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RESOLUTIONS BY POLYGRAPHS

FRANÇOIS MÉTAYER

ABSTRACT. A notion of resolution for higher-dimensional categories is defined, by
using polygraphs, and basic invariance theorems are proved.

1. Introduction

Higher-dimensional categories naturally appear in the study of various rewriting systems.
A very simple example is the presentation of Z/2Z by a generator a and the relation
aa→ 1. These data build a 2-category X :

X0 X1
t0

oo
s0oo X2

t1
oo
s1oo

where X0 = {•} has a unique 0-cell, X1 = {an/n ≥ 0} and X2 consists of 2-cells an → ap,
corresponding to different ways of rewriting an to ap by repetitions of aa → 1, up to
suitable identifications. 1-cells compose according to an ∗0 a

p = an+p, and 2-cells compose
vertically, as well as horizontally, as shown on Figure 1, whence the 2-categorical structure
on X.

•

an

��
�� ��
�� ap

//
GG

aq

�� ��
��

• •

an

��

ap

GG
�� ��
�� •

aq

��

ar

GG
�� ��
�� •

Figure 1: composition of 2-cells

In this setting, we recover the original monoidal structure of Z/2Z by collapsing the
2-cells (see [4]) to identities. Likewise, tree-rewriting systems could be expressed in the
framework of 3-categories. Thus we start from the fact that many structures of interest are
in fact n-categories, while computations in these structures take place in (n+1)-categories.

On the other hand, if a monoid can be presented by a finite, noetherian and confluent
rewriting system, then its homology groups are finitely generated, as proved by Squier

Received by the editors 2002-3-28 and, in revised form, 2003-5-1.
Transmitted by John Baez. Published on 2003-5-9.
2000 Mathematics Subject Classification: 18D05.
Key words and phrases: n-category, polygraph, resolution, homotopy, homology.
c© François Métayer, 2003. Permission to copy for private use granted.

148



RESOLUTIONS BY POLYGRAPHS 149

and others (see [15, 1, 11, 13]). Precisely, it is shown how to build a free resolution of Z
by ZM -modules by using a complete (i.e. finite, noetherian and confluent) presentation
(Σ, R) of the monoid M . Subsequently, the notion of derivation type was introduced:
roughly speaking, one asks if the equivalence between rewriting paths with the same
source and target can be generated by a finite number of basic deformations. It turns out
that this property is independent of the (finite) presentation chosen, and that it implies
homological finiteness in dimension 3 (see [16, 12, 8]).

As regards ∞-categories, homology can be defined through simplicial nerves (see [17,
6]). However, this does not lead to easy computations. What we would like to do is to
extract structural invariants from particular presentations. The present work is a first
step in this vast program: by using Burroni’s idea of polygraph, we propose a definition
of resolution for ∞-categories, which can be seen as a non-commutative analogue of a
free resolution in homological algebra. These new resolutions generalize in arbitrary
dimensions the constructions which already appear in the study of derivation types.

The main result (Theorem 5.1) establishes a strong equivalence between any two res-
olutions of the same category, and yields homological invariance as a consequence (The-
orem 6.1).

All the material we present here was elaborated in collaboration with Albert Burroni,
whose companion paper [5] will be released very soon.

2. Graphs and Categories

2.1. Basic definitions. Polygraphs have been defined by Burroni in [4]. Let us briefly
recall the main steps of his construction: a graph X is given by a diagram

X0 X1
t0

oo
s0oo

X0 is the set of vertices–or 0-cells–X1 the set of oriented edges–or 1-cells–and the appli-
cations s0, t0 are respectively the source and target. We usually denote x1 : x0 → y0 in
case the 1-cell x1 has source x0 and target y0. More generally, an n-graph, also known as
globular set will be defined by a diagram

X0 X1
t0

oo
s0oo

t1
oo
s1oo . . . Xn

tn−1

oo
sn−1oo (1)

with relations
sisi+1 = siti+1 tisi+1 = titi+1

Figure 2 conveys the geometric meaning of these equations.
If diagram (1) is not bounded on the right, we get an ∞-graph. Elements of Xi are

called i-cells and will be denoted by xi. By

xi+1 : xi0 → xi1
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ssx
sx

((

tx

66
�� ��
�� x ttx

Figure 2: cell

we mean that xi+1 has i-dimensional source xi0 and target xi1.
For i ≥ 1, two i-cells xi and yi are called parallel if they have the same source and the

same target. This is denoted by xi ‖ yi. Also any two 0-cells are considered to be parallel.
A morphism φ : X → Y between n-graphs X and Y is a family of maps φi : Xi → Yi

commuting with source and target:

Xi

φi

��

Xi+1
ti

oo
sioo

φi+1

��
Yi Yi+1

ti
oo

sioo

Warning: for simplicity, in all diagrams, double arrows will stand for source
and target maps, except otherwise mentioned. Throughout this paper, the
“commutativity” of a diagram containing such arrows means in fact the sep-
arate commutativity of two diagrams, obtained by keeping either all source
maps or all target maps.

The category of n-graphs (∞-graphs) will be denoted by Grphn (Grph∞). Let X be
an ∞-graph, and 0 ≤ i < j, put

sij = sisi+1 . . . sj−1

tij = titi+1 . . . tj−1

thus defining a new graph Xij for each pair i < j:

Xi Xj
tij

oo
sijoo

The following data determine a structure of ∞-category on X:

• For all xj, yj in Xj such that sijy
j = tijx

j a composition xj ∗i y
j ∈ Xj:

xj ∗i y
j : xi

xj
// yi

yj

// zi

We write composition in the order of the arrows, for no reason but personal conve-
nience. For simplicity, the index j does not appear on the symbol ∗i.
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•
!!

�� ��
�� xk

//
==�� ��

�� yk
•

!!
�� ��
�� uk

//
==�� ��

�� vk
•

Figure 3: exchange

• For each xi ∈ Xi, a cell idj(xi) ∈ Xj, the j-dimensional identity on xi.

• The compositions and identities just defined make each Xij a category.

• The Xij’s are compatible, precisely, for each 0 < i < j < k, xk, yk, uk and vk

(xk ∗j y
k) ∗i (u

k ∗j v
k) = (xk ∗i u

k) ∗j (yk ∗i v
k) (2)

provided the first member exists: this is the exchange rule (see Figure 3).

Also for all xi,

idk(xi) = idk(idj(xi)) (3)

Finally, for all i < j < k and i composable j-cells xj, yj,

idk(xj ∗i y
j) = idk(xj) ∗i id

k(yj) (4)

These properties allow the following notations:

• For each j-cell xj, and i < j, sijx
j = xi0 and tijx

j = xi1.

• In expressions like xi ∗l y
j (i < j), xi means in fact idj(xi).

Let i < j and yj = idj(xi), and e ∈ {0, 1}. With the previous notations:

yke = idk(xi) (i < k < j)

= xi (k = i)

= xke (0 ≤ k < i)

The morphisms between ∞-categories are the morphisms of underlying ∞-graphs
which preserve the additional structure. Now ∞-categories and morphisms build a cat-
egory Cat∞. By restricting the construction to dimensions ≤ n we obtain n-categories,
and the corresponding Catn. For each ∞-category X, we denote by Xn the n-category
obtained by restriction to cells of dimension ≤ n.
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2.2. Alternative notations. Explicit labels for dimensions make our formulas
difficult to read. Hence the need for an alternative notation: let X be an ∞-category, the
source and target maps from Xi+1 to Xi will be denoted in each dimension by d− and d+

respectively. If j = i + k, sij and tij from Xj to Xi will be denoted by dk− and dk+, the
exponent means here iteration, not dimension.

Likewise, the identity idi+1 from Xi+1 to Xi will be denoted by I in each dimension,
and if j = i + k, idj : Xi → Xj becomes Ik. Here again the exponent denotes iteration.
Both families of notations will be used freely throughout the paper, sometimes together.

2.3. Example. An important example is the ∞-category BA associated to a complex
A of abelian groups (see [3], [6]).

A0 A1
∂0oo . . .∂1oo An

∂n−1oo . . .∂noo

The set of k-cells is

(BA)k =
i=k∏

i=0

Ai

The source and target maps from (BA)k+1 to (BA)k are given by

s(a0, . . . , ak+1) = (a0, . . . , ak)

t(a0, . . . , ak+1) = (a0, . . . , ak + ∂kak+1)

which easily defines an ∞-graph. To make it an ∞-category, we define the identities by:

id(a0, . . . , ak) = (a0, . . . , ak, 0)

and, given 0 ≤ j < k, a = (a0, . . . , ak) ∈ (BA)k and b = (b0, . . . , bk) ∈ (BA)k such that
tjka = sjkb, we define their composition along dimension j by:

a ∗j b = (a0, . . . , aj, aj+1 + bj+1, . . . , ak + bk)

We leave the verification of the axioms of ∞-categories as an exercise. In fact the category
of chain complexes is equivalent to the category of abelian group objects in Cat∞.

3. Polygraphs

3.1. Formal definition. It is now possible to define polygraphs, following [4]. For all
n ≥ 0, there is a category Cat+

n given by the pullback:

Cat+
n

//

��

Grphn+1

Vn

��
Catn

Un // Grphn
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S0

��

S1

��~~}}
}}

}}
}

~~}}
}}

}}
}

S2

��~~}}
}}

}}
}

~~}}
}}

}}
}

S3

~~}}
}}

}}
}}

~~}}
}}

}}
}}

S∗
0 S∗

1oo oo S∗
2oooo · · ·oooo

Figure 4: polygraph

where U and V are obvious forgetful functors. An object of Cat+
n amounts to an n-

category with extra (n + 1)-cells making it an (n + 1)-graph. We get a forgetful functor
Wn+1 from Catn+1 to Cat+

n factorizing the arrows from Catn+1 to Catn and Grphn+1:

Catn+1

Wn+1

JJJ
J

$$JJJ
**UUUUUUUUUUUUUUUUUU

��7
77

77
77

77
77

77
77

77

Cat+
n

//

��

Grphn+1

Vn

��
Catn

Un // Grphn

It can be shown that Wn+1 has a left-adjoint Ln+1. Thus Ln+1(X) is the free (n + 1)-
category generated by the n-category X with additional (n+ 1)-cells.

An n-polygraph S is a sequence S(i), where S(0) is a set and for each 1 ≤ i ≤ n, S(i)

belongs to Cat+
i−1, and built by the following induction process. First chose any set S0

and define S(0) = S0. Suppose i ≥ 1 and S(i) already defined as an object in Cat+
i−1, or a

set if i = 0. We get an i-category Li(S
(i)), and denote by S∗

i the set of its i-cells. Then
S(i+1) is determined by choosing a set Si+1 of (i+ 1)-cells with source and target maps:

S∗
i Si+1

ti
oo
sioo

defining an (i + 1)-graph in Li(S
(i)). We have just defined an object of Cat+

i , which
completes the induction.

Thus an n-polygraph is entirely determined by successive choices of sets Si together
with corresponding source and target maps (Figure 4).

The bottom row in Figure 4 determines the ∞-category S∗ = QS generated by S.
Here should be emphasized that the i-category Li(S

(i)) has the same k-cells as S(i)

itself for all k < i. Moreover let

ηS(i) : S(i) → WiLiS
(i)

be the unit of the adjunction on the object S(i). It is a morphism in Cat+
i−1 whose

components in dimensions k < i are just identities. As for the i-component, it is the
inclusion of generators:

ji : Si → S∗
i
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These are of course, in each dimension, the vertical arrows on Figure 4.
As a consequence of the above remark, the universal property of polygraphs will be

used in the sequel as follows : given a polygraph S, an (n + 1)-category X, a family
of maps φi : S∗

i → Xi for i ∈ {0, . . . , n} defining a morphism in Catn, and a map
fn+1 : Sn+1 → Xn+1 defining together with the φi’s a morphism in Cat+

n , there is a
unique φn+1 : S∗

n+1 → Xn+1 making the family (φi)0≤i≤n+1 a morphism in Catn+1 and
such that the following triangle commutes:

Sn+1
jn+1 //

fn+1 ##GG
GG

GG
GG

G
S∗
n+1

φn+1

��
Xn+1

A morphism f between polygraphs S and T amounts to a sequence of maps fi : Si → Ti
making everything commute. f induces a morphism Qf in Cat∞. We get a category Pol
of polygraphs and morphisms, as well as a functor Q:

Pol
Q // Cat∞

3.2. A small example. The 2-category we associated in the introduction to the usual
presentation of Z/2Z is in fact generated by the following polygraph:

S0

��

S1

��~~}}
}}

}}
}

~~}}
}}

}}
}

S2

��~~}}
}}

}}
}

~~}}
}}

}}
}

S∗
0 S∗

1oo oo S∗
2oooo

with S0 = {•}, S1 = {a} where a is a loop:

•

a

��

and S2 = {aa→ 1} where aa→ 1 is a 2-cell:

•
a

��@
@@

@@
@@

•

a
??~~~~~~~

id1(•)
//

�� ��
��

•

3.3. Linearization. Now with each polygraph S we may associate an abelian complex
(ZS, ∂): (ZS)i will be simply the free abelian group ZSi on the generators Si. ∂ will
be defined together with a linearization map λi : (QS)i → (ZS)i in each dimension such
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that the following diagram commutes (the unlabeled arrow is of course the inclusion of
generators):

Si
ji //

""DD
DD

DD
DD

D (QS)i

λi

��
(ZS)i

and, for each xi ∈ (QS)i:

∂i−1λix
i = λi−1ti−1x

i − λi−1si−1x
i (5)

In fact, when representing xi by an expression built from cells of S0, . . . , Si with compo-
sitions and identities, λix

i will be simply the linear combination of the non-degenerate
i-cells occurring in this expression, that is those in Si. In particular, all identities are send
to zero.

The idea is to build simultaneously the desired complex ZS and the ∞-category BZS
(see example 2.3) together with a morphism QS → BZS, by induction on the dimension.

The precise induction hypothesis on n is as follows: for each i ≤ n there is a unique
map λi : (QS)i → (ZS)i such that (i) the above triangle commutes (ii) ∂i defined by (5)
makes (ZS, ∂) an n-complex, and (iii) the family (φi)0≤i≤n given by

φi = λ0s0i × . . .× λi−1s(i−1)i × λi

determines a morphism of n-categories:

(QS)0

φ0

��

(QS)1

φ1

��

oooo . . .oo oo (QS)n

φn

��

oooo

(BZS)0 (BZS)1oo oo . . .oo oo (BZS)noooo

Now the right hand side of (5) is still defined for i = n + 1 and xn+1 ∈ Sn+1. We may
extend it by linearity to ZSn+1, thus extending ZS to an (n+1)-complex. Whence a map
fn+1 : Sn+1 → (BZS)n+1 making the following square commutative:

(QS)n

φn

��

Sn+1
tn

oo
snoo

fn+1

��
(BZS)n (BZS)n+1

tn
oo
snoo

The universal property of polygraphs then gives a unique φn+1 : (QS)n+1 → (BZS)n+1,
which extends the previous φ′

is to a morphism of (n+1)-categories. Let π be the projection
(BZS)n+1 → ZSn+1, and define λn+1 = πφn+1. λn+1 satisfies properties (i), (ii) and (iii)
in dimension n+ 1, and is the unique such map. Hence the result.
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Finally, if S and T are polygraphs, an u is a morphism of ∞-categories, u : QS → QT ,
it has a linearization (Figure 5) from ZS to ZT . Precisely, there is a unique Z-linear map
ũ : ZS → ZT , such that for each xi ∈ (QS)i,

ũiλix
i = λiuix

i (6)

Si

�� ##GGGGGGGGG

(QS)i
λi //

ui

��

ZSi

ũi

��
(QT )i

λi // ZTi

Ti

OO ;;wwwwwwwwww

Figure 5: linearization

In fact, the right member of (6) defines a map Si → ZTi, which uniquely extends by
linearity to ZSi. Now (6) follows by induction on the complexity of xi.

4. Resolutions

We introduce here the central notion of resolution for ∞-categories. As we shall see,
invariants of an ∞-category can be computed from a particular resolution, which compares
to the role of resolutions in homological algebra.

4.1. Definition. let X be an ∞-category. A resolution of X is a pair (S, φ) where S
is a polygraph and φ is a morphism QS → X in Cat∞ such that

1. For all i ≥ 0, φi : S∗
i → Xi is surjective.

2. For all i ≥ 0 and all xi, yi ∈ S∗
i , if xi ‖ yi and φix

i = φiy
i then there exists

zi+1 ∈ S∗
i+1 such that zi+1 : xi → yi and φi+1z

i+1 = idi+1(φix
i).

Intuitively, think of the cells in Si+1 as generators for Xi+1 as well as relations for Xi.
We refer to the second condition as the stretching property. A similar notion appears in
[14] where it is called étirement.

Likewise an n-resolution is given by φ : QS → X where S is an n-polygraph, and in
the Definition 4.1, condition (1) holds for i ≤ n and (2) for i ≤ n− 1.



RESOLUTIONS BY POLYGRAPHS 157

4.2. Standard resolution. We now turn to a standard resolution for an arbitrary
X in Cat∞. Let us define an n-resolution of X by induction on n, in such a way that the
(n+ 1)-resolution extends the n-resolution.

• For n = 0, we simply take S0 = X0 and φ0 is the identity map S∗
0 → X0. This is

clearly a 0-resolution of X.

• Suppose (S, φ) is an n-resolution of X, and define Sn+1 as the set of tuples cn+1 =
(zn+1, xn, yn) where zn+1 ∈ Xn+1, x

n, yn ∈ S∗
n, x

n ‖ yn and zn+1 : φnx
n → φny

n.
We may define fn+1 : Sn+1 → Xn+1 by φn+1c

n+1 = zn+1, and source and target
maps Sn+1 → S∗

n by snc
n+1 = xn and tnc

n+1 = yn. The universal property of
polygraphs gives then S∗

n+1 and φn+1 : S∗
n+1 → Xn+1 extending the previous data to

an (n+ 1)-resolution of X (see Figure 6).

Sn

��

Sn+1

��||yy
yy

yy
yy

y

||yy
yy

yy
yy

y

fn+1

��

S∗
n

φn

��

S∗
n+1oooo

φn+1

��
Xn Xn+1oo oo

Figure 6: universal property

Thus

4.3. Proposition. Each ∞-category X has a resolution.

The polygraph underlying this standard resolution will be denoted by PX, and the
corresponding morphism by εX : QPX → X.

Now let u be a morphism between ∞-categories X and Y , we may define a morphism
Pu between the polygraphs PX and PY , by:

(Pu)0 = u0 (7)

(Pu)k+1(z
k+1, xk, yk) = (uk+1z

k+1, (QPu)kx
k, (QPu)ky

k) (8)

where (zk+1, xk, yk) denotes a cell in (PX)k+1, that is zk+1 ∈ Xk+1, x
k, yk ∈ (QPX)k and

zk+1 : εXk x
k → εXk y

k
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The soundness of this definition is shown by considering the diagram:

(PX)n+1

��

//

��=
==

==
==

==
==

==
==

==
==

��=
==

==
==

==
==

==
==

==
==

(PY )n+1

������
��

��
��

��
��

��
��

��

����
��

��
��

��
��

��
��

��

(PX)n
(Pu)n //

��

(PY )n

��
(QPX)n+1

εXn+1

��

//// (QPX)n

εXn
��

(QPu)n// (QPY )n

εYn
��

(QPY )n

εYn+1

��

oooo

Xn un

// Yn

Xn+1 un+1

//

77oooooooooooo

77oooooooooooo
Yn+1

ffMMMMMMMMMMMM

ffMMMMMMMMMMMM

We make the induction hypothesis that Pu has been defined up to the dimension n in
such a way that the inner squares commute. Then there is a unique arrow from (PX)n+1

to (PY )n+1 (dotted line) making the whole diagram commutative, and it satisfies (8).
Whence a map:

(QPX)n+1
(QPu)n+1// (QPY )n+1

such that the following diagram also commutes:

(PX)n+1
(Pu)n+1 //

��

(PY )n+1

��
(QPX)n+1

(QPu)n+1//

εXn+1

��

(QPY )n+1

εXn+1

��
Xn+1

un+1 // Yn+1

This gives the required property up to the dimension n+1. The uniqueness of the solution
easily shows that P is in fact a functor:

Cat∞
P // Pol

and the previous diagrams also show that the arrows

QPX εX // X

define a natural transformation ε : QP → I. In fact:

4.4. Proposition. Q is left-adjoint to P .
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Proof. We already have a natural transformation ε : QP → I. It remains to check
that each εX is universal from Q to X, in other words, that for each polygraph S and
each g : QS → X there is a unique f : S → PX such that the triangle

QPX

εX

��
QS g

//

Qf
;;wwwwwwww

X

commutes.
We prove by induction on the dimension k that there is a unique family (f0, . . . , fk),

such that the maps fi : Si → (PX)i define a morphism of k-polygraphs and, for all
0 ≤ i ≤ k, the triangle

QPXi

εXi
��

QSi gi

//

(Qf)i

;;vvvvvvvvv

X

commutes.
For k = 0, QS0 = S0, (QPX)0 = (PX)0 = X0, and εX0 is the identity, so that f0 = g0

is the only solution.
Suppose now that f has been defined up to the dimension k, satisfying the required

properties, and consider the following diagram:

Sk+1
fk+1 //

jS
k+1

��

��9
99

99
99

99
99

99
99

99
9

��9
99

99
99

99
99

99
99

99
9

(PX)k+1

jPX
k+1

��

����
��

��
��

��
��

��
��

��
�

����
��

��
��

��
��

��
��

��
�

Sk
fk //

jS
k

��

(PX)k

jPX
k

��
(QS)k

(Qf)k //

gk
$$IIIIIIIII

(QPX)k

εX
kyyssssssssss

Xk

Xk+1

OO OO

(QS)k+1
(Qf)k+1

//

gk+1

44jjjjjjjjjjjjjjjjjjj

FF������������������������

FF������������������������
(QPX)k+1

εX
k+1

jjVVVVVVVVVVVVVVVVVVVVV

YY44444444444444444444444444

YY44444444444444444444444444

Dotted arrows have not been defined yet but the remaining part is commutative. Now each
fk+1 such that the upper quadrangle (Sk+1, (QS)k, (QPX)k, (PX)k+1) commutes extends
(f0, . . . , fk) to a morphism of (k + 1)-polygraphs, hence determines a unique (Qf)k+1
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making the outer square commute. Now diagram chasing shows that there is a unique
choice for which the bottom triangle also commutes, namely:

fk+1u
k+1 = (gk+1j

S
k+1u

k+1, (Qf)ksu
k+1, (Qf)ktu

k+1) (9)

where uk+1 ∈ Sk+1.

4.5. Lifting. A key property of resolutions is that they lift morphisms. We begin with
the following technical lemma.

4.6. Lemma. Let (S, φ) be a resolution of X and k ≥ 0. Let ck+1 ∈ Xk+1 and xk0, x
k
1

two parallel cells of S∗
k such that φkx

k
0 = ck0 and φkx

k
1 = ck1. There exists zk+1 ∈ S∗

k+1 such
that φk+1z

k+1 = ck+1, zk0 ‖ xk0 and zk1 ‖ xk1.

Proof. Let ck+1 as in the hypotheses of the lemma and consider for each integer l,
0 ≤ l ≤ k, the property

(Pl) For each pair xl0, x
l
1 of parallel l-cells of S∗

l such that φlx
l
e = cle, e = 0, 1, there exists

zk+1 such that φk+1z
k+1 = ck+1 and zle ‖ c

l
e.

Let us prove Pl by induction on l ≤ k. P0 holds: take any antecedent of ck+1 by φk+1

(surjectivity), and recall that all 0-cells are parallel to each other.
Suppose now that Pl holds for l < k, and let xl+1

0 ‖ xl+1
1 with φlx

l+1
e = cl+1

e . By defining
xl0 = slx

l+1
e and xl1 = tlx

l+1
e , we get xl0 ‖ x

l
1, and φlx

l
e = cle because φ is a morphism.

By the induction hypothesis, we may chose zk+1 above ck+1 in such a way that zle ‖ x
l
e.

Point 2 in Definition 4.1 gives al+1 : xl0 → zl0 and bl+1 : zl1 → xl1 such that

φl+1a
l+1 = idl+1(φlx

l
0) = idl+1(φlz

l
0) = idl+1(cl0)

φl+1b
l+1 = idl+1(φlx

l
1) = idl+1(φlz

l
1) = idl+1(cl1)

Let
wk+1 = idk+1(al+1) ∗l z

k+1 ∗l id
k+1(al+1)

We first get
φk+1w

k+1 = φk+1z
k+1 = ck+1

on the other hand

wl+1
0 = al+1 ∗l z

l+1
0 ∗l b

l+1

wl+1
1 = al+1 ∗l z

l+1
1 ∗l b

l+1

so that, for e = 0, 1,

slw
l+1
e = sla

l+1 = xl0 = slx
l+1
e

tlw
l+1
e = tlb

l+1 = xl1 = tlx
l+1
e

and wl+1
e ‖ xl+1

e . Whence wk+1 satisfies the conditions of Pl+1.
Thus Pl holds for all integers l ≤ k, and especially for k itself, but Pk is precisely the

claim of the lemma.
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As a corollary of Lemma 4.6, resolutions have a strong lifting property: if xk0 ‖ xk1 and
φkx

k
0 ∼ φkx

k
1, then xk0 ∼ xk1. It is enough to prove that φkx

k
0Rkφkx

k
1 implies xk0 ∼ xk1.

Lemma 4.6 gives zk+1 such that φk+1z
k+1 = ck+1 and zke ‖ xke . On the other hand

φkx
k
e = cke = φkz

k
e , whence ak+1 : xk0 → zk0 and bk+1 : zk1 → xk1 by the stretching property.

Thus
ak+1 ∗k z

k+1 ∗k b
k+1 : xk0 → xk1

and xk0 ∼ xk1.
It is now possible to prove the desired lifting property.

4.7. Proposition. Let X be an ∞-category, S and T polygraphs, φ : QS → X a
morphism and ψ : QT → X a resolution. Then there is a morphism u : QS → QT such
that ψu = φ (Figure 7).

QS u //

φ ""EE
EE

EE
EE

QT

ψ

��
X

Figure 7: lifting

Proof. We build u0, u1, . . . by induction on the dimension.
We first choose u0 : S∗

0 → T ∗
0 such that ψ0u0 = φ0. This is possible because of the

surjectivity of ψ0.
Suppose now that u has been defined up to dimension k, with

ψiui = φi for 0 ≤ i ≤ k

We want a map un+1 : S∗
n+1 → T ∗

n+1 extending the given data to a morphism in Catn+1.
By the universal property of polygraphs, it suffices to define un+1 on the set Sn+1 of
generators. Let then xk+1 ∈ Sk+1. As xk0 ‖ xk1, we also have ukx

k
0 ‖ ukx

k
1 and Lemma 4.6

yields zk+1 ∈ T ∗
k+1 such that

ψk+1z
k+1 = φk+1x

k+1 (10)

and

zke ‖ ukx
k
e for e = 0, 1 (11)

By successively applying sk and tk to the members of (10), we get:

ψkukx
k
0 = φkx

k
0 = skφk+1x

k+1 = skψk+1z
k+1 = ψkz

k
0

ψkukx
k
1 = φkx

k
1 = tkφk+1x

k+1 = tkψk+1z
k+1 = ψkz

k
1
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and, by (11), there are cells ak+1 : ukx
k
0 → zk0 and bk+1 : zk1 → xk1 such that

ψk+1a
k+1 = idk+1(ψkukx

k
0) = idk+1(ψkz

k
0 )

ψk+1b
k+1 = idk+1(ψkukx

k
1) = idk+1(ψkz

k
1 )

It is now possible to define

uk+1x
k+1 = ak+1 ∗k z

k+1 ∗k b
k+1

Thus

skuk+1x
k+1 = ukx

k
0

tkuk+1x
k+1 = ukx

k
1

Hence uk+1 extends u to a morphism up to dimension k + 1. Moreover

ψk+1uk+1x
k+1 = (ψk+1a

k+1) ∗k (ψk+1z
k+1) ∗k (ψk+1b

k+1)

= idk+1(ψkukx
k
0) ∗k (φk+1x

k+1) ∗k idk+1(ψkukx
k
1)

= φk+1x
k+1

which proves the property in dimension k + 1.

5. Homotopy theorem

In Proposition 4.7, the lifting morphism u is of course not unique. Two such morphisms
are however “homotopic”, which of course needs a precise definition. For doing this, we
associate to each ∞-category X a new ∞-category HX, consisting very roughly of higher-
dimensional paths in X. The details of the construction are found in appendix A. For the
moment, the reader should look at Figure 11, as well as to the formulas (26) and (27),
which give the source and target of the cells involved.

5.1. Theorem. Let X be an ∞-category, S and T polygraphs, φ : QS → X a morphism
and ψ : QT → X a resolution. If u, v are morphisms QS → QT such that ψu = ψv = φ,
then there is a morphism h : QS → HQT such that u = a+ h and v = a− h (Figure 8).

Proof. We build, in each dimension i, a map hi : (QS)i → (HQT )i such that h
becomes a morphism QS → HQT and, for each i, ai+ hi = ui and ai− hi = vi. We proceed
by induction on the dimension.

Let x0 ∈ (QS)0 = S0. u0x
0 ‖ v0x

0 and ψ0u0x
0 = ψ0v0x

0 = φ0x
0 by hypothesis. (T, ψ)

being a resolution, there is a 1-cell w1 ∈ (QT )1 such that

w1 : u0x
0 → v0x

0
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HQT

a
−

��
a+

��
QS

h
;;xxxxxxxx

φ ##GG
GG

GG
GG

G

u //
v

// QT

ψ

��
X

Figure 8: homotopy

and
ψ1w

1 = id1(ψ0u0x
0)

By definition of HQT , w1 ∈ (HQT )0 and [w1] = w1 ∈ (QT )1. We may define

h0x
0 = w1

Thus

a0
+ h0x

0 = d−[w1] = u0x
0

a0
− h0x

0 = d+[w1] = v0x
0

and we are done in dimension 0.
Suppose now that we have defined, for each 0 ≤ i ≤ n, a map

hi : (QS)i → (HQT )i

in such a way that (h0, . . . , hn) is a morphism of n-categories, and for each 0 ≤ i ≤ n,

ai+ hi = ui (12)

ai− hi = vi (13)

and for each xi ∈ (QS)i,
ψi+1[hix

i] = idi+1(ψiuix
i) (14)

We now define hn+1 : (QS)n+1 → (HQT )n+1 extending the previous data to a morphism
of (n+ 1)-category, satisfying (12), (13) and (14) up to i = n+ 1. We first define a map

kn+1 : Sn+1 → (QHT )n+1

Let xn+1 ∈ Sn+1 and consider the following expressions:

E = un+1x
n+1 ∗0 [h0x

0
+] ∗1 . . . ∗n [hnx

n
+] (15)

F = [hnx
n
−] ∗n . . . ∗1 [h0x

0
−] ∗0 vn+1x

n+1 (16)
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By induction hypothesis, E and F denote parallel cells in (QT )n+1, and

ψn+1E = ψn+1un+1x
n+1 = φn+1x

n+1

ψn+1F = ψn+1vn+1x
n+1 = φn+1x

n+1

so that there is a cell wn+2 ∈ (QT )n+2 with source E, target F , and

ψn+2w
n+2 = idn+2(ψn+1un+1x

n+1)

We may then define

kn+1x
n+1 = (hnx

n
+, hnx

n
−, un+1x

n+1, vn+1x
n+1, wn+2) (17)

But E and F are easily seen to be Tn+1
− kn+1x

n+1 and Tn+1
+ kn+1x

n+1 respectively, so that
kn+1x

n+1 belongs to (HQT )n+1. Note that

an+1
+ kn+1 = un+1 (18)

an+1
− kn+1 = vn+1 (19)

and
ψn+2[kn+1x

n+1] = idn+2(ψn+1un+1x
n+1) (20)

Moreover, kn+1 extends the hi’s to a morphism in Cat+
n . By the definition of polygraphs,

there is a unique hn+1 : (QS)n+1 → (HQT )n+1 making (hi)0≤i≤n+1 a morphism in Catn+1

and such that the following diagram commutes:

Sn+1
jn+1 //

kn+1 %%LLLLLLLLLL
(QS)n+1

hn+1

��
(HQT )n+1

It remains to check that (18) and (19) extend to hn+1, and that (14) still holds for i = n+1.
As for (18) and (19), just remember that every cell in (QS)n+1 is a composite of ele-

ments of Sn+1 and identities on cells in (QS)n, and that morphisms preserve composition
and identities. Thus

an+1
+ hn+1 = un+1 (21)

an+1
− hn+1 = vn+1 (22)

Let us show that
ψn+2[hn+1x

n+1] = idn+2(ψn+1un+1x
n+1) (23)

for each xn+1 ∈ (QS)n+1.
If xn+1 ∈ jn+1Sn+1, (23) is exactly (20) and we are done.
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If xn+1 = Ixn for some xn ∈ (QS)n,

ψn+2[hn+1x
n+1] = ψn+2[hn+1Ix

n]

= ψn+2[Ihnx
n]

= ψn+2I[hnx
n]

= Iψn+1[hnx
n]

= I idn+1(ψnunx
n)

= idn+2(Iψnunx
n)

= idn+2(ψn+1un+1x
n+1)

Suppose finally that (23) holds for i-composable cells xn+1 and yn+1, and check that
it still holds for zn+1 = xn+1 ∗i y

n+1. Let k = n+ 1 − i.

ψn+2[hn+1z
n+1] = ψn+2[hn+1x

n+1 ∗i hn+1y
n+1]

= (ψn+2 Si+1
− dk−1

− hn+1x
n+1 ∗i ψn+2[hn+1y

n+1]) ∗i+1

(ψn+2[hn+1x
n+1] ∗i ψn+2 Si+1

+ dk−1
+ hn+1y

n+1)

= (ψn+2 Si+1
− dk−1

− hn+1x
n+1 ∗i id

n+2(ψn+1un+1y
n+1)) ∗i+1

(idn+2(ψn+1un+1x
n+1) ∗i ψn+2 Si+1

+ dk−1
+ hn+1y

n+1)

But
Si+1
− dk−1

− hn+1x
n+1 = Si+1

− hi+1x
i+1
−

so that

ψn+2 Si+1
− dk−1

− hn+1x
n+1 = ψn+2I

k ai+1
+ hi+1x

i+1
−

= Ikψi+1 ai+1
+ hi+1x

i+1
−

= Ikψi+1ui+1x
i+1
−

by using the expression of Si+1
− , (14) and (21).

On the other hand

idn+2(ψn+1un+1x
n+1) = Iψn+1un+1x

n+1

and
dk−Iψn+1un+1x

n+1 = ψi+1ui+1x
i+1
−

The same argument shows that

ψn+2 Si+1
+ dk−1

+ hn+1y
n+1 = Ikψi+1ui+1y

i+1
+

and
dk+ idn+2(ψn+1un+1y

n+1) = ψi+1ui+1y
i+1
+

By applying exchange, we get

ψn+2[hn+1z
n+1] = idn+2(ψn+1un+1x

n+1) ∗i id
n+2(ψn+1un+1y

n+1)

= idn+2(ψn+1un+1z
n+1)
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6. Homological invariance

This section is devoted to the proof of the following corollary of Theorem 5.1.

6.1. Theorem. Let X be an ∞-category, and (S, φ), (T, ψ) resolutions of X. The
complexes ZS and ZT have the same homology.

Thus H∗(X) can be defined as H∗(ZS), where S is any polygraphic resolution of X.

Proof. Let φ : QS → X a morphism, and (T, ψ) a resolution of X, and u, v two
morphisms QS → QT with ψu = ψv = φ. By Theorem 5.1, there is an h : QS → HQT
such that u = a+ h and v = a− h. The key point is that, when linearizing these equations,
one gets an algebraic homotopy between ũ and ṽ (see 3.3).

We will define, for each i ≥ 0, a Z-linear map θi+1 : ZSi → ZTi+1 such that

ũi − ṽi = ∂θi+1 + θi∂ (24)

where θ0 = 0 by convention (see Figure 9).

ZSi−1

ṽi−1

��
ũi−1

��
θi

GGG
G

##GGG
G

ZSi
∂oo

ṽi

��
ũi

��
θi+1

GGG

##GG
G

ZSi+1
∂oo

ṽi+1

��
ũi+1

��
ZTi−1 ZTi∂

oo ZTi+1
∂

oo

Figure 9: algebraic homotopy

Now for each i ≥ 0, we have a map [ ] : (HQT )i → (QT )i+1 (see appendix A) so that
we may also define a map

xi 7→ λi+1[hix
i]

from Si to ZTi+1, which extends by linearity to θi+1 : ZSi → ZTi+1. Let us assume for
the moment that θi+1 just defined satisfies

θi+1λix
i = λi+1[hix

i] (25)

for all xi ∈ (QS)i (see Figure 10).

We will return to (25) in Lemma 6.2 below.

Let us now evaluate ∂θi+1x
i for xi ∈ Si. First

∂θi+1x
i = ∂λi+1[hix

i]

= λiti[hix
i] − λisi[hix

i]
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Si

��

(HQT )i

[ ]

��
(QS)i

hi

99ttttttttt

λi

��

(QT )i+1

λi+1

��
ZSi θi+1

// ZTi+1

Figure 10: commutation of θ

by using (5). But from the construction of H,

ti[hix
i] = Ti

+ hix
i

= [d−hix
i] ∗i−1 · · · ∗1 [di−hix

i] ∗0 ai− hix
i

In the last expression, only the two terms [d−hix
i] and ai− hix

i are non-degenerate, the
other ones are identities on cells of dimension < i. As linearization kills degenerate cells,
we get

λiti[hix
i] = λi[d−hix

i] + λi a
i
− hix

i

= λi[d−hix
i] + λiuix

i

= λi[d−hix
i] + ũix

i

Likewise

λisi[hix
i] = ṽix

i + λi[d+hix
i]

Thus

∂θi+1x
i = ũix

i − ṽix
i + A

where

A = λi[d−hix
i] − λi[d+hix

i]

Now, by using the fact that h commutes with d+ and d−, together with (25) and the
linearity of θi, we get

A = λi[d−hix
i] − λi[d+hix

i]

= λi[hi−1d−x
i] − λi[hi−1d+x

i]

= θiλi−1d−x
i − θiλi−1d+x

i

= θi(λi−1d−x
i − λi−1d+x

i)

= −θi∂λix
i

and (24) follows, first for xi ∈ Si, then for any xi ∈ ZSi by linearity.
In the case where (S, φ) and (T, ψ) are both resolutions of X we conclude by familiar

arguments that ũ induces an isomorphism on homology.
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It remains to check the small but crucial point of the equation (25). In the hypotheses
of Theorem 6.1, we establish the following lemma:

6.2. Lemma. For each i ≥ 0, there is a Z-linear map θi+1 : ZSi → ZTi+1 such that
(25), that is, for each xi ∈ (QS)i,

θi+1λix
i = λi+1[hix

i]

Proof. Define θi+1 as in the proof of Theorem 6.1. Then we show (25) by induction on
the complexity of xi.

• If xi ∈ Si, this is just the definition of θi+1;

• if xi = idi(xj), where j < i, λix
i = 0, and the left member of (25) is zero by linearity

of θi+1. On the other hand, h is a morphism, hence hix
i = idi(hjx

j), and by (44)
[hix

i] = idi+1([hjx
j]), so that λi+1[hix

i] = 0 and we are done in this case;

• if xi = yi ∗j z
i for smaller cells yi and zi, and j < i, the induction hypothesis gives

θi+1λix
i = θi+1λiy

i + θi+1λiz
i

= λi+1[hiy
i] + λi+1[hiz

i]

On the other hand, as h is a morphism

λi+1[hix
i] = λi+1[hiy

i ∗j hiz
i]

Now the equation (47) of appendix A shows how [ ] behaves with respect to com-
position. In particular, only terms within brackets are non-degenerated, the other
ones being killed by linearization, whence

λi+1[hiy
i ∗j hiz

i] = λi+1[hiy
i] + λi+1[hiz

i]

and we are done again.

Thus the lemma is proved.

Let us point out that (25) is the only place of our argument where we really need h
as a morphism between ∞-categories, not just between ∞-graphs.

7. Conclusion

As we indicated before, works on finite derivation types are a main source of the present
notion of resolution. Precisely, if we consider a monoid X as a particular case of ∞-
category, it has finite derivation type if and only if it has a resolution (S, φ) with finite
S3. This immediately suggests a notion of finite derivation type in any dimension, but we
need invariance properties of this notion, presumably based on Theorem 5.1.
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Another remark is that our resolutions are still too big for practical computations
Therefore, generalized versions of Squier’s theorems should be established, and will be
the subject of further work.

Let us simply point out for the moment that the relationship between finiteness and
confluence becomes much more intricate in dimensions ≥ 2 than in the case of string
rewriting, so that even asking the correct questions seems far from obvious.

Finally, very similar motivations and techniques appear in recent works on concur-
rency, and we expect fruitful interactions in that direction (see [9, 10]).
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A. A category of paths

Given an ∞-category X, we define an ∞-graph HX with identities and compositions
and show how HX becomes itself an ∞-category. We define sets (HX)n by induction,
together with maps:

(HX)n−1 (HX)n
d−

oo
d+oo

(HX)n
an
+ //

an
−

// Xn

(HX)n
[ ] // Xn+1

Figure 11 gives an insight into H in small dimensions. In particular the cylinder
represents [x2], which has to be oriented from the front to the bottom (dotted lines).
Similar pictures already appear in [2], and since then in many works (see for instance
chapter 3 of [7]), though in a different context: we stress here the fact that the cells of
HX are built from material already present in X. Also the construction is carried out in
arbitrary dimensions.

From the above symbols we may build the following formal expressions which play a
crucial role in the construction:

T0
− x = a0

+ x

T0
+ x = a0

− x

T1
− x = a1

+ x ∗0 [d+x]

T1
+ x = [d−x] ∗0 a1

− x

and for n ≥ 2

Tn
− x = an+ x ∗0 [dn+x] ∗1 [dn−1

+ x] ∗2 · · · ∗n−1 [d+x] (26)

Tn
+ x = [d−x] ∗n−1 · · · ∗2 [dn−1

− x] ∗1 [dn−x] ∗0 an− x (27)
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•
a0
−
x0

•
a0
+ x

0

��

[x0]

•
a0
−

d−x
1

•
a0
+ d−x

1

��

[d−x
1]

•
a0
+ d+x

1a1
+ x

1

//

•
a0
−

d+x
1

[d+x
1]

��
a1
−
x1

//

[x1]
��

��
��

�� �
��

��
�

• •66•((•a2
−
x2

•

��

[d2
−
x2]

•((•66•a2
+ x

2

[d2
+x

2]

��

[d+x
2]

zz

[d−x
2]

		

Figure 11: HX in dimension 0, 1, 2

Why the signs on the right hand side of (26) and (27) do no agree with the one of the left
hand side will be explained later. Eventually Tk

− and Tk
+ become maps (HX)k → Xk.

Also the following truncated expressions will be useful for technical purposes:

Tn,l
− x = an+ x ∗0 [dn+x] ∗1 [dn−1

+ x] ∗2 · · · ∗n−l [d
l
+x] (28)

Tn,l
+ x = [dl−x] ∗n−l · · · ∗2 [dn−1

− x] ∗1 [dn−x] ∗0 an− x (29)

for each l ∈ {1, . . . , n+1}. As the case is of particular importance we define Sn− x = Tn,2
− x

and Sn+ x = Tn,2
+ x.

For n = 0, (HX)0 will be simply X1, [ ] is the identity. When we write [x] it is the
cell of X1 we have in mind. For instance a0

+ and a0
− are defined by:

a0
+ x = d−[x] (30)

a0
− x = d+[x] (31)

here d− and d+ are of course the source and target on X1. Notice that T0
− and T0

+ define
maps (HX)0 → X0, because they are just a0

+ and a0
− in this case.

A.1. Induction step. Suppose we have defined so far an n-category

(HX)0 (HX)1
d−

oo
d+oo . . .

d−

oo
d+oo (HX)n

d−

oo
d+oo

with maps [ ], ak+, ak− satisfying the following conditions:
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(H1) a+ and a− define morphisms of n-graphs, that is for all signs ε, ε′ and each index
0 ≤ i ≤ n− 1 we get a commutative diagram

(HX)i

ai
ε′

��

(HX)i+1
dεoo

ai+1
ε′

��
Xi Xi+1

dε

oo

(H2) For each i ∈ {0, . . . , n} and x ∈ (HX)i, the expressions Ti
− x and Ti

+ x are well
defined, they denote i-cells in X and [x] is an (i+ 1)-cell in X such that

Ti
− x

[x] // Ti
+ x (32)

We extend these data to an (n+ 1)-graph by defining a set (HX)n+1 and morphisms

(HX)n (HX)n+1
d−

oo
d+oo

as follows: a cell x in (HX)n+1 is a 5-tuple

(xn+, x
n
−, v

n+1
+ , vn+1

− , wn+2) (33)

whose components are subject to the following conditions:

(C0) xn+ and xn− are parallel cells in (HX)n.

(C1) vn+1
+ and vn+1

− are (n+ 1)-cells in Xn such that

an+ x
n
−

vn+1
+ // an+ x

n
+

an− x
n
−0

vn+1
− // an− x

n
+

We define d+x = xn+, d−x = xn−, an+1
+ x = vn+1

+ and an+1
− x = vn+1

− . As a consequence
condition (H1) still holds for i = n.

(C2) wn+2 is an (n+ 2)-cell in Xn+2 such that

Tn+1
− x

wn+2
// Tn+1

+ x

and [x] = wn+2 so that (32) still holds for i = n+ 1.

That we get an (n + 1)-graph is obvious from the definition of d+ and d−, and the
induction hypothesis. Notice that the above definitions do not guarantee that (HX)n+1 6=
∅. Now we need to define (n+1)-dimensional identities on i-cells as well as i-dimensional
composites of (n + 1)-cells, for all 0 ≤ i ≤ n, and check that these operations match the
axioms of (n+ 1)-category.
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A.2. Some properties of T+ and T−.

A.3. Lemma. For all x ∈ (HX)n+1

d− Tn+1
− x = Tn

− d−x

d+ Tn+1
− x = Tn

+ d+x

d− Tn+1
+ x = Tn

− d−x

d+ Tn+1
+ x = Tn

+ d+x

Proof. Let n ≥ 1 and x be in (HX)n+1. Consider

Tn+1
− x = an+1

+ x ∗0 [dn+1
+ x] ∗1 · · · ∗n [d+x] (34)

The construction of (HX)n+1 requires that this composite be defined as a cell in Xn+1.
an+1

+ x ∈ Xn+1 and for each i ∈ {2, . . . , n+ 1}, [di+x] denotes here the (n+ 1)-dimensional
identity on a cell in Xn+2−i, so that for i ≥ 2

d−[di+x] = d+[di+x] = [di+x] (35)

Thus

d− Tn+1
− x = d−(an+1

+ x ∗0 [dn+1
+ x] ∗1 · · · ∗n−1 [d2

+x])

= d− an+1
+ x ∗0 d−[dn+1

+ x] ∗1 · · · ∗n−1 d−[d2
+x]

= an+ d−x ∗0 [dn+1
+ x] ∗1 · · · ∗n−1 [d2

+x]

= an+ d−x ∗0 [dn+d+x] ∗1 · · · ∗n−1 [d+d+x]

= Tn
− d−x

As regards the second equality

d+ Tn+1
− x = d+[d+x] = Tn

+ d+x (36)

from the definition of [ ] on (HX)n.
By symmetry we get the two remaining equalities as well.

Also, for all 0 < k < l and all signs ε, ε′, we get

dkε Tn,l
ε′ = Tn−k,l−k

ε′ dkε (37)

as in the proof of Lemma A.3. The next lemma shows that our formal expression define
actual cells:

A.4. Lemma. Suppose we are given xn+, xn− two parallel cells in (HX)n, as well as vn+1
+ ,

vn+1
− satisfying (C1). Then

vn+1
+ ∗0 [dn+x

n
+] ∗1 [dn−1

+ xn+] ∗2 · · · ∗n [xn+] (38)

and
[xn−] ∗n · · · ∗2 [dn−1

− xn−] ∗1 [dn−x
n
−] ∗0 v

n+1
− (39)

are well defined and denote (n+ 1)-cells in X.
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Proof. Let us prove that (38) is well defined; define

ui = vn+1
+ ∗0 [dn+x

n
+] ∗1 [dn−1

+ xn+] ∗2 · · · ∗i [d
n−i
+ xn+] (40)

we show by induction on i that ui is well defined for i ∈ {0, . . . , n}.
u0 = vn+1

+ ∗0 [dn+x
n
+] where [dn+x

n
+] is in fact a (n+ 1)-identity on a 1-cell. Thus

dn+1
− [dn+x

n
+] = d−[dn+x

n
+] (41)

On the other hand

dn+1
+ vn+1

+ = dn+d+v
n+1
+ = dn+ an+ x

n
+ = a0

+ dn+x
n
+ = d−[dn+x

n
+] (42)

using (C1) and (30). As a consequence, vn+1
+ and [dn+x

n
+] are 0-composable and u0 is well

defined and belongs to Xn+1.
Suppose now that ui is well defined for an i < n. Because all factors but vn+1

+ and
[xn+] are identities, we get

dn−i+ ui = dn−i+ vn+1
+ ∗0 [dn+x

n
+] ∗1 · · · ∗i [d

n−i
+ xn+]

= dn−i−1
+ an+ x

n
+ ∗0 [dn+x

n
+] ∗1 · · · ∗i [d

n−i
+ xn+]

= ai+1
+ dn−i−1

+ xn+ ∗0 [dn+x
n
+] ∗1 · · · ∗i [d

n−i
+ xn+]

= Ti+1
− dn−i−1

+ xn+

Now
dn−i− [dn−i−1

+ xn+] = d−[dn−i−1
+ xn+] = Ti+1

− dn−i−1
+ xn+

It shows that ui is (i+1)-composable with [dn−i−1
+ xn+], and that ui+1 is well defined. This

gives the result for (38). (39) is proved accordingly.

A.5. Construction of identity cells. As a consequence, for each xn ∈ (HX)n,
we may define a cell in (HX)n+1 which eventually becomes the identity on xn. Precisely:

xn+1 = (xn, xn, vn+1
+ , vn+1

− , wn+2) (43)

where

vn+1
+ = idn+1(an+ x

n)

vn+1
− = idn+1(an− x

n)

and
wn+2 = idn+2([xn]) (44)

The first four components clearly satisfy (C0-1). On the other hand Lemma A.4 proves
that the expressions

vn+1
+ ∗0 [dn+x

n] ∗1 [dn−1
+ xn] ∗2 · · · ∗n [xn]
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and
[xn] ∗n · · · ∗2 [dn−1

− xn] ∗1 [dn−x
n] ∗0 v

n+1
−

are well-defined. But they are exactly Tn+1
− xn+1 and Tn+1

+ xn+1. Now a closer inspection
of the formulas shows that in this particular case:

Tn+1
− xn+1 = idn+1(Tn

− x
n) ∗n [xn]

Tn+1
+ xn+1 = [xn] ∗n idn+1(Tn

+ x
n)

but d−[xn] = Tn
− x

n and d+[xn] = Tn
+ x

n, so that

Tn+1
− xn+1 = Tn+1

− xn+1 = [xn]

and

Tn+1
− xn+1 wn+2

// Tn+1
+ xn+1

Thus (HX)n+1 contains at least as many cells as (HX)n.
For readability, the previous construction will be denoted by the same symbol, say I,

in each dimension; here for instance

xn+1 = Ixn

furthermore, if xi ∈ (HX)i, and k ≥ 0, Ikxi will be the (i + k)-cell built from xi by k
successive applications of the construction. Thus the symbol I behaves very much like d+

and d−. Notice also that, for each l ≤ k,

dl+Ikx = dl−Ikx = Ik−lx

A.6. Composition of cells. Now we have to define the i-dimensional composition
between cells in (HX)n+1 in such a way that we get an n+ 1-category. Suppose this
has been done up to (HX)n. Suppose in addition that for each 0 ≤ i < m ≤ n and
i-composable m-cells u and v, the composite w = u ∗i v satisfies:

[w] = (Si+1
− dl−1

− u ∗i [v]) ∗i+1 ([u] ∗i S
i+1
+ dl−1

+ u) (45)

where l = m − i. Where the above equation comes from will be explained during the
induction process. Take now x, y two cells in (HX)n+1. Let k ∈ {1, . . . , n+ 1} and
i = n+ 1 − k. x and y will be i-composable iff

dk+x = dk−y

Recall that

x = (d+x, d−x, a
n+1
+ x, an+1

− x, [x])

y = (d+y, d−y, a
n+1
+ y, an+1

− y, [y])

We define z = x ∗i y component by component:
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• If k = 1, i = n
d+z = d+y d−z = d−x

If k > 1, dk−1
+ d+x = dk+x = dk−y = dk−1

− d+y so that d+x and d+y are i-composable.
Likewise d−x and d−y are i-composable and we may define

d+z = d+x ∗i d+y d−z = d−x ∗i d−y

• By (H1)
dk+ an+1

+ x = ai+ dk+x = ai+ dk−y = dk− an+1
+ y

hence an+1
+ x and an+1

+ y are i-composable, and the same holds for an+1
− x and an+1

− y
such that we may define

an+1
+ z = an+1

+ x ∗i a
n+1
+ y an+1

− z = an+1
− x ∗i a

n+1
− y (46)

• Recall that [x] : Tn+1
− x→ Tn+1

+ x. Lemma A.3 shows that

dk+[x] = dk−1
+ d+[x]

= dk−1
+ Tn+1

+ x

= Tn−k+2
+ dk−1

+ x

= [dk−x] ∗n+1−k Sn−k+2
+ dk−1

+ x

= [dk−x] ∗i S
i+1
+ dk−1

+ x

Likewise dk−[x] = Si+1
− dk−1

− ∗i [dk+x] and the same relations hold for [y]. But here
dk+x = dk−y, so that [x] and [y] look like:

•
Si+1
−

dk−1
−

x
//

[dk
−
x]

��

•
Si+1
−

dk−1
−

y
//

[dk
+x] [dk

−
y]

��
[x]

ppp
ppp

xxppp
ppp

•

[dk
+y]

��
[y]

ppp
ppp

xxppp
ppp

•
Si+1
+ dk−1

+ x

// •
Si+1
+ dk−1

+ y

// •

the above diagram being drawn in the 2-category:

Xi Xi+1
d−

oo
d+oo Xn+2

dk
−

oo
dk
+oo

It is then possible to define:

[z] = (Si+1
− dk−1

− x ∗i [y]) ∗i+1 ([x] ∗i S
i+1
+ dk−1

+ y) (47)

We are now able to prove the following
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A.7. Proposition. The 5-tuple

(d+z, d−z, a
n+1
+ z, an+1

− z, [z])

satisfies the conditions (C0), (C1), and (C2).

Proof. This is straightforward for (C0) and (C1). As for (C2) we know that [z] ∈ Xn+2

and we must show that d+[z] = Tn+1
+ z and d−[z] = Tn+1

− z. We consider two cases (1)
k = 1 and (2) k > 1.

Case 1 . Suppose k = 1. Then i = n and (47) becomes

[z] = (Sn+1
− x ∗n [y]) ∗n+1 ([x] ∗n Sn+1

+ y)

hence

d−[z] = d−(Sn+1
− x ∗n [y])

= Sn+1
− x ∗n d−[y]

= Sn+1
− x ∗n Tn+1

− y

= Sn+1
− x ∗n Sn+1

− y ∗n [d+y]

But [dl+x] = [dl+y] for each l ∈ {2, . . . , n+ 1} and they are all identities in Sn+1
− x, Sn+1

− y.
Also an+1

− z = an+1
− x ∗n an+1

− y and the exchange rule applies, giving

d−[z] = Tn+1
− z

Likewise d+[z] = Tn+1
+ z and we get the result.

Case 2 . Suppose k > 1. Here

d−[z] = (Si+1
− dk−1

− x ∗i T
n+1
− y) ∗i+1 (Tn+1

− x ∗i S
i+1
+ dk−1

+ y) (48)

d+[z] = (Si+1
− dk−1

− x ∗i T
n+1
+ y) ∗i+1 (Tn+1

+ x ∗i S
i+1
+ dk−1

+ y) (49)

and we have to prove that these expressions are respectively Tn+1
− z and Tn+1

+ z. But
this is the particular case l = 1 in the next lemma.

A.8. Lemma. Let x, y, z be as above, and k ≥ 2. Then

(Si+1
− dk−1

− x ∗i T
n+1,l
− y) ∗i+1 (Tn+1,l

− x ∗i S
i+1
+ dk−1

+ y) = Tn+1,l
− z

(Si+1
− dk−1

− x ∗i T
n+1,l
+ y) ∗i+1 (Tn+1,l

+ x ∗i S
i+1
+ dk−1

+ y) = Tn+1,l
+ z

for all l ∈ 1, . . . , k − 1.
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Proof. By induction on k − 1 − l. Let us first examine the case l = k − 1. We notice
that

Tn+1,k+1
− x ∗i T

n+1,k+1
− y = Tn+1,k+1

− z (50)

because an+1
+ z = an+1

+ x ∗i a
n+1
+ y and [dm+x] = [dm+y] = [dm+z] for all m ≥ k+ 1, and are all

identities in (50). Let

A = (Si+1
− dk−1

− x ∗i T
n+1,k−1
− y) ∗i+1 (Tn+1,k−1

− x ∗i S
i+1
+ dk−1

+ y)

By using the exchange rule and the properties of the identities we get

A = (Si+1
− dk−1

− x ∗i T
n+1,k−1
− y) ∗i+1

(((Tn+1,k+1
− x ∗i [d

k
+x]) ∗i+1 [dk−1

+ x]) ∗i S
i+1
+ dk−1

+ y)

= (Si+1
− dk−1

− x ∗i T
n+1,k−1
− y) ∗i+1 (Tn+1,k+1

− x ∗i [d
k
+x] ∗i S

i+1
+ dk−1

+ y)

∗i+1([d
k−1
+ x] ∗i S

i+1
+ dk−1

+ y)

= (Tn+1,k+1
− x ∗i T

n+1,k−1
− y) ∗i+1 ([dk−1

+ x] ∗i S
i+1
+ dk−1

+ y)

Hence

A = (Tn+1,k+1
− x ∗i ((T

n+1,k+1
− y ∗i [d

k
+y]) ∗i+1 [dk−1

+ y])) ∗i+1

([dk−1
+ x] ∗i S

i+1
+ dk−1

+ y)

= (Tn+1,k+1
− x ∗i T

n+1,k+1
− y ∗i [d

k
+y]) ∗i+1

(Si+1
− dk−1

+ x ∗i [d
k−1
+ y]) ∗i+1 ([dk−1

+ x] ∗i S
i+1
+ dk−1

+ y)

= Tn+1,k+1
− z ∗i [d

k
+z] ∗i+1 [dk−1

+ z]

= Tn+1,k−1
− z

by (45) and (50). We get the result in case l = k− 1. Suppose now the relation holds for
an index l such that 1 < l ≤ k − 1, we must evaluate

B = (Si+1
− dk−1

− x ∗i T
n+1,l−1
− y) ∗i+1 (Tn+1,l−1

− x ∗i S
i+1
+ dk−1

+ y)

Repeated applications of the exchange rule give:

B = (Si+1
− dk−1

− x ∗i (T
n+1,l
− y ∗n+1−l+1 [dl−1

+ y])) ∗i+1

((Tn+1,l
− x ∗n+1−l+1 [dl−1

+ x]) ∗i S
i+1
+ dk−1

+ y)

= ((Si+1
− dk−1

− x ∗i T
n+1,l
− y) ∗n+1−l+1 (Si+1

− dk−1
− x ∗i [d

l−1
+ y])) ∗i+1

((Tn+1,l
− x ∗i S

i+1
+ dk−1

+ y) ∗n+1−l+1 ([dl−1
+ x] ∗i S

i+1
+ dk−1

− y))

= ((Si+1
− dk−1

− x ∗i T
n+1,l
− y) ∗i+1 (Tn+1,l

− x ∗i S
i+1
+ dk−1

+ y)) ∗n+1−l+1

((Si+1
− dk−1

− x ∗i [d
l−1
+ y]) ∗i+1 ([dl−1

+ x] ∗i S
i+1
+ dk−1

− y))

= Tn+1,l
− z ∗n+1−l+1 [dl−1

+ z]

= Tn+1,l−1
− z

which is the result for l − 1.
By symmetry, the relations on Tn+1,l

+ z hold as well.
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A.9. Properties of the composition. We now check that the composition of cells
we just defined satisfies all the axioms of (n+ 1)-categories.

A.9.1. Associativity. Taking first x, y and z as in the previous section, and i ∈ {0, . . . , n}:

Si+1
− dk−1

− x ∗i S
i+1
− dk−1

− y = Si+1
− dk−1

− z (51)

Si+1
+ dk−1

− x ∗i S
i+1
+ dk−1

− y = Si+1
+ dk−1

− z (52)

Just notice that for all j ∈ {k + 1, . . . , n+ 1},

[dj+x] = [dj+y] = [dj+z]

and are all identities in the expressions of (51). Repeated applications of the exchange rule
plus (46) give the result, and likewise for (52). Now the associativity of ∗i on (HX)n+1

directly follows from (51), (52) and the composition formula (47).

A.9.2. Identities. We now verify that the cells Ix actually behave like identities. Let
i ≤ n and k = n+1−k. Let x be a cell in (HX)i, y a cell in (HX)n+1, such that dk−y = x.
Thus dk+Ikx = x = dk−y, and Ikx, y are i-composable.

Let z = Ikx ∗i y. We have to show that z = y. But both cells clearly agree on their
first four components, so that we only need to prove [z] = [y]. Now by (47),

[z] = (Si+1
− dk−1

− Ikx ∗i [y]) ∗i+1 ([Ikx] ∗i S
i+1
+ dk−1

+ y)

With A = Si+1
− dk−1

− Ikx and B = [Ikx] ∗i S
i+1
+ dk−1

+ y,

[z] = (A ∗i [y]) ∗i+1 B (53)

We first evaluate A; formally:

A = Si+1
− dk−1

− Ikx

= Si+1
− Ix

= ai+1
+ Ix ∗0 [di+1

+ Ix] ∗1 . . . ∗i−1 [d2
+Ix]

= ai+ x ∗0 [di+x] ∗1 . . . ∗i−1 [d+x]

= Ti
− x

whose value in (53) is the (n+ 2)-identity on Ti
− x. On the other hand

dk+1
− [y] = dk−d−[y] = dk− Tn+1

− y = Tn−k+1
− dk−y = Ti

− x

Hence A ∗i [y] = [y], and [z] becomes [y] ∗i+1 B.
Let us evaluate B:

B = [Ikx] ∗i S
i+1
+ dk−1

+ y

= [x] ∗i [d
2
−dk−1

+ y] ∗i−1 . . . ∗1 [di+1
− dk−1

+ y] ∗0 ai+1
− dk−1

+ y

= [x] ∗i [d−x] ∗i−1 . . . ∗1 [di−x] ∗0 ai+1
− dk−1

+ y



RESOLUTIONS BY POLYGRAPHS 179

which denotes in fact an (n+ 2)-identity in (53). On the other hand,

dk+[y] = dk−1
+ d+[y]

= dk−1
+ Tn+1

+ y

= Ti+1
+ dk−1

+ y

= [d−dk−1
+ y] ∗i . . . [d

i+1
− dk−1

+ y] ∗0 ai+1
− dk−1

+ y

= [x] ∗i [d−x] ∗i−1 . . . ∗1 [di−x] ∗0 ai+1
− dk−1

+ y

so that B is the (n+ 2)-identity on dk+[y], whence [y] ∗i+1 B = [y], and we get the desired
result. Of course the same holds for identities on the right.

We finally show that for i-composable n-cells xn, yn in (HX)n,

I(xn ∗i y
n) = Ixn ∗i Iy

n

Again the equality is obvious on the first four components. As regards the last component,
taking l = n− i and applying (45) gives:

[I(xn ∗i y
n)] = idn+2([xn ∗i y

n])

= idn+2((Si+1
− dl−1

− xn ∗i [y
n]) ∗i+1 ([xn] ∗i S

i+1
+ dl−1

+ yn))

= (idn+2(Si+1
− dl−1

− xn) ∗i id
n+2([yn])) ∗i+1

(idn+2([xn]) ∗i id
n+2(Si+1

+ dl−1
+ yn))

= (Si+1
− dl−1

− idn+1(xn) ∗i [Iy
n]) ∗i+1

([Ixn] ∗i S
i+1
+ dl−1

+ idn+1(yn))

= [Ixn ∗i Iy
n]

A.9.3. Exchange. We prove here that HX satisfies the exchange rule.
Let x, y, z, t be cells in (HX)n+1, and 0 ≤ i < j < n + 1. Define k = n + 1 − i and

l = n+ 1 − j. We suppose that

dk+x = dk+z = dk−y = dk−t

dl+x = dl−z

dl+y = dl−t

such that the following composites are well defined in (HX)n+1:

A = (x ∗i y) ∗j (z ∗i t)

B = (x ∗j z) ∗i (y ∗j t)

and we have to prove that A = B. Here again the equality on the first four components
is easy: it remains to prove [A] = [B].

First
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[B] = (Si+1
− dk−1

− (x ∗j z) ∗i [y ∗j t]) ∗i+1 ([x ∗j z] ∗i S
i+1
+ dk−1

+ (y ∗j t)) (54)

Notice that dk−1
− (x ∗j z) = dk−1

− x and dk−1
+ (y ∗j t) = dk−1

+ t, and these are identities in (54).
By using the exchange rule and (47), [B] rewrites in the form:

(T ∗j+1 Y ) ∗i+1 (Z ∗j+1 X) (55)

where

X = ([x] ∗j Sj+1
+ dl−1

+ z) ∗i S
i+1
+ dl−1

+ t

Y = Si+1
− dk−1

− x ∗i ([y] ∗j Sj+1
+ dl−1

+ t)

Z = (Sj+1
− dl−1

− x ∗j [z]) ∗i S
i+1
+ dk−1

+ t

T = Si+1
− dk−1

− x ∗i (S
j+1
− dl−1

− j ∗j [t])

But i+ 1 < j + 1 so that the exchange rule applies and we get

[B] = (T ∗i+1 Z) ∗j+1 (Y ∗i+1 X) (56)

Let us evaluate T ∗i+1 Z: by distributing the identities,

T ∗i+1 Z = (U ∗j U
′) ∗i+1 (V ∗j V

′) (57)

where

U = Si+1
− dk−1

− x ∗i S
j+1
− dl−1

− y

U ′ = Si+1
− dk−1

− x ∗i [t]

V = Sj+1
− dl−1

− x ∗i S
i+1
+ dk−1

+ t

V ′ = [z] ∗i S
i+1
+ dk−1

+ t

Here the argument splits in two cases:

Case 1 . Suppose i+ 1 < j.

By applying exchange to (57):

T ∗i+1 Z = (U ∗i+1 V ) ∗j+1 (U ′ ∗i+1 V
′) (58)

First

U ′ ∗i+1 V
′ = (Si+1

− dk−1
− x ∗i [t]) ∗i+1 ([z] ∗i S

i+1
+ dk−1

+ t)

= (Si+1
− dk−1

− z ∗i [t]) ∗i+1 ([z] ∗i S
i+1
+ dk−1

+ t)

= [z ∗i t]
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because Si+1
− dk−1

− x = Si+1
− dk−1

− z On the other hand

U ∗i+1 V = (Si+1
− dk−1

− x ∗i S
j+1
− dl−1

− y) ∗i+1 (Sj+1
− dl−1

− x ∗i S
i+1
+ dk−1

+ t)

= (Si+1
− dk−1

− x ∗i S
j+1
− dl−1

− y) ∗i+1 (Sj+1
− dl−1

− x ∗i S
i+1
+ dk−1

+ y)

= Sj+1
− dl−1

− (x ∗i y)

because Si+1
+ dk−1

+ t = Si+1
+ dk−1

+ y, and the last step is a particular case of Lemma A.8.
Now

T ∗i+1 Z = Sj+1
− dl−1

− (x ∗i y) ∗j [z ∗i t]

and of course the same arguments show that

Y ∗i+1 X = [x ∗i y] ∗j Sj+1
+ dl−1

+ (z ∗i t)

such that
[B] = [(x ∗i y) ∗j (z ∗i t)] = [A]

Case 2 . Suppose i+ 1 = j.
Here

T ∗i+1 Z = T ∗j Z

= (U ∗j U
′) ∗j (V ∗j V

′)

= U ∗j (U ′ ∗j V ) ∗j V
′

and we rewrite U ′ ∗j V as Ṽ ∗j Ũ ′ where

Ũ ′ = Si+1
− dk−1

− z ∗i [t]

Ṽ = Tj+1,3
− dl−1

− x ∗i T
j
− dl−t

In fact

V = Sj+1
− dl−1

− x ∗i S
i+1
+ dk−1

+ t

= Tj+1,3
− dl−1

− x ∗i [d
l+1
+ x] ∗i S

i+1
+ dk−1

+ t

= Tj+1,3
− dl−1

− x ∗i T
i+1
+ dk−1

+ t

but dl− Tj+1,3
− dl−1

− x = Si+1
− dk−1

− x and dl+[t] = Ti+1
+ dk−1

+ t such that exchange may be
applied to U ′ ∗j V , giving

U ′ ∗j V = (Si+1
− dk−1

− x ∗i [t]) ∗j (Tj+1,3
− dl−1

− x ∗i T
i+1
+ dk−1

+ t)

= Tj+1,3
− dl−1

− x ∗i [t]

= (Tj+1,3
− dl−1

− x ∗i T
j
− dl−t) ∗j (Si+1

− dk−1
− z ∗i [t])

The last equality comes from
dl+1
− [t] = Tj

− dl−t
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and
dl+1

+ Tj+1,3
− dl−1

− x = Si+1
− dl+x = Si+1

− dk−1
− z

Now

Ũ ′ ∗j V
′ = (Si+1

− dk−1
− z ∗i [t]) ∗j ([z] ∗i S

i+1
+ dk−1

+ t)

= (Si+1
− dk−1

− z ∗i [t]) ∗i+1 ([z] ∗i S
i+1
+ dk−1

+ t)

This proves
Ũ ′ ∗j V

′ = [z ∗i t] (59)

Finally
U ∗j Ṽ = (Si+1

− dk−1
− x ∗i S

j+1
− dl−1

− y) ∗j (Tj+1,3
− dl−1

− x ∗i T
j
− dl−t) (60)

But (37) gives

dl+1
− Tj+1,3

− dl−1
− x = d− Tj+1,3

− dl−1
− x

= Tj,2
− dk−1

− x

= Si+1
− dk−1

− x

and also

dl+1
+ Sj+1

− dl−1
− y = d+ Sj+1

− dl−1
− y

= d+ Tj+1,2
− dl−1

− y

= Tj
− dl+y

= Tj
− dl−t

Thus exchange may be applied to (60), so that

U ∗j Ṽ = Tj+1,3
− dl−1

− x ∗i S
j+1
− dl−1

− y

= Tj+1,3
− dl−1

− x ∗i T
j+1,3
− dl−1

− y ∗i [d
l+1
+ y]

= Tj+1,3
− dl−1

− (x ∗i y) ∗i [d
l+1
+ y]

because of (50) and finally
U ∗j Ṽ = Sj+1

− dl−1
− (x ∗i y) (61)

by using
dl+1

+ y = dl+1
+ (x ∗i y)

Now (59) and (61) show that

T ∗i+1 Z = U ∗j (U ′ ∗j V ) ∗j V
′

= U ∗j (Ṽ ∗j Ũ ′) ∗j V
′

= (U ∗j Ṽ ) ∗j (Ũ ′ ∗j V
′)

= Sj+1
− dl−1

− (x ∗i y) ∗i+1 [z ∗i t]
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By symmetry

Y ∗i+1 X = [x ∗i y] ∗j Sj+1
+ dl−1

+ (z ∗i t)

so that in this case again

[B] = [(x ∗i y) ∗j (z ∗i t)] = [A]
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