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Abstract

We prove that for any monoidl/, the homology defined by the second author by means of polygraphic resolutions
coincides with the homology classically defined by means of resolutions b fréenodules.

1 Introduction

Since the work of Squier and others [Ani86, Squ87, Kob90], we know that monoids presented by a finite, termi-
nating and confluent rewriting system satisfy a homological finiteness condition. This has two consequences:

¢ the possibility to prove negative results, e.g. examples of monoids having a decidable word problem, but no
presentation satisfying the above conditions;

e on the positive side, the construction of explicit resolutions from such presentations. See for example [DL03]
for a recent application of similar methods to compute the homology of gaussian groups.

Now rewriting systems quite naturally leadsiecategories, as follows. Lét/ be a monoid presented by a system
(X, R) of generators and rewrite rules.Jf* denotes the set of words on the alphabeR C ¥* x ¥* is a set of
ordered pairs of words. A rewrite rule: x — y applies to any wordzv with v, v € ¥*, defining a reduction step
ulv : uxv — uyv. ThusR generates a sét* of reduction pathdetween words, whose elements are composable
sequences of one-step reductions, up to suitable commutation rules (see [Laf06] for a detailed survey). These data
fit together in a&2-category

TE<YXY <R

whereT denotes the singleton. It has a unique object, words as arrows and reduction piatrscass. Here=
denotes the source and target maps: all words clearly have the same source and target, namely the single element
of T, and a reduction path froma to w’ has of course souree and targetv’. Words compose by concatenation,
while reduction paths are subjectttwo sorts of composition, either “parallel” or “sequential”. What we get exactly
is a free2-category generated bycamputad Str76].

At the next dimension, consider a étC R* x R* of pairs ofparallel reduction paths, i.e. with the same source
and the same target. The smallest equivalence relatioR*ocontainingP? and passing to the context is the
congruence generatday P. In case the relation of parallelism itself is generated by a finitd)sate say that
the underlying monoid\/ is of finite derivation type It turns out that the latter property holds for all monoids
presented by finite, confluent and terminating rewriting systems [SOK94, Laf95]-chtegorical language;
generates a sét* of 3-arrows extending the abovecategory to &-category:

T <Y« R* « P*.

Note that there are now three ways of composing the elemerit$.0fVe look here for set® such that each pair
(z,y) of parallel paths ilR* can be filled by at least one: = — y in P*.
This point of view was systematized by the second author [Mét03]. Objects of study are now arkitrary
categories, not just monoid$;T, >, R, D) becomes an infinite sequen¢&y, Sy,...,S,,...) definingn-com-
putads[Pow91] orn-polygraphgBur93], a terminology we shall adopt here.
An co-polygraph, or simplyolygraphS, generates a fres-categoryS™*, generalizing the above situation. There
is an abelianization functor taking each polygrapho a chain compleX.S of abelian groups, thus defining a
homology

H.(S) =der Ho(ZS). (1)



Now let C' be anco-category, and> a polygraph. Apolygraphic resolution ot by S is a morphismS* — C
satisfying some lifting properties (see section 4). But the homalhgys) only depends o’ [Mét03], so that we
may define a “polygraphic homology” @f by

HEOI(O) —def H*(S) (2)

A monoid M can be seen as a particutar-category, with degenerate cells but in dimension 1. Thus(fer M,
(2) defines the polygraphic homology df, whence an immediate question:

doesHE.?Ol(M) coincide with the usual homology @f/, defined by means of resolutions By free
ZM-modules?

A positive answer in the case of groups was given by the first author, and the goal of this article is to extend the
result to arbitrary monoids. The proof is based on the notiamédlding defined in section 6, ato-category built

upon a polygraphic resolutiaosi* — M and from which we recover the usual homologyldfby abelianization.

As many properties of unfoldings are derived from those of resolutions, we first recall the results of [Mét03] in
sections 4 and 5, postponing the detailed proofs to annexes A, B and C. Thus our text is essentially selfcontained.
In many places, the main definitions of [Mét03] are reformulated and somewhat simplified.

In particular, we borrow the terminology of trivial fibration from model categories, for obvious similarity reasons;
beyond the analogy, this points towards a model structurecerategories, yet to be discovered, in the spirit of
what has been done far and2-categories [Tho80, JT91, Lac04, WHPTO04].

This work is part of a general program aiming at a homotopical theory of computations, whose further develop-
ments include

e ageneral finiteness conjecture [Laf06]: is it true that a moAdidresented by a finite, terminating and con-
fluent rewriting system always has a polygraphic resolufibn— M wheres; is finite in each dimension?

¢ the study of other structures expressible by polygraphs, as proof systems [GuiO6b], Petri nets [GuiO6c] and
term algebras [Mal04]. In the last case, the polygraphic homology is likely to be degenerate; however,
resolutions still bear many relevant informations and could lead to new, refined, invariants;

e potential applications to the theory of directed homotopy. See [Gou03] for a survey.

2 Non abelian complexes

Definition 1 A (non abelian) compleis a (strict) co-categoryC : Cp <= C1 < Cy---Cp, <= Chygy -+ -

On

In this infinite sequence;,, < C,, 4, stands for thessource mag’,, < C,,.; and for thetarget mapC,, & C,, 1.
We defines; , = 0,00;410---00,_1 @andr; , = 7, 07,11 0--- 07,1, and we introduce the following notations:

o if x,y € C,, andu € C, 41, thenu : x — y meansr, (u) = z andr, (u) = y;

o if z,y € Cp, withn > 0, thenz || y meanss,,_1(z) = o,-1(y) andr,—1(z) = 7,—1(y);
e if z,y € C; andu € C,, with i < n, thenu : x —; y means; ,,(uv) = z andr; ,,(u) = y;
o if x,y € C,, with i < n, thenz >; y meansr; ,,(z) = 05, (y)-

Theboundary conditions,,_; oo, = 0,,_1 o7, @andr,,_1 o 0,, = 7,1 o 7, hold for eachn > 0. In other words,
we haver || y forallu: x — yin C, 41 (see figure 1). We also write || y whenever, y € C.

Figure 1: boundary conditions

In addition to this structure afo-graph, there is:



e aproductu *, v : z — z defined for alku : * — y andv : y — zin C),4+1 (SO thatu >, v);
e aproductu ; v : x x; y — z *; t defined forallu : x — zandv : y — tin C,, 1 with i < n andu >; v;
e aunitl,;(x): x — « defined for alle € C,,.
All those operations satisfy the conditionsassociativity left and right unit andexchange
o (xx;y)*;z=wx (y=;2)forallze; y>; zin C, with i < n;
o li(x)xu=u=ux*l,,(y) foralu:z—, yin C, withi <n,wherel, ; =1,01,_90---01;11;

o (T, y)x; (2% t) = (x*;2)% (yx;t)forallz,y,z,t € C,, withi < j <nandz>; y,x>j 2,y >j t
(which impliesz >; t by the boundary conditions, see figure 2).

N N S

Figure 2: exchange

By restricting this definition to a finite sequencg < C, <« Cs - - - C,,_1 < C,,, we get the notion ofi-category
Conversely, any such-category is converted into a complex by concatenating with the infinite stationary sequence
C,<=C,---C, <= C,--- Whereo;, = 7; = id¢, foralli > n. In particular, we get the following examples:

easets: S5« 5-..5&85--.
eamonoidM : T<M<M---M<«<DM---

e acategoryC : Cop = C, <= C,---C1 = Cy -+

e anabelianmonoidd: T« T« A<« A.. A< A--.

e a2-monoid(or strict monoidal categotyC : T < C; < Co <= Coy---Co <= Co - - -
e a2-categoryC': Chp<=C1 <= Cy <= Cy---Cy=Cy- -

Here, T stands for thesingleton which is the terminal object in the category of sets. Note that we use the same
notation for a monoid\/, its underlying set, and its associated complex.

Definition 2 A complexC' such thatCy = T is called amonoidal complex

In that case, we writery for x xq y, which is defined for all:, y € C,, with » > 0, and1 for the corresponding
unitin C,,. Similarly, an-categoryCy < C; < Cs---C,,_1 < C,, such thatCy = T is called an-monoid

Definition 3 If C and D are complexes, enorphismf : C — D is an infinite sequence of mags : C,, — D,
which are compatible with sources, targets, products and units:

o funi1(u): fu(z) — fu(y) forallu:z — yin Cppq;
o fu(z*;y) = fn(x)*; fn(y)forall x >; yin C, withi < n;
o fur1(lnt1(x)) =111 (fn(z)) forall z € C,.

Note that ifC' is a monoidal complex andl/ is a monoid, then a morphisgh: C — M is justamapf; : C; — M
satisfying the following three conditions:

filzy) = fi(2) f1(y) forall z,y € Ch, fi(1) =1, fi(@) = fi(y) forallu:z — yin Ca.

Indeed, we havg,, = f1001,, = f1 071, for eachn > 1, and all conditions are consequences of the above three.
In particular,f,, (x) = f,(y) forall z || y in C,, withn > 1.

Note also that the singletoh : T < T < T ... T < T --. is the terminal object in this category of complexes.



3 Polygraphs and free complexes

A graph S, < S, consists of two set§;, S; and two mapsS, < S; andS, < S;. It generates &ee category
So < 57, whereS; is the set opathsin the graphSy < 5.

Similarly, if n > 0 andCy <« C; < Cs--- C,,_1 < C,, is an-category, then any graphl, < S, satisfying
the boundary conditions,, | o 0, = 0,1 0 7, @ndr,_y 0 0, = T,_1 © T, generates &ree n+1-category
Co<=Cr«=0Cy---Cpy <= Cp <= S, 1, WhereS: | consists of formal compositions of elementsSof, ;.

Definition 4 [Bur93] The notion ofn-polygraphis defined by induction on:
e A O-polygraph is a sef, that we also writeS§.
e A 1l-polygraph is a graptdy = S; < S;.

e A 2-polygraph is given by a graph (or 1-polygrapty) <= S; together with a graptb; « S, satisfying the
boundary Conditiongo 001 =0p00T] andT() 001 =T00T].

e In general, an+1-polygraph is given by a-polygraphSg < 51,57 < Ss,...,S:_, < S, together with

y Mn—

agraphsS; < S, satisfying the boundary conditions,_; co,, = 0,,—1 07, andr,_1 00y, = Tp—1 © Ty
The elements of,, are calledr-generators Here are two basic cases:

e An alphabetS; = {£,¢&,, ...} defines a grapfi < S; with only one vertex. The free category generated
by this graph isT < ST, whereS7 is the free monoid generated BYy.

e A rewriting systenon S, given by the set of ruleS; = {x; &, Y1, T2 & Y2, ...}, defines agraph; < Ss.
We get a 2-polygraph, since the boundary conditions are trivially satisfied, and the free 2-category generated
by this 2-polygraph iS” < S7 < S5, whereS; is the set of reductions quotiented by the exchange relation.

Therefore, ar-polygraph can be considered akigher-dimensional rewriting syste(ayntactical interpretation)
or as adirected CW-complefgeometric interpretation). Various examples of 3-polygraphs corresponding to higher
dimensional rewriting systems are given in [Laf03]. See also [GuiO6a, Gui06b, Gui06c].

Definition 5 [Bur93] A polygraphis an infinite sequencs; < S1, 57 <= Sa,..., S} < Sp41, ... whose firsh
items define a-polygraph for eachn. It generates a free compleX : S5 < S} < S5 --- S < Sk -~

In particular, note that the singletonis the free complef* defined byQy = T and(2,, = ) for eachn > 0.

Definition 6 [Mét03] If S andT are polygraphs, anorphism of polygraphg : S — T is given by an infinite
sequence of maps, : S,, — T,, satisfying the following condition:

i fn+1(£) : f;:(.’)?) - f;(y) for all § L= yin Sn+1-

Here, f,* stands for the obvious extension £f which is compatible with products and units. So we get a functor
from the category of polygraphs to the category of complexes magptogs* andf : S — T'to f* : S* — T,
It is the left adjoint of some forgetful functor [Mét03].

A morphism of the formf* : §* — T* is calledatomic Not all morphisms between free complexes are atomic.
In fact, morphisms of polygraphs and atomic morphisms only appear in appendix A.

4 Polygraphic resolutions
Definition 7 A morphisnp : C — D is atrivial fibrationif py : Cy — Dy is onto andp has thdifting property:
e ifz | yinC,andv: p,(x) — pn(y) In D41, thereis some : z — y in C, 41 such thatp, 1 (u) = v.
As a consequence, eagh : C,, — D,, is onto antp has thestretching property
e if x| yinC, andp,(z) = p,(y), thereis some : x — y in C,, 1 such thap,1(u) = 1,11 (pn(2)).

Conversely, if eachp,, is onto andy has the stretching property, theris a trivial fibration [Mét03].



Definition 8 A complexC' is exactif the canonical morphism : C — T is a trivial fibration.
This means thaf, is not empty, and’ has thefilling property. if « || y in C,,, thereis some : z — yin Cp41.

Proposition 1 [Mét03] Any free complexs* is cofibrant: for any trivial fibrationp : C — D and for any
morphismg : S* — D, there is some morphisgh: S* — C such thaty = p o f.

It suffices indeed to defing, (£) for eaché € S, using the fact thap is a trivial fibration.

In fact, the converse of this proposition holds: any cofibrant complex is free [Mét06].
Definition 9 [Mét03] A (polygraphic) resolution of’ is a trivial fibrationp : S* — C whereS* is free.
Polygraphic resolutions are the analogues of free resolutions in a category of modules.

Theorem 1 [Mét03]
1. Any complexX’ has a resolutiorp : 5* — C.
2. Ifp:S5* — Candq: T* — C are resolutions, there is some morphigm S* — T* such thatp = q o f.

3. Two such morphisms are homotopic.

The first point is straightforwardS,, andp,, are defined by induction om, starting fromS, = Cy andpy = id¢,.
Foranyz || y in S} andv : p,(z) — pn(y) in Cp11, We introduce a+1-generato€ : z — y and we define
pn+1(§) = v, SO thatp is a resolution by construction. The second point follows immediately from proposition 1.
The third point is the crucial one: it uses themotopy relatiory ~ g. See appendices A and B.

Corollary 1 Two resolution® : S* — C andq : T* — C are homotopically equivalent.

This means that there are some morphigmsS* — T7* andg : T* — S* suchthatyo f = p, pog = g,
go f ~idg+ andf o g ~ idp-.

Note that any monoid/ has amonoidal resolutionthat is a resolutiop : S* — M such thatS§ = Sy = T.
Such a resolution containspaesentatiorof M, whereS; is the set of generators aiff} is the set of relations.
Conversely, angymmetric presentatioof A/ can be extended to a monoidal resolutiomof

5 Abelianization and homology

If S*:85; « St < S5---5: < S - is afree complex and € S,,, we write [¢] for the corresponding
generator in théreeZ-moduleZsS,, generated bys,,, and ifn > 0, we extend this notation t6; as follows:

[ *; y] = [z] + [y] forall x >; y in S with i < n, [1,(z)] =0forallz e S;_;.

In other words|x] counts the number of all occurrences of eaehenerator in:. The fact that it is well defined
follows from the universal property &f* and the definition of a suitable-category. See appendix D.

For eachn > 0, we define &-linear mapZs,, &n ZSn41byonl€] =ly] — [z]forall§ : z — yin Sp4q.
Lemmal 0,[u] = [y] — [z] forall u:z — yin S ;.
This is easily proved by induction anc S}, ;. Using this and the boundary conditions, we ggb 0,,+1 = 0.

Definition 10 [Mét03] The abelianization of a free comple&* : S5 < ST < S5---S) < S:, | --- isthe
abelian complex of freB-modulesZsS : Z.S, & 7.51 b 7.8y --- 7S, ad ZSns1 -

If f:5* — T*is amorphism, we defineZlinear mapfa® : ZS,, — ZT,, by f2*[¢] = [f.(¢)] forall € € S,,.
Lemma 2 f2b[z] = [f.(z)] forall z € Sf.

This is easily proved by induction ane S;;. Using this, we ged), o f2, = f2> o 9, for eachn.



Definition 11 [Mét03] The abelianization of a morphisnf : S* — T* is the morphism of abelian complex
f&>: 7S — ZT defined by the infinite sequeng® : Z.5,, — ZT,.

Note that we get a functor, sinééX> = idzg, and(g o f)*® = ¢*? o f2> forany f : S* — T* andg : T* — U*.
Proposition 2 [Mét03] If f, g : S* — T* are homotopic morphisms, so afé", ¢°> : Z.S — ZT.

This crucial result is proved in appendix C. By corollary 1, we get:

Corollary 2 If p: S* — C andq : T* — C are two resolutions of’, thenZ.S andZT have the same homology.

This means that the homology groupsZ#f, defined byH,(ZS) = Z.Sy/ im 0y andH,,(ZS) = ker d,,_1/im 9,
for eachn > 0, do not depend on the choice of the resolutionS* — C.

Definition 12 [Mét03] Thehomology of a complex’ is the homology oZ.S for any resolutiory : S* — C.

Corollary 3 If S* is an exact free complex, then the following augmented complex d{fneedules is exact:

07728 278 278,28, 78,1

Here,e = 72> wherer : $* — Q* = T is the canonical morphism. In other word¢¢) = 1 for all ¢ € S.

6 Unfolding a morphism

If M is a monoid and is a set, we writé\/ - S for the cartesian produdi/ x S whose elements are written z,
and thefree (left) actionof M on the setM - S is defined by\- (u-2) = Ap-z forall \,p € M andz € S.
In particular, we identifyM - T with M, where the action of/ on itself is defined by - = Apforall A\, u € M.

Letf : C — M be amorphism, wherg/ is a monoid and’ is a monoidal complex, sothdf -Cy = M - T = M.
We shall define anew comple -C - M <M -C, <=M -Cy--- M-C, =M -Cpyq---

First, we writez = f,,(z) € M for all z € C,, with n > 0, and we define the structure sf-graph as follows:
e A-z: A= ATinM-Cforall A\ e M andz € C4;
e Nu:N-z—-ANyinM-C,iqforall A € Mandu : x — yin Cpy1 Withn > 0.
As consequences, we get:
e if A€ M andz,y € Cy,then)-z || u-yifandonly if A\ = pand\z = A\y;
o if A€ Mandz,y € C,, withn > 1,thenX-z || -y ifandonly if A = yandz || y.

In particular, forany-u : A-x — A-yin M -Cy, we haveu : ¢ — yin C; andz =g sincef : C — Misa
morphism, so thak - z | A-y. The other boundary conditions follow directly from the boundary condition§'for

More generally, we havg-x : A —g ATin M - C, forall \ € M andz € C,, withn > 0,and\-u: A-x —; Ay
inM.-C,forall A\ € M andu : x —; y in C,, with n. > ¢ > 0. As consequences, we get:

o if 2,y € C, withn > 0, then\-x >y -y ifand only if \Z = p;
o if z,y € C, withn >1i>0,then\-zv>; p-yifandonly if \ = pandz >; y.
Using this, we define products and units as follows:
o (A\-z)% (A\T-y) =A-zyforall A € M andz,y € C,, withn > 0;
e (A-z)#; (A-y)=A-(zxy)forall X € M andz >; yin C,, withn > i > 0;
e I,r1(A-x) =X 1,11(x) forall A € M andz € C,. In particular,1;(A\) = A-1forall A € M.

It is easy to see that those operations satisfy the conditions of associativity, left and right unit, and exchange.
Furthermore, we have an obvious morphigm - C — C defined byf,,(A-z) = z forall A\ € M andz € C,,.



Definition 13 The complex\/ -C : M <= M -Cy <= M -Cqy--- M -C,, <= M - C,,1, - - - is called theunfolding
of the morphismf : C — M,andf : M -C — C'is called itsfolding morphism

In fact, M - C'is aM-complexwhich means that its structure of complex is compatible with the actidd .of
Proposition 3 If G is a group andp : C' — G is a trivial fibration, then its unfolding~ - C' is an exact complex.

Indeed,G is not empty, and using the fact thais a trivial fibration, we prove the filling property for each- C,,:
o if A\, € G, thereis some € C; suchthatt = A"y, andwe get -z : A\ — X\ = pin G- Cy;

o if \ex || p-ywhereh,u € G andz,y € Cy, we havel = p and\z = Ay, so thatz = 7 by left
cancellation. Therefore, there is somex — yin Cy, andweged-u: -z - A-y=p-yin G-Cy;

o if \ex || p-ywherel,u € Gandz,y € C, withn > 1, we have = p andzx || y, so thatt = 7.
Therefore, there issome: x — yin Cp i, andweged-u: Az —= A-y=pu-yinG-Chyii.

This proposition does not hold for an arbitrary monoid. In fact, the converse holds: if the unfoldinglof— M
is an exact complex, thel is a group and is a trivial fibration. However, we have a weaker property:

Proposition 4 If p : C' — M is a trivial fibration, then its unfolding/ - C has a filling property relative ta - C:
o ifl-z| p-ywherey € M andx,y € C,, thereissomé-u:1-z — p-yin M- Cpy;.

No extra assumption on the monadid is needed here, since= 1 has a right inverse and is left cancelable.

7 The free case
Here, we consider the unfoldingy/ - S* : M < M-S} < M-S5---M-S} < M-S, --- of a morphism
f:8%— M,whereS; = Sy =T, sothatM - S; = M - T = M. We shall see that! - S* is a free complex.

For anyn > 0, the canonical injection a¥/ - S,, into M - S} defines a grapM - S _, < M - S, which satisfies
the boundary conditions,, 00, 1 =0, _207,_1andr,_s00,_1 = T,_2 o T,_1 (forn > 1). We get a free
n-categoryM < M -S; <M -S5---M-S}_,<M-S;_, < (M-S,)*andamap: (M-S,)* — M-S}
such thav,, | o ¢ = 0,1 andr,_1 o p = 7,1, Which is compatible with products and units.

If x € (M-S,)* andy € M-S, we can writez || y even thoughc andy do not belong to the same complex,
since their sources and targets do.

If A € M and¢ € S,,, we write (X - £) for the corresponding-generator i M - S,,)*. More generally, it\ € M
andz € S}, we defing(A- z) in (M - S,,)* suchthatA-x) || A« as follows:

o (A-zy) = (N-x)* (AT -y) forall A € M andz,y € S};
o (N-xxy)=(A-x)* (\-y)forall A € M andz >; yin S;; withn > i > 0;
o (A-1y(z)) =1,(A-z)forall A € M andx € S}:_;.

In other words{\ - z) is a decomposition of - = as a formal product of-generators i/ - S,,. The fact that it is
well defined follows from the universal property §f and the definition of a suitable-category. See appendix E.
To sum up, we have defined a map M - S — (M -S,)* such thatr,,_1 o) = 0,1 @andr,—1 0 = 7,1,
which is obviously compatible with products and units.

By constructiong(o(A-€)) = (A-¢) forall A € M and¢ € S, so thaty o ¢ is the identity on(M - S,,)*.
Furthermore, we have(\-z) = A-z forall A\ € M andx € S} this is easily proved by induction one S;.
Hencey o 1 is the identity onM - S, and we can identif/ - S with (M - S,,)*.

By abelianization of the compleX/ - S* = (M - S)*, we get a complex of freE-modules:
Z(M-S): ZM & 7(M-8)) & Z(M - So) - Z(M - Sp) L2 Z(M - Spy1) - -
Furthermore, the freE-moduleZ(M - S,,) can be identified with the freé8M-moduleZM - S,,.

Lemma3 [A-z]=A-[1-z]forall A € M andz € S.



This is easily proved by induction ane S}:. Using this, we get the fact that &l}, areZ M -linear. In other words,
we haved,,(A-&) = A9, (1-&) forall A € M and¢ € S,,.

Note also that the folding morphisih: ZM - S — 7S is ZM-linear if we consider théivial action of M onZS.
In other words, we havg2P[\ - ¢] = [¢] for all A € M and¢ € S,,. To sum up, we have the following result:

Proposition 5 M - S* is a free complex of the for(@/ - S)*. Its abelianization is a complex of fré&\/-modules:

ZM-S:ZM 2 ZM Sy 2 ZM Sy ZM - Sy, 2 ZM - Sy -
Furthermore, the abelian complé&S is obtained by trivializing the action @/ in ZM - S.
Now we can state the main result of this paper:

Theorem 2 If p : S* — M is a monoidal resolution of/ and M - S is its unfolding, therZM - S is a resolution
of Z by freeZ M-modules. In other words, the following augmented compl&idfmodules is exact:

0—2EzZM LM -8 2 2ZM - So---ZM - S, 2 ZM - Sy -+
Here,c is defined bye(\) = 1 forall A € M. Itis ZM-linear if we consider the trivial action dff onZ.
Corollary 4 The homology of a monoitl/ coincides with the homology of the (non abelian) compléx

In the case of groups, theorem 2 follows from proposition 3 and corollary 3.

We consider now a monoidal resolutipn S* — M whereM is an arbitrary monoid. Proposition 4 asserts that
the canonical morphism : M - S* — T is a(X,))-fibration, whereX = 1-S5* is theright ideal consisting of

all cells of the forml - = with = € S} for somen, and) = M - S* is theleft idealconsisting of all cells in\/ - S*.
See appendix B for the corresponding definitions.

Note thatX is just the set of cells id/ - S* whose O-dimensional sourceliss M - S5 = M - T = M. We have a
canonical inclusion : T — M - S* which maps the vertex of to 1, and the following conditions hold trivially:

LOW(M~S*)CX, ldMs*(MS*)Cy, morom =moidys. gx.

SinceM - S* is free, proposition 7 of appendix B applies, so thatr ~~ id,; . g+, which impliest o ~ id ;. g+.
By proposition 2, theZM-linear mapg. o )P = (2P o 7ab andid?&} .g+» = idzn . ¢ are algebraically homotopic.
Sincer3” = ¢ andnP = 0 for eachn > 0, the augmented complex of theorem 2 is exact, and we are done.
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A Cylinders
Our definition of homotopy will be based on the construction of a functor

C—c!

which to each comple&' associates a new compléX consisting intuitively of paths .

We first describe a family of polygraphs: for each integethe n-cylinder, denoted byn is defined by its sets
of generators;, together with source an target maps; : n; < n,;; in each dimensiond > 0. Figure 3
represents the-cylinder forn = 0, 1, 2. 2-cylinders appear early in the litterature [Bén67]; general cylinders were

@

+
g oy B
»

o] o]~ 1/ lof*

By 1 B

n-

C <2 / lof*
-

4
LB

B2 Ay
_ EN +
Bo ‘\J +/ BU
1

Figure 3:n-cylinder forn = 0,1, 2

U

considered in connection with tensor productsoftategories [Cra95].

The present construction takes a different approach and is equivalent to Burroni’s [Bur00]. The following tables
display the generators af, as well as the expression of their source and target in each dimension:

e Forn = 0, we get

dimension | generators
0 (&%)

Bo

1 0] : g — Bo

o forn =1,

dimension

0

generators




o forn > 1,

dimension generators
0 g
ag
By
By
1<i<n—1] Ji—1]" o, *0 [0 %1% oli =27 =i =2 % _o---%1]0] %0 fi_,
i =17 o %0 [0 1 kg [i = 21T — [ = 2| g - % 0] %0 B,
ai : ai:_l — azrr_l
Qp Ly Qg
Bi B4 _>6it1
B By Hﬂj——l

n In—1]" cag_ %0 0] %1 %o n—2]T = n =2 %o %1 [0] %0 8,_,
In— 17 agt_ %o [0 Tk [0 — 2|7 = = 2| kg k1 [0 %o B4
Qp o, | — 0‘:—1
Bn B, 1 — 271
n+1 ]+ an %0 0] T 51 -y [n— 1T = | =1 kg - %1 [0] %0 B

We dispense of parentheses and identity symbols by assuming;thas precedence oves if ¢ < j and by
denotingz for 1; ;(x) if = is of dimensioni and;j > i. For example, all cells appearing in the expressiom,gffi1|
have dimensiom: among these, only,, and|n — 1| are not identities.

Because a polygraph is entirely determined by its generators andanapshe above tables define at most one
family of polygraphs. We still need a coherence result, which amounts to the following lemma.

Lemma 4 For eachn > 0, the polygrapm is well defined.

We first prove the existence af by induction onn. 0, 1 and2 are easily seen to be well defined. Suppose now
n > 2 andm is a well defined polygraph for each < n, we show thah is also well defined:

e For each < n — 2, n; is exactly(n — 1);, with the same source and target maps, hentewell defined
up to dimensiom — 2.

e n,_; is obtained fromn — 1),,_; by splitting «,,_1 in two copiesc,,_;, ajfl having the same source
and target, and likewise fgt, _,, whereagn — 2|~ and|n — 2|* are left unchanged. Henaeis now well
defined up to dimension — 1.

e The source and target formulas definimg— 1|~ and|n — 1|" are the same as those definimg— 1| in
n — 1, but for the signs omy,,_; andf,_1, hence they are coherent. Also the previous point shows that
a, |l b, andB; || B, so that the source and target formulas definingand 3,, are coherent.

n—11

Thusn is well defined up to dimension.

e It remains to show that the last céll| € n,,.; may be attached ta according to the given source and
target formulas: this amounts to check that

—w =y, %0 0| %y k1 In— 1T andv = |n — 1| s,_q - -+ %1 |0| %0 B, are well defined cells.
—ul v

As for the first point, we prove by induction dn< ¢ < n— 1 thatu; = «a, *g |0\+*1 ek i — 1|+ is well
defined and that; ; |z'|+ whenever < n — 1, by using equations already satisfied in lower dimensions,
and likewise forv. The second point amounts to evaluate 1 (u), 6,,—1(v), Th—1(u) andr,_1(v):
On-1(u) = op_1(an *o \0|+>k1 ckp g |n— 2\+)
= O[;Lil *Q |0|+*1 e X9 |’I’L — 2|+
= Jn,l\n — ].|7

Un—l(v)v

and likewise for targets, by using our convention on identities.

11



This ends the proof of the lemma.
Moreover, there are morphisms of polygraphst,, : n — n + 1 satisfying the coboundary conditions

Sp4+1908S, = tpy108y,
Snt10tn = tpg1 Oty.
s, : n — n + 1is easily defined on each dimension:
e for0 <i<n-1,s,istheidentity om; = (n+ 1);;
o fori=mn,s,(a,) =a;,s,(8,) = B, ands, (z) =z forz € {jn — 1|7, |n - 1"},
e fori=n+1s,n=n" € (m+1),41.

The definition oft,, is the same, except for the change of sign. The coboundary relations are straightforward.
Eachn-cylindern generates a complax®. For any pair of complexe§', D we denote byCompl(D, C) the set
of morphismsf : D — C'. Thus for each integer, we get a set

C! = Compl(n*,C)
and the maps,, t,, give rise tos!, andt} fromn* ton + 1%, hence to
OnyTn : C,IL ~= C,ILH

defined byo,, () = z o s¥ andr,(x) = x o t. Because of the coboundary conditions, ¢hés andr,,’s satisfy
the boundary condition, making’ anoc-graph or globular set.

Now C! also has a structure of complex. L& i < n, we define
Si,n7ti,n :i—n

bysin =sp_10---0s; andt; , =t,_10---0t,;. Becauses — S* is a left-adjoint, it preserves colimits, and
there are pushout diagrams:

i
ti,nl
n

The pushouh +; n can be concretely described by generators: starting with two copies ofdjinder, whose
generators we denote by, 5;', tik andaj ;, 55, 713 respectively, we take the disjoint union of both sets of
generators in each dimension and perform the following identifications:

*
Sin Si‘n

_— i* ——n

n

* *
*——n" 4+, n

*

=

<

—n-r; 1N

e for0<j<i

0‘1+,j = O‘2+,j’
A = Qg
Bl = Bi
Prj = By
gl = il
il = lilys
o forj =i
aii = a;’i,
Bf, = Bo
il = il



_ + -
@10 1,1 a1.0=% 0 @21 2.0

o]y |11y o] =lol 1l o3

Bio B1,1 ﬂi(}:.ﬁ;’[) B2,1 B0

Figure 4:1 +¢ 1

— « o
a9 B 2T g %20
~~ N .
+ 7 + 7
Qg g Qg
ny 115
[0y }/,' <{2[y- |0|T:|0\z_}/' <\2|2'/ ol
n ~— it
By Ba
T P2 tay o B2 Ay
B N N ,
51,0‘\W+/ ﬁ+/ Bz.0
1,1 2,1
By 0:5;,0
Figure 5:2 +( 2
0= 0 af g=03

12|

_ _ , 1 .
olr=loly | V= i =(1lg=<- ol =lo[3

Bro=ha0 i / B 0=P20
+

Figure 6:2 +; 2
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The resulting polygraph is well defined because each time we identify two generators, their sources and targets are
already identified in lower dimensions. Figures 4, 5 and 6 shaew 1, 2 +, 2 and2 +; 2 respectively.
It is now possible to define @omultiplication

* * *
Yin i — N 4Nt

The value ofy; ,,(§) for generatorg of n is given by the following tables:

g 717”(5) ] f ’Yi,n(g)
0<y<i|o; |og;=0ay; i<j<n|a; | apkag;
of | of; = a3, of | af jxiag;
By | Prj =Py B | Brj*iba;
ﬁ; ﬁr’j - ;:] 5} 5;} *; 5;3'
Jj=1 oy Qg j=n Qn | Q15 % Q2
af O‘;—,i Bn | Bin*i Ban
Bi B
B | Ba
J § %’,n(g)
0<j<i ||~ il =il
Fi 51 = 1ily
j=i li|” lily
jil* il
it l=j<n|liI" | (a0 0[] s wimy |i = 1T % [5]3 )%

([917 *ili = g #i—1 -+ #1 [0l *0 B5;41)
U\Jr (afiﬂ *0 \0|1+ k1 ce ki | — 1|1+ *q |j|2+)*i+1
(|J|IL #i [i — 1y #i—1 - *1[0[5 *o ﬂ;i—&-l)
i+l <g<n |l | Qg %o |0 #1 - wimy [i— 1] % [5]5 )*iga
(417 *i i =105 *i1 -+ #1[0]3 %0 B3 41)
U\Jr (@1 441 %0 \0|1+ k1 vk | — 1|1+ *q |j|2+)*i+1
(|J|IL *i \Z — 1|; *i—1 0k |O|; *0 ﬂ;i—&-l)
i+1<j=nl| |n| | (o, 1% [0 #1 %ot [i— 1] #; nly)*is
(Inly *i i = 15 i1 - %1 [0ly 0 B5i41)
it1l=g=n] [n| | (arn*0 0l 1 *na|n—2[] #n_1|n]y)*n
(|n|1 *n—1 |TL - 2|2_ *p—2 ¥ |O‘2_ *0 ﬁQ,n)
The source and target relationsrirtogether with the above identifications of cells show that is well defined.
Remark: the morphism; ,, is not atomic.

From~, ,,, we immediafely get a partial composition operator@ft let 2,y € C! such thatr »; y, that is
oin(y) = Tin(z), Wwhichamounts tg o s¥ . = z ot} , whence a unique morphisfm, y| : n* +; n* making the
following diagram commutative:

We now define
Ty = [2,9] 0 Yn,
which is again an element 6t..
Likewise, there is a unique morphism, 1 : (n+ 1)* — n* collapsinga.,+1, Bn+1 and|n + 1] to identities on
an, B, and|n| respectively. To each € C! we associate

17L+1(x) = X O ln41,
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an element ot’; ;.
The operations; and mapd.,, satisfy the conditions of left and right unit, associativity and exchange. This was
shown in detail in [Mét03], wher€'! is given a slightly different but equivalent definition, and nanféd: we
identify C with (HC'),, by sending eache € C! to the5-tuple (z o 0% |,z 07 1, z(an), z(B,),z(In])) €
(HC)n.
As a consequence, the globular 68thas the expected structure of complex.
Finally we have two morphisms

a,b:Cl = C

defined bya,, (z) = 2(a,,) andb,, () = 2(8,) for eachz € CI, thatisz : n* — C.

B Homotopy

We may now define a homotopy relation among morphigngs: D — C, whereC, D are two complexes. By the
previous section, there is a complé% equipped with maps, b : C! — C, leading to the following definition:

Definition 14 A homotopyfrom f to g is a morphisnh : D — C! such thatf = aohandg =bo h.

Let us denote by ~~ ¢ the existence of such a homotopy. Remark thats a reflexive, buhot a symmetric
relation. We denote by its symmetric and transitive closure: henseis the smallest equivalence relation
containing~. Whenf ~ g, we say thatf andg are homotopic

The third point of theorem 1, section 4, is an immediate consequence of the following proposition:

Proposition 6 Letp : C — D be a trivial fibration, andf, ¢ maps fromS* to C. If po f = po g, thenf ~ g.

Foreachmap : C — Dthereisamap xp: C xC — D x D. LetC x,, C be the subcomplex @' consisting
of pairs of cells(z, y) in C such thap(z) = p(y). We get a canonical inclusioh: C' x,, C — C x C as well as
amapg : C x, C — D defined by (x,y) = p(z) = p(y), making the following diagram a pullback square:

Cx,C—1scxc

whereA is the diagonal map — (z, z).
We now define a subsét of C consisting of cells: € C! satisfying the followingcollapsing conditions

e p(a(z)) = p(b(z));
e ifzr:n*— Cand)<i< n,pi+1(x(|i|i)) is a degenerate cell db; ;.

The stability of £ by source and target maps, as well as compositions and identities, fakasibcomplex of
C!, and we get a canonical inclusién E — C!. Also for eachr € E, (a(x),b(z)) belongs taC' x, C because
of the first condition, hence amap E — C x, C,z — (a(z), b(x)) and a commutative square:

Lemma 5 If pis a trivial fibration, so isr.

Suppose is a trivial fibration. Let(z,y) € (C x, C)o. Becausey(x) = po(y), thereisacelk : z — yin Cy
such thap;(z) = 11(po(z)) = 11(po(y)). Noww : 0* — C defined byug(ag) = z, uo(fo) = y anduy |0] = z
belongs tak, andry(u) = (z,y), hencery is surjective.

Letn > 0, u, v parallel cells inE,,_; such that thereisa: r,_1(u) — r,—1(v) In (C x, C),. Letr,_1(u) =
v = (24, 2?), ro1(v) = y = (y',9?) andz = (2',2%). Remark that’ : z* — y' fori € {1,2} and that
pn(zl) = p’n(ZQ)-
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We need to find av : © — v in E,, satisfyingr,,(w) = z. Now such aw is a mapn* — C so that we must
definew on the generating cells aof. By abuse of language, we identify everywhere each generatgnaith its
canonical image im}.
Let¢ € n; be a generator. In lower dimensiong€) is entirely determined by andv. Precisely:
elf0<i<n-—2o0r¢e{n-2",n-2"} C n,_, then¢ is already a generator of — 1, and
u(§) = v(§) becauseu || v. Moreovers,,_; andt,_; act trivially on those cells, so that we may set
w(§) = u(€) = v(§) in this case;

o if £isa,_, (resp.B,_;, In—1|7), itis sp_1(an—1) (resp.sp—1(Bn-1), sn—1(Jn —1])). Thusw(&) is
w(an—1) (respau(Bn-1), u(|n — 1|));

o if Cisa | (resp.B |, In—17), itis t,_1(an_1) (r€SP.ty_1(Bu_1), tn_1(In — 1])). Thusw(é) is
v(an—1) (respu(Bp-1), v(|n —11));

The next case relies on the existence ofr,,_; (u) — r,—1(v):

o If £ = a, € n,, wla, ;) = ula,—1) andw(a;_;) = v(a,—1) are respectively,_1(u) = z and
an—1(v) = y'. Takew(§) = w(a,) = 2!, with 2! : 2! — y! in C,, defined above. Likewise, i = 3,,, we
definew(¢) = w(B,) = 22, with 22 : 22 — 32, Recall thap(z!) = p(22).

At this point,w : n* — C'is well defined and satisfies the collapsing conditions up to dimensidffe finally
turn to the last case, which is the core of the proof:
e Supposé = |n|. The source and target éfare by definitiono,, || = ay, o |0]" % -+ %, |n — 1|" and
TnIn| = |n— 1| %1+ %1 [0 %0 B,. By the above construction af in dimensions< n, we get
w(o,(€)) = w(an)*o w|0|+*1 cekp 1 wln — 1|+,
w(Tn(g)) = w|n— 1|_*1’L71 | w|0|_*0 w(ﬁn);

and the collapsing conditions, together with!) = p(z?) imply

p(w(on(§))) = pl
=
= p(z7)
= p
= p
hencew(o,(£)) andw(r,(£)) are two parallel cells i, having the same image iR,, by p. Because

is a trivial fibration, there is a cell : w(0,(€¢)) — w(7,(£)) in C, 1 such thap(2) = 1,41(p(2h)) =
1n,41(p(2%)). Hence we may extend up to dimensiom + 1 by w(¢) = 2.

Thusw is a well defined cell inC! satisfying the second collapsing condition. Now, by definitiop(w) =
w(ay,) = 2t andb, (w) = w(3,) = 22, so that the first collapsing condition holds. To sumwp,u — v belongs
to F,, andr, (w) = z, as required. This ends the proof of lemma 5.

Proposition 6 follows immediately: fronfi g : S* — C we get(f,g) : S* — C x C. Becauseo f = pog, (f,9)
factorizes through asj o [, with [ : §* — C x, C. But §* is cofibrant, and by lemma 5,is a trivial fibration,
whence d : $* — E such that- o [ = [. Now the following diagram commutes:

CI

e

5**7C><,,CT>C><C

andh =ko Zyields the expected homotopy frofito g.
Proposition 6 settles the case of groups. The case of monoids, however, requires a refined version. We first
introduce some terminology.

Definition 15 LetC be a complex. Aight-idealX C C is a set of cells, closed by source, target and identities,
such that whenever € X',y € C' andx v; y, thenz *; y € X.
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Hence a right-ideal is in particular a subcomplexCofLikewise, we get the obvious notion lefft-ideal

Definition 16 Let(X,)) a pair consisting of a right-ideak’ and a left-ideal), andp : C' — D a morphism.p
is atrivial fibration relative to( X', ) or short(X', ))-fibration if:

e pg IS surjective;

o ifxe X, y€ Vx| y andthereis : p(x) — p(y) in D,41, thenthereisa : x — yin C, 41 such
thatp(z) = u

Thus we may state a relativized version of proposition 6:

Proposition 7 Letp : C — D be a(X,))-fibration, andf, ¢ maps fromS* to C' such thatf(S*) c X and
g(S*)C Y. Ifpo f=pog,thenf ~ g.

We adapt the above proof as follows: we first replace,, C by X' x, Y, the set of pairgz, y) such that: € X,
y € Y andp(x) = p(y), and the comple¥, by its subcomplexty’ = {z € E|a(x) € X,b(x) € YV}. We now have
J X%, Y —>CxC,K:E — Clandr’' : E' — X x, Y making the following diagram commutative:

E/LCI

r'i l(au,b)

Xxpy%,>0><0
J

Then a relativized version of lemma 5 still holds:
Lemma 6 If pis a(X,))-fibration, thenr’ is a trivial fibration.

The proof goes as above, by constructingn* — C, except that all pairs of cells previously@x, C' now need
to be inX’ x, Y. This is immediate up to dimension As for w |n|, just notice thatv(w,) € X andw(5,) € Y,
so that

w(on(§)) = wlay)*o w|0|+*1 cekp_q wln — 1\+ e X,
w(Tn(f)) = w|n_ 1|_*’n—1 sk UJ|O|_*0 w(ﬁn) S ya

becauset is aright-ideal, an@’ a left-ideal. Bup is a(X, ))-fibration, so that we still have a céll: w(o,,(§)) —
w(T,(§)) satisfying the expected conditions.

Proposmon 7 follows as above: becayg§é™) C X andg(S*) C Y andpof pog, (f, g) factorizes througb"
asj’ ol with !’ : S* — X x, V. Sincer’ is trivial fibration, there is # suchthat’ o[’ = I'. Finally, ' = k' oI’
is a homotopy frony to g.

C Abelianization and homotopy

We finally prove proposition 2 of section 5:
If f,g:S* — T* are homotopic morphisms, so afe®, ¢*° : ZS — ZT.

It suffice to prove that, iff, g : S* — T* andf ~ g, then 2> andg®" are (algebraically) homotopic. Suppose
then that there is a map : S* — (T*)" such thatu o h = f andbo h = g. Usingh, we build an algebraic
homotopy betweerf® andg?®®, that is a family ofZ-linear maps,, : ZS,, — ZT,,; such that

gzb - fsb = 8'n okp+kn_10 anfl- (3)
Thus, let¢ € Sy, hn(§) : n* — T, so thath, () |n| € T, and we may define
knlé] = [hn(&) In]]. (4)

*. so that

This is a small but crucial point: let us prove it by structural induction.on

We first remark that the defining equation (4) extends to non-atomic:cells,
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If u is a generator, (5) is simply (4);

if u is of the form1,,(v) with v € S*_,, the left hand side of (5) vanishes, and becaugea morphism of
complexes,

hn(In(v)) = 1n(hn-1(v))

= hp-1(v) 0 tp,
bute, |n| =1, |n — 1|, so thath,, (u) |n| is degenerate ané,,(u) |n|] =

if u is of the formv x; w, wherev andw satisfy the induction hypothesis,, (u) = h, (v) *; h,(w), using
again the fact that is a morphism of complexes. Now the composition formula&ih show that the only
non-degenerate cells {it.,, (v) *; h,,(w)) |n| areh,, (v) |n| andh,, (w) |n| so that

[(hn(v) 5 b (w)) [n]] = [hn(v )|n|] [ (w) [n]]
= kn[v] + kn[w]
= kn([v] + [w])
kn v %; w)]
kn

u].

n

Hence the result.
Let us now computé,, ok, (£): by using the expressions of the source and target|pénd applying the morphism
hn (), we get

an(hn(§)[n]) = hn(&)(n) *o hn(S)IOI+ -1 ha(€)ln — 1T,
Tn(bn() Inl) = hn(§)ln =17 #n_1 - 51 h ( )OI 0 hn (€)(Bn)-

When linearizing, all degenerate cells vanish, so that

On[hn(§) Inl] = ([hn(§)(Bn)] — [Rn(§)(an)]) — ([hn(E)In — 1|+] = [An(&)In —1]7]).

By definition, h,,(£)(8n) = bn © hn(€) = g, (&) andh, (&) (an) = an 0 by (§) = fu(§).
On the other hand

hn($)|n71|+ = h71(€)(tn—1 ‘nf 1‘)
hn—1(Tn-1(8)) In — 1]

Likewise

ha(§)n =17 = hp(€)(sn-1|n—1])
= hn-1(on-1(§)) In — 1],

and by using (5) we get

[hn(§)n — 1|+] =[P =17 = [hn-1(Ta-1(8)) [n = 1] = [An-1(0n-1(&)) [n — 1]]
= knfl[Tnfl(O] - knfl[gnfl(g)]
= kypio0 anfl[g]

Finally

On 0 knl€] = (92" = F3")[E] = kn-1 0 On-1€],

which immediately gives (3), and ends the proof.

Counting generators

If Ais an (additive) abelian monoid, amycategoryCy < C; < Cs ---C,,_1 < C,, extends to a+1-category
Co=C<=Cy---Cphy <= C, < (A: () as follows:
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e (A:(C),) isthe setof formal celléa : + — y) wherea € A andzx || yin Cy;
e (a:xz—y):x—yforallae Aandz || yin Cy;
o (a:x—y)k, (b:y—2)=(a+b:xz—z)foralla,b e Aandz ||y || zin Cy;

e (a:x—z)yx (b:y—t)y=(a+b:ax*xy— zxt)foralabe Aandz,y,zt € C, suchthat < n
andzx || z,y || t, = >; y (which impliesz ; ¢ by the boundary conditions);

e l,41(x)=(0:2z—z)foralx e C,.
It is easy to see that those operations satisfy the conditions of left and right unit, associativity, and exchange.

In particular, if S§ < 51,57 < Sa,...,S5_1 < Sy, S} < S,41 is an+1-polygraph, we have a-category

Sp =87« 55---5_1«< S:andan injecjtion 05,41 INt0 (ZS,, 11 : Si) mappingé : x — y to ([¢] :  — y).

By the universal property &}, ;, we getamap : S | — (ZS,11 : S;;) suchthav, op = o, andr, 0p = 7,,
which is compatible with products and units.

This means that(u) = ([u] :  — y) forallu : = — y in S |, where the map, — [u] extends the one defined
on S, 1 and satisfies the following properties:

[u*; v] = [u] + [v] foralluo; vin Sy withi <n 41, [1,41(x)] =0forallz € S;.

E Decomposition

If C': Cy < C, is a category, we define a monditias follows:
e Cisthe set of familie$u, ).cc, such that, € C; andoy(u,) = z forall z € Cg;

e the product of two such familieB:, )cc, and(vy)zec, is the family (w; ) e, defined byw, = u, *o vy
wherey = 14(u, ) for all z € C.

It is easy to see that this product is associative, with (Initx) ) .cc, -

In particular, if M is a monoid,5; is an alphabet and : S; — M is a morphism of monoid, we have a category
C: M <« (M-S;)* and a canonical injection of; into C' mapping¢ € S5 to the family (- &) xensr. By the
universal property of;, we get a morphisrp : ST — C.

This means thap(x) is the family (A - x) ens for all z € S5, where the map\-z — (\-z) extends the one
defined on}/ - S; and satisfies the following properties:

e gp(A-z) = Aforall A € M andz € S5;
o (A-zy) = (N\-x) %o (uu-y) whereu = mo(\- ) forall A € M andz,y € S5;
o (A-1) =11()) forall X € M.

Furthermore, we havey(\-z) = Az for all A € M andz € S§: this is easily proved by induction on € Sj.
Hence, we get the expected properties(forz) in caser € S;.

Now, we consider a monoid/, an-monoidC : T <« C; <« Cs---C,_1 < C, with n > 0, a morphism
f:C — M, and an+1-categoryD : M <= M -Cy <= M-Cy---M-Cp_1 <= M -C,, < Dy extending the
n-monoidM - C. Then,C extends to a+1-monoidT < Cy < Cs---C,,_1 < C,, <« D defined as follows:

e D is the set of formal cellg(uy)rear : @ — y) wherez || y in C,, and (u)xear is a family such that
uy:A-x— A-yin D, forall A € M;

o (ux)rem:z—y):x—yfora| yinCy;
o ((ux)aem 1z — 2){(a)aenm 2 ¥ — ) = ((ux 0 Vaz)aem : xy — 2t) forz || zandy || ¢t in Cy;

o ((ux)aem @ — 2) % {((Ua)rem 1y = t) = ((ux *; Va)rem : T *y — 2%, t), forz,y, z,¢t € C,, such
thatn > i > 0andz || z,y || t, z >; y (which impliesz »; ¢ by the boundary conditions);

o ((un)rem 1@ — ) *n ((Un)renmr 1y — 2) = ((un *n Va)rem :x — 2) forz ||y || zin Cy;
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o 1pt1(2) = (o1 (A @)renm 1@ — ).
It is easy to see that those operations satisfy the conditions of left and right unit, associativity, and exchange.
In particular, consider a+1-polygraphT < 51,57 < Ss,...,5)_; < 5,5 < Sp+1, and assume thdt is
then-monoidT < S} < S5 --- 5% _, « Sk andD,,1; is (M - S,11)*. Then, we have an injection &f,;, into
D mappingé : z — y to ((\-E)xenm : « — y). By the universal property o8}, ,, we getamap : S;_; — D
such thav,, o p = 0, andr,, o p = 7,, which is compatible with products and units.

This means that(u) = ((A-u)rerr : @ — y) forallu : x — yin Sy, where the map - v — (\-u) extends
the one defined oi/ - S,,; and satisfies the following properties:

. u)y: X-x — X-yforall e Mandu:x — yin S} ;

(A-

(A-uv) = (A-u) %o (\u-v) forall X € M andu,v € Sj; ;.

(A-ux;v) = (A-u)*; (A-v) forall A € M andu>; vin Sy withn 41> 0> 0;
e A 1,41(2)) =1,41(N-z)forall A € M andz € S;.

Hence, we get the expected properties(foru) in caseu € Sj; ;.
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