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Abstract

We prove that for any monoidM , the homology defined by the second author by means of polygraphic resolutions
coincides with the homology classically defined by means of resolutions by freeZM -modules.

1 Introduction

Since the work of Squier and others [Ani86, Squ87, Kob90], we know that monoids presented by a finite, termi-
nating and confluent rewriting system satisfy a homological finiteness condition. This has two consequences:

• the possibility to prove negative results, e.g. examples of monoids having a decidable word problem, but no
presentation satisfying the above conditions;

• on the positive side, the construction of explicit resolutions from such presentations. See for example [DL03]
for a recent application of similar methods to compute the homology of gaussian groups.

Now rewriting systems quite naturally lead ton-categories, as follows. LetM be a monoid presented by a system
(Σ, R) of generators and rewrite rules. IfΣ∗ denotes the set of words on the alphabetΣ, R ⊂ Σ∗ × Σ∗ is a set of
ordered pairs of words. A rewrite ruleζ : x→ y applies to any worduxv with u, v ∈ Σ∗, defining a reduction step
uζv : uxv → uyv. ThusR generates a setR∗ of reduction pathsbetween words, whose elements are composable
sequences of one-step reductions, up to suitable commutation rules (see [Laf06] for a detailed survey). These data
fit together in a2-category

> ⇐ Σ∗ ⇐ R∗

where> denotes the singleton. It has a unique object, words as arrows and reduction paths as2-arrows. Here⇐
denotes the source and target maps: all words clearly have the same source and target, namely the single element
of >, and a reduction path fromw tow′ has of course sourcew and targetw′. Words compose by concatenation,
while reduction paths are subject totwosorts of composition, either “parallel” or “sequential”. What we get exactly
is a free2-category generated by acomputad[Str76].
At the next dimension, consider a setP ⊂ R∗ ×R∗ of pairs ofparallel reduction paths, i.e. with the same source
and the same target. The smallest equivalence relation onR∗ containingP and passing to the context is the2-
congruence generatedby P . In case the relation of parallelism itself is generated by a finite setD, we say that
the underlying monoidM is of finite derivation type. It turns out that the latter property holds for all monoids
presented by finite, confluent and terminating rewriting systems [SOK94, Laf95]. Inn-categorical language,P
generates a setP ∗ of 3-arrows extending the above2-category to a3-category:

> ⇐ Σ∗ ⇐ R∗ ⇐ P ∗.

Note that there are now three ways of composing the elements ofP ∗. We look here for setsP such that each pair
(x, y) of parallel paths inR∗ can be filled by at least oneu : x→ y in P ∗.
This point of view was systematized by the second author [Mét03]. Objects of study are now arbitrary∞-
categories, not just monoids;(>,Σ, R,D) becomes an infinite sequence(S0, S1, . . . , Sn, . . .) definingn-com-
putads[Pow91] orn-polygraphs[Bur93], a terminology we shall adopt here.
An∞-polygraph, or simplypolygraphS, generates a free∞-categoryS∗, generalizing the above situation. There
is an abelianization functor taking each polygraphS to a chain complexZS of abelian groups, thus defining a
homology

H∗(S) =def H∗(ZS). (1)
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Now letC be an∞-category, andS a polygraph. Apolygraphic resolution ofC by S is a morphismS∗ → C
satisfying some lifting properties (see section 4). But the homologyH∗(S) only depends onC [Mét03], so that we
may define a “polygraphic homology” ofC by

Hpol
∗ (C) =def H∗(S). (2)

A monoidM can be seen as a particular∞-category, with degenerate cells but in dimension 1. Thus, forC = M ,
(2) defines the polygraphic homology ofM , whence an immediate question:

doesHpol
∗ (M) coincide with the usual homology ofM , defined by means of resolutions ofZ by free

ZM -modules?

A positive answer in the case of groups was given by the first author, and the goal of this article is to extend the
result to arbitrary monoids. The proof is based on the notion ofunfolding, defined in section 6, an∞-category built
upon a polygraphic resolutionS∗ → M and from which we recover the usual homology ofM by abelianization.
As many properties of unfoldings are derived from those of resolutions, we first recall the results of [Mét03] in
sections 4 and 5, postponing the detailed proofs to annexes A, B and C. Thus our text is essentially selfcontained.
In many places, the main definitions of [Mét03] are reformulated and somewhat simplified.
In particular, we borrow the terminology of trivial fibration from model categories, for obvious similarity reasons;
beyond the analogy, this points towards a model structure on∞-categories, yet to be discovered, in the spirit of
what has been done for1- and2-categories [Tho80, JT91, Lac04, WHPT04].
This work is part of a general program aiming at a homotopical theory of computations, whose further develop-
ments include

• a general finiteness conjecture [Laf06]: is it true that a monoidM presented by a finite, terminating and con-
fluent rewriting system always has a polygraphic resolutionS∗ →M whereSi is finite in each dimension?

• the study of other structures expressible by polygraphs, as proof systems [Gui06b], Petri nets [Gui06c] and
term algebras [Mal04]. In the last case, the polygraphic homology is likely to be degenerate; however,
resolutions still bear many relevant informations and could lead to new, refined, invariants;

• potential applications to the theory of directed homotopy. See [Gou03] for a survey.

2 Non abelian complexes

Definition 1 A (non abelian) complexis a (strict)∞-categoryC : C0 ⇐ C1 ⇐ C2 · · ·Cn ⇐ Cn+1 · · ·

In this infinite sequence,Cn ⇐ Cn+1 stands for thesource mapCn
σn← Cn+1 and for thetarget mapCn

τn← Cn+1.
We defineσi,n = σi ◦σi+1 ◦ · · · ◦σn−1 andτi,n = τi ◦ τi+1 ◦ · · · ◦ τn−1, and we introduce the following notations:

• if x, y ∈ Cn andu ∈ Cn+1, thenu : x→ y meansσn(u) = x andτn(u) = y;

• if x, y ∈ Cn with n > 0, thenx ‖ y meansσn−1(x) = σn−1(y) andτn−1(x) = τn−1(y);

• if x, y ∈ Ci andu ∈ Cn with i < n, thenu : x→i y meansσi,n(u) = x andτi,n(u) = y;

• if x, y ∈ Cn with i < n, thenx .i y meansτi,n(x) = σi,n(y).

Theboundary conditionsσn−1 ◦ σn = σn−1 ◦ τn andτn−1 ◦ σn = τn−1 ◦ τn hold for eachn > 0. In other words,
we havex ‖ y for all u : x→ y in Cn+1 (see figure 1). We also writex ‖ y wheneverx, y ∈ C0.

.

x
""

y

<<
�� ��
�� u .

Figure 1: boundary conditions

In addition to this structure of∞-graph, there is:
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• aproductu ∗n v : x→ z defined for allu : x→ y andv : y → z in Cn+1 (so thatu .n v);

• aproductu ∗i v : x ∗i y → z ∗i t defined for allu : x→ z andv : y → t in Cn+1 with i < n andu .i v;

• aunit 1n+1(x) : x→ x defined for allx ∈ Cn.

All those operations satisfy the conditions ofassociativity, left and right unit, andexchange:

• (x ∗i y) ∗i z = x ∗i (y ∗i z) for all x .i y .i z in Cn with i < n;

• 1n,i(x) ∗i u = u = u ∗i 1n,i(y) for all u : x→i y in Cn with i < n, where1n,i = 1n ◦ 1n−2 ◦ · · · ◦ 1i+1;

• (x ∗i y) ∗j (z ∗i t) = (x ∗j z) ∗i (y ∗j t) for all x, y, z, t ∈ Cn with i < j < n andx .i y, x .j z, y .j t
(which impliesz .i t by the boundary conditions, see figure 2).

. ��
�� ��
�� x

// ??�� ��
�� z

. ��
�� ��
�� y

// ??�� ��
�� t

.

Figure 2: exchange

By restricting this definition to a finite sequenceC0 ⇐ C1 ⇐ C2 · · ·Cn−1 ⇐ Cn, we get the notion ofn-category.
Conversely, any suchn-category is converted into a complex by concatenating with the infinite stationary sequence
Cn ⇐ Cn · · ·Cn ⇐ Cn · · · whereσi = τi = idCn

for all i ≥ n. In particular, we get the following examples:

• asetS : S ⇐ S ⇐ S · · ·S ⇐ S · · ·

• amonoidM : > ⇐M ⇐M · · ·M ⇐M · · ·

• acategoryC : C0 ⇐ C1 ⇐ C1 · · ·C1 ⇐ C1 · · ·

• anabelian monoidA : > ⇐ > ⇐ A⇐ A · · ·A⇐ A · · ·

• a2-monoid(or strict monoidal category) C : > ⇐ C1 ⇐ C2 ⇐ C2 · · ·C2 ⇐ C2 · · ·

• a2-categoryC : C0 ⇐ C1 ⇐ C2 ⇐ C2 · · ·C2 ⇐ C2 · · ·

Here,> stands for thesingleton, which is the terminal object in the category of sets. Note that we use the same
notation for a monoidM , its underlying set, and its associated complex.

Definition 2 A complexC such thatC0 = > is called amonoidal complex.

In that case, we writexy for x ∗0 y, which is defined for allx, y ∈ Cn with n > 0, and1 for the corresponding
unit inCn. Similarly, an-categoryC0 ⇐ C1 ⇐ C2 · · ·Cn−1 ⇐ Cn such thatC0 = > is called an-monoid.

Definition 3 If C andD are complexes, amorphismf : C → D is an infinite sequence of mapsfn : Cn → Dn

which are compatible with sources, targets, products and units:

• fn+1(u) : fn(x)→ fn(y) for all u : x→ y in Cn+1;

• fn(x ∗i y) = fn(x) ∗i fn(y) for all x .i y in Cn with i < n;

• fn+1(1n+1(x)) = 1n+1(fn(x)) for all x ∈ Cn.

Note that ifC is a monoidal complex andM is a monoid, then a morphismf : C →M is just a mapf1 : C1 →M
satisfying the following three conditions:

f1(xy) = f1(x)f1(y) for all x, y ∈ C1, f1(1) = 1, f1(x) = f1(y) for all u : x→ y in C2.

Indeed, we havefn = f1 ◦σ1,n = f1 ◦τ1,n for eachn > 1, and all conditions are consequences of the above three.
In particular,fn(x) = fn(y) for all x ‖ y in Cn with n > 1.

Note also that the singleton> : > ⇐ > ⇐ >· · ·> ⇐ > · · · is the terminal object in this category of complexes.
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3 Polygraphs and free complexes

A graphS0 ⇐ S1 consists of two setsS0, S1 and two mapsS0
σ0← S1 andS0

τ0← S1. It generates afree category
S0 ⇐ S∗1 , whereS∗1 is the set ofpathsin the graphS0 ⇐ S1.

Similarly, if n > 0 andC0 ⇐ C1 ⇐ C2 · · ·Cn−1 ⇐ Cn is an-category, then any graphCn ⇐ Sn+1 satisfying
the boundary conditionsσn−1 ◦ σn = σn−1 ◦ τn andτn−1 ◦ σn = τn−1 ◦ τn generates afree n+1-category
C0 ⇐ C1 ⇐ C2 · · ·Cn−1 ⇐ Cn ⇐ S∗n+1, whereS∗n+1 consists of formal compositions of elements ofSn+1.

Definition 4 [Bur93] The notion ofn-polygraphis defined by induction onn:

• A 0-polygraph is a setS0 that we also writeS∗0 .

• A 1-polygraph is a graphS0 = S∗0 ⇐ S1.

• A 2-polygraph is given by a graph (or 1-polygraph)S∗0 ⇐ S1 together with a graphS∗1 ⇐ S2 satisfying the
boundary conditionsσ0 ◦ σ1 = σ0 ◦ τ1 andτ0 ◦ σ1 = τ0 ◦ τ1.

• In general, an+1-polygraph is given by an-polygraphS∗0 ⇐ S1, S
∗
1 ⇐ S2, . . . , S

∗
n−1 ⇐ Sn together with

a graphS∗n ⇐ Sn+1 satisfying the boundary conditionsσn−1 ◦σn = σn−1 ◦ τn andτn−1 ◦σn = τn−1 ◦ τn.

The elements ofSn are calledn-generators. Here are two basic cases:

• An alphabetS1 = {ξ1, ξ2, . . .} defines a graph> ⇐ S1 with only one vertex. The free category generated
by this graph is> ⇐ S∗1 , whereS∗1 is the free monoid generated byS1.

• A rewriting systemonS∗1 , given by the set of rulesS2 = {x1
ζ1→ y1, x2

ζ2→ y2, . . .}, defines a graphS∗1 ⇐ S2.
We get a 2-polygraph, since the boundary conditions are trivially satisfied, and the free 2-category generated
by this 2-polygraph is> ⇐ S∗1 ⇐ S∗2 , whereS∗2 is the set of reductions quotiented by the exchange relation.

Therefore, an-polygraph can be considered as ahigher-dimensional rewriting system(syntactical interpretation)
or as adirected CW-complex(geometric interpretation). Various examples of 3-polygraphs corresponding to higher
dimensional rewriting systems are given in [Laf03]. See also [Gui06a, Gui06b, Gui06c].

Definition 5 [Bur93] A polygraphis an infinite sequenceS∗0 ⇐ S1, S
∗
1 ⇐ S2, . . . , S

∗
n ⇐ Sn+1, . . . whose firstn

items define an-polygraph for eachn. It generates a free complexS∗ : S∗0 ⇐ S∗1 ⇐ S∗2 · · ·S∗n ⇐ S∗n+1 · · ·

In particular, note that the singleton> is the free complexΩ∗ defined byΩ0 = > andΩn = ∅ for eachn > 0.

Definition 6 [Mét03] If S andT are polygraphs, amorphism of polygraphsf : S → T is given by an infinite
sequence of mapsfn : Sn → Tn satisfying the following condition:

• fn+1(ξ) : f∗n(x)→ f∗n(y) for all ξ : x→ y in Sn+1.

Here,f∗n stands for the obvious extension offn which is compatible with products and units. So we get a functor
from the category of polygraphs to the category of complexes mappingS to S∗ andf : S → T to f∗ : S∗ → T ∗.
It is the left adjoint of some forgetful functor [Mét03].

A morphism of the formf∗ : S∗ → T ∗ is calledatomic. Not all morphisms between free complexes are atomic.
In fact, morphisms of polygraphs and atomic morphisms only appear in appendix A.

4 Polygraphic resolutions

Definition 7 A morphismp : C → D is a trivial fibration if p0 : C0 → D0 is onto andp has thelifting property:

• if x ‖ y in Cn andv : pn(x)→ pn(y) in Dn+1, there is someu : x→ y in Cn+1 such thatpn+1(u) = v.

As a consequence, eachpn : Cn → Dn is onto andp has thestretching property:

• if x ‖ y in Cn andpn(x) = pn(y), there is someu : x→ y in Cn+1 such thatpn+1(u) = 1n+1(pn(x)).

Conversely, if eachpn is onto andp has the stretching property, thenp is a trivial fibration [Mét03].
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Definition 8 A complexC is exactif the canonical morphismπ : C → > is a trivial fibration.

This means thatC0 is not empty, andC has thefilling property: if x ‖ y in Cn, there is someu : x→ y in Cn+1.

Proposition 1 [Mét03] Any free complexS∗ is cofibrant: for any trivial fibration p : C → D and for any
morphismg : S∗ → D, there is some morphismf : S∗ → C such thatg = p ◦ f .

It suffices indeed to definefn(ξ) for eachξ ∈ Sn, using the fact thatp is a trivial fibration.

In fact, the converse of this proposition holds: any cofibrant complex is free [Mét06].

Definition 9 [Mét03] A (polygraphic) resolution ofC is a trivial fibrationp : S∗ → C whereS∗ is free.

Polygraphic resolutions are the analogues of free resolutions in a category of modules.

Theorem 1 [Mét03]

1. Any complexC has a resolutionp : S∗ → C.

2. If p : S∗ → C andq : T ∗ → C are resolutions, there is some morphismf : S∗ → T ∗ such thatp = q ◦ f .

3. Two such morphisms are homotopic.

The first point is straightforward:Sn andpn are defined by induction onn, starting fromS0 = C0 andp0 = idC0 .
For anyx ‖ y in S∗n andv : pn(x) → pn(y) in Cn+1, we introduce an+1-generatorξ : x → y and we define
pn+1(ξ) = v, so thatp is a resolution by construction. The second point follows immediately from proposition 1.
The third point is the crucial one: it uses thehomotopy relationf ∼ g. See appendices A and B.

Corollary 1 Two resolutionsp : S∗ → C andq : T ∗ → C are homotopically equivalent.

This means that there are some morphismsf : S∗ → T ∗ andg : T ∗ → S∗ such thatq ◦ f = p, p ◦ g = q,
g ◦ f ∼ idS∗ andf ◦ g ∼ idT∗ .

Note that any monoidM has amonoidal resolution, that is a resolutionp : S∗ → M such thatS∗0 = S0 = >.
Such a resolution contains apresentationof M , whereS1 is the set of generators andS2 is the set of relations.
Conversely, anysymmetric presentationof M can be extended to a monoidal resolution ofM .

5 Abelianization and homology

If S∗ : S∗0 ⇐ S∗1 ⇐ S∗2 · · ·S∗n ⇐ S∗n+1 · · · is a free complex andξ ∈ Sn, we write [ξ] for the corresponding
generator in thefreeZ-moduleZSn generated bySn, and ifn > 0, we extend this notation toS∗n as follows:

[x ∗i y] = [x] + [y] for all x .i y in S∗n with i < n, [1n(x)] = 0 for all x ∈ S∗n−1.

In other words,[x] counts the number of all occurrences of eachn-generator inx. The fact that it is well defined
follows from the universal property ofS∗n and the definition of a suitablen-category. See appendix D.

For eachn ≥ 0, we define aZ-linear mapZSn
∂n← ZSn+1 by ∂n[ξ] = [y]− [x] for all ξ : x→ y in Sn+1.

Lemma 1 ∂n[u] = [y]− [x] for all u : x→ y in S∗n+1.

This is easily proved by induction onu ∈ S∗n+1. Using this and the boundary conditions, we get∂n ◦ ∂n+1 = 0.

Definition 10 [Mét03] Theabelianization of a free complexS∗ : S∗0 ⇐ S∗1 ⇐ S∗2 · · ·S∗n ⇐ S∗n+1 · · · is the

abelian complex of freeZ-modulesZS : ZS0
∂0← ZS1

∂1← ZS2 · · ·ZSn
∂n← ZSn+1 · · ·

If f : S∗ → T ∗ is a morphism, we define aZ-linear mapfab
n : ZSn → ZTn by fab

n [ξ] = [fn(ξ)] for all ξ ∈ Sn.

Lemma 2 fab
n [x] = [fn(x)] for all x ∈ S∗n.

This is easily proved by induction onx ∈ S∗n. Using this, we get∂n ◦ fab
n+1 = fab

n ◦ ∂n for eachn.
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Definition 11 [Mét03] The abelianization of a morphismf : S∗ → T ∗ is the morphism of abelian complex
fab : ZS → ZT defined by the infinite sequencefab

n : ZSn → ZTn.

Note that we get a functor, sinceidab
S∗ = idZS , and(g ◦ f)ab = gab ◦ fab for anyf : S∗ → T ∗ andg : T ∗ → U∗.

Proposition 2 [Mét03] If f, g : S∗ → T ∗ are homotopic morphisms, so arefab, gab : ZS → ZT .

This crucial result is proved in appendix C. By corollary 1, we get:

Corollary 2 If p : S∗ → C andq : T ∗ → C are two resolutions ofC, thenZS andZT have the same homology.

This means that the homology groups ofZS, defined byH0(ZS) = ZS0/ im ∂0 andHn(ZS) = ker ∂n−1/ im ∂n

for eachn > 0, do not depend on the choice of the resolutionp : S∗ → C.

Definition 12 [Mét03] Thehomology of a complexC is the homology ofZS for any resolutionp : S∗ → C.

Corollary 3 If S∗ is an exact free complex, then the following augmented complex of freeZ-modules is exact:

0← Z ε← ZS0
∂0← ZS1

∂1← ZS2 · · ·ZSn
∂n← ZSn+1 · · ·

Here,ε = πab
0 whereπ : S∗ → Ω∗ = > is the canonical morphism. In other words,ε(ξ) = 1 for all ξ ∈ S0.

6 Unfolding a morphism

If M is a monoid andS is a set, we writeM ·S for the cartesian productM × S whose elements are writtenλ ·x,
and thefree (left) actionof M on the setM ·S is defined byλ · (µ ·x) = λµ ·x for all λ, µ ∈ M andx ∈ S.
In particular, we identifyM · > withM , where the action ofM on itself is defined byλ ·µ = λµ for all λ, µ ∈M .

Letf : C →M be a morphism, whereM is a monoid andC is a monoidal complex, so thatM ·C0 = M · > = M .
We shall define a new complexM ·C : M ⇐M ·C1 ⇐M ·C2 · · ·M ·Cn ⇐M ·Cn+1 · · ·

First, we writex = fn(x) ∈M for all x ∈ Cn with n > 0, and we define the structure of∞-graph as follows:

• λ ·x : λ→ λx in M ·C1 for all λ ∈M andx ∈ C1;

• λ ·u : λ ·x→ λ · y in M ·Cn+1 for all λ ∈M andu : x→ y in Cn+1 with n > 0.

As consequences, we get:

• if λ ∈M andx, y ∈ C1, thenλ ·x ‖ µ · y if and only if λ = µ andλx = λy;

• if λ ∈M andx, y ∈ Cn with n > 1, thenλ ·x ‖ µ · y if and only if λ = µ andx ‖ y.

In particular, for anyλ ·u : λ ·x → λ · y in M ·C2, we haveu : x → y in C2 andx = y sincef : C → M is a
morphism, so thatλ ·x ‖ λ · y. The other boundary conditions follow directly from the boundary conditions forC.

More generally, we haveλ ·x : λ→0 λx inM ·Cn for all λ ∈M andx ∈ Cn with n > 0, andλ ·u : λ ·x→i λ · y
in M ·Cn for all λ ∈M andu : x→i y in Cn with n > i > 0. As consequences, we get:

• if x, y ∈ Cn with n > 0, thenλ ·x .0 µ · y if and only if λx = µ;

• if x, y ∈ Cn with n > i > 0, thenλ ·x .i µ · y if and only if λ = µ andx .i y.

Using this, we define products and units as follows:

• (λ ·x) ∗0 (λx · y) = λ ·xy for all λ ∈M andx, y ∈ Cn with n > 0;

• (λ ·x) ∗i (λ · y) = λ · (x ∗i y) for all λ ∈M andx .i y in Cn with n > i > 0;

• 1n+1(λ ·x) = λ · 1n+1(x) for all λ ∈M andx ∈ Cn. In particular,11(λ) = λ · 1 for all λ ∈M .

It is easy to see that those operations satisfy the conditions of associativity, left and right unit, and exchange.
Furthermore, we have an obvious morphismf̃ : M ·C → C defined byf̃n(λ ·x) = x for all λ ∈M andx ∈ Cn.
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Definition 13 The complexM ·C : M ⇐ M ·C1 ⇐ M ·C2 · · ·M ·Cn ⇐ M ·Cn+1 · · · is called theunfolding
of the morphismf : C →M , andf̃ : M ·C → C is called itsfolding morphism.

In fact,M ·C is aM -complex, which means that its structure of complex is compatible with the action ofM .

Proposition 3 If G is a group andp : C → G is a trivial fibration, then its unfoldingG ·C is an exact complex.

Indeed,G is not empty, and using the fact thatp is a trivial fibration, we prove the filling property for eachG ·Cn:

• if λ, µ ∈ G, there is somex ∈ C1 such thatx = λ−1µ, and we getλ ·x : λ→ λx = µ in G ·C1;

• if λ ·x ‖ µ · y whereλ, µ ∈ G andx, y ∈ C1, we haveλ = µ andλx = λy, so thatx = y by left
cancellation. Therefore, there is someu : x→ y in C2, and we getλ ·u : λ ·x→ λ · y = µ · y in G ·C2;

• if λ ·x ‖ µ · y whereλ, µ ∈ G andx, y ∈ Cn with n > 1, we haveλ = µ andx ‖ y, so thatx = y.
Therefore, there is someu : x→ y in Cn+1, and we getλ ·u : λ ·x→ λ · y = µ · y in G ·Cn+1.

This proposition does not hold for an arbitrary monoid. In fact, the converse holds: if the unfolding off : C →M
is an exact complex, thenM is a group andf is a trivial fibration. However, we have a weaker property:

Proposition 4 If p : C →M is a trivial fibration, then its unfoldingM ·C has a filling property relative to1 ·C:

• if 1 ·x ‖ µ · y whereµ ∈M andx, y ∈ Cn, there is some1 ·u : 1 ·x→ µ · y in M ·Cn+1.

No extra assumption on the monoidM is needed here, sinceλ = 1 has a right inverse and is left cancelable.

7 The free case

Here, we consider the unfoldingM ·S∗ : M ⇐ M ·S∗1 ⇐ M ·S∗2 · · ·M ·S∗n ⇐ M ·S∗n+1 · · · of a morphism
f : S∗ →M , whereS∗0 = S0 = >, so thatM ·S∗0 = M · > = M . We shall see thatM ·S∗ is a free complex.

For anyn > 0, the canonical injection ofM ·Sn intoM ·S∗n defines a graphM ·S∗n−1 ⇐M ·Sn, which satisfies
the boundary conditionsσn−2 ◦ σn−1 = σn−2 ◦ τn−1 andτn−2 ◦ σn−1 = τn−2 ◦ τn−1 (for n > 1). We get a free
n-categoryM ⇐M ·S∗1 ⇐M ·S∗2 · · ·M ·S∗n−2 ⇐M ·S∗n−1 ⇐ (M ·Sn)∗ and a mapϕ : (M ·Sn)∗ →M ·S∗n
such thatσn−1 ◦ ϕ = σn−1 andτn−1 ◦ ϕ = τn−1, which is compatible with products and units.

If x ∈ (M ·Sn)∗ andy ∈ M ·S∗n, we can writex ‖ y even thoughx andy do not belong to the same complex,
since their sources and targets do.

If λ ∈M andξ ∈ Sn, we write〈λ · ξ〉 for the correspondingn-generator in(M ·Sn)∗. More generally, ifλ ∈M
andx ∈ S∗n, we define〈λ ·x〉 in (M ·Sn)∗ such that〈λ ·x〉 ‖ λ ·x as follows:

• 〈λ ·xy〉 = 〈λ ·x〉 ∗0 〈λx · y〉 for all λ ∈M andx, y ∈ S∗n;

• 〈λ ·x ∗i y〉 = 〈λ ·x〉 ∗i 〈λ · y〉 for all λ ∈M andx .i y in S∗n with n > i > 0;

• 〈λ · 1n(x)〉 = 1n(λ ·x) for all λ ∈M andx ∈ S∗n−1.

In other words,〈λ ·x〉 is a decomposition ofλ ·x as a formal product ofn-generators inM ·Sn. The fact that it is
well defined follows from the universal property ofS∗n and the definition of a suitablen-category. See appendix E.
To sum up, we have defined a mapψ : M ·S∗n → (M ·Sn)∗ such thatσn−1 ◦ ψ = σn−1 andτn−1 ◦ ψ = τn−1,
which is obviously compatible with products and units.

By construction,ψ(ϕ〈λ · ξ〉) = 〈λ · ξ〉 for all λ ∈ M andξ ∈ Sn, so thatψ ◦ ϕ is the identity on(M ·Sn)∗.
Furthermore, we haveϕ〈λ ·x〉 = λ ·x for all λ ∈ M andx ∈ S∗n: this is easily proved by induction onx ∈ S∗n.
Henceϕ ◦ ψ is the identity onM ·S∗n, and we can identifyM ·S∗n with (M ·Sn)∗.

By abelianization of the complexM ·S∗ = (M ·S)∗, we get a complex of freeZ-modules:

Z(M ·S) : ZM ∂0← Z(M ·S1)
∂1← Z(M ·S2) · · ·Z(M ·Sn) ∂n← Z(M ·Sn+1) · · ·

Furthermore, the freeZ-moduleZ(M ·Sn) can be identified with the freeZM -moduleZM ·Sn.

Lemma 3 [λ ·x] = λ · [1 ·x] for all λ ∈M andx ∈ S∗n.
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This is easily proved by induction onx ∈ S∗n. Using this, we get the fact that all∂n areZM -linear. In other words,
we have∂n(λ · ξ) = λ · ∂n(1 · ξ) for all λ ∈M andξ ∈ Sn.

Note also that the folding morphism̃f : ZM ·S → ZS is ZM -linear if we consider thetrivial action ofM onZS.
In other words, we havẽfab

n [λ · ξ] = [ξ] for all λ ∈M andξ ∈ Sn. To sum up, we have the following result:

Proposition 5 M ·S∗ is a free complex of the form(M ·S)∗. Its abelianization is a complex of freeZM -modules:

ZM ·S : ZM ∂0← ZM ·S1
∂1← ZM ·S2 · · ·ZM ·Sn

∂n← ZM ·Sn+1 · · ·

Furthermore, the abelian complexZS is obtained by trivializing the action ofM in ZM ·S.

Now we can state the main result of this paper:

Theorem 2 If p : S∗ →M is a monoidal resolution ofM andM ·S is its unfolding, thenZM ·S is a resolution
of Z by freeZM -modules. In other words, the following augmented complex ofZM -modules is exact:

0← Z ε← ZM ∂0← ZM ·S1
∂1← ZM ·S2 · · ·ZM ·Sn

∂n← ZM ·Sn+1 · · ·

Here,ε is defined byε(λ) = 1 for all λ ∈M . It is ZM -linear if we consider the trivial action ofM onZ.

Corollary 4 The homology of a monoidM coincides with the homology of the (non abelian) complexM .

In the case of groups, theorem 2 follows from proposition 3 and corollary 3.

We consider now a monoidal resolutionp : S∗ → M whereM is an arbitrary monoid. Proposition 4 asserts that
the canonical morphismπ : M ·S∗ → > is a(X ,Y)-fibration, whereX = 1 ·S∗ is theright ideal consisting of
all cells of the form1 ·x with x ∈ S∗n for somen, andY = M ·S∗ is theleft idealconsisting of all cells inM ·S∗.
See appendix B for the corresponding definitions.

Note thatX is just the set of cells inM ·S∗ whose 0-dimensional source is1 ∈M ·S∗0 = M · > = M . We have a
canonical inclusionι : > →M ·S∗ which maps the vertex of> to 1, and the following conditions hold trivially:

ι ◦ π(M ·S∗) ⊂ X , idM ·S∗(M ·S∗) ⊂ Y, π ◦ ι ◦ π = π ◦ idM ·S∗ .

SinceM ·S∗ is free, proposition 7 of appendix B applies, so thatι ◦ π  idM ·S∗ , which impliesι ◦ π ∼ idM ·S∗ .
By proposition 2, theZM -linear maps(ι ◦ π)ab = ιab ◦ πab andidab

M ·S∗ = idZM ·S are algebraically homotopic.
Sinceπab

0 = ε andπab
n = 0 for eachn > 0, the augmented complex of theorem 2 is exact, and we are done.
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A Cylinders

Our definition of homotopy will be based on the construction of a functor

C 7→ CI

which to each complexC associates a new complexCI consisting intuitively of paths inC.
We first describe a family of polygraphs: for each integern, then-cylinder, denoted byn is defined by its sets
of generatorsni, together with source an target mapsσi, τi : n∗i ⇐ ni+1 in each dimensioni ≥ 0. Figure 3
represents then-cylinder forn = 0, 1, 2. 2-cylinders appear early in the litterature [Bén67]; general cylinders were

•
β0

•
α0

��

|0|

•
β−0

•
α−0

��

|0|−

•
α+

0α1 //

•
β+
0

|0|+

��
β1

//

|1|
��

��
��

����
��

��

•
β−0

•

β+
1

99•
β+
0

β−1
%%

•
α−0

��

|0|−

•
α+

0
α−1

%%•
α+

1

99

|0|+

��

|1|+ll

|1|−

��
|2|rr

α2
%%LLL

β2
%%

Figure 3:n-cylinder forn = 0, 1, 2

considered in connection with tensor products on∞-categories [Cra95].
The present construction takes a different approach and is equivalent to Burroni’s [Bur00]. The following tables
display the generators ofn, as well as the expression of their source and target in each dimension:

• Forn = 0, we get

dimension generators
0 α0

β0

1 |0| : α0 → β0

• for n = 1,
dimension generators

0 α−0
α+

0

β−0
β+

0

1 |0|− : α−0 → β−0
|0|+ : α+

0 → β+
0

α1 : α−0 → α+
0

β1 : β−0 → β+
0

2 |1| : α1 ∗0 |0|+ → |0|−∗0 β1
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• for n > 1,

dimension generators
0 α−0

α+
0

β−0
β+

0

1 ≤ i ≤ n− 1 |i− 1|− : α−i−1 ∗0 |0|
+∗1 · · · ∗i−2 |i− 2|+ → |i− 2|−∗i−2 · · · ∗1 |0|−∗0 β−i−1

|i− 1|+ : α+
i−1 ∗0 |0|

+∗1 · · · ∗i−2 |i− 2|+ → |i− 2|−∗i−2 · · · ∗1 |0|−∗0 β+
i−1

α−i : α−i−1 → α+
i−1

α+
i : α−i−1 → α+

i−1

β−i : β−i−1 → β+
i−1

β+
i : β−i−1 → β+

i−1

n |n− 1|− : α−n−1 ∗0 |0|
+∗1 · · · ∗n−2 |n− 2|+ → |n− 2|−∗n−2 · · · ∗1 |0|−∗0 β−n−1

|n− 1|+ : α+
n−1 ∗0 |0|

+∗1 · · · ∗n−2 |n− 2|+ → |n− 2|−∗n−2 · · · ∗1 |0|−∗0 β+
n−1

αn : α−n−1 → α+
n−1

βn : β−n−1 → β+
n−1

n+ 1 |n| : αn ∗0 |0|+∗1 · · · ∗n−1 |n− 1|+ → |n− 1|−∗n−1 · · · ∗1 |0|−∗0 βn

We dispense of parentheses and identity symbols by assuming that∗i has precedence over∗j if i < j and by
denotingx for 1j,i(x) if x is of dimensioni andj > i. For example, all cells appearing in the expression ofσn |n|
have dimensionn: among these, onlyαn and|n− 1|+ are not identities.
Because a polygraph is entirely determined by its generators and mapsσ, τ , the above tables define at most one
family of polygraphs. We still need a coherence result, which amounts to the following lemma.

Lemma 4 For eachn ≥ 0, the polygraphn is well defined.

We first prove the existence ofn by induction onn. 0, 1 and2 are easily seen to be well defined. Suppose now
n > 2 andm is a well defined polygraph for eachm < n, we show thatn is also well defined:

• For eachi ≤ n − 2, ni is exactly(n− 1)i, with the same source and target maps, hencen is well defined
up to dimensionn− 2.

• nn−1 is obtained from(n− 1)n−1 by splittingαn−1 in two copiesα−n−1, α+
n−1 having the same source

and target, and likewise forβn−1, whereas|n− 2|− and|n− 2|+ are left unchanged. Hencen is now well
defined up to dimensionn− 1.

• The source and target formulas defining|n− 1|− and |n− 1|+ are the same as those defining|n− 1| in
n− 1, but for the signs onαn−1 andβn−1, hence they are coherent. Also the previous point shows that
α−n−1 ‖ α

+
n−1 andβ−n−1 ‖ β

+
n−1, so that the source and target formulas definingαn andβn are coherent.

Thusn is well defined up to dimensionn.

• It remains to show that the last cell|n| ∈ nn+1 may be attached ton∗n according to the given source and
target formulas: this amounts to check that

– u = αn ∗0 |0|+∗1 · · · ∗n−1 |n− 1|+ andv = |n− 1|−∗n−1 · · · ∗1 |0|−∗0 βn are well defined cells.

– u ‖ v.

As for the first point, we prove by induction on1 ≤ i ≤ n−1 thatui = αn ∗0 |0|+∗1 · · ·∗i−1 |i− 1|+ is well
defined and thatui .i |i|+ wheneveri < n − 1, by using equations already satisfied in lower dimensions,
and likewise forv. The second point amounts to evaluateσn−1(u), σn−1(v), τn−1(u) andτn−1(v):

σn−1(u) = σn−1(αn ∗0 |0|+∗1 · · · ∗n−2 |n− 2|+)
= α−n−1 ∗0 |0|

+∗1 · · · ∗n−2 |n− 2|+

= σn−1|n− 1|−

= σn−1(v),

and likewise for targets, by using our convention on identities.
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This ends the proof of the lemma.
Moreover, there are morphisms of polygraphssn, tn : n→ n + 1 satisfying the coboundary conditions

sn+1 ◦ sn = tn+1 ◦ sn,

sn+1 ◦ tn = tn+1 ◦ tn.

sn : n→ n + 1 is easily defined on each dimension:

• for 0 ≤ i ≤ n− 1, sn is the identity onni = (n + 1)i;

• for i = n, sn(αn) = α−n , sn(βn) = β−n , andsn(x) = x for x ∈ {|n− 1|−, |n− 1|+};

• for i = n+ 1, sn|n| = |n|− ∈ (n + 1)n+1.

The definition oftn is the same, except for the change of sign. The coboundary relations are straightforward.
Eachn-cylindern generates a complexn∗. For any pair of complexesC, D we denote byCompl(D,C) the set
of morphismsf : D → C. Thus for each integern, we get a set

CI
n = Compl(n∗, C)

and the mapssn, tn give rise tos∗n andt∗n from n∗ to n + 1∗, hence to

σn, τn : CI
n ⇐ CI

n+1

defined byσn(x) = x ◦ s∗n andτn(x) = x ◦ t∗n. Because of the coboundary conditions, theσn’s andτn’s satisfy
the boundary condition, makingCI an∞-graph or globular set.

NowCI also has a structure of complex. Let0 ≤ i < n, we define

si,n, ti,n : i→ n

by si,n = sn−1 ◦ · · · ◦ si andti,n = tn−1 ◦ · · · ◦ ti. BecauseS 7→ S∗ is a left-adjoint, it preserves colimits, and
there are pushout diagrams:

i
si,n //

ti,n

��

n

��
n // n +i n

i∗
s∗i,n //

t∗i,n

��

n∗

��
n∗ // n∗ +i n∗

The pushoutn +i n can be concretely described by generators: starting with two copies of then-cylinder, whose
generators we denote byα±1,j , β±1,j , |j|±1 andα±2,j , β±2,j , |j|±2 respectively, we take the disjoint union of both sets of
generators in each dimension and perform the following identifications:

• for 0 ≤ j < i

α+
1,j = α+

2,j ,

α−1,j = α−2,j ,

β+
1,j = β+

2,j ,

β−1,j = β−2,j ,

|j|+1 = |j|+2 ,
|j|−1 = |j|−2 ;

• for j = i

α+
1,i = α−2,i,

β+
1,i = β−2,i,

|i|+1 = |i|−2 .
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•
β−1,0

•
β1,1

// •
β−2,0

β2,1

//

•
α−1,0

•
α1,1 // •

α+
2,0α2,1 //

|0|−1

��

|0|+1 =|0|−2
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1,0=β−2,0

|0|+2

��
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�
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Figure 4:1 +0 1

•
β−1,0

•
β+
1,1

99
β−1,1

%% •
β−2,0β+

2,1

99
β−2,1

%%

•
α−1,0

•
α+

1,1

99
α−1,1

%% •
α+

2,0

α+
2,1

99
α−2,1

%%

|0|−1

��

|0|+1 =|0|−2
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•
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2,0
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!!
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•
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•
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==
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1,0=α+
2,0

α−1,1

!!
α+

1,1=α−2,1
//

|0|−1 =|0|−2

��

|0|+1 =|0|+2

��

|1|+1 =|1|−2

�� |1|+2
tt

|1|−1





α1,2
��/

//
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oo

Figure 6:2 +1 2
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The resulting polygraph is well defined because each time we identify two generators, their sources and targets are
already identified in lower dimensions. Figures 4, 5 and 6 show1 +0 1, 2 +0 2 and2 +1 2 respectively.
It is now possible to define acomultiplication

γi,n : n∗ → n∗ +i n∗.

The value ofγi,n(ξ) for generatorsξ of n is given by the following tables:

j ξ γi,n(ξ)
0 ≤ j < i α−j α−1,j = α−2,j

α+
j α+

1,j = α+
2,j

β−j β−1,j = β−2,j

β+
j β+

1,j = β+
2,j

j = i α−i α−1,i

α+
i α+

2,i

β−i β−1,i

β+
i β+

2,i

j ξ γi,n(ξ)
i < j < n α−j α−1,j ∗i α

−
2,j

α+
j α+

1,j ∗i α
+
2,j

β−j β−1,j ∗i β
−
2,j

β+
j β+

1,j ∗i β
+
2,j

j = n αn α1,n ∗i α2,n

βn β1,n ∗i β2,n

j ξ γi,n(ξ)
0 ≤ j < i |j|− |j|−1 = |j|−2

|j|+ |j|+1 = |j|+2
j = i |i|− |i|−1

|i|+ |i|+2
i+ 1 = j < n |j|− (α−1,i+1 ∗0 |0|

+
1 ∗1 · · · ∗i−1 |i− 1|+1 ∗i |j|

−
2 )∗i+1

(|j|−1 ∗i |i− 1|−2 ∗i−1 · · · ∗1 |0|−2 ∗0 β
−
2,i+1)

|j|+ (α+
1,i+1 ∗0 |0|

+
1 ∗1 · · · ∗i−1 |i− 1|+1 ∗i |j|

+
2 )∗i+1

(|j|+1 ∗i |i− 1|−2 ∗i−1 · · · ∗1 |0|−2 ∗0 β
+
2,i+1)

i+ 1 < j < n |j|− (α−1,i+1 ∗0 |0|
+
1 ∗1 · · · ∗i−1 |i− 1|+1 ∗i |j|

−
2 )∗i+1

(|j|−1 ∗i |i− 1|−2 ∗i−1 · · · ∗1 |0|−2 ∗0 β
+
2,i+1)

|j|+ (α−1,i+1 ∗0 |0|
+
1 ∗1 · · · ∗i−1 |i− 1|+1 ∗i |j|

+
2 )∗i+1

(|j|+1 ∗i |i− 1|−2 ∗i−1 · · · ∗1 |0|−2 ∗0 β
+
2,i+1)

i+ 1 < j = n |n| (α−1,i+1 ∗0 |0|
+
1 ∗1 · · · ∗i−1 |i− 1|+1 ∗i |n|2)∗i+1

(|n|1 ∗i |i− 1|−2 ∗i−1 · · · ∗1 |0|−2 ∗0 β
+
2,i+1)

i+ 1 = j = n |n| (α1,n ∗0 |0|+1 ∗1 · · · ∗n−2 |n− 2|+1 ∗n−1 |n|2)∗n
(|n|1 ∗n−1 |n− 2|−2 ∗n−2 · · · ∗1 |0|−2 ∗0 β2,n)

The source and target relations inn together with the above identifications of cells show thatγi,n is well defined.
Remark: the morphismγi,n is not atomic.
From γi,n, we immediately get a partial composition operator onCI

n: let x, y ∈ CI
n such thatx .i y, that is

σi,n(y) = τi,n(x), which amounts toy ◦ s∗i,n = x ◦ t∗i,n, whence a unique morphism[x, y] : n∗ +i n∗ making the
following diagram commutative:

i∗
s∗i,n //

t∗i,n

��

n∗

��
y

��5
55

55
55

55
55

55
55

5

n∗ //

x

))TTTTTTTTTTTTTTTTTTTT n∗ +i n∗

[x,y]
HH

H

$$HHH
H

C

We now define
x ∗i y = [x, y] ◦ γn,i,

which is again an element ofCI
n.

Likewise, there is a unique morphismιn+1 : (n + 1)∗ → n∗ collapsingαn+1, βn+1 and|n+ 1| to identities on
αn, βn and|n| respectively. To eachx ∈ CI

n we associate

1n+1(x) = x ◦ ιn+1,
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an element ofCI
n+1.

The operations∗i and maps1n satisfy the conditions of left and right unit, associativity and exchange. This was
shown in detail in [Mét03], whereCI is given a slightly different but equivalent definition, and namedHC: we
identify CI

n with (HC)n by sending eachx ∈ CI
n to the5-tuple (x ◦ σ∗n−1, x ◦ τ∗n−1, x(αn), x(βn), x(|n|)) ∈

(HC)n.
As a consequence, the globular setCI has the expected structure of complex.
Finally we have two morphisms

a, b : CI → C

defined byan(x) = x(αn) andbn(x) = x(βn) for eachx ∈ CI
n, that isx : n∗ → C.

B Homotopy

We may now define a homotopy relation among morphismsf, g : D → C, whereC,D are two complexes. By the
previous section, there is a complexCI equipped with mapsa, b : CI → C, leading to the following definition:

Definition 14 A homotopyfromf to g is a morphismh : D → CI such thatf = a ◦ h andg = b ◦ h.

Let us denote byf  g the existence of such a homotopy. Remark that is a reflexive, butnot a symmetric
relation. We denote by∼ its symmetric and transitive closure: hence∼ is the smallest equivalence relation
containing . Whenf ∼ g, we say thatf andg are homotopic.
The third point of theorem 1, section 4, is an immediate consequence of the following proposition:

Proposition 6 Letp : C → D be a trivial fibration, andf , g maps fromS∗ toC. If p ◦ f = p ◦ g, thenf  g.

For each mapp : C → D there is a mapp× p : C ×C → D×D. LetC ×p C be the subcomplex ofC consisting
of pairs of cells(x, y) in C such thatp(x) = p(y). We get a canonical inclusionj : C ×p C → C × C as well as
a mapq : C ×p C → D defined byq (x, y) = p(x) = p(y), making the following diagram a pullback square:

C ×p C
j //

q

��

C × C

p×p

��
D

∆
// D ×D

where∆ is the diagonal mapx 7→ (x, x).
We now define a subsetE of CI consisting of cellsx ∈ CI satisfying the followingcollapsing conditions:

• p(a(x)) = p(b(x));

• if x : n∗ → C and0 ≤ i ≤ n, pi+1(x(|i|±)) is a degenerate cell ofDi+1.

The stability ofE by source and target maps, as well as compositions and identities, makesE a subcomplex of
CI , and we get a canonical inclusionk : E → CI . Also for eachx ∈ E, (a(x), b(x)) belongs toC ×p C because
of the first condition, hence a mapr : E → C ×p C, x 7→ (a(x), b(x)) and a commutative square:

E
k //

r

��

CI

(a,b)

��
C ×p C

j
// C × C

Lemma 5 If p is a trivial fibration, so isr.

Supposep is a trivial fibration. Let(x, y) ∈ (C ×p C)0. Becausep0(x) = p0(y), there is a cellz : x → y in C1

such thatp1(z) = 11(p0(x)) = 11(p0(y)). Now u : 0∗ → C defined byu0(α0) = x, u0(β0) = y andu1 |0| = z
belongs toE0 andr0(u) = (x, y), hencer0 is surjective.
Let n > 0, u, v parallel cells inEn−1 such that there is az : rn−1(u) → rn−1(v) in (C ×p C)n. Let rn−1(u) =
x =

(
x1, x2

)
, rn−1(v) = y =

(
y1, y2

)
andz =

(
z1, z2

)
. Remark thatzi : xi → yi for i ∈ {1, 2} and that

pn(z1) = pn(z2).
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We need to find aw : u → v in En satisfyingrn(w) = z. Now such aw is a mapn∗ → C so that we must
definew on the generating cells ofn. By abuse of language, we identify everywhere each generator inni with its
canonical image inn∗i .
Let ξ ∈ ni be a generator. In lower dimensions,w(ξ) is entirely determined byu andv. Precisely:

• If 0 ≤ i ≤ n − 2, or ξ ∈ {|n− 2|−, |n− 2|+} ⊂ nn−1, thenξ is already a generator ofn− 1, and
u(ξ) = v(ξ) becauseu ‖ v. Moreoversn−1 and tn−1 act trivially on those cells, so that we may set
w(ξ) = u(ξ) = v(ξ) in this case;

• if ξ is α−n−1 (resp.β−n−1, |n− 1|−), it is sn−1(αn−1) (resp.sn−1(βn−1), sn−1(|n− 1|)). Thusw(ξ) is
u(αn−1) (resp.u(βn−1), u(|n− 1|));

• if ξ is α+
n−1 (resp.β+

n−1, |n− 1|+), it is tn−1(αn−1) (resp.tn−1(βn−1), tn−1(|n− 1|)). Thusw(ξ) is
v(αn−1) (resp.v(βn−1), v(|n− 1|));

The next case relies on the existence ofz : rn−1(u)→ rn−1(v):

• If ξ = αn ∈ nn, w(α−n−1) = u(αn−1) andw(α+
n−1) = v(αn−1) are respectivelyan−1(u) = x1 and

an−1(v) = y1. Takew(ξ) = w(αn) = z1, with z1 : x1 → y1 in Cn defined above. Likewise, ifξ = βn, we
definew(ξ) = w(βn) = z2, with z2 : x2 → y2. Recall thatp(z1) = p(z2).

At this point,w : n∗ → C is well defined and satisfies the collapsing conditions up to dimensionn. We finally
turn to the last case, which is the core of the proof:

• Supposeξ = |n|. The source and target ofξ are by definitionσn |n| = αn ∗0 |0|+ ∗1 · · · ∗n−1 |n− 1|+ and
τn |n| = |n− 1|− ∗n−1 · · · ∗1 |0|− ∗0 βn. By the above construction ofw in dimensions≤ n, we get

w(σn(ξ)) = w(αn) ∗0 w|0|+∗1 · · · ∗n−1 w|n− 1|+,
w(τn(ξ)) = w|n− 1|−∗n−1 · · · ∗1 w|0|−∗0 w(βn),

and the collapsing conditions, together withp(z1) = p(z2) imply

p(w(σn(ξ))) = p(w(αn))
= p(z1)
= p(z2)
= p(w(βn))
= p(w(τn(ξ)))

hencew(σn(ξ)) andw(τn(ξ)) are two parallel cells inCn having the same image inDn by p. Becausep
is a trivial fibration, there is a cell̂z : w(σn(ξ)) → w(τn(ξ)) in Cn+1 such thatp(ẑ) = 1n+1(p(z1)) =
1n+1(p(z2)). Hence we may extendw up to dimensionn+ 1 byw(ξ) = ẑ.

Thusw is a well defined cell inCI
n satisfying the second collapsing condition. Now, by definition,an(w) =

w(αn) = z1 andbn(w) = w(βn) = z2, so that the first collapsing condition holds. To sum up,w : u→ v belongs
toEn andrn(w) = z, as required. This ends the proof of lemma 5.
Proposition 6 follows immediately: fromf, g : S∗ → C we get(f, g) : S∗ → C×C. Becausep◦f = p◦g, (f, g)
factorizes throughj asj ◦ l, with l : S∗ → C ×p C. But S∗ is cofibrant, and by lemma 5,r is a trivial fibration,
whence âl : S∗ → E such thatr ◦ l̂ = l. Now the following diagram commutes:

E
k //

r

��

CI

(a,b)

��
S∗

l
//

l̂

;;wwwwwwwwww
C ×p C

j
// C × C

andh = k ◦ l̂ yields the expected homotopy fromf to g.
Proposition 6 settles the case of groups. The case of monoids, however, requires a refined version. We first
introduce some terminology.

Definition 15 LetC be a complex. Aright-idealX ⊂ C is a set of cells, closed by source, target and identities,
such that wheneverx ∈ X , y ∈ C andx .i y, thenx ∗i y ∈ X .
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Hence a right-ideal is in particular a subcomplex ofC. Likewise, we get the obvious notion ofleft-ideal.

Definition 16 Let (X ,Y) a pair consisting of a right-idealX and a left-idealY, andp : C → D a morphism.p
is a trivial fibration relative to(X ,Y) or short(X ,Y)-fibration if:

• p0 is surjective;

• if x ∈ Xn, y ∈ Yn, x ‖ y, and there isu : p(x) → p(y) in Dn+1, then there is az : x → y in Cn+1 such
thatp(z) = u.

Thus we may state a relativized version of proposition 6:

Proposition 7 Let p : C → D be a(X ,Y)-fibration, andf , g maps fromS∗ to C such thatf(S∗) ⊂ X and
g(S∗) ⊂ Y. If p ◦ f = p ◦ g, thenf  g.

We adapt the above proof as follows: we first replaceC ×p C byX ×p Y, the set of pairs(x, y) such thatx ∈ X ,
y ∈ Y andp(x) = p(y), and the complexE by its subcomplexE′ = {x ∈ E|a(x) ∈ X , b(x) ∈ Y}. We now have
j′ : X ×p Y → C × C, k′ : E′ → CI andr′ : E′ → X ×p Y making the following diagram commutative:

E′ k′ //

r′

��

CI

(a,b)

��
X ×p Y

j′
// C × C

Then a relativized version of lemma 5 still holds:

Lemma 6 If p is a (X ,Y)-fibration, thenr′ is a trivial fibration.

The proof goes as above, by constructingw : n∗ → C, except that all pairs of cells previously inC×pC now need
to be inX ×p Y. This is immediate up to dimensionn. As forw |n|, just notice thatw(αn) ∈ X andw(βn) ∈ Y,
so that

w(σn(ξ)) = w(αn) ∗0 w|0|+∗1 · · · ∗n−1 w|n− 1|+ ∈ X ,
w(τn(ξ)) = w|n− 1|−∗n−1 · · · ∗1 w|0|−∗0 w(βn) ∈ Y,

becauseX is a right-ideal, andY a left-ideal. Butp is a(X ,Y)-fibration, so that we still have a cellẑ : w(σn(ξ))→
w(τn(ξ)) satisfying the expected conditions.
Proposition 7 follows as above: becausef(S∗) ⊂ X andg(S∗) ⊂ Y andp ◦ f = p ◦ g, (f, g) factorizes throughj′

asj′ ◦ l′ with l′ : S∗ → X ×p Y. Sincer′ is trivial fibration, there is âl′ such thatr′ ◦ l̂′ = l′. Finally,h′ = k′ ◦ l̂′
is a homotopy fromf to g.

C Abelianization and homotopy

We finally prove proposition 2 of section 5:

If f, g : S∗ → T ∗ are homotopic morphisms, so arefab, gab : ZS → ZT .

It suffice to prove that, iff, g : S∗ → T ∗ andf  g, thenfab andgab are (algebraically) homotopic. Suppose
then that there is a maph : S∗ → (T ∗)I such thata ◦ h = f andb ◦ h = g. Usingh, we build an algebraic
homotopy betweenfab andgab, that is a family ofZ-linear mapskn : ZSn → ZTn+1 such that

gab
n − fab

n = ∂n ◦ kn + kn−1 ◦ ∂n−1. (3)

Thus, letξ ∈ Sn, hn(ξ) : n∗ → T ∗, so thathn(ξ) |n| ∈ T ∗
n+1 and we may define

kn[ξ] = [hn(ξ) |n|]. (4)

We first remark that the defining equation (4) extends to non-atomic cellsu ∈ S∗n, so that

kn[u] = [hn(u) |n|]. (5)

This is a small but crucial point: let us prove it by structural induction onu.

17



• If u is a generator, (5) is simply (4);

• if u is of the form1n(v) with v ∈ S∗n−1, the left hand side of (5) vanishes, and becauseh is a morphism of
complexes,

hn(1n(v)) = 1n(hn−1(v))
= hn−1(v) ◦ ιn,

but ιn |n| = 1n |n− 1|, so thathn(u) |n| is degenerate and[hn(u) |n|] = 0;

• if u is of the formv ∗i w, wherev andw satisfy the induction hypothesis,hn(u) = hn(v) ∗i hn(w), using
again the fact thath is a morphism of complexes. Now the composition formulas inT ∗I show that the only
non-degenerate cells in(hn(v) ∗i hn(w)) |n| arehn(v) |n| andhn(w) |n| so that

[(hn(v) ∗i hn(w)) |n|] = [hn(v) |n|] + [hn(w) |n|]
= kn[v] + kn[w]
= kn([v] + [w])
= kn[v ∗i w]
= kn[u].

Hence the result.
Let us now compute∂n◦kn(ξ): by using the expressions of the source and target of|n|, and applying the morphism
hn(ξ), we get

σn(hn(ξ) |n|) = hn(ξ)(αn) ∗0 hn(ξ)|0|+ ∗1 · · · ∗n−1 hn(ξ)|n− 1|+,
τn(hn(ξ) |n|) = hn(ξ)|n− 1|− ∗n−1 · · · ∗1 hn(ξ)|0|− ∗0 hn(ξ)(βn).

When linearizing, all degenerate cells vanish, so that

∂n[hn(ξ) |n|] = ([hn(ξ)(βn)]− [hn(ξ)(αn)])− ([hn(ξ)|n− 1|+]− [hn(ξ)|n− 1|−]).

By definition,hn(ξ)(βn) = bn ◦ hn(ξ) = gn(ξ) andhn(ξ)(αn) = an ◦ hn(ξ) = fn(ξ).
On the other hand

hn(ξ)|n− 1|+ = hn(ξ)(tn−1 |n− 1|)
= hn−1(τn−1(ξ)) |n− 1| .

Likewise

hn(ξ)|n− 1|− = hn(ξ)(sn−1 |n− 1|)
= hn−1(σn−1(ξ)) |n− 1| ,

and by using (5) we get

[hn(ξ)|n− 1|+]− [hn(ξ)|n− 1|−] = [hn−1(τn−1(ξ)) |n− 1|]− [hn−1(σn−1(ξ)) |n− 1|]
= kn−1[τn−1(ξ)]− kn−1[σn−1(ξ)]
= kn−1 ◦ ∂n−1[ξ].

Finally
∂n ◦ kn[ξ] = (gab

n − fab
n )[ξ]− kn−1 ◦ ∂n−1[ξ],

which immediately gives (3), and ends the proof.

D Counting generators

If A is an (additive) abelian monoid, anyn-categoryC0 ⇐ C1 ⇐ C2 · · ·Cn−1 ⇐ Cn extends to an+1-category
C0 ⇐ C1 ⇐ C2 · · ·Cn−1 ⇐ Cn ⇐ 〈A : Cn〉 as follows:
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• 〈A : Cn〉 is the set of formal cells〈a : x→ y〉 wherea ∈ A andx ‖ y in Cn;

• 〈a : x→ y〉 : x→ y for all a ∈ A andx ‖ y in Cn;

• 〈a : x→ y〉 ∗n 〈b : y → z〉 = 〈a+ b : x→ z〉 for all a, b ∈ A andx ‖ y ‖ z in Cn;

• 〈a : x → z〉 ∗i 〈b : y → t〉 = 〈a + b : x ∗i y → z ∗i t〉 for all a, b ∈ A andx, y, z, t ∈ Cn such thati < n
andx ‖ z, y ‖ t, x .i y (which impliesz .i t by the boundary conditions);

• 1n+1(x) = 〈0 : x→ x〉 for all x ∈ Cn.

It is easy to see that those operations satisfy the conditions of left and right unit, associativity, and exchange.

In particular, ifS∗0 ⇐ S1, S
∗
1 ⇐ S2, . . . , S

∗
n−1 ⇐ Sn, S

∗
n ⇐ Sn+1 is an+1-polygraph, we have an-category

S∗0 ⇐ S∗1 ⇐ S∗2 · · ·S∗n−1 ⇐ S∗n and an injection ofSn+1 into 〈ZSn+1 : S∗n〉 mappingξ : x→ y to 〈[ξ] : x→ y〉.
By the universal property ofS∗n+1, we get a mapρ : S∗n+1 → 〈ZSn+1 : S∗n〉 such thatσn ◦ρ = σn andτn ◦ρ = τn,
which is compatible with products and units.

This means thatρ(u) = 〈[u] : x→ y〉 for all u : x→ y in S∗n+1, where the mapu 7→ [u] extends the one defined
onSn+1 and satisfies the following properties:

[u ∗i v] = [u] + [v] for all u .i v in S∗n+1 with i < n+ 1, [1n+1(x)] = 0 for all x ∈ S∗n.

E Decomposition

If C : C0 ⇐ C1 is a category, we define a monoid̂C as follows:

• Ĉ is the set of families(ux)x∈C0 such thatux ∈ C1 andσ0(ux) = x for all x ∈ C0;

• the product of two such families(ux)x∈C0 and(vx)x∈C0 is the family(wx)x∈C0 defined bywx = ux ∗0 vy

wherey = τ0(ux) for all x ∈ C0.

It is easy to see that this product is associative, with unit(11(x))x∈C0 .

In particular, ifM is a monoid,S1 is an alphabet andf : S∗1 → M is a morphism of monoid, we have a category
C : M ⇐ (M ·S1)∗ and a canonical injection ofS1 into Ĉ mappingξ ∈ S1 to the family〈λ · ξ〉λ∈M . By the
universal property ofS∗1 , we get a morphismρ : S∗1 → Ĉ.

This means thatρ(x) is the family 〈λ ·x〉λ∈M for all x ∈ S∗1 , where the mapλ ·x 7→ 〈λ ·x〉 extends the one
defined onM ·S1 and satisfies the following properties:

• σ0〈λ ·x〉 = λ for all λ ∈M andx ∈ S∗1 ;

• 〈λ ·xy〉 = 〈λ ·x〉 ∗0 〈µ · y〉 whereµ = τ0〈λ ·x〉 for all λ ∈M andx, y ∈ S∗1 ;

• 〈λ · 1〉 = 11(λ) for all λ ∈M .

Furthermore, we haveτ0〈λ ·x〉 = λx for all λ ∈ M andx ∈ S∗1 : this is easily proved by induction onx ∈ S∗1 .
Hence, we get the expected properties for〈λ ·x〉 in casex ∈ S∗1 .

Now, we consider a monoidM , a n-monoidC : > ⇐ C1 ⇐ C2 · · ·Cn−1 ⇐ Cn with n > 0, a morphism
f : C → M , and an+1-categoryD : M ⇐ M ·C1 ⇐ M ·C2 · · ·M ·Cn−1 ⇐ M ·Cn ⇐ Dn+1 extending the
n-monoidM ·C. Then,C extends to an+1-monoid> ⇐ C1 ⇐ C2 · · ·Cn−1 ⇐ Cn ⇐ D̂ defined as follows:

• D̂ is the set of formal cells〈(uλ)λ∈M : x → y〉 wherex ‖ y in Cn and(uλ)λ∈M is a family such that
uλ : λ ·x→ λ · y in Dn+1 for all λ ∈M ;

• 〈(uλ)λ∈M : x→ y〉 : x→ y for x ‖ y in Cn;

• 〈(uλ)λ∈M : x→ z〉〈(vλ)λ∈M : y → t〉 = 〈(uλ ∗0 vλx)λ∈M : xy → zt〉 for x ‖ z andy ‖ t in Cn;

• 〈(uλ)λ∈M : x → z〉 ∗i 〈(vλ)λ∈M : y → t〉 = 〈(uλ ∗i vλ)λ∈M : x ∗i y → z ∗i t〉, for x, y, z, t ∈ Cn such
thatn > i > 0 andx ‖ z, y ‖ t, x .i y (which impliesz .i t by the boundary conditions);

• 〈(uλ)λ∈M : x→ y〉 ∗n 〈(vλ)λ∈M : y → z〉 = 〈(uλ ∗n vλ)λ∈M : x→ z〉 for x ‖ y ‖ z in Cn;

19



• 1n+1(x) = 〈(1n+1(λ ·x))λ∈M : x→ x〉.

It is easy to see that those operations satisfy the conditions of left and right unit, associativity, and exchange.

In particular, consider an+1-polygraph> ⇐ S1, S
∗
1 ⇐ S2, . . . , S

∗
n−1 ⇐ Sn, S

∗
n ⇐ Sn+1, and assume thatC is

then-monoid> ⇐ S∗1 ⇐ S∗2 · · ·S∗n−1 ⇐ S∗n andDn+1 is (M ·Sn+1)∗. Then, we have an injection ofSn+1 into
D̂ mappingξ : x → y to 〈〈λ · ξ〉λ∈M : x → y〉. By the universal property ofS∗n+1, we get a mapρ : S∗n+1 → D̂
such thatσn ◦ ρ = σn andτn ◦ ρ = τn, which is compatible with products and units.

This means thatρ(u) = 〈〈λ ·u〉λ∈M : x → y〉 for all u : x → y in S∗n+1, where the mapλ ·u 7→ 〈λ ·u〉 extends
the one defined onM ·Sn+1 and satisfies the following properties:

• 〈λ ·u〉 : λ ·x→ λ · y for all λ ∈M andu : x→ y in S∗n+1;

• 〈λ ·uv〉 = 〈λ ·u〉 ∗0 〈λu · v〉 for all λ ∈M andu, v ∈ S∗n+1.

• 〈λ ·u ∗i v〉 = 〈λ ·u〉 ∗i 〈λ · v〉 for all λ ∈M andu .i v in S∗n+1 with n+ 1 > i > 0;

• 〈λ · 1n+1(x)〉 = 1n+1(λ ·x) for all λ ∈M andx ∈ S∗n.

Hence, we get the expected properties for〈λ ·u〉 in caseu ∈ S∗n+1.
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