see [Laf07] for a detailed survey). These data
fit together in a&2-category

TEY" =R

whereT denotes the singleton. It has a unique object, words as arrows and reduction patrsoags. Here=
denotes the source and target maps: all words clearly have the same source and target, namely the single element
of T, and a reduction path froma to v’ has of course souree and targetw’. Words compose by concatenation,
while reduction paths are subjecttwo sorts of composition, either “parallel” or “sequential”. What we get exactly
is a free2-category generated bycamputadStr76].

At the next dimension, consider a gétC R* x R* of pairs ofparallel reduction paths, i.e. with the same source
and the same target. The smallest equivalence relatioR*ocontainingP? and passing to the context is the
congruence generatdaly P. In case the relation of parallelism itself is generated by a finitedDsetve say that
the underlying monoidV/ is of finite derivation type It turns out that the latter property holds for all monoids
presented by finite, confluent and terminating rewriting systems [SOK94, Laf95]-chtegorical language?
generates a sét* of 3-arrows extending the abo®ecategory to &-category:

TE&Y & R & P

Note that there are now three ways of composing the elemerit$.dfVe look here for set® such that each pair
(z,y) of parallel paths il?* can be filled by at least one: = — y in P*.

This point of view was systematized by the second author [Mét03]. Objects of study are now arbitetagories,
not just monoids(T, X, R, D) becomes an infinite sequenG®, S, ..., Sy, .. .) definingn-computadgPow91]
or n-polygraphgBur93], a terminology we shall adopt here.
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An w-polygraph, or simplypolygraphS, generates a free-categoryS*, generalizing the above situation. There
is an abelianization functor taking each polygrapho a chain compleX.S of abelian groups, thus defining a
homology

H*<S) =qef Ha (ZS) (1)

Now let C' be anw-category, ands' a polygraph. Apolygraphic resolution o by S is a morphismS* — C
satisfying some lifting properties (see section 2.3). But the homdlbdy) only depends o€ [Mét03], so that
we may define a “polygraphic homology” 6f by

HP(C) =gef Ho(S). (2)

A monoid M can be seen as a particularcategory, with degenerate cells but in dimension 1. Thusgfer M,
(2) defines the polygraphic homology bf, whence an immediate question:

doesHY° (M) coincide with the usual homology aff, defined by means of resolutions by free
ZM-modules?

It turns out that the answer is positive. The goal of the present article is to present a proof of this result, previously
established in the particular case of groups by the first author [Laf05].

The key notion is that of annfolding anw-category built upon a polygraphic resolutiS§i — M and from which

we recover the usual homology &f by abelianization. This is exposed in Section 3, which contains the core of

the argument. As the properties of these unfoldings are heavily based on the results of [Mét03], the paper starts by
recalling those results (Section 2); they are however significantly revisited in the following aspects:

¢ the notion of polygraphic resolution now fits in a Quillen model structure on higher categories [LMWO7],
generalizing [JT91, Lac04] (see also [Tho80, WHPTQ7]), whence a new terminolo@gyeki fibration

e the path construction is much simplified (Section 4);

e whereas the results of [Mét03] are sufficient to settle the case of groups, more general statements about
homotopy, and new proofs, are needed in the case of arbitrary monoids (Section 5).

This work is part of a general program aiming at a homotopical theory of computations, whose further develop-
ments include

e ageneral finiteness conjecture [Laf07]: is it true that a moAdidresented by a finite, terminating and con-
fluent rewriting system always has a polygraphic resolufibn— M wheresS; is finite in each dimension?

e the study of other structures expressible by polygraphs, as proof systems [GuiO6b], Petri nets [Gui06c] and
term algebras [Mal04]. In the last case, the polygraphic homology is likely to be degenerate; however,
resolutions still bear many relevant informations and could lead to new, refined, invariants;

e potential applications to the theory of directed homotopy. See [Gou03] for a survey.
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2 Polygraphic homology

2.1 Globular sets and higher categories

Definition 1 A globular setis an infinite sequencd : Sy &= S; & S2---S; & Si41---, whereS; &= S;11
stands for thesource mags; <& S;,, and thetarget mapS; <- S;,;, which satisfies theoundary conditions
0;00;11 =0;0T;4+1 andr; o011 = 7; 0 ;41 for all i. The elements &f; are calledi-cells

We introduce the following notations:

o if x,y arei-cells, we writez || y wheneveti =0, ori > 0, 0;_1(z) = 0;-1(y) andr;_1(z) = 7,1 (y);



e if wis ani+1-cell, we writeu : © — y whenevew;(u) = x andr;(u) = y, so thate, y arei-cells ande || y.

Forj > 4, we introduce the following notations, wherg; = o;00;10---00;_; andr; ; = 7,07, 410+ -0Tj_1:
e if wis aj-cell, we writeu :  —; y whenevew; ;(u) = z andr; ;(u) = y, so thatr, y arei-cells andz || y;
e if u,v arej-cells, we writeu >; v wheneverr; ;(u) = o; ;(v).

In particular, ifu is ani-cell with i > 0, we getu : v’ —q uf, whereu’ stands fow ;(u) andz? for g ; (u).

Definition 2 If S, T are globular sets, @omomorphismf : S — T is an infinite sequence of mags: S; — T;
such that we havé; 1 (u) : f;(x) — fi(y) in T for all i and for anyi+1-cellu : x — yin S.

Definition 3 A (strict) w-categoryis a globular setC' : Cy &= C, & Cy---C; & C;41 -+ together with
compositionsand units, satisfying the laws oéssociativity units, andinterchange

In other words, we get:

e somei+1-cellu *; v : 2 — z foranyi+1-cellsu : x — y andv : y — z (so thatu >; v);

x

e somej+1-cellu*; v: x*;y — z*; tforall j > iand for anyj+1-cellsu : x — z andv : y — t such that
u >; v (SO thatr >; y andz ; t);

T Y
—
e somei+1-cell 1, : x — x for anyi-cell z. We also writel™! for this unit.
By induction onj > 4, we define thg+1-cell 177" : 17 — 17 by 177" = 1, for anyi-cell z. The laws are:
o (u*;v)* w=ux; (v w)forall j > iand foranyj-cellsu >; v >; w;
e 1 %;u=u=ux; 1/ forall j > iand for anyj-cellu : z —; y;

o (uxju')*; (Vx;0") = (u*;v)x; (u x;0") forall k > j > i and for anyk-cellsu, «’, v, v’ such that: >; v,

u >; u' andv >; v’ (so thatu' >; v');

o 1, %1, =1,,,, forall j > i and for anyj-cellsz, y such that: >; y.

By induction onk > j > i, we also get’ x; 15 = 1% for anyj-cellsz, y such that: >; .

By restricting this definition to a finite sequenCg &= C, & Cs - - - C,—1 &= C),, we get the notion ofi-category
Conversely, any.-category is converted into antcategory by concatenating with the infinite stationary sequence
C, &= C, =C,--- whereo;, = 7; =id¢, foralli > n.

In particular, we get the following examples, whérestands for the singleton set:

easets: S&=S&=S---
eamonoidM : T&=Me&eMe=M---



acategoryC : Co =CrL &=C1 &=C4 - -+
anabelianmonoidd: T&= T &A= A& A---

astrict monoidal category’ : T =C1 =Cy =Cy =Cs - - -

az-categoryC : Co =CrL =Co =Co &=Cy - -
Note that we use the same notation for a montidits underlying set, and its associategategory.

An w-category (respectively amcategory) such thaf, = T is called anu-monoid(respectively am-monoid.
In that casez > y holds for anyz, y € C; with ¢ > 0. So we writery for x x¢ y, and1 for the single unit 1-cell.

Definition 4 If C' and D are w-categories, anv-functor f : C' — D is a homomorphism such that each map
fi : C; — D, is compatible with compositions and units. In other words, the following conditions hold:

o fi(x+y)= fi(z)=* f;(y) forall j > iand for anyj-cellsz >; y in C,
o fir1(ly) = 1y, (s foranyi-cellzin C.

So we get aategory ofu-categories Note that this category has all limits, which are defined in the obvious way.
In particular, the terminal object is thevial w-categoryT : T&=T &= T ---
Note also that, in the case whefkis anw-monoid andM is a monoid, anw-functor f : C' — M is completely
given by a mapf, : C; — M satisfying the following three conditions:

fizy) = fi(z) f1(y) forany 1-cellse,y in C, f1(1) =1, fi(z)= fi(y)forany2-cellu:z — yinC.

Indeed, we have¢; = f, 001 ,; = f1 o7 ; forall i > 1, and all conditions are consequences of the above three.

2.2 Polygraphs

A graph S, & S; consists of set§;, S; and mapsS, < S; andS, & S;. It generates &ee categoryS, & S,
whereS7 is the set of paths in the grapgly & 5;.

Similarly, if n > 0 andCy = C, &= Cy--- C,_1 &= C,, is ann-category, then any graph,, &= S, satisfying
the boundary conditions,,_; o o, = 0,1 o 7, andr,,_1 o 0,, = 7,1 © T, freely generatethe n+1-category
Coe=C=0Cy---Cpy =0, = Sy, whereS; | consists of formal compositions of elements%f, ;.

Hence, the latter are called-1-generators See [Bur93, Mét08] for a detailed constructionsf, ; .

Definition 5 [Bur93] The notion ofn-polygraphis defined by induction on > 0:
e a l-polygraphis a graphS§ & S1, whereSj is just another notation for the séb;

e if n > 0, ann+1-polygraphis given by am-polygraphS; & 51,57 &= 5,...,S:_, & S, together with
agraphS; & S, satisfying the boundary conditions,_; co,, = 0,,—1 07, andr,_1 00y, = Tp—1 0 T
It generates théreen-1-categoryS* : Sg &= ST = S5 --- S &= Sy ,1.

Polygraphs are equivalent tomputadsSee [Str76, Pow91]. Here are two basic cases:

e analphabetS; = {&1,&, ...} yields a graphl” &= S; with only one vertex. The free category generated by
this graph isT & S, whereS7 is the free monoid generated By;

e arewriting systenon S5, given by the set of ruleS; = {z; & Y1, T2 & Y2, ...}, defines a grapR; = 5.
We get a 2-polygraph, since the boundary conditions are trivially satisfied, and the free 2-category generated
by this 2-polygraph is the 2-monoid = S; & S5, whereS; is the set of reductions modulo interchange.

Therefore, am-polygraph can be considered as a higher dimensional rewriting sysyeta¢tical interpretation
It can also be seen as a kind of directed CW-compeonetric interpretation Various examples of 3-polygraphs
corresponding to higher dimensional rewriting systems are given in [Laf03]. See also [Gui06a, Gui06b, Gui06c].

Definition 6 [Bur93] A polygraphis an infinite sequencg; &= 51,57 & Sa,...,S] & Sit1,... whose first
items define ai-polygraph for alli > 0. It generates théreew-categoryS™ : S5 &= S} = 55 ---SF = 57, -+

Note that the trivialu-categoryT coincides with the free-categoryQ*, whereQg = T and$2; = (@ for all i > 0.



2.3 Polygraphic resolutions

Definition 7 Anw-functorp : C — D is anacyclic fibrationf py : Cy — Dy is onto andp has thdifting property:
For anyi-cellsz || y in C and for anyv : p;(z) — p;(y) in D, there is some :  — y in C such thap; 1 (u) = v.

x pi(x)
\/
Yy Pi(y)

Note that ifp : C — D is an acyclic fibration, then eagh : C; — D, is onto andp has thestretching property
For anyi-cellsz || y in C such thap;(x) = p;(y) = zin D, there is some : x — y in C such thap; 1 (u) = 1,.

PETIRN z
. Uu . . > .
~_7 7

Conversely, those properties characterize acyclic fibrations: See [Mét03].

Note also that our acyclic fibrations are thiwial fibrations of some model structure. See [LMWO7].

Definition 8 We say that ans-categoryC' is acyclicif the canonicalu-functorm : C' — T is an acyclic fibration.
In other words (), is inhabited and”' has thefilling property. For anyi-cellsz || y in C, there is some : 2 — y.

Proposition 1 [Mét03] For any acyclic fibratiorp : C — D and for anyg : S* — D, there is som¢g : S* — C
such thaty = po f.

S* T> D
In other words, freev-categories areofibrant It suffices indeed to define thiecell f;(¢) for eachi-generatoi,

using the fact thap is an acyclic fibration. In fact, the converse holds: Cofibtaitiategories are free [Mét08].

Proposition 2 [Mét03] Foranyp : C — D andf, g : S* — C suchthapo f = pog andp has the lifting property,
we get ahomotopyf ~ g.

The definition of homotopy and the proof of this result are postponed to Section 5.
Definition 9 [Mét03] A polygraphic resolutionf C is an acyclic fibratiorp : S* — C whereS* is free.
Theorem 1 [Mét03]

1. Anyw-categoryC has a polygraphic resolutiop: S* — C.

2. Ifp: 8* - Candgq: T* — C are polygraphic resolutions, there is sorfie S* — T* such thatp = go f.

S* _ _f_ > T*
N
C
3. For any two suclf, g : S* — T*, we get a homotopy ~ g.

Proof. We build.S; andp; by induction or, starting fromS, = C andpy = id¢,: For anyz,y € S} withz || y
and for anyi+1-cell v : p;(z) — p;(y) in C, we introduce someé+1-generatot :  — y such thap;1(§) = v.
By construction, we get a polygraphic resolutjpn.S* — C. The rest follows from Propositions 1 and 2. «

Corollary 1 If p: S* — Candq : T* — C are polygraphic resolutions, there afe: S* — T* andg : T* — S*
such that the following conditions hold:

p=gqof, q=pogy, go f~idg, fog~idp-.

In other words, any two polygraphic resolutions@fare homotopically equivalent



Note also that any monoitt/ has amonoidal resolutionthat is a polygraphic resolution such tigt = Sy, = T.
Such a resolution contains a presentatiolbf whereS; is the set of generators arff} is the set of relations.
Moreover, any such presentation/dfis reversible For any reductiom: —* , there is another reduction—* .
Conversely, any reversible presentationéfcan be extended to a monoidal resolutionéf

In general, a rewrite system fad is not reversible, but we get a reversible presentation by addusgse rules
The following theorem is conjectured in [Laf07]: If we start from sofinéte convergent rewrite systeten the
corresponding reversible presentation extends to a monoidal resghutish — M such that allS; are finite.

2.4 Abelianization and homology

LetS* : S5 &= ST = 85---5; &= S;,,--- be afreew-category. If¢ is ani-generator, we writg¢] for the
corresponding generator of the fréemoduleZsS;, and we extend this notation to all cells $f as follows:

[ux*;v] = [u] + [v] foranyj-cellsu >; v in S* with j > 4, [1,]| = 0 for anyi-cell z in S*.

In other words |z | counts the number of occurrences of eagjenerator in theé-cell z. The fact thafz| is well
defined follows from the universal property §f and the definition of some suitableategory: See appendix A.

Now we defineZ-linear map<Zs; & ZS;+1 as follows:9;[¢| = [y] — [« for eachi+1-generatot : x — v.
Lemmal 0;[u| = [y| — [z] foranyi+1-cellu: z — yin S*.
This is easily proved by induction an As a consequence, we g&to 9;,1 = 0 for all 4.

Definition 10 [Mét03] Theabelianization of the freg-categoryS* : S5 &= S} &= S5 ---Sf &= Sj,--- isthe
following chain-complex of freé-modules:

7S : 780 278, 278,78, 2 78141 -
Foranyf : S* — T*, we defineZ-linear mapsf® : ZS; — ZT; as follows: f2P[¢] = [ f;(¢)] for eacht € S;.
Lemma 2 f2*[z| = [fi(x)] foranyz € S;.
This is easily proved by induction an As a consequence, we g#&to f‘f1 = fab o 9, forall .

Definition 11 [Mét03] Theabelianization of thes-functor f : S* — T™* is the homomorphism of chain-complex
2> ZS — ZT given by thef2> : ZS; — ZT;.

Note that abelianization is defined in terms of polygraphs, but in fact, it only depends on the generategories.
Obviously, we havég o f)*> = ¢? o 2 forany f : R* — S* andg : §* — T*, andid> = idzg for any S*.
Hence, we get a functor from the category of fueeategories to the category of chain-complexes.
Proposition 3 [Mét03] For any f, g : S* — T such thatf ~ ¢, we get a chain-homotopy betwegt® and ¢2®.
This crucial result is proved in Section 5. By Corollary 1, we get:
Corollary 2 The homology of.S does not depend on the choice of the polygraphic resolgtiof* — C.
Definition 12 [Mét03] The homology of suchZS is called thepolygraphic homology of the-categoryC.
Note that(2* defines a polygraphic resolution @f and so does any acyclic freecategory. Hence, we get:
Corollary 3 The following augmented chain-complex is exact wheng¥és an acyclic freev-category:
€ 30 61 ai
O<—Z<—ZSO<—Z51 HZSQZSZ <—ZS¢+1-"

Here,e stands forri® wherer : S* — Q* = T is the canonicab-functor. Hences (¢) = 1 for each¢ € Sp.



3 Unfolding

If M is a monoid and is a set, we writéV/ - S for the cartesian produd? x S whose elements are written x.
Thefree actionof M on the set\f - S'is defined byA - (- ) = Ap - forall A\, p € M andx € S. In particular,
we shall identify the sed/ - T with M, where the action oM on itself is defined by - . = Ap forall A\, u € M.

Note also thaZ(M - S) has a structure GEM-module defined by - (- ) = Au -z forany A, u € M andx € S.
In particular, we gef - =z = A - (1 - z). Hence, we shall identif.(M - S) with the freeZM-moduleZM - S.

3.1 General case

Let f : C — M be anw-functor, whereM is a monoid and” is anw-monoid, sothat\l - Co = M - T = M.
If z is ani-cell in C with ¢ > 0, we writeZ for f;(x) € M. In particular, we get = g for any 2-cellu : z — y.
Moreover, we get = g for all « > 1 and for anyi-cellsz, y such that: || y.

We definethe globularsétl -C - M =M -Cy =M -Cy---M-C; &= M - Ci4q - - - as follows:

e wegetthel-celh-z: A — Az in M - C forany A € M and for any 1-celk in C;

e if i >1,wegetthe-cell\-u: A2z — \-yin M -C forany\ € M and for anyi-cellu : x — yin C.
As a consequence, we get the following characterizatighinf\/ - C:

e forany\, u € M and for any 1-cellg, y in C, we have) - z || p -y iff A = pandAz = \y;

e forany\, u € M and for anyi-cellsz, y in C withi > 1, we have\ - z || p -y iff A = pandzx || y.

In particular, forany 2-cel\-u: A-x — A-yinM-C,wehaveu: z — yinC,sothat =gandA-z || A-y.
The other boundary conditions far - C follow directly from the boundary conditions f@r.

We also get the following characterization of iterated sources and targefs ifi:
o if i >0,wegeth-z: A\ —o AxTin M - C forany\ € M and for anyi-cell z in C;
eifj>i>0wegeth-u: -z —; A-yin M -Cforany\ € M and for anyj-cellu : z —; yin C.
As a consequence, we get the following characterization of M - C:
e forany\, u € M and for anyi-cellsz, y in C with i > 0, we have\ - x >q - y iff AT = p;
e forany\, u € M and for anyj-cellsx, y in C with j > ¢ > 0, we have\ - x ; p -y iff A = pandz >; y.
Using this, we define compositions and unitslih- C' as follows:
o (A-x)% (AT -y) = A-xyforany\ € M and for anyi-cellsz, y in C with i > 0;
o (A-z)% (A-y)=A-(xxy)foranyX € M and for anyj-cellsz >; y in C with j > i > 0;
e 1,,=AX-1,forany\ € M and for anyi-cell z in C. In particular,1, = A - 1 forany\ € M.

Itis easy to see that those operations satisfy the laws of associativity, left and right unit, and interchange. Moreover,
we have an obvious-functor f : M - C' — C defined byf;(\ - ) = « foranyA € M andz € C;.

Definition 13 Thew-categoryM - C : M &= M - Cy &= M - Cy---M - C; &= M - Ci1y - - - defined as above
is called theunfolding of f : C — M, and thew-functor f : M - C — C'is called itsfolding w-functor.

Note that the action a¥/ on M - C' is compatible with this structure of-category.



3.2 Unfolding an acyclic fibration
Proposition 4 If G is a group, then the unfolding - C' of an acyclic fibratiorp : C' — G is an acyclico-category.
Proof. G is inhabited, and using the fact thais an acyclic fibration, we prove the filling property f@t- C:

o if A\, € G, thereis some € C; suchthatt = A"y, andweget -z : A\ = AT =M\"lu=pinG-C;

o if Aoz || u-ywhere\ u € Gandz,y € Cq, we geth = p and\z = )y, so thatt = g by left cancellation.
Hence, there is some 2-cell: + — yinC,andweget-u: Az - X-y=p-yinG-C;

e finally, if i > 1and\ -z || p -y where\, p € Gandz,y € C; , we geth = p andz || y, so thatzt = 3.
Hence, there is some-1-cellu : x — yinC,andweget -u: A-z — X-y=pu-yinG-C. <

In fact, the converse holds: If the unfoldiad - C of f : C — M is an acyclicv-category, therd/ is a group and
f is an acyclic fibration. Hence, the above result cannot hold for arbitrary monoids, but we have a weaker result:

Proposition 5 The unfoldingl/ - C' of an acyclic fibratiorp : C — M has the followingelative filling property
e foranyu € M, thereissomé -z:1 — pin M - C,
e foranyz,y € C; withi > Osuchthatl -z || 1.y, thereissomé -u:1-2 —1-yinM-C.

No extra assumption on the monaid is needed here, since= 1 has a right inverse and is left cancelable.

3.3 Free case

Now we considerf : S* — M, whereS* is a freew-monoid. HenceSj = Sp = TandM - S =M - T = M.
We shall see that the unfolding - S*: M = M-S} &= M -S35--- M-Sy &= M-S}, --- is afreew-category.

If n > 0, we have a canonical injection 8f - S,, into M - S}, from which we geta graphf - S} _, & M - 5,

and ifn > 1, the boundary conditions,, 00, 1 =0, 207, 1andr, 200, 1 = 7,_2 o T,_1 are satisfied.

We get then-categoryM & M - Sf &= M -S;---M-S:_, &= M-S, &= (M-S,)*, and the canonical
injection extends te,, : (M - S,,)* — M - S, which is compatible with sources, targets, compositions and units.

If A € M and¢ € S, we geth - £ € M - S, and we write(\ - £) for the corresponding element @i/ - S,,)*.
More generally, ifA € M andz € S, we geth - € M - S’ and we definé\ - x) € (M - S,,)* by induction onz,
in such a way that) - ) has the same source and the same targkt as

o (A-xy) = (\-x) 0 (AT - y) forany\ € M and for anyn-cellsz, y in S*;
o (AN (zxy))=(N-x)* (X y)foranyl € M and for anyn-cellsx >; y in S* with n > i > 0;
o (A-1;) =15, forany A € M and for anyn—1-cell z in S*. In particular,(A - 1) = 1, € (M - Sy)*.

In other words{\ - ) is a decomposition of the cell- = into elements of\/ - S,,. The fact that it is well defined
follows from the universal property &t and from the definition of some suitabtecategory: See appendix B.
Hence, we get,, : M - S — (M - S,,)*, which is compatible with sources, targets, compositions and units.

By construction, we have,, (A-&) = A-£forany A € M and¢ € S, so that), (o (X&) = (X&) = (X-€).
By the universal property df\M - S,,)*, the map),, o ¢, is the identity on(M - S,,)*.

Lemma 3 ¢, (A-z) = X-zforany\ € M andx € S}. In other wordsp,, o v, is the identity on\/ - S.
This is easily proved by induction an So we can identifjM/ - S* with (M - S,,)* and we get the following result:

Proposition 6 The unfoldingM/ - S*: M &= M-S} &= M -S5---M - S; = M - S}, --- can be identified with
afreew-category(M - S)* : M &= (M - S1)* &= (M - So)*--- (M - S;)* = (M - Siy1)* -+~

By abelianization of\/ - S* = (M - S)*, we get the following chain-complex of frégmodules:
Z(M-S): ZM L 7(M - $) L Z(M - Sy) - Z(M - S;) & Z(M - Siyq) -+

Moreover,Z(M - S;) can be identified with the freég\/-moduleZM - S;.



Lemmad [A-z| =A-[1-z]forany\ € M andz € S}.

This is proved by induction on. As a consequence, we g&{A - &) = A-9;(1-¢&) forany A € M and§ € S; ;.
In other wordsg; : ZM - S;11 — ZM - S; is ZM-linear.

We also getf;ab [A-&] = [&] forany A € M and{ € S;. In other wordsfiab : ZM - S; — 7ZS; is ZM-linear
if we consider therivial action of M onZ.S;.

To sum up, we get the following result:

Proposition 7 The abelianization of the unfoldiny - S* = (M -S)* yields a chain-complex of fré&\/-modules:
ZM-S:ZM 270 -8, 22 - Sy ZM - S; & ZM - Sy -

Furthermore, the chain-complékS is obtained by trivializing the action af/ in ZM - S.

3.4 Unfolding a resolution

Now we can state our main result:

Theorem 2 The unfolding of a monoidal resolutign: S* — M yields is a resolution of. by freeZ M -modules:
0—zZEZME M-8, 2 2M - Sy ZM - S; & ZM - Siy -

Here,e is defined bye(\) = 1 forall A € M. Itis ZM-linear if we consider the trivial action dff onZ.

Since the homology af/ is obtained by trivializing the action d¥/ in such a resolution, we get:

Corollary 4 The homology of a monoitl/ coincides with its polygraphic homology.

For groups, Theorem 2 follows from Proposition 4 and Corollary 3.
For monoids, we need a little more. First, we consider sereategoryC' and two subsetd’, Y C C.

Definition 14 p : C' — D has thdifting property with respect tgX', )) if the following conditions hold:
e foranyz € X,y € Y, andv : po(x) — po(y) in D, there is some : z — y in C such thap; (u) = v;

Xsz—>y€c)y po(z) —— po(y)

e for anyi-cellsz || y in C withi > 0 such that:” € X and2* € Y, and for anyv : p;(x) — pi(y) in D,
there is some : © — y in C such thap; 1 (u) = v.

x b pi(x)
Xoa2 uatey pi(2®) v pi(a?)

If X = Y, we say thap has thdifting property with respect tor.
Thus the lifting property with respect t§ = Cj is just the lifting property of Definition 7.

Note that there is a straightforward generalization of Proposition 1:

Proposition 8 Letp : C — D, ¢ : S* — D andX C Cy. If go(S5) C po(X) andp has the lifting property with
respect to¥, then thereis arf : S* — C suchthaty =po f.

Using this, the following generalization of Proposition 2 is proved in Section 5:

Proposition 9 Foranyp : C — D andf,g : S* — C such thatp o f = p o g andp satisfies the lifting property
with respect tq /o (S5), 90(S5)), we get a homotopy ~ g.

Now we consider the unfolding' = M - S* = (M - S)* of some monoidal resolution é#, so thatCy = M.

In that case, we have two canonicafunctorsr : C — T, and. : T — C corresponding to the O-cell € M.
Forf =1om:C — Candg =idc,Wegetro f = =mog, fo(S5) = {1} andge(S§) = M. By Proposition 5,
7w : C — T has the lifting property with respect {¢1}, M). Hence, we get a homotopy 7 ~~ id¢.

By Proposition 3, the augmented chain-complex of Theorem 2 is exact and we are done.



4 Pathw-category

Let C be anw-category. For ang-cellsz, y in C, we define thev-category|z, y] as follows:
e thereis an-cell [u] in [z, y] for eachi+1-cellu : z —¢ yin C;
e we get{w] : [u] — [v]in [z,y] for anyi+1-cellsu,v : x —¢ y and for anyi+2-cellw : u — v in C;
e compositions are defined By] *; [v] = [u *;;1 v] whenevem >;; v, and units byl[,; = [1.].

If 5 >4 > 0, we writeu o v for the j-cell 17 x, v whenevew is ani-cell andv is aj-cell such thatl/ >q v or for
the j-cell u %o 17 whenever is aj-cell andv is ani-cell such that: >y 17. For anyo-cellsz, y, z, we get:

e theprecompositionv-functoru - — : [y, z] — [z, z] for each 1-celk : © — y, defined byu - [v] = [u *q v];
e thepostcomposition-functor— - v : [z, y] — [z, 2] for each 1-celb : y — z, defined byju| - v = [u *¢ v];

e thecompositionv-bifunctor— ® — : [z,y] x [y, z] — [z, 2], defined by[u] & [v] = [u *¢ v].

4.1 Cylinders
Definition 15 By induction oni, we define the notion éfcylinderU : x ~ y between-cellsz andy in C:
e a0-cylinderU : = ~ y is given by someé-cell U : z — y;

e if i > 0, ani-cylinderU : x ~ y is given by two 1-cell§” : 2> — ¢* andU*? : 2% — ¢!, together with
somei—1-cylinder[U] : [z] - U ~ U - [y] in thew-category[2”, y¥].

If U : x ~ yis such ani-cylinder, we writer! U for its top cellz and =2 U for its bottom celly. Finally, we write
U" for its principal cell which is inductively defined Hy/%] = [U]": Itis ani+1-cell in C.

X l’b X [Eu
U* U’ /Uh/ Ut
Yy yb Y yﬁ

Definition 16 By induction oni, we define theourcei-cylinderU : x ~ 2’ and thetargeti-cylinderV : y ~ 3/
of anyi+1-cylinderW : z ~ 2’ between+1-cellsz : x — yandz’ : 2’ — ¢/ in C:

e if i = 0, thenU% = W" and V't = Wt:

e ifi > 0, thenU” = V* = W’” andU* = V! = W*, whereas the two—1-cylinders[U] and [V] are
respectively defined as the source and the target of-thyéinder [IV] in [2°, 2'4].

In that case, we writdV : U — V oralsoW : U -V | z ~ 2.

us o
wP W Wt

¥y
P/Vﬂ

Sy
Y Y

Lemma5 We getU || V for anyi+1-cylinderW : U — V. In other words, cylinders form a globular set.

Note also that the 0-sourdé and the O-targel” of anyi+1-cylinder W are given by = W’ andV? = W*.
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Definition 17 By induction on, we define thérivial i-cylinderr z : x ~ z for anyi-cell z in C:

e ifi =0, then(rx)? = 1,;

e ifi >0, then(rz)* = 1, and(r z)? = 1,:, whereagr z] is the triviali—1-cylinderr[z] : [z] ~ [z].
Lemma 6 We getr z || 7y for anyi-cellsz | yin C,andrz : 7z — ryforanyz : z — y.
Definition 18 Ani-cylinder isdegeneratevhenever = 0 or ¢ > 0 and its source and target are trivial.

Lemma 7 (description of degenerate cylinders)
e For any degeneratécylinderU : = ~ y, we getr || y andU*® : = — y.

e Conversely, any+1-cell u :  — y yields a unique degenerateeylinderU : 2 ~ y such thatl/? = w.

For instance, the unit, : x — z yields the triviali-cylinderr z :  ~ x.
To sum up, we have defined a globular 68t whosei-cells arei-cylinders inC, together with homomorphisms
12 C!l - Candr:C — CTsuchthatr! o =ide = 72 o 7.

C

7N

CﬁCIT)O

Theorem 3 There is a structure ab-category orC! such thatr!, 72 : C! — C andr : C — C! arew-functors.
Moreover, this construction is functorial and, 72, 7 are natural.

Note that a variant of this constructioreyersible cylindersis needed to define the model structure in [LMWQ7].

The rest of this section is devoted to the proof of this crucial result.

4.2 Concatenation
If f:C — D isanw-functor andr is ani-cell in C, we shall writef x for thei-cell f;(x) in D.
Lemma 8 (functoriality)
Anyw-functor f : C' — D extends to cylinders in a canonical way:
e for anyi-cylinderU : = ~ y in C, we get some-cylinder f/ U : fx ~ fyin D;
e wegetf U | f/Vwhenevel || V,andf! W : fIU — fIVforanyW : U — V.

Moreover, we getg o f)! = g’ o fl foranyf : C — D andg: D — E, andid}, = id.: for anyw-categoryC.
In other words, we get a functor fromcategories to globular sets and the homomorphistmsr? are natural.

In particular, precomposition and postcomposition extend to cylinders. For any Q:cglls we get:
e thei-cylinderw - V' in [z, 2], defined for any 1-cell : « — y and for anyi-cylinderV in [y, z];
e thei-cylinderU - v in [z, z], defined for any 1-celb : y — z and for anyi-cylinderU in [z, y].
Those two operations are respectively calkftiandright action By functoriality, we get the following result:
Lemma 9 (bimodularity)
The following identities hold for any O-celis y, z, t:
o (uxqv) -W=u-(v-W)forany 1l-cellsu : ¢ — y andv : y — z, and for anyi-cylinderW in [z, t];
o (U-v)-w=U-(vxw)foranyl-cells: y — z andw : z — t, and for anyi-cylinderU in [z, y];

o (u-V)-w=u-(V-w)foranyl-cellsu: x — y andw : z — ¢, and for anyi-cylinderV in [y, z].

11



Moreover, we have, - U = U = U - 1, for any 0-cellsz, y and for anyi-cylinderU in [z, y].

We omit parentheses in such expressions: For instanee, W stands fow - (v- W), andU - v - w for (U - v) - w.
Moreover, action will always have precedence over other operations: For instafitelV stands fo(u- V)« W.

Definition 19 By induction oni, we define theé-cylinderU x V' : 2 ~ z, called theconcatenatiomf U with V/,
for anyi-cylindersU : x ~yandV : y ~ z:

o ifi=0,then(U *V)f = Ul % V¥,
e ifi>0,then(U V)" = U’ % V* and (U % V¥ = U* o V¥, whereadU + V] = [U] - V¥« U* - [V].

In both cases, we say thetand V' are consecutiveand we writel/ > V.
<Xy
N

Lemma 10 We getU « U’ || V « V' for anyi-cylindersU || V andU’ || V' such thaty > U’ andV > V', and
WxW' :UxU — V=« V'foranyi+1-cylindersW : U — VandW’ : U’ — V' such thatV > W’.

Lemma 11 (compatibility of /7 with « and )
The following identities hold any-functor f : C — D:
o fL(UxV) = flUx fI'V foranyi-cylindersU > V in C;
o fl(rz) =7(fz)foranyi-cellzinC.
In the cases of precomposition and postcomposition, we get the following result:

Lemma 12 (distributivity overx andr)

The following identities hold for any 0-cells y, z and for any 1-cell : © — y:
o u - (V«W)=u-Vxu W foranyi-cylindersV > Win [y, z[;
o u-T[v] = 7[u*o v] foranyit+1-cellv: y —q 2.
There are similar properties for right action.
Lemma 13 (associativity and units fox)
o (UxV)«xW =U =« (V xW) for anyi-cylindersU > V > W;
e TxxU =U = U x7yforanyi-cylinderU : x ~ y.
Proof. By induction oni. The casé = 0 is obvious.

If ¢ > 0, the first identity is obtained as follows:

(U V)« W] =[UxV]- Wi (UxV)’ - [W] (definition of x)
= ([U]-VExU® - [V]) - WEs (U 5 V°) - [W] (definition of x)
=([U]- V- Wi TP - [V]-WH U - V" [W] (distributivity overs)
=[U]-VE-WEs (U - [V]- Wi U V- [W]) (induction hypothesis)
=[U]- (Vs W)« U - ([V]- WHx V" - [W]) (distributivity overs)
=[U]- (Vs W)EU’ - [V« W] (definition of x)
=[Ux(VxW). (definition of x)

12



The second one is obtained as follows, using distributivity evend the induction hypothesis:
[raexU)=[rz]-Ubs (ra) [U =7[z] - Utx1,-[U] = [z %o Uﬁ] x [U] = [U],
and similarly for the third one. <

From now on, we shall omit parentheses in concatenations.

4.3 Compositions and units

Lemma 14 There are natural isomorphism& x D)! ~ C! x D! and T! ~ T, which satisfy the following
coherence conditions with the canonical isomorphi$@isc D) x E ~C x (Dx E)andT xC ~C ~(C x T:

((C x D) x BE)Yf = (C x (D x E))! (TxCO)Y =l < (CxT)!
v \ v \

(C x D)I x EY C! x (D x E)! T x Of Clx 71!
v \ \ v

(CT x D"y x E' = CT x (D! x ET) TxCl—0ol <=0 xT

Hence, anw-bifunctor f : C x D — E extends to cylinders in a canonical way. We can apply this to composition:
For any O-cells:, y, z, we get the-cylinderU & V' in [z, z], defined for any-cylindersU in [z, y] andV in [y, z].

Note also that any O-cell in C' corresponds to an-functor:, : T — C, from which we getl : T ~ T1 — CZ.
It is easy to see that this homomorphism is given by the sequence of triyéihdersr 12

In fact, there is also a coherence condition with the symm@tsy D ~ D x C, but we shall not use it explicitly.
By functoriality and coherence with the isomorphié@ x D) x E ~ C x (D x E), we get the following result:

Lemma 15 (associativity of®)
The following identity holds for any 0-celis y, z, ¢, and for anyi-cylindersU in [z, y], V in [y, z] andW in [z, ¢]:
U VoW =Ua® (VaeW).
Note that+ andr can be defined pairwise {€ x D)! ~ C! x D!. By Lemma 11, we get the following result:
Lemma 16 (compatibility of® with x and )
The following identities hold for any O-cells y, z:
o (UxU)®@(VxV')=UaV)x (U ®V’)foranyi-cylindersU > U’ in [z,y] andV > V" in [y, 2];
o 7[u] ® T[v] = T[u %o v] for anyi+1-cellsu : x —q y andv : y —q 2.
By functoriality and coherence with the isomorphisims C ~ C ~ C x T, we get the following result:
Lemma 17 (representability)
The following identities hold for any 0-cells y, z:
o u-V=rli,®V=r[l"] ®Vforany 1-cellu : + — y and for anyi-cylinderV in [y, z];
e U-wv=Us7ll,=U® 7[1571] for any 1-cellv : y — z and for anyi-cylinderU in [z, y].
In other words, the (left and right) action of a 1-celis represented by thecylinderr [ljjl].
For any O-cellse, y, z, we extend left and right action to higher dimensional cells as follows:
e u-V =r[u]l®V foranyi+1-cellu : 2 — y and for anyi-cylinderV in [y, z|;
o U-v=U®r[v]foranyi+1-cellv : y — z and for anyi-cylinderU in [z, y].

In particular, we get - V = 7[157] @ V = 157! . V for any 1-cellu : z — y and for anyi-cylinderV in [y, 2],
and similarly for the right action. This means that we have indeed extended the action of 1-cells on cylinders.

By associativity of® and compatibility of® with 7, we get the following result:
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Lemma 18 (extended bimodularity)

The first three identities of Lemma 9 extend to higher dimensional cells.

Lemma 19 (extended distributivity)

The identities of Lemma 12 extend to higher dimensional cells.
Proof. The first identity is obtained as follows, using compatibilitysfvith «:

w- (VsW)=71u]® (VW)= (ru] «7[u]) ® (V«W)=(rlul ® V) * (tfu] @ W) =u-V *u-W.
Similarly, the second one follows from compatibility @fwith 7. <

Lemma 20 (commutation)

The following identities hold for any 0-cells, y, z, for anyi+1-cellsu,v’ : * —¢ y andv,v’ : y —q z,
and for anyi-cylindersU : [u] ~ [¢/] in [z,y] andV : [v] ~ [V'] in [y, 2]:

U-vsu - V=U®V=u-VxU- .
Proof. The first identity is obtained as follows, using compatibilitysfnith «:
U-vku - V=U®a7th])*(t]e@V)=U*xt])® (tv] x V) =UaYV,
and similarly for the second one. <
From now on, we assume that> i.

Definition 20 By induction ori, we define thg-cylinderU x;, V : R —; T | z x; y ~ &’ *; 3 for any j-cylinders
U:R—;S|lenad'andV :S—,T|y~y"

e (Ux V) =U"=Riand(U , V)! = Vf = T% whereadU %, V] =z - [V] * [U] - /;
e ifi>0,then(U*; V)" =U" =V’ and(U *; V)! = U* = V¥, whereadU *; V| = [U] %;_1 [V].
In both cases, we say thetand V' are i-composableand we writel/ >; V.

The following picture shows th@-composition and-composition of2-cylinders:

y 7
®' Y

@

Lemma 21 We getJ x; U’ || V *; V' for anyj-cylindersU || V andU’ || V' such thatJ >; U’ (so thatV >; V),
andW «; W' : U x; U' — V x; V' for anyj+1-cylindersW : U — V andW' : U’ — V',

Definition 21 By induction on, we define the+1-cylinderly : U — U | 1, ~ 1, for anyi-cylinderU : z ~ y:
o ifi=0,then(ly)’ = (1y)* = U" whereaqly] = 7[U%];
e if i >0,then(ly)” = U® and(1y)* = U*, wheread1y] = 1.
il i ; - S J | i+t j+1 g+l _ g P
We writel;; for 17, and we inductively defing,"" : 17, — 17, | 1,7 ~ 177 by 177 = 1,; forall j > .
Lemma 22 (compatibility ofr with x; and units)

o 7(ux*;v) =Tux*; 7o foranyj-cellsu; v;
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e 71, =1,, foranyi-cell z.

Proof. By induction oni.

If : = 0, the first identity is obtained as follows, using distributivity over

[T(u*ov)] =T[uxgv] =Tluxgv]*T[uxgv]| =u-7[v] *x7[u] -v=u-[Tv]*[Tu] -v=_[TuxTV].

The second one is obtained as follos1,] = 7[1,] = 7[(7 z)*] = [1,.].

If i > 0, we apply the induction hypothesis.

Now, we write1? for = wheneverr is ani-cell, so that the following result holds fgr= i+1:

Lemma 23 For all j > ¢ and for anyi-cylinderU : x ~ y, we get the following characterization b@

e if i = 0,then(1},)” = (1,)* = U, whereas[l{]} = 7[1{]4;

e ifi > 0,then(1},)” = U’ and(14,)* = U*, Whereas[lg] _ 1{[;]1.

This is easily proved by induction gh using compatibility ofr with units.
Lemma 24 (associativity and units fo¥;)
o (Ux;V)#; W =U x; (Vx; W) for anyj-cylindersU ; V ; W;
o 1 ;W =W =W % 14, for any j-cylinderW : U —,; V.

Proof. By induction on.

If « = 0, the first identity is obtained as follows (wWith : x ~ 2/, V : y ~ ¢/ andWV :

[(UxqV)xo W] = (zx0y) - [W]x[UsxqV]-2

zoy- Wk (z-[V]x[U]-y) -2
=z-y - [W]xx-[V]-2'«[U] -y -2
z-(y- W] [V]-2) = [U] -y -2
z- [V W] [U]- (y *0 2)
= [U x0 (V xg W)].

zn2'):

(definition of xq)
(definition of ()
(distributivity overx)
(distributivity overs)
(definition ofx)
(definition of )

The second one is obtained as follows (With: z ~ y andU : z” ~ ), using distributivity overr:

[1{] *0 W} = lib-[W]* [1{]} sy =1.- [W]*T[lgjh} Yy = [I/V]*T[l{]q *Oy} = [W],

and similarly for the third one.

If ¢ > 0, we apply the induction hypothesis.

4.4 Interchange
Lemma 25 (compatibility of f/ with x; and units)
The following identities hold any-functor f : C — D:
o fI({Ux; V)= flUx; f1'V foranyj-cylindersU ; V in C;

e 11y =11 foranyi-cylinderU in C.

In the cases of precomposition and postcomposition, we get the following result:

Lemma 26 (distributivity overs; and units)

The following identities hold for any 0-cells y, z and for any 1-cell : = — y:
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u- (VW) =u-V % u-W foranyj-cylindersV ; Win [y, z];
e u -1y = 1,.v for anyi-cylinderV in [y, z].
There are similar properties for right action.

Lemma 27 (compatibility of« with x; and units)

o (Ux; V)« (U %, V') = (UxU")*; (V«V’) for anyj-cylindersU >; V andU’ »; V' such thaty > U’
andV > V7,

e 1y x 1y = 1y, for anyi-cylindersU > V.

Proof. By induction oni.

If ¢ = 0, the first identity is obtained as follows (With: z ~ 2/, U’ : 2’ ~ 2",V : y ~ ¢y andV' : ¢/ ~ y"'):

(U0 V)% (U % V)] = [U ko V] - (U %0 V)e 5 (U g V)’ - [U %0 V'] (definition of )
= (z-[V]*[U]-y) - V* U - (& - [V % [U]-y") (definition of ()
=z [V]-VE<[U] -y -V U - 2 - [V] «U°-[U']-y"  (distributivity overs)
=z [V]-VFEsz V' [V« [U]-U* -y «U"-[U] -y (commutation)
=z ([V]- V5V V)« ([U]- U U° - [U"]) - (distributivity overs)
=z [VxV]|x[UxU']-y" (definition of )

=[(UxU") % (VV")]. (definition of xq)

In the commutation step, we use the fact tHat= V" andU" = V" sincelU >, V andU’ > V'.

The second one is obtained as follows, using distributivity ever

[l *1v] = [lo]- (1v)? * (10)" - [lv] = 7[UF] - VE< UE - 7 [VE] =
7[U% %o Vh] *xT [Uh *0 Vh] = 7'[Uh *0 Vh] 7[(U * V)h] = [1ysv].

If © > 0, the first identity is obtained as follows:

(U s Vs (U s V] = [U s V] - (U 5 VYV (U V) - [U % V'] (definition of x)
= (U] % [ - U U (U] %51 [V']) (definition of ;)
= ([U)- U5y [V]-U*) % (U - U] %_1 U* - [V'])  (distributivity overs;_;)
= ([U]-U" % Ub [U]) %1 ([V]-U%5U° - [V']) (induction hypothesis)

=[UxU"#;_1 [V*V] (definition of x)
=[(U«U") % (Vx V). (definition of ;)

In the penultimate step, we use the fact thiat= V* andU"* = V"¢ sinceU »; V andU’ ; V.
The second one is obtained as follows, using distributivity over units and the induction hypothesis:

[ly *1y] =[] - (Iv)f = (1y)° - [Iv] = 1y - VE U - 1y =

Ly * 1o v = Lppvesoe v = Lpsv) = Lusv]. <
Note thatx; and units can be defined pairwise(ii x D)! ~ ¢! x DI. By Lemma 25, we get the following
result:

Lemma 28 (compatibility of® with x; and units)
The following identities hold for any 0-cells y, z:
o (UxUhe(VxV)={U®V)x (U ®V')foranyj-cylindersU >; U’ in [x,y] andV ; V' in [y, z];

e 1y ® 1y = lygy for anyi-cylindersU in [z,y] andV in [y, z].
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Lemma 29 (compatibility of- with x; and units)

The following identities hold for any O0-cells y, z:

o (uxjpqu) - (VV)=wu-Vxu - V' foranyj+1-cellsu,u’ : © —¢ y such thatu ;1 «" and for any
j-cylindersV ; V'in [y, z];

o 1, 1y =1,y foranyi+1-cellu : x —¢ y and for anyi-cylinderV in [y, z].
There are similar properties for right action.

Proof. The first identity is obtained as follows:

(ki1 ') - (Vi V) =1lusip v'] @ (V% V') (definition of )
= 7([u] *; [u]) ® (V x; V') (definition ofx; in [z, y])
= (7[u] *; T[u]) ® (V *; V') (compatibility of 7 with ;)
=(rlul ® V) x; (t[u] ® V') (compatibility of® with x;)
=u- -V V. (definition of -)

The second one is obtained as follows, using compatibility afid® with units:
Ly ly =7[l)®ly =71 ® 1y = 1,4 ® Iy = L yev = Luv. <
Now we assume thdt > j > 4.
Lemma 30 (interchange laws)
o (UxjU')%; (V*; V') = (Ux;V)x; (U *; V') for anyk-cylindersU ; U’ andV ; V' such that ©; V;
e 1y %; 1y = 1y, v foranyj-cylindersU o; V.

Proof. By induction or.

If 4 = 0, the first identity is obtained as follows (wWith: x ~ 4, U’ : 2’ ~ ¢/, V: 2 ~tandV’ : 2/ ~ t'):

(U 5 U)o (Vg V)] = (@5 2") - [V VI [U 5 U] (t x5 t') (definition ofo)
= (wxa) - ([V ] L V) # (U] #-1 [U']) - (5 1) (definition of ;)
= (z-[V]*j_1 2 [ M« (U] -t*;—1 [U']-t')  (compatibility of - with x;_1)
= (x-[V]*[U] - t)*j_1 (- [V']x[U']- 1) (compatibility of x with *;_)
=[U g V] *j_1 [U %9 V'] (definition of xg)
=[(Ux*o V) *; (U %o V")]. (definition of ;)

The second one is obtained as follows (With z ~ 2’ andV : y ~ '), using compatibility of andx* with units:
[l %0 lv] =1, [Lv] * 1] - Ly = Ly - Ly * Ly - 1y =
Lo ¥ )y = Lo wiswly = Lsov) = Qoxov]:

If « > 0, we apply the induction hypothesis. <
To sum up, we have the following results:

e C!is anw-category by Lemmas 24 and 30;

e 7!, 72 arew-functors by construction andby Lemma 22;

e C'is functorial by Lemmas 8 and 25;

e 7!, 72 are natural by Lemma 8 andoy Lemma 11.

Hence, we have proved Theorem 3.
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5 Homotopy

Definition 22 Letf, g : E — C be twaw-functors. Aldirected) homotop§rom f to g is anw-functorh : E — C!
such thatrl, o h = f and72 o h = g. The existence of such a homotopy is denotefl by g.

In other words,f ~ g if and only if there is arh : E — C! such that the following diagram commutes, with
™= (7r17 7T2)Z

CI

7
h, iﬁ
s

v

> 12
B (f.9) ¢

We first turn to the proof of Proposition 2, Section 2.3 and Proposition 9, Section 3.4, a generalization of the
former. In both cases we are given a polygraphndw-functorsp : C — D, f,g : S* — C, wherep satisfies
some lifting properties, and we need to buildfanS* — CT making the following diagram commutative:

CI

7
h, i”
e

7

o 2
S (f.9) ¢

Now 7 is not an acyclic fibration in general: therefore, we need a @ewnctor 7/, restrictingm to somew-
categories depending @rand having the desired lifting properties.

5.1 Restriction of the projection

In this section, we define the abovementionetiinctor,,, and establish its lifting properties.

Thus, letp : C — D by anyw-functor, andA : D — D? the diagonal mapxz ~— (z,z). We define a new
w-category()/i together withw-functorsa and A*p? by the following pullback square:

C/2p — 2 ©)]

A*pZ\L ipZ

D—x>D?

Concretely, an-cell of C’/Qp amounts to a paifz, y) of i-cells inC' such thap(z) = p(y). Likewise, we define
C/;, b and7*p! by the following pullback:

cl,—=cr (4)

D —— D!

Here ani-cell of C/; amounts to ari-cylinderU of C such thap! (U) is a trivial i-cylinder of D.
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Lemma 31 There is a unique-functorm,, : C/Ip — C/Qp such that the following cube commutes:

o — ol ®)
N
T/p foom
T*pl N\ ) pI \
Cp —a— ("
A*p2 % p2
D T DI
AN
1D ™ L
N B
D—A——D?2

Proof. The front and back squares are respectively (3) and (4), hence commute, by definition. The righthand
square commutes becauseés a natural transformation, and the bottom square commutes because= A.
Therefore

pPomob=Aor*p!
and because (3) is a pullback, we get the required connecting morphjsm <

To sum up, we have associated to epehuniquev-functorm,,, making (5) commutative. Precisely,if : . ~ y
is ani-cell of C/, then(x, y) is ani-cell in C7 andm,,(U) = (z,y).

The following result shows how lifting properties pftransfer tor,,,. Geometrically speaking, Lemma 32 says
that certain “boxes” consisting of two paralletylinders, with top and bottony-1-cells, may be filled by am-1
cylinder.

Foranyp : C — D and any0-cellsz, z’ of C, we denote by, .- thew-functor from|z, 2’| to [p(z), p(z’)] induced
by p.

Lemma 32 Letp : C — D and suppose that

e U:xzn~y U : 2 ~y arei-cylinders defining parallel-cells ofC/p;

o (u,v): (z,y) — («',y) isani+1-cell of C7 ;

* p,» ¢ has the lifting property.
Then, we get ait-1-cylinderW : U — U’ | u ~ v defining ani+1-cell in C/p
Proof. We proceed by induction oh

e Suppose that = 0. In that casd/, U’ are0-cells ofC’p, andu : z — ', v : y — 3’ 1-cells of C such
thatp(u) = p(v). Thusu; = u %o U, v; = U? %o v are paralleli-cells of C' with uy,v; : w’ — vt
As U, U’ belong toC/, p(U*") andp(U") are identities, so that(u1) = p(u) = p(v) = p(v1). Thus
Pu» vt [U1] = Dy 2[v1] @nd becausp, . has the lifting property, we get &cell [w] : [u;] — [v;] of
[u”, v*] such thap,s s [w] = 1,[u,]-

Hence, there is a-cylinderW : U — U’ | u ~ v given byW® = U, W# = U’%, W% = w and defining a

H I
1-cell in C/p.
T U z’
Ut Wi=w |U"
Ve
Y v Y/



e Suppose that > 0 and that the property holds in dimensiénl. Consider now thev-categoriestl =
(W, v*], F = [p(u’),p(v")], and letg = p,s ,« : E — F. By definition, we get twa—1-cylinders inE:
U] [2] U~ U [y,
U 1] U A U - Y],
Now [U] || [U"]; alsog! ([U]) andq! ([U"]) are trivial cylinders o, so thafU], [U’] define parallel—1-cells
of Ef. Moreover([u] - U*,U" - [v]) : ([2] - U%, U” - [y]) — ([/] - U*,U" - [/]) is ani-cell of E7,.

As ¢ has the lifting property, so does - for any0-cellsz, 2’. Therefore, the induction hypothesis applies
to ¢ and we get ari-cylinderV : [U] — [U'] | [z] - U* ~ U® - [¢/] defining ani-cell of of Efq; whence
ani+1-cylinderW : U — U’ | u ~ v given byW® = U> = U”, W = Ut = U* and[W] = V. By
construction defines ari+1-cell in C’/fp.

wv=u| awe o | UR=UR

Ub ‘\v_,y// ’Uﬁ

5.2 Acyclic case

We may now prove Proposition 2:

Foranyp: C — D andf,g: S* — C such thap o f = p o g andp has the lifting property, we get a
homotopyf ~ g.

The crucial point is the following result:
Lemma 33 If p : C — D has the lifting property, theny,, is an acyclic fibration.
Proof. Suppose that: C' — D has the lifting property.

e Letz be a0-cell in C/Qp: itis a pairz = (z,y) of 0-cells inC such thatp(x) = p(y). As p has the lifting
property, there is a-cell v : * — y such thap(u) = 1) = 1,(,), hence @-cylinderU in CT such that
U* = wandp’ (U) = 7(p(x)). Thereforel is a0-cell of C/, such thai, )o(U) = 2, and(m,)o is onto.

e The fact thatr/,, has the lifting property is an immediate consequence of Lemma 32.

|
Consider now : C — D andf,g: S* — C suchthapo f = po g = k. In other words, the following diagram
commutes:

g+ (f.9) o2

T

2
DTD

Hence the pullback square (3) yields a uniqutunctor( : S* — C/Qp such that f, g) = a o L. If p has the lifting
property, thenr,, is an acyclic fibration by Lemma 33, and Proposition 1, Section 2.3 yieldsfamctor/ such
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that! = 7, o [. Thus, we get a commutative diagram:
b
¢ —=cf
/p ™
S* *l> C/Qp e C?
(f.9)

By definingh = bo [:8* — O, we getr o h = (f, g). Hencef ~~ g as expected.

5.3 Relative case
We now adapt the above arguments to the more general situation of Proposition 9:

Foranyp : C' — D andf,g: S* — C suchthapo f = po g andp satisfies the lifting property with
respect td fo(S5), go(S3)), we get a homotopy ~~ g.

We first state a generalized version of Lemma 33:

Lemma 34 Letp: C — D, X,Y C Co, Z = a5 (X x V) C (C},)o andU = (m,)5 ' (Z) C (C})o. If p has
the lifting property with respect toY, )), then

1. ZC (o),
2. 7, has the lifting property with respect .

Proof. Suppose that has the lifting property with respect {&’, ).

e Consider &@-cell z in Z = a; (X x V). Itis a pairz = (z,y) of 0-cells inC such thatr € X,y € Y
andp(z) = p(y). Asp has the lifting property with respect {&’, V), there is al-cell u : + — y such that
p(u) = 1,02y = L), hence @-cylinderU such that/* = v andp’ (U) = 7(p(x)). ThereforelJ is a0-cell
of C/Ip and(7/,)o(U) = 2, so that/ € U andz € (7/,,)o(U). This proves the first point.

e The second part follows immediately from Lemma 32.

<
If f,g:S5* — C satisfypo f = po g, we get as above a factorizati¢f, g) = a ol wherel : S* — C/Qp.
Suppose now that has the lifting property with respect &, ), whereX’ = f,(Sg) andY = ¢o(Sg). Define
Z andl{ as in Lemma 34i,(S5) C Z by construction of. By Lemma 34, Proposition 8 applies and we get an
w-functor! such that = m,, o l.

By definingh = bo [ we get as above the desired homotopy fréno g.

5.4 Chain homotopy
In this section, we prove Proposition 3, Section 2.4:

for any polygraphsS, T, andw-functors f,g : S* — T* such thatf ~- g, the Z-linear maps
2, g% : ZS — ZT are chain-homotopic.

We first need a few additional results about abelianization and cylinders. Consider the truncation end@functor
of the category ofv-categories, defined b§T'C'); = C;, for eachw-categoryC' andi > 0. For any0-cellsz, y
of C, [z, y] is a full subcategory dT'C. On the other hand, if is a polygraph, there are linearization maps:

]S —zS; 6)

in each dimension (see Section 2.4). NoW'C is notin general a freev-category, even i = S*; however, we
may extend the linearization process towaitategories of the forf*C, for k > 0, by considering any-cell x
of T*C, as ani+k-cell of C. Hence, whenevef' = S*, we get from (6) linearization maps

[ (T*C); — ZSits. (7)

Note that these maps still take compositiong¥C' to sums.
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Lemma 35 LetC' = S* be a freew-category, andc > 0 an integer. Ifi > 0andW : U — V | z ~ yis an
i-cylinder of T*C, then:

[osWH] = [z] + [V, 8
[mWH] = [U%] + [y). )
Proof. We proceed by induction oh> 1.
e Suppose that= 1, and letW : U — V | z ~ y be al-cylinder of T*C. ThusW* is a2-cell of T*C, and
wh :x*OVhHUh*Oy.
Henceo, W1 = z %o Vi andm W! = U" % y, which, by linearization, gives (8) and (9).

e Suppose that > 1, and that (8) and (9) hold far-1. LetW : U — V | z ~ y be ani-cylinder of T*C.
We get an—1-cylinder[W] : [U] — [V] | [z]-V# ~ U-[y] of [z°, y*]. We may seélV] as ani—1-cylinder
of T¥*+1(, so that the induction hypothesis applies and we get

(i1 W) = [la] - V*] + [[V]]
(raa WP = (U] + [V )

Now o—i_l[W]”, [x] - VE and[V]h arei—1-cells of T**+1C, which can be seen ascells inT*C, respectively
oiWh, x % VEandVi. Asi > 1, V*is a unit. ThereforéV*#| = 0, and

[oiWF] = [ax VE] +[VF],
= [o]+[VF] +[VE,
= [a]+[VF].
Thus, we get (8), and the same argument applies to (9).
<
Lemma 36 If U, V are j-composable cylinders in a free-category, therj (U x; V)#| = [U*] + [V].
Proof. One first checks that the corresponding relation holds for concatenation, namely
[(U V)] =[U"] +[VF].
This proves the casg= 0, after Definition 20, and the general case follows by inductiori.on <

Lemma 37 If S, T are polygraphs and : S* — (T*)! is anw-functor, then for each > 0, there is aZ-linear
mapd; : Z.5; — Z7T;,, satisfying

0:[z] = [hi(2)*] (10)
whenever is ani-cell of S*.

Proof. There is a uniqué; : ZS; — ZT;, such tha®,[¢| = [hi(g)hj for each{ € S;. Let us show (10) by
structural induction o € S}

e if x is ani-generator, (10) holds by definition;

e if 2is a unit, then so i#, (z), becausé is anw-functor: thereforé;(x)" is a unit inT}, ;, so that both sides
of (10) vanish;

e if 2 decomposes ag+; z wherey andz satisfy (10), then:

[hi(a)*] = Thi(y *; 2)*],

= [(hi(y) =; hi(2))*], (becausé is anw-functor)
= [hi(y)*] + [hi(2)*], (by Lemma 36)
= 0i[y| +0:[z], (by the induction hypothesis)
=0:([y] + [z]),

=0i[y =, 2],

=0;|z].
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Let us point out that7™*)! is not free in general, so thatcannot be directly abelianized in the sense of Section 2.4.

We now turn to the proof of Proposition 3. Lgtg : S* — T* be w-functors, such thaf ~~ ¢g. There is a
homotopyh : S* — (T*)! from f to g, which, by Lemma 37 determines a family of maps

91' : ZSl — Zﬂ+1.

It turns out that(6;);>o is a chain homotopy betweeft” and ¢*". Indeed, ifx € S}, we get ani-cylinder
hi(z) : fi(x) ~ gi().

o If i =0, we getho(x)? : fo(z) — go(z), so thatdoby([z]) = [go(z)] — [fo(x)], in other words

93P — f& = 9y 0 bp; (11)

e if i >0,weqgeth;(z): hi—1(0;—12) — hi—1(1i—12) | fi(x) ~ g;(z). Lemma 35 applies, so that

[o3(hi(2)*] = [ fi(2)] + [(hi—1(ric1))?],
[7i(hi(2))*] = [(hi-1(oi-12))*] + [gi(x)].
This implies
[9i(z)] — [fi(x)] = A+ B
where

A = [1i(hi(2))*] = [o3(hi(2))?| = 0 (hi(x))"] = 9,6;[x],
B = [(hi—1(ri—12))"] = [(hi—1(0i—12))"].

By Lemma 37, and the linearity @ _,

B = 0i1([ricaz]) — 0im1([oi—12]),
= Qi_l([Ti_lde - ’VO'i—li)v
Qi_18i_1 |—JIJ

Hence
g — [P =0;00;+06;_100;_1. (12)

Equations (11) and (12) exactly mean thas a chain-homotopy fronf®® to ¢, thus proving the proposition:

Oi—
ZSI',1 é ZSl

0;
ab ab

Z7T; <T ZTiH

A Counting generators

fC:Coe=CL=0Cy---C,_1 &= C, is ann-category andd is an (additive) abelian monoid, we consider the
n+l-categoryCT : Co =C, =Cy---Cp_1 = C,, = C’,J{H defined as follows:

e ann-+1-cellinC™ is atriple(a, z,y) : * — y wherea € A andz, y are paralleh-cells inC;
o (a,1,2)*; (byy,t) = (a+b,z*; y,2z *; t) fori < nandz >; y (so thatz >, t);
° (a,2,y) *n (b,y,2) = (a+b,2,2);

e 1, =(0,z,z) foranyn-cellz in C.
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It is easy to see that those operations satisfy the laws of associativity, units, and interchange.
In particular, ifSg &= 51,57 & Sa,..., 5! _1 &= S,, S} & S,+1 is ann+1-polygraph, we get:

e ann-categoryC' : S5 & S} & S5 ---5_, & S; and an abelian monoid = Z5,,41;

e an injection ofS,,; ; into C,J{H mapping the generatgr: « — y to the triple([¢], z, y).

By the universal property, we get, : Sy, — C,,, which is compatible with sources, targets, products and units.
This means thap,, (u) = ([u],z,y) for anyn+1-cellu : © — y in S*, whereu — [u] extends the canonical
injection of S, into ZS,, 1 and satisfies the following properties:

[ux;v] = [u] + [v] foranyu>; vin S;  withi < n, [1,] =0foranyz € S;.

B Decomposition

If M be amonoid and : M & D; is a category, we consider the mondiidefined as follows:
e anelement oD is a pair(a, (ux)xenr) Wherea € M and(uy)aeas is a family of cellsuy : A — A« in D;
o (o, (ux)aem)(B, (va)renr) = (af, (ux *0 Vra)reM)-
It is easy to see that this operation is associative, with(nitl ) xe s )-
In particular, if f : S} — M is a morphism of monoid, we get:
e acategonyD : M &= D, whereD; = (M - S1)*;
e an injection ofS; into D mapping the generatgrto the pair(&, (A - €)xenr)-

By the universal property, we get a morphismS; — D. This means thagi(z) = (Z, (\-z)xenr) forall z € S%,
where)-z — (\-z) extends the canonical inclusiondf - S; into (M - S;)* and satisfies the following properties:

e weget(\-z): A — Xz forall A € M andx € ST;
e (N-zy) = (\-z) %9 (AT -y) forall \ € M andz,y € S5;
e (A-1)=1yforall A € M.

Hence, we get the expected propertiesSpr

Now, letC' : T &= C, &= Cy--- C,,_1 &= C),, be anmn-monoid withn > 0 and assume we have anr-1-category
D:M&=M-Ci=M-Cy---M-Cpo1 =M -Cy &= Dyt extenging the (partial) unfolding of : C — M.
We consider thee+1-monoidD : T &= Cy &= Cy - -- C,—1 &= C,, &= D,,41 defined as follows:

e ann+1-cellin D is a triple((ux)xear, ¢, y) : « — y wherez, y are paralleh-cells inC and(uy ) e is @
family of n+1-cellsuy : A-z — A-yin D;

o ((un)rem,z, 2)((Va)aem, s 1) = ((ux *o vaz)rem, 2y, 21);

o ((ux)renr, z,2) % (Ua)rens ¥s t) = ((un*iva)aem, Ty, 2x;t) for 0 < @ < nandz >; y (so thatz >; t);
o ((un)rem> 2, y) *n (Va)renms ¥, 2) = ((Ux *n VA )reM, T, 2);

o 1, = ((1na)rem,x,x) foranyn-cellz in C.

It is easy to see that those operations satisfy the laws of associativity, units, and interchange.
In particular, if T & 51,57 & So,..., 5 _1 & S,, S & S,41 is ann+1-polygraph, we get:

e ann-monoidC : T & S} & 55 ---5_, & S;;
e ann+1-categoryD : M &= M-C; = M-Cy---M-Cp,_1 &= M-C,, &= D,y WhereD,, 1 = (M-Sp41)%;

e an injection ofS,,, 1 into D, ; mapping the:+1-generatot : 2 — y to the triple((\ - &)xear, 7, ).
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By the universal property, we get : S, — f)n+1 which is compatible with sources, targets, products and units.
This means that,, (v) = ((A - u)xenm, x, y) foranyn+1-cellu :  — yin S*, wherel - u — (X - u) extends the
canonical injection of\f - S, ; into (M - S,,+1)* and satisfies the following properties:

e we have(A-u) : A-z — A-yforall A € M and for anyn+1-cellu : z — yin S*;

o (A-uv) = (X u)x (Au-v) forall A € M and for anyn+1-cellsu, v in S*;

o (A-ux;v)=(A-u)x (A v)forall A\ € M and for anyn+1-cellsu >; v in S* with 0 < i < n;
e (A-1,) =1, forall A € M and for anyn-cell z in S*.

Hence, we get the expected propertiesIr , with n > 0.
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