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CONFIGURATIONS OF SADDLE CONNECTIONS OF

QUADRATIC DIFFERENTIALS ON CP
1 AND ON

HYPERELLIPTIC RIEMANN SURFACES

CORENTIN BOISSY

Abstract. Configurations of rigid collections of saddle connec-
tions are invariants of connected components of strata of the mod-
uli space of quadratic differentials. They have been classified for
strata of Abelian differentials in [EMZ]. Similar work for strata
of quadratic differentials has been done in [MZ], although in that
case the connected components where not distinguished.

We classify the configurations for quadratic differentials on CP
1

and on hyperelliptic connected components of the moduli space
of quadratic differentials. We show, in particular, that, when the
genus is greater than 5, any configuration that appears in the hy-
perelliptic connected component of a stratum also appears in the
nonhyperelliptic one.
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1. Introduction

We study flat surfaces with conical singularities of angle multiple of
π. The quotient of this set by isometries is isomorphic to the moduli
space of quadratic differentials on Riemann surfaces and is naturally
stratified. Flat surfaces which correspond to squares of Abelian dif-
ferentials are often called translation surfaces. Flat surfaces appear in
the study of billiards in rational polygons to the extend that there is
an “unfolding” procedure of a rational billiard that gives a translation
surface.
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2 CORENTIN BOISSY

A sequence of quadratic differentials or Abelian differentials leaves
any compact set of a stratum when the length of a saddle connec-
tion tends to zero. This might force some other saddle connections to
shrink. The corresponding collections of saddle connections on a flat
surface are said to be ĥomologous (in the case of an Abelian differ-
ential this correspond to homologous saddle connections). According
to Masur and Smillie [MS] (see also [EMZ, MZ]), a “typical degenera-
tion” corresponds to the case when all the “short” saddle connections
are ĥomologous together (i.e. all short saddle connections are pairwise

ĥomologous). Therefore the study of configurations of ĥomologous sad-
dle connections (or homologous saddle connection in the case of Abelian
differential) is related to the study of compactification of a given stra-

tum. A configuration of ĥomologous saddle connections on a generic
surface is also a natural invariant of a connected component of the
ambient stratum.

In a recent article, Eskin, Masur and Zorich [EMZ] study collec-
tions of homologous saddle connections for Abelian differentials. They
describe configurations for each connected component of the strata of
Abelian differentials. Collections of ĥomologous saddle connections are
studied for quadratic differentials by Masur and Zorich [MZ]: they de-
scribe all the configurations that can arise in a stratum of quadratic
differentials, but they do not distinguish connected components of such
stratum.

According to Lanneau [L2], the nonconnected strata of quadratic
differentials admit two connected components. They are of one of the
following two types:

• “hyperelliptic” stratum: the stratum admits a connected com-
ponent that consists of hyperelliptic quadratic differentials (note
that some of these strata are connected).

• exceptional stratum: there exist four nonconnected strata that
do not belong to the previous case.

In this article, we give the classification of the configurations that
appear in the hyperelliptic connected components. This gives there-
fore a sufficient condition for a surface in a stratum that admits a
hyperelliptic connected component to be in the nonhyperelliptic com-
ponent. Unfortunately, this is not a necessary condition since, as we
show, any configuration that appears in a hyperelliptic connected com-
ponent also appears in the other component of the stratum when the
genus is greater than 5. We postpone to a future work the description
of configurations for exceptional strata.
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We deduce configurations for hyperelliptic components from config-
urations for strata of quadratic differentials on CP

1. Configurations
for CP

1 are deduced from general results on configurations that ap-
pear in [MZ]. Note that these configurations are needed in the study
of asymptotics in billiards in polygons with “right” angles [AEZ]. For
such a polygon, there is a simple unfolding procedure that consists of
gluing along their boundaries two copies of the polygon. This gives a
flat surface of genus zero with conical singularities, whose angles are
multiples of π (i.e. a quadratic differential on CP

1). Then a gener-
alised diagonal or a periodic trajectory in the polygon gives a saddle
connection on the corresponding flat surface.

We also give in annex an explicit formula that gives a relation be-
tween the genus of a surface and the ribbon graph of connected com-
ponents associated to a collection of ĥomologous saddle connections.

Some particular splittings are sometime used to compute the clo-
sure SL(2, R)-orbits of surfaces (see [Mc, HLM]). These splittings
of surfaces can be reformulated as configurations of homologous or
ĥomologous saddle connections on these surfaces. It would be inter-
esting to find some configurations that appears in any surface of a
connected component of a stratum, as it was done in [Mc].

Acknowledgements. I would like to thank Anton Zorich for encouraging
me to write this paper, and for many useful discussions.

1.1. Basic definitions. Let S be a compact Riemann surface of genus
g. A quadratic differential q on S is given locally by q(z) = φ(z)dz2,
for (U, z) a local chart with φ a meromorphic function with at most
simple poles. We define the poles and zeroes of q in a local chart to
be the poles and zeroes of the corresponding meromorphic function φ.
It is easy to check that they do not depend on the choice of the local
chart. Slightly abusing notations, a pole will be referred to as a zero
of order −1. An Abelian differential on S is a holomorphic 1-form.

Outside its poles and zeros, q is locally the square of an Abelian
differential. Integrating this 1-form gives a natural atlas such that the
transition functions are of the kind z 7→ ±z + c. Thus S inherits a
flat metric with singularities, where a zero of order k ≥ −1 becomes a
conical singularity of angle (k + 2)π. The flat metric has trivial holo-
nomy if and only if q is globally the square of an Abelian differential.
If not, then the holonomy is Z/2Z and (S, q) is sometimes called a half-
translation surface. In order to simplify the notation, we will usually
denote by S a surface with a flat structure.
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We associate to a quadratic differential the set {k1, . . . , kr} of or-
ders of its poles and zeros. The Gauss-Bonnet formula asserts that
∑

i ki = 4g − 4. Conversely, if we fix a collection {k1, . . . , kr} of inte-
gers greater than or equal to −1 satisfying the previous equality, we
denote by Q(k1, . . . , kr) the (possibly empty) moduli space of quadratic
differentials which are not globally the square of Abelian differential,
having {k1, . . . , kr} as orders of poles and zeros . It is well known that
Q(k1, . . . , kr) is a complex analytic orbifold, which is usually called
a stratum of the moduli space of quadratic differentials. We mostly
restrict ourselves to the subspace Q1(k1, . . . , kr) of area one surfaces,
where the area is given by the flat metric. In a similar way, we denote by
H1(n1, . . . , ns) the moduli space of Abelian differentials of area 1 having
zeroes of degree {n1, . . . , ns}, where ni ≥ 0 and

∑s

i=1 ni = 2g − 2.
A saddle connection is a geodesic segment (or geodesic loop) joining

two singularities (or a singularity to itself) with no singularities in its
interior. Even if q is not globally a square of an Abelian differential we
can find a square root of it along the saddle connection. Integrating
it along the saddle connection we get a complex number (defined up
to multiplication by −1). Considered as a planar vector, this complex
number represents the affine holonomy vector along the saddle connec-
tion. In particular, its euclidean length is the modulus of its holonomy
vector. Note that a saddle connection linger under small deformation
of the surface.

Local coordinates on a stratum of Abelian differentials are obtained
by integrating the holomorphic 1-form along a basis of the relative ho-
mology H1(S, sing, Z), where sing is the set of conical singularities.
Equivalently, this means that local coordinates are defined by the rel-
ative cohomology H1(S, sing, C).

Local coordinates in a stratum of quadratic differentials are obtained
in the following way: one can naturally associate to a quadratic differ-
ential (S, q) ∈ Q(k1, . . . , kr) a double cover p : Ŝ → S such that p∗q is

the square of an Abelian differential ω. The surface Ŝ admits a natural
involution τ , that induces on the relative cohomology H1(S, sing, C) an
involution τ ∗. It decomposes H1(S, sing, C) into an invariant subspace
H1

+(S, sing, C) and an antiinvariant subspace H1
−(S, sing, C). One can

show that the antiinvariant subspace H1
−(S, sing, C) gives local coor-

dinates to the stratum Q(k1, . . . , kr). It is well known that Lebesgue
measure on these coordinates defines a finite measure µ on the stratum
Q1(k1, . . . , kr).

A hyperelliptic quadratic differential is a quadratic differential such
that there exists an orientation preserving involution τ with τ ∗q = q
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and such that S/τ is a sphere. We can construct families of hyperelliptic
quadratic differentials in the following way: to all quadratic differentials
on CP

1, we associate a double covering ramified over some singularities
satisfying some fixed combinatorial conditions. The resulting Riemann
surfaces naturally carry hyperelliptic quadratic differentials.

Some strata admit an entire connected component that is made of
hyperelliptic quadratic differentials. These components arise from the
previous construction and have been classified by M. Kontsevich and
A. Zorich for Abelian differentials [KZ] and by E. Lanneau for quadratic
differentials [L1].

Theorem (M. Kontsevich, A. Zorich). The strata of Abelian differ-
entials that have a hyperelliptic connected component are the following
ones.

(1) H(2g − 2), where g ≥ 2. It arises from Q(2g − 3,−12g+1). The
ramifications points are located over all the singularities.

(2) H(g − 1, g − 1), where g ≥ 2. It arises from Q(2g − 2,−12g+2).
The ramifications points are located over all the poles.

In the above presented list, the strata H(1, 1) and H(2) are the ones
that are connected.

Theorem (E. Lanneau). The strata of quadratic differentials that have
a hyperelliptic connected component are the following ones.

(1) Q(2(g−k)−3, 2(g−k)−3, 2k+1, 2k+1) where k ≥ −1, g ≥ 1
and g − k ≥ 2. It arises from Q(2(g − k) − 3, 2k + 1,−12g+2).
The ramifications points are located over 2g + 2 poles.

(2) Q(2(g − k) − 3, 2(g − k) − 3, 4k + 2) where k ≥ 0, g ≥ 1 and
g − k ≥ 1. It arises from Q(2(g − k) − 3, 2k,−12g+1). The
ramifications points are located over 2g + 1 poles and over the
zero of order 2k.

(3) Q(4(g − k) − 6, 4k + 2) where k ≥ 0, g ≥ 2 and g − k ≥ 2. It
arises from Q(2(g − k)− 4, 2k,−12g). The ramifications points
are located over all the singularities

In the above presented list, the strata Q(−1,−1, 1, 1), Q(−1,−1, 2),
Q(1, 1, 1, 1), Q(1, 1, 2) and Q(2, 2) are the ones that are connected.

1.2. Ĥomologous saddle connections. Let S ∈ Q(k1, . . . , kr) and

denote by p : Ŝ → S its canonical double cover and by τ the corre-
sponding involution. Let P denote the set of singularities of S and let
P̂ = p−1(P ).

To an oriented saddle connection γ on S, we can associate γ1 and
γ2 its preimages by p. If the relative cycle [γ1] satisfies [γ1] = −[γ2] ∈
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H1(Ŝ, P̂ , Z), then we define [γ̃] = [γ1]. Otherwise, we define [γ̃] =
[γ1] − [γ2]. Note that in all cases, the cycle [γ̃] is antiinvariant with
respect to the involution τ .

Definition 1.1. Two saddle connections γ and γ′ are ĥomologous if
[γ̃] = ±[γ̃′].

Theorem (H. Masur; A. Zorich). Consider two distinct saddle con-
nections γ, γ′ on a half-translation surface. The following assertion
are equivalent:

• The two saddle connections γ and γ′ are ĥomologous.
• The ratio of their lengths is constant under any small deforma-

tion of the surface inside the ambient stratum.
• They have no interior intersection and one of the connected

components of S\{γ ∪ γ′} has trivial linear holonomy.

Furthermore, if γ and γ′ are ĥomologous, then the ratio of their lengths
belongs to {1

2
, 1, 2}.

Consider a set of ĥomologous saddle connections γ = {γ1, . . . , γs}
on a half-translation surface (S, q). Slightly abusing notation, we will
denote by S\γ the subset S\

(

∪s
i=1γi

)

. This subset is a finite union of
connected half-translation surfaces with boundary. We define a graph
Γ(S, γ) called the graph of connected components in the following way
(see [MZ]): the vertices are the connected components of S\γ, labelled
as “◦” if the corresponding surface is a cylinder, as “+” if it has trivial
holonomy (but is not a cylinder), and as “−” if it has non-trivial holo-
nomy. The edges are given by the saddle connections in γ. Each γi is
on the boundary of one or two connected components of S\γ. In the
first case it becomes an edge joining the corresponding vertex to itself.
In the second case, it becomes an edge joining the two corresponding
vertices.

In [MZ], Masur and Zorich describe the set of all possible graphs of
connected components for a quadratic differential.

Theorem (H.Masur, A.Zorich). Let (S, q) be quadratic differential ; let

γ be a collection of ĥomologous saddle connections {γ1, . . . , γn}, and let
Γ(S, γ) be the graph of connected components encoding the decomposi-
tion S \ (γ1 ∪ · · · ∪ γn).

The graph Γ(S, γ) either has one of the basic types listed below or can
be obtained from one of these graphs by placing additional “◦”-vertices
of valence two at any subcollection of edges subject to the following
restrictions. At most one “◦”-vertex may be placed at the same edge;
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a “◦”-vertex cannot be placed at an edge adjacent to a “◦”-vertex of
valence 3 if this is the edge separating the graph.

The graphs of basic types, presented in Figure 1, are given by the
following list:

a) An arbitrary (possibly empty) chain of “+”-vertices of valence
two bounded by a pair of “−”-vertices of valence one;

b) A single loop of vertices of valence two having exactly one “−”-
vertex and arbitrary number of “+”-vertices (possibly no “+”-
vertices at all);

c) A single chain and a single loop joined at a vertex of valence
three. The graph has exactly one “−”-vertex of valence one; it
is located at the end of the chain. The vertex of valence three
is either a “+”-vertex, or a “◦”-vertex (vertex of the cylinder
type). Both the chain, and the cycle may have in addition an
arbitrary number of “+”-vertices of valence two (possibly no
“+”-vertices at all);

d) Two nonintersecting cycles joined by a chain. The graph has
no “−”-vertices. Each of the two cycles has a single vertex
of valence three (the one where the chain is attached to the
cycle); this vertex is either a “+”-vertex or a “◦”-vertex. If both
vertices of valence three are “◦”-vertices, the chain joining two
cycles is nonempty: it has at least one “+”-vertex. Otherwise,
each of the cycles and the chain may have arbitrary number of
“+”-vertices of valence two (possibly no “+”-vertices of valence
two at all);

e) “Figure-eight” graph: two cycles joined at a vertex of valence
four, which is either a “+”-vertex or a “◦”-vertex. All the other
vertices (if any) are the “+”-vertices of valence two. Each of
the two cycles may have arbitrary number of such “+”-vertices
of valence two (possibly no “+”-vertices of valence two at all).

Every graph listed above corresponds to some flat surface S and to
some collection of saddle connections γ.

Each connected component of S\γ is a non-compact surface which
can be naturally compactified (for example considering the distance
induced by the flat metric on a connected component of S\γ, and the
corresponding completion). We denote this compactification by Sj. We
warn the reader that Sj might differ from the closure of the component
in the surface S: for example, if γi is on the boundary of just one con-
nected component Sj of S\γ , then the compactification of Sj carries
two copies of γi in its boundary, while in the closure of the correspond-
ing connected component of S\γ, these two copies are identified. The
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Figure 1. Classification of admissible graphs.

boundary of each Si is a union of saddle connections; it has one or
several connected components. Each of them is homeomorphic to S

1
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and therefore defines a cyclic order in the set of boundary saddle con-
nections. Each consecutive pair of saddle connections for that cyclic
order defines a boundary singularity with an associated angle which
is a integer multiple of π (since the boundary saddle connections are
parallel). The surface with boundary Si might have singularities in its
interior. We call them interior singularities.

Definition 1.2. Let γ = {γ1, . . . , γr} be a maximal collection of ĥomo-
logous saddle connections. Then a configuration is the following com-
binatorial data:

• The graph Γ(S, γ)
• For each vertex of this graph, a permutation of the edges ad-

jacent to the vertex (encoding the cyclic order of the saddle
connections on each connected component of the boundary of
the Si).

• For each pair of consecutive elements in that cyclic order, an
integer k ≥ 0 such that the angle between the two corresponding
saddle connections is (k + 1)π. This integer will be referred as
the order of the boundary singularity.

• For each Si, a collection of integers that are the orders of the
interior singularities of Si.

Following [MZ], we will encode the permutation of the edges adjacent
to each vertex by a ribbon graph.

2

2

0∅
∅

2
2 2

{−14}

γ1

γ3

Γ(S, γ)

γ2

Figure 2. An example of configuration

Example 1.3. Figure 2 represents a configuration on a flat surface. The
corresponding collection {γ1, γ2, γ3} of ĥomologous saddle connections
decomposes the surface into three connected components. The first
connected component has four interior singularities of order −1,
and its boundary consists of a single saddle connection with the cor-
responding boundary singularity of angle (2 + 1)π = 3π. The second

connected component has no interior singularities. It has two
boundary components, one consists of a single saddle connection with
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corresponding singularity of angle (2 + 1)π, and one that is a union
of two saddle connections with corresponding boundary singularities of

angle (0+1)π and (2+1)π. The last connected component has no
interior singularities, and admits two boundary components that con-
sists each of a single saddle connection (with corresponding boundary
singularities of angles (2 + 1)π).

Figure 3 represents a flat surface with a collection of three ĥomologous
saddle connections realizing this configuration.

118
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3 4
9

4

5
10

9

5

7
6

7

6

10

11
γ2 γ3

γ1

γ3

Figure 3. Unfolded flat surface realizing configuration
as in figure 2

Remark 1.4. In description of a configuration of a collection of ĥomologous
saddle connections γ = {γ1, . . . , γr}, we will always assume that the
quadratic differential is generic, and therefore, each saddle connection
parallel to the γi is ĥomologous to the γi (see [MZ]).

Remark 1.5. A maximal collection of ĥomologous saddle connections
and the associated configuration linger under any small deformation of
the flat surface inside the ambiant stratum. They also linger under the
well know SL(2, R) action on the stratum which is ergodic with respect
to the Lebesgue measure µ (see [M, V1, V2]). Hence, all admissible
configurations that exists in a connected component are realised in a
generic surface of that component. Furthermore, the number of collec-
tions realizing a given configuration in a generic surface has quadratic
asymptotics (see [EM]).

2. Configurations for the Riemann sphere

In this section we describe all admissibles configurations of ĥomolo-
gous saddle connections that arise on CP

1. We first start with several
preliminary lemmas which are applicable to flat surfaces of arbitrary
genus. Let S be a generic flat surface of genus g ≥ 0 in some stratum of
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quadratic differentials, and let γ be a maximal collection of ĥomologous
saddle connections on it. Taking the natural compactification of each
connected component of S\γ, we get a collection {Si}i∈I of compact
surfaces with boundary. The boundary of each Si is topologically a
union of disjoint circles. We can glue a disc to each connected compo-
nent of the boundary of Si and get a closed surface Si; we denote by
gi the genus of Si.

Lemma 2.1. Let g be the genus of S, then g ≥
∑

gi.

Proof. For each Si, we consider a collection of paths (ci,1, . . . , ci,2gi
) of

Si that represent a symplectic basis of H1(Si, R) and that avoid the
boundary of Si. When we glue the Si together, the ci,j provides a
collection of cycles of H1(S, R). It is a symplectic family because two
paths arising from two different surfaces do not intersect. Therefore we
get a free family of H1(S, R), so:

2g = dim
(

H1(S, R)
)

≥
∑

dim
(

H1(Si, R)
)

=
∑

2gi

�

Lemma 2.2. If Si0 is not a cylinder and has trivial holonomy, then
gi0 > 0.

Proof. We recall that the initial collection of ĥomologous saddle con-
nections is assumed to be maximal, therefore there is no interior sad-
dle connections ĥomologous to any boundary saddle connection. Let
(k1, . . . , ks) be the order of the interior conical singularities of Si0 and
(l1, . . . , ls′) be the orders of the boundary singularities. Let X be the
closed flat surface obtained by gluing Si0 and a copy of itself taken
with opposite orientation along their boundary. It’s easy to see that
gX = 2gi0 + r − 1, where r the number of connected components of
the boundary of Si0 and gX is the genus of X. The singularities of X
are of order (k1, . . . , ks, k1, . . . , ks, 2l1, . . . , 2ls′). Furthermore, ki, lj are
nonnegative integers since X has trivial holonomy. Using the Gauss-
Bonnet formula for quadratic differentials, we have:

gX = 1 +

s
∑

j=1

kj

2
+

s′
∑

i=1

li
2

= 2gi0 + r − 1

And therefore

2gi0 ≥ 2 − r +

s′
∑

i=1

li
2
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To conclude, we need few elementary remarks (which are already
written in [MZ]) about the order of the conical singularities of the
boundary:

a) If a connected component of the boundary is just a single saddle
connection, then the corresponding angle cannot be π because
the saddle connection would then be a boundary of a cylinder.
Then the other boundary of the cylinder would be a saddle
connection ĥomologous to the previous one. So Si would be
that cylinder contradicting the hypothesis. Furthermore, the
holonomy of a path homotopic to the saddle connection is trivial
if and only if the conical angle of the boundary singularity is
an odd multiple of π . Therefore that angle is greater or equal
to 3π, and hence, the order l1 of the boundary singularity has
order at least 2.

b) If a connected component of the boundary is given by two sad-
dle connections, then as before, the two corresponding conical
angles cannot be both equal to π (because Si is not a cylinder)
and are of same parity (because Si has trivial holonomy).

The case r = 1 is trivial. If r = 2 then there is a connected compo-
nent of the boundary of Si0 with one or two saddle connections (recall
that Si0 is of valence at most four). In both cases, the previous re-
marks imply that Si0 admits a boundary singularity of order l1 > 0,
and therefore 2gi0 ≥ l1 > 0.

If r ∈ {3, 4}, then there are at least two boundary components that
consists of a single saddle connection. From remark a), this implies
that Si0 admits two boundary singularities l1 and l2 of order greater
than or equal to two. Applying remarks a) and b) on the other bound-
ary components, we show that Si0 admits at least an other boundary
singularity of order l3 > 0. Therefore 2gi0 > 2− r + l1/2+ l2/2 ≥ 4− r.
So gi0 > 0.

�

Now, we find all the configurations when the genus g of the sur-
face is zero. To avoid confusion of notation, we specify the following
convention: in the next theorem, we denote by {kα1

1 , . . . , kαr
r } the set

with multiplicity {k1, k1, . . . , kr}, where αi is the multiplicity of ki. We
assume that ki 6= kj for i 6= j. For example the notation Q(12,−16)
means Q(1, 1,−1,−1,−1,−1,−1,−1).

Theorem 2.3. Let Q(kα1

1 , . . . , kαr
r ,−1s) be a stratum of quadratic dif-

ferentials on CP
1 different from Q(−14), and let γ be a maximal col-

lection of ĥomologous saddle connections on a surface in that stratum.
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Then the possible configurations for γ are given in the list below (see
also table 1.

a) Let {k, k′} ⊂ {kα1

1 , . . . , kαr
r ,−1s} be an unordered pair of in-

tegers with (k, k′) 6= (−1,−1). The set γ consists of a single
saddle connection joining a singularity of order k to a distinct
singularity of order k′.

b) Consider (a1, a2) a pair of strictly positive integers such that
a1 + a2 = k ∈ {k1, . . . , kr} (with k 6= 1), and a partition
A1 ⊔ A2 of {kα1

1 , . . . , kαr
r }\{k}. The set γ consists of a simple

saddle connection that decomposes the sphere into two one-holed
spheres S1 and S2, such that each Si has interior singularities
of positive order given by Ai and si = (

∑

a∈Ai
a) + ai + 2 poles,

and has a single boundary singularity of order ai.
c) Consider {a1, a2} ⊂ {kα1

1 , . . . , kαr
r } a pair of integers. Let A1 ⊔

A2 be a partition of {kα1

1 , . . . , kαr
r }\{a1, a2}. The set γ consists

of two closed saddle connections that decompose the sphere into
two one-holed spheres S1 and S2 and a cylinder, and such that
each Si has interior singularities of positive orders given by Ai

and si = (
∑

a∈Ai
a)+ai +2 poles and has a boundary singularity

of order ai.
d) Let k ∈ {k1, . . . , kr}. The set γ is a pair of saddle connections

of different lengths, and such that the largest one starts and
ends from a singularity of order k and decompose the surface
into a one- holed sphere and a half-pillowcase, while the shortest
one joins a pair of poles and lies on the other end of the half
pillowcase.

Proof. The existence of each of these configurations is a direct conse-
quence of the Main Theorem of [MZ].

It follows from the previous lemmas that Γ(S, γ) has no “+” com-
ponents. Furthermore, a loop of the graph Γ(S, γ) cannot have any
cylinders (this would add a handle to the surface). Now using the de-
scription from [MZ] of admissible graphs (see figure 1), we can list all
possible graphs.

a) A single “−” vertex of valence two and an edge joining it to itself.
This can represent two possible cases: either the boundary of the clo-
sure of S\γ has two connected components, or it has only one. In the
first case each connected component of the boundary is a single saddle
connection. But gluing these two boundary components together adds
a handle to the surface, so, this case doesn’t appear.
In the other case, the single boundary component consists of two sad-
dle connections, so γ consists of a single saddle connection joining a
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ConfigurationTolological picture

b)

c)

d)

0

00

0

On Q(−14)

k k′

a1 a2

A2A1

a1 0 0

A1

a2

A2

0

0

0

k

a)

Table 1. Configurations in genus zero

singularity of order k to a distinct singularity of order k′. Note that k
and k′ cannot be both equal to −1 otherwise there would be another
saddle connection in the collection γ.

b) Two “−” vertices of valence one joined by a single edge. That
means that γ consists of a single closed saddle connection γ1 which
separates the surface in two part. We get a pair (S1, S2) of one-holed
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spheres with boundary singularities of angles (a1 + 1)π and (a2 + 1)π
correspondingly . The saddle connection of the initial surface is adja-
cent to a singularity of order a1 + a2 = k. None of the ai can be equal
to 0 otherwise the saddle connection would bound a cylinder, and there
would exists a saddle connection ĥomologous to γ1 on the other end of
that cylinder (see remark 1.4).

Now considering the interior singularities of positive order of S1 and
S2 respectively, this defines a partition A1 ⊔ A2 of {kα1

1 , . . . , kαr
r }\{k}.

Each Si also have si poles, with s1 + s2 = s. If we decompose the
boundary saddle connection of Si in two segments starting from the
boundary singularity, and glue together these two segments, then we
get a closed flat surface with Ai ⊔ {a1 − 1,−1} ⊔ {−1si} as order of
singularities. The Gauss-Bonnet theorem implies that:

(

∑

a∈Ai

a
)

+ a1 − 2 − si = −4

c) Two “−” vertex of valence one and a “◦” vertex of valence 2. This
case is analogous to the previous one.

d) A “−” vertex of valence one, joined by an edge to a valence three
“◦” vertex and an edge joining the “◦” vertex to itself.
The “−” vertex represents a one-holed sphere. It has has a single
boundary component which is a closed saddle connection. The cylin-
der has two boundary components of equal lengths. One has two saddle
connections of length 1 (after normalization) the other component has
a single saddle connection of length 2. So, the only possible configu-
ration is obtainend by gluing the two saddle connections of length 1
together (creating a “half-pillowcase”) and gluing the other one with
the boundary of the “−” component. The boundary singularity of the
“−” component has an angle of (k + 2 − 1)π (equivalently, has order
k) for some k ∈ {k1, . . . , kr}.

e) A valence four “◦” vertex with two edges joining the vertex to it-
self. The cylinder has two boundary components, each of them is com-
posed of two saddle connections. All the saddle connections have the
same length. If we glue a saddle connection with one of the other con-
nected component of the boundary, we get a flat torus, which has trivial
holonomy. So, we have to glue each saddle connection with the other
saddle connection of its boundary component. That means that we get
a (twisted) “pillowcase” and the surface lies in Q(−1,−1,−1,−1)

In each of the first four cases, the surface necessary has a singularity
of order at least 1. So, they cannot appear in Q(−1,−1,−1,−1), which
means that the fifth case is the only possibility in that stratum. �
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3. Configurations for hyperelliptic connected

components

In this section, we describe the configurations of ĥomologous saddle
connections in a hyperelliptic connected component. We first reformu-
late Lanneau’s description of such components, see [L1].

Theorem (E. Lanneau). The hyperelliptic connected components are
given by the following list:

(1) The subset of surfaces in Q(k1, k1, k2, k2), that are a double cov-
ering of a surface in Q(k1, k2,−1s) ramified over s poles. Here
k1 and k2 are odd, k1 ≥ −1 and k2 ≥ 1, and k1 + k2 − s = −4.

(2) The subset of surfaces in Q(k1, k1, 2k2 + 2), that are a double
covering of a surface in Q(k1, k2,−1s) ramified over s poles and
over the singularity of order k2. Here k1 is odd and k2 is even,
k1 ≥ −1 and k2 ≥ 0, and k1 + k2 − s = −4.

(3) The subset of surfaces in Q(2k1 + 2, 2k2 + 2), that are a dou-
ble covering of a surface in Q(k1, k2,−1s) ramified over all the
singularities. Here k1 and k2 are even, k1 ≥ 0 and k2 ≥ 0, and
k1 + k2 − s = −4.

We deduce configurations for hyperelliptic components from the con-
figurations for CP

1. This leads to the following theorem:

Theorem 3.1. In notations of the classification theorem above, the
admissible configurations of ĥomologous saddle connections for hyper-
elliptic connected components are given by tables 2, 3, 4 and 5. No
other configuration can appear.

Remark 3.2. Integer parameters k1, k2 ≥ −1 in tables 2, 3, 4 are allowed
to take values −1 and 0 as soon as this does not contradict explicit
restrictions. In table 5, we list several additional configurations which
appear only when at least one of k1, k2 is equal to zero.

Remark 3.3. In the description of configurations for Qhyp(k1, k1, k2, k2)
with k1 = k2, the notation ki, ki (resp. kj, kj) still represents the orders
of a pair of singularities that are interchanged by the hyperelliptic invo-
lution. For example in a generic surface in the hyperelliptic component
Qhyp(k, k, k, k), the second line of table 3 means that, between any
pair of singularities that are interchanged by the hyperelliptic involu-
tion, there exists a saddle connection with no other saddle connections
ĥomologous to it. But if γ is a saddle connection between two singu-
larities that are not interchanged by the involution τ , then τ(γ) is an

other saddle connection ĥomologous to γ (see below).
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Qhyp(k1, k1, 2k2 + 2)

k2 + 1

k2 + 1

Q(k1, k2,−1s) (CP
1)

k1

k2

{k1,−1s−2}

{k2,−1s−2}

{−1s}

k1 + 1 k2 + 1 k1 + 1

k2 + 1

k1 + 1

k2 + 1

k1 + 1 k1 + 1

{2k2 + 2}{k2,−1s−1}

k1 + 1 0

0 k2 + 1

{k1,−1s−1}

{k2,−1k2+a1+2}

k1 = a1 + a2

a1, a2 ≥ 1

{−1a2+2} ∅
{2k2 + 2}

a1

a2

0 0

0

0

a1 even, a2 odda1 odd, a2 even

a1, a2 odd a1, a2 even

0

0

0

0

a1

{k1, k1}{k1,−1k1+a1+2} {−1a2+2}

{−1k1+2}
∅

k2

a1

{2k2 + 2}

a1

{−1k2+2}

{k1, k1}

a2

k2 even
k1 odd

a1 a2

a2

a1, a2 ≥ 1
k2 = a1 + a2

a1 a2

{2k2 + 2}

k1

a2

∅

k1

a1

k2

k2

{k1, k1}

a1

a2

k1

∅

a2

∅
{k1, k1}

∅

a2

k1

a1

k1, k2 ≥ 1

a2

a1

k1
k2

k2

Table 2. Configurations for Qhyp(k1, k1, 2k2 + 2)
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Q(k1, k2,−1s) (CP
1)

0
0

0
0

k1, k2 odd
(k1, k2) 6= (−1,−1)Qhyp(k1, k1, k2, k2)

{−1s−1, kj}

{−1s}

k2 + 1

ki + 1 0

ki = a1 + a2

a1, a2 ≥ 1

a2a1

{kj ,−1kj+a1+2} {−1a2+2}
{kj , kj}

a1 odd, a2 even

∅

a2

a2a1

a1

k1, k2 ≥ 1

{−1k1+2}

k1 0 0 k2

ki ≥ 1

{kj ,−1s−2}

ki 0
0

0

{kj , kj}

ki

ki
0

0

k1

∅

k1

k2
k2

∅

{kj , kj}

a1 a1 a2 a2

∅

a1 even, a2 odd

{kj , kj}

ki + 1 ki + 1

k2 + 1

k2 + 1

k1 + 1 k1 + 1

{−1k2+2}

ki 6= −1

k1 + 1

Table 3. Configurations for Qhyp(k1, k1, k2, k2)

Proof. Let Qhyp be a hyperelliptic connected component from the list
above and Q = Q(k1, k2,−1s) the corresponding stratum on CP

1. The
projection p : S̃ → S̃/τ = S, where S̃ ∈ Qhyp and τ is the corresponding
hyperelliptic involution, induces a covering from Qhyp to Q. This is not
necessarily a one-to-one map because there might be a choice of the
ramification points on CP

1. But if we fix the ramification points, there
is a locally one-to-one correspondence, and the ratio of lengths of a
pair of saddle connections in S̃ ∈ Qhyp is constant under any small

deformation of S̃ in the stratum Qhyp if and only if the ratio of the
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ki

a1, a2 ≥ 1

{−1a2+2}

k1, k2 ≥ 1

{−1k2+2}

a1

{2k2 + 2}

a1 ∅

a2

a2

ki + 1

ki + 1

k1 + 1

k1 + 1

k2 + 1

k2 + 1

Qhyp(2k1 + 2, 2k2 + 2)

0 0

ki ≥ 1

ki

{kj ,−1s−2}
{2kj + 2}

ki

k1 even
Q(k1, k2,−1s) (CP

1)
k2 even

{−1s}

k1 + 1 k2 + 1

ki + 1 0

{kj ,−1s−1}

{kj ,−1kj+a1+2}

a1 a2

{−1k1+2}

k1
k2

0

0

k2

∅

k2

00
0

0

k1

∅

k1

a1

a1, a2 odd

a2

∅

a1

a2

a1, a2 even

{2kj + 2}

{2k2 + 2}

∅

ki = a1 + a2

Table 4. Configurations for Qhyp(2k1 + 2, 2k2 + 2)

corresponding pair in S is constant under any small deformation in Q.
Hence by theorem of Masur and Zorich cited after definition 1.1, the
image by p of a maximal collection γ̃ of ĥomologous saddle connections
on S̃ is a collection γ of ĥomologous saddle connections on S. Note
that γ is not necessary maximal since the preimage of a pole by p is a
marked point on S̃ and we do not consider saddle connections starting
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from a marked point. However, we can deduce all configurations on
Qhyp from the list of configurations of Q.

We give details for a few configurations, the other ones are similar
and the proofs are left to the reader.

-First line of table 2: the configuration for Q = Q(k1, k2,−1s) cor-
responds to a single saddle connection γ on a surface S that joins a
singularity P1 of degree k1 to the distinct singularity P2 of degree k2.
The double covering is ramified over P2 but not over P1. Therefore,
the preimage of γ in S̃ is a pair {γ̃1, γ̃2} of saddle connections of the
same length that join each preimage of P1 to the preimage of P2. The
boundary of compactification of S̃\{γ̃1, γ̃2} admits only one connected
component that consists of four saddle connections. The angles of the
boundary singularities corresponding to the preimages of P1 are both
(k1+2)π, and the angles of the other boundary singularities are (k2+2)π
since {γ̃1, γ̃2} are interchanged by the hyperelliptic involution.

-Fourth line of table 2: the configuration for Q = Q(k1, k2,−1s) cor-
responds to a single closed saddle connection γ on a flat surface S that
separates the surface into two parts S1 and S2. Each Si contains some
ramification points, so the preimage of γ separates S̃ into two parts
S̃1 and S̃2 that are double covers of S1 and S2. One of the S̃i has
an interior singularity of order 2k2 + 2, while the other one does not
have interior singularities. The description from Masur and Zorich of
possibles graphs of connected components (see figure 1) implies that

S̃1 and S̃2 cannot have the same holonomy. Let S̃2 be the component
with trivial holonomy, and choose ω to be a square root of the qua-
dratic differential that defines its flat structure. If S̃2 has two boundary
components, each consisting of a single saddle connection, then the cor-
responding boundary singularity must be of even order a2. If S̃2 has
a single boundary component, then integrating ω along that boundary
must give zero (ω is closed), which is only possible if the order a2 of
the boundary singularities are odd. Applying lemma 3.4 below we see
that S̃2 does not have interior singularity. Hence, S̃1 has an interior
singularity of order 2k2 + 2. The order of the boundary singularities of
S̃1 are a1 = k1 − a2, which is of parity opposite to the one of a2. Ap-
plying again lemma 3.4 , we get the number of boundary components
of S̃1.

-Last line of table 2: the configuration for Q = Q(k1, k2,−1s) corre-
sponds to a pair of saddle connections on a surface S ∈ Q that separate
the surface into a cylinder C and a one-holed sphere S1. The double
cover S̃1 of S1 is connected, and applying lemma 3.4 we see that it
has two boundary components. The double cover C̃ of the cylinder C
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admits no ramification points. So a priori, there are two possibilities:
C̃ is either a cylinder with the same length and a width twice bigger as
the width of C, or is a pair of copies of C. Here, the first possibility is
not realisable otherwise the double covering S̃ → S would be necessary
ramified over k1. Finally we get S̃ by gluing a boundary component
of each cylinder to each boundary component of S̃1, and glue together
the remaining boundary components of the cylinders.
Note that in that case, the preimage of the saddle connection joining
a pair of poles on S is a regular closed geodesic in S̃, and hence, we
do not consider it in the collection of ĥomologous saddle connections
on S̃.

When at least one of k1 or k2 equals zero, there is a marked point
on CP

1 that is a ramification point of the double covering. Hence we
have to start from a configuration of saddle connections on CP

1 that
might have marked points as end points:

• If a maximal collection of ĥomologous saddle connection does
not intersect a marked point, then the collection has already
been described in theorem 2.3, and hence, the corresponding
configuration in Qhyp is already presented in tables 2 and 4.

• If a nonclosed saddle connection admits a marked point as end
point, then this saddle connection is simple since we can move
freely that saddle connection. Hence the corresponding config-
uration in Qhyp is already written in tables 2 and 4.

• If a closed saddle connection admits a marked point as end
point, then it is a closed geodesic. This corresponds to a new
configuration on CP

1 and the correponding configuration in
Qhyp is described in table 5. The proof is analogous to the
other cases.

This concludes the proof of theorem 3.1.
�

Lemma 3.4. Let Si be a flat surface whose boundary consists of a single
closed saddle connection and let a > 0 be the order of the corresponding
boundary singularity. Let S̃i be a connected ramified double cover of
the interior of Si and let (k̃1, . . . , k̃l) be interior singularities. The sum
∑

i k̃i is even and:

• If
∑

i k̃i

2
+ a is even, then the compactification of S̃i has two

boundary components, each of them consists of a single saddle
connection, with corresponding boundary singularity of order a.
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0

0 0

0

0

0

0

00
0

0

0

00

0

00
0

k1

∅

k1

0

0

k1

0

0

ki

Q(ki, 0,−1s)

0 0

0

0

Qhyp

Qhyp = Q(2, 2)

Qhyp = Q(2ki + 2, 2), ki > 0

Qhyp = Q(ki, ki, 2)

0

0

00

ki ≥ 1, ki even

k1 = k2 = 0

ki ≥ 1, ki odd

0

{−1s−2}

{−1s−2}

0

0
0

0 0

0

0

ki

k1
∅

Table 5. Additionnal configurations which appears
when at least one of k1 or k2 equals 0.

• If
∑

i k̃i

2
+ a is odd, then the compactification of S̃i has a single

boundary component which consists of a pair of saddle connec-
tions of equal lengths, with corresponding boundary singularities
of order a.

Proof. By construction, the boundary of the compactification of S̃i nec-
essary consists of two saddle connections of equal length. It has one or
two connected components.

Now we claim that
∑

i k̃i+2a ≡ 2r mod 4, with r the number of con-

nected components of the boundary of S̃i. This equality (that already
appears in [MZ]) clearly implies our lemma. The proof is the following:

consider as in lemma 2.2 the surface X̃ of genus gX̃ obtained by gluing

S̃i and a copy of itself with opposite orientation along their boundary.
The order of the singularities of X̃ are {k̃1, . . . , k̃l, k̃1, . . . , k̃l, 2a, 2a}, so

we get 4gX̃ − 4 = 2
∑

i k̃i + 4a = 4(2g̃i + r − 1) − 4, and therefore
∑

i k̃i + 2a = 4gi − 4 + 2r ≡ 2r mod 4. �

Given a concrete flat surface, we do not necessary see at once whether
it belongs or not to a hyperelliptic connected component. Indeed, there
exists hyperelliptic flat surfaces that are not in a hyperelliptic connected
component. As a direct corrolary of theorem 3.1, we have the following
quick test.
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Corollary 3.5. Let S be a flat surface with non-trivial holonomy and
γ be a collection of ĥomologous saddle connections on S. The surface
S does not belong to a hyperelliptic connected component if one of the
following holds:

• S\γ admits three connected components and neither of them is
a cylinder.

• S\γ admits four connected components or more.

4. Configurations for non-hyperelliptic connected

components

Using [MZ], one can get a list of all configurations of ĥomologous
saddle connections realizable for a stratum, but it is not clear which
configuration realizes in which component. In the previous section we
have described configurations for hyperellipic components.

Now we show that any configuration realizable for a stratum is also
realizable in its non-hyperelliptic connected component, provided the
genus g is sufficiently large.

We remind the following theorem.

Theorem (Kontsevich-Zorich / Lanneau). The following strata con-
sists entirely of hyperelliptic surfaces and are connected:

• H(1, 1) and H(2) in the moduli spaces of Abelian differentials.
• Q(−1,−1, 1, 1), Q(−1,−1, 2), Q(1, 1, 1, 1), Q(1, 1, 2) and Q(2, 2)

in the moduli spaces of quadratic differentials.

Any other stratum that contains a hyperelliptic connected component
admit at least one other connected component that contains a subset of
full mesure of flat surfaces that do not admit any isometric involution.

Lemma 4.1. Let Q be a nonconnected stratum that contains a hyperel-
liptic connected component. If the set of order of singularities defining
Q contains {k, k}, for some k ≥ 1, then there exists a nonhyperellip-
tic flat surface in Q that has a simple saddle connection joining two
different singularities of the same order k.

Here we call a saddle connection “simple” when they are no other
saddle connections ĥomologous to it.

Proof. According to Masur and Smillie [MS], any stratum is nonempty
except the ones that are in the following list: Q(∅), Q(1,−1), Q(3, 1)
and Q(4).

According to Masur and Zorich [MZ], if S ∈ Q(k1 + k2, k3, . . . , kr),
then there is a path (St)t∈[0,1], continous in the moduli space of qua-
dratic differentials, such that S0 = S and St ∈ Q(k1, k2, k3, . . . , kr) for
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γ2

P
P2

P1

P2

P1,1

P1,2

γ1
γ′
1

Figure 4. Construction of a simple saddle connection
in a nonhyperelliptic surface

t > 0, and such that the smallest saddle connection in St, for t > 0 is
simple and joins a singularity of order k1 to a singularity of order k2.

We first consider the stratum Q = Q(k1, k1, k2, k2). By assumption,
Q is nonconnected, so, either the genus is greater than 3, or k1 = 3
and k2 = −1. Hence the stratum Q(2k1 + k2, k2) is nonempty. Now,
we start from a surface S0 in that stratum, and break the singularity P
of order 2k1 + k2 into two singularities P1 and P2 of orders 2k1 and k2

respectively. We get a surface S1 with a short vertical saddle connec-
tion γ1 between P1 and P2. Since the singularity breaking procedure
is continous, they are no other short saddle connections on S1. Then,
we break the singularity P1 of order 2k1 into a pair of singularities P1,1

and P1,2 of orders k1. We get by construction a surface S2 in the stra-
tum Q with a simple saddle connection γ2 between P1,1 and P1,2, and
of length very small compared to the length of γ1. The fact that the
singularity breaking procedure is continuous implies that there lingers
a saddle connection γ′

1 between P2 and one of the P1,i (see figure 4).
By construction, we can assume there is no other saddle connection
of length l(γ′

1), 2l(γ′
1) or l(γ′

1)/2, where l(γ′
1) denotes the length of γ′

1.
Hence, γ′

1 is simple. According to theorem 3.1, this cannot exist in the
hyperelliptic connected component since the corresponding configura-
tion is not present in table 3. Thus S2 belongs to the nonhyperelliptic
connected component and we can assume, after a slight perturbation,
than S2 is not hyperelliptic. Since by construction, the saddle connec-
tion γ2 is simple and joins two singularities of order k = k1 ≥ 1, the
lemma is proven for the stratum Q(k1, k1, k2, k2).

The proof for Q(k1, k1, 2k2+2) and for Q(2k1+2, 2k2+2) is analogous:
note that this case does not occurs for the genera 1 or 2, because all
corresponding strata are connected. Therefore the genus is greater than
or equal to 3 and the stratum Q(2k1 + 2k2 + 2) is nonempty. �
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Proposition 4.2. If g ≥ 5, any configuration that appears in a hy-
perelliptic connected component of a stratum of meromorphic quadratic
differentials with at most simple poles also appears in the nonhyperel-
liptic component of the same stratum.

Proof. Let S be a flat surface in a hyperelliptic component and γ a
maximal collection of ĥomologous saddle connections. The hyperellip-
tic involution τ maps S\γ to itself and hence, induces an involution τ ∗

on the set of connected components of S\γ. We claim that τ ∗ does not
interchanges two connected components Si, Sj of S\γ, for otherwise
we can continously deform Si outside a neighborhood ot its boundary
and reconstruct a new flat surface S ′ in the same stratum that is not
any more hyperelliptic. Therefore, if S is in a hyperelliptic component,
then τ must induce an isometric and orientation preserving involution
on each connected component of S\γ.

Using the formula for the genus of a compound surface proved in
the appendix and the list of configurations for hyperelliptic connected
components given in the previous section, we derive the following fact:
if S has genus g ≥ 5 and γ is a maximal collection of ĥomologous saddle
connections, then at least one of the following propositions is true.

a) S\γ admits a connected component S0 of genus g0 ≥ 3, that has
a single boundary component and whose corresponding vertex
in the graph Γ(S, γ) is of valence 2.

b) S\γ admits a connected component S0 of genus g0 ≥ 2, that
has exactly two boundary components and whose corresponding
vertex in the graph Γ(S, γ) is of valence 2.

c) S\γ is connected and the corresponding vertex in the graph
Γ(S, γ) is of valence 4.

We conclude the proof by applying lemmas 4.3, 4.4, 4.5 to situations
a), b), c) correspondingly. �

Lemma 4.3. Let S be a flat surface in a hyperelliptic connected compo-
nent and γ a maximal collection of ĥomologous saddle connections. We
assume that S\γ admits a connected component S0 of genus g0 ≥ 3,
whose corresponding vertex in the graph Γ(S, γ) is of valence 2, and
such that S0 has a single boundary component.

Then there exists (S ′, γ′) that has the same configuration as (S, γ),
with S ′ in the complementary component of the same stratum.

Proof. The boundary components of S0 consists of two saddle connec-
tions of the same length and the corresponding boundary singularities
have the same orders k ≥ 1. Identifying together these two boundary
saddle connections, we get a hyperelliptic surface S0. If we continously
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deform this surface, it keeps being hyperelliptic otherwise S would not
be in a hyperelliptic connected component. Hence, S0 belongs to a hy-
perelliptic component, and the hyperelliptic involution interchage two
singularities of order k − 1.

The genus of S0 is greater than 3, so the corresponding stratum ad-
mits an other connected component. Now we start from a closed flat
surface X in that other connected component. According to lemma
4.1, we can choose X such that it admits a simple saddle connection
between the two singularities of order k− 1. Now we cut X along that
saddle connection and get a surface S1 that have, after rescaling, the
same boundary as S0. By construction, S1 admits no interior saddle
connection ĥomologous to one of its boundary saddle connections. So,
we can reconstruct a pair (S ′, γ′) such that γ′ has the same configura-
tion as γ in S.

The surface S1 admits a nontrivial isometric involution if and only
if X has one. So, we can choose X such as it admits no nontrivial
isometric involution, and therefore the surface S ′ is nonhyperelliptic.

This argument also works when S0 is in the stratum Q(3, 3,−1,−1)
(here g0 = 2 and k = 4). In any other case for g0 ≤ 2, it is not possible
to replace S0 by a surface S1 with no involution. �

Lemma 4.4. Let S be a flat surface in a hyperelliptic connected com-
ponent and γ a maximal collection of ĥomologous saddle connections.
We assume that S\γ admits a connected component S0 of genus g0 ≥ 2,
that has two boundary components, and whose corresponding vertex in
the graph Γ(S, γ) is of valence 2.

Then there exists (S ′, γ′) that has the same configuration as (S, γ),
with S ′ in the complementary component of the same stratum.

Proof. Each boundary components of S0 consists of one saddle con-
nection and the corresponding boundary singularities have the same
orders k ≥ 1. Now we start from a closed flat surface X with the same
holonomy as S0 and whose singularities consists of the interior singu-
larities of S0 and two singularities P1 and P2 of order k − 2. We can
always choose X such that it admits a saddle connection η between P1

and P2.
Now we construct a pair of holes by removing a parallelogram as in

figure 5 and gluing together the two long sides. Note that the holes
can be choosen arbitrary small, an therefore, the resulting surface with
boundary does not have any interior saddle connection ĥomologous to
one of its boundary components. We denote by S1 this surface, and up
to rescaling, we can assume that S0 and S1 have isometric boundaries.
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Hence replacing S0 by S1 in the decomposition of S, we get a new pair
(S ′, γ′) that have the same configuration as (S, γ).

Figure 5. Construction of a pair of holes

Now assume S1 admits a nontrivial isometric involution τ that is ori-
entation preserving. Then this involution interchanges the two bound-
ary components of the surface. It is easy to check that we can perform
the reverse surgery as the one described previously and we get a closed
surface that admits a nontrivial involution. Hence if X belongs to
a stratum that does not consist entirely of hyperelliptic flat surfaces,
then we can choose X such that S ′ is not in a hyperelliptic connected
component.

Hypothesis on the genus and the theorem from Kontsevich-Zorich
and Lanneau implies that this arguments works except when X belongs
to H(1, 1), Q(2, 1, 1), Q(1, 1, 1, 1), or Q(2, 2).

We remark that if X ∈ Q(2, 2), then S0 has nontrivial linear holo-
nomy and have no interior singularities. But according to the list of
configurations for hyperelliptic connected components given in section
3, this cannot happen.

We exibit in figure 6 three explicit surfaces with boundary that cor-
responds to the three cases left. We represent these three surfaces as
having a one-cylinder decomposition and by describing the identifica-
tions on the boundary of that cylinder. The length parameters can be
chosen freely under the obvious condition that the sum of the lengths
corresponding to the top of the cylinder must be equal to the sum of
the lengths corresponding to the bottom of the cylinder. Bold lines
represents the boundary of the flat surface. Now we remark that a
nontrivial isometric involution must preserve the interior of the cylin-
der, and must exchange the boundary components. This induces some
supplementary relations on the length parameters. Therefore, we can
choose them such that there is no nontrivial isometric involution.

�

Lemma 4.5. Let S be a flat surface of genus g ≥ 3 with nontrivial
linear holonomy that belongs to a hyperelliptic connected component
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Figure 6. Surfaces with two boundary components and
no involutions in low genus

and let γ = {γ1, γ2} be a maximal collection of ĥomologous saddle
connections on S. If S\γ is connected, then there exists (S ′, γ′) that
has the same configuration as (S, γ), with S ′ in the complementary
component of the same stratum.

Proof. Since S\γ connected, then the graph Γ(S, γ) contains a single
vertex, and it has valence four. According to theorem 3.1, two different
cases appear:

a) The surface S\γ has one boundary component. In this case we
start from a surface in H(k1 + k2 + 1) and perform a local surgery in a
neigborhood of the singularity, as described in figure 7 (see also [MZ],
section 5). We get a surface and a pair of small saddle connections of
length δ that have the same configuration as γ .The stratum H(k1 +
k2 +1) admits nonhyperelliptic components and the same argument as
before works: if we start from a generic surface in a nonhyperelliptic
component, then the resulting surface after surgery does not have any
nontrivial involution.

ε − δ

δ

ε

ε ε

ε

ε − δ

ε ε k1 k1

ε + δ
ε − δ

ε + δ

δ

ε − δ

Figure 7. Breaking up a zero in three ones
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b) The surface S\γ has two boundary components, each of them
consists of a pair of saddle connections with boundary singularities of
order k1 + 1 and k2 + 1. We construct explicit surfaces with the same
configuration as γ, but that have no nontrivial involution. Let 2n =
k1 +k2 +2 and we start from a surface S0 of genus n in H(n−1, n−1),
that have a one-cylinder decomposition and such as identification on
the boundary of that cylinder is given by the permutation

(

1 2 . . . 2n
2n 2n − 1 . . . 1

)

when n is even, and otherwise by the permutation
(

1 2 . . . n − 1 n n + 1 n + 2 . . . 2n − 1 2n
n − 1 n − 2 . . . 1 n 2n − 1 2n − 2 . . . n + 1 2n

)

.
We assume that k1 and k2 are odd and perform a surgery on S0 to

get a surface S1 with boundary as pictured on figure 8. The surface
S1 admits two boundary components that consist of two saddle con-
nections each and which are represented by the bold segments. Each
symbol , , , represents a different boundary singularity. It is easy
to check that the boundary angles corresponding to and are both
(k1 + 2)π and that the angles corresponding to and are (k2 + 2)π.
Hence after suitable identifications of the boundary of S1, we get a
surface S ′ and a pair of ĥomologous saddle connections γ′ that have
the same configuration as (S, γ). However, S ′ does not admit any non-
trivial involution if the length parameters are chosen generically. Note
that this construction does not work when n = 2, but according to
section 3, and since k1 and k2 are odd, we have g = n ≥ 3.

The case k1 and k2 even is analogous and left to the reader (note that
in this case, g = n + 1, and the construction works also for n = 2). �

Appendix A. Computation of the genus in terms of

configuration

Here we improve lemma 2.1 and give the relation between the genus
of a surface and the genera of the connected components of S\γ, where

γ is a collection of ĥomologous saddle connections.
We first remark that this relation depends not only on the graph of

connected components, but also on the permutation on each of its ver-
tices (i.e. on the ribbon graph). Indeed, consider a pair of ĥomologous
saddle connections that decompose the surface into two connected com-
ponents S1 and S2. Then either both S1 and S2 has only one boundary
component, or at least one of them has two boundary components. In
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Figure 8. Valence four component with no involution

the first case, S is the connected sum of S̃1 and S̃2, so g = g1 + g2,
while in the second case, we we have g = g1 + g2 + 1.

Definition A.1. Let (S, γ) be a flat surface with a collection of ĥomo-
logous saddle connections. Then the pure ribbon graph associated
to (S, γ) is the 2-dimensional topological manifold obtained from the
ribbon graph by forgetting the graph Γ(S, γ), as in figure 9.

Pure ribbon graphRibbon graph

Figure 9. Pure ribbon graph

Proposition A.2. Let χ1 be the Euler characteristic of Γ(S, γ) and let
χ2 be the Euler characteristic of the pure ribbon graph associated to the
configuration.
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• If the pure ribbon graph has only one connected component and
does not embedde into the plane (see figure 10), then

g =
(

∑

i

gi

)

+ 1

• In any other case,

g =
(

∑

i

gi

)

+ (χ2 − n) − (χ1 − 1)

Remark A.3. Simply connected components of the pure ribbon graph
do not contribute to the term (n − χ2), since the Euler characteristic
of a disc is 1.

Note also that in the first case, we have χ1 = −1 and χ2 = −1, and
therefore

(
∑

i gi

)

+ 1 6=
(
∑

i gi

)

+ (χ2 − n) − (χ1 − 1).

Figure 10. Example of a ribbon graph that does not
embedde into R2.

Proof. Here we do not assume that the collection γ is necessary maxi-
mal. When Γ(S, γ) has a single vertex, then we prove the proposition
using direct computation and the description of the boundary compo-
nents corresponding to each possible ribbon graph. We refer to [MZ]
for this description. Then our goal is to reduce ourselves to that case
by removing successively from the collection γ = {γ1, . . . , γk} some γi

whose corresponding edges joins a vertex to a distinct one.
We define a new graph G(S, γ), which is a deformation retract of the

pure ribbon graph: the vertices of G(S, γ) are the boundary compo-
nents of each Si, while the edges correspond to the saddle connections
in γ (see figure 11). For each vertex, there is a cyclic order on the set
of edges adjacent to the vertex consistent with the orientation of the
plane. If the initial pure ribbon graph does not embedde into the plane,
then it is also the case for G(S, γ). By construction, the Euler charac-
teristic of G(S, γ) is the same as the pure ribbon graph associated to
(S, γ), and is easier to compute.
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Let Γ(S, γ) contain at least two vertices. Choose a saddle connec-
tion representing an edge joining two distinct vertices of Γ(S, γ), and
up to renumeration, we can assume that this saddle connection is γ1.
Let us study the resulting configuration of γ′ = γ\{γ1}. The saddle
connection γ1 is on the boundary of two surfaces S1 and S2. Then the
connected components of S\γ′ are the same as the connected compo-
nent of S\γ except that the surfaces S1 and S2 are now glued along γ1,
and hence define a single surface S1,2. The genus of S1,2 (after gluing
disks on its boundary) is g1 + g2.

The graph G(S, γ′) is obtained from G(S, γ) by shrinking an edge
that joins two different vertices, so these two graphs have the same
Euler characteristic χ1.

Furthermore, if γ1 was in a boundary component of S1 (resp. S2) de-
fined by the ordered collection (γ1, γi1, . . . , γis) (resp. (γ1, γj1, . . . , γjt

)).
Then the cyclic order in the corresponding boundary component of S1,2

is defined by (γi1 , . . . , γis, γj1, . . . , γjt
). Therefore G(S, γ′) is obtained

from G(S, γ) by shrinking the edge corresponding to γ1 and removing
a isolated vertex that might appear (see figure 11). It is clear that the
difference (χ2 − n) between the Euler characteristic of G(S, γ) and its
number of connected component is constant under this procedure. One
can also remark that if G(S, γ) is connected and does not embedde into
the plane (case 1 of the proposition), then this is also true for G(S, γ′).

Forgetting successively these γi will lead to the case when Γ(S, γ) has
a single vertex. At each steps of the removing procedure, the numbers
χ1 and χ2 − n do not change, and the sum of the genera associated to
the vertices does not change either. This concludes the proof.

�
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2

G(S, {γ1, γ2})

G(S, {γ1, γ2, γ3})

G(S, {γ2})

g = 4

γ2

g2,3 = g2 + g3 = 2

γ2
γ1

γ3

γ1

γ2

γ3

γ2

γ1

γ2

g1 = 0

g3 = 1

g1 = 0

γ2

g2 = 1

g1,2,3 = g1 + g2 + g3 = 3

Figure 11. Removing successively some elements of a
collection (γ1, γ2, γ3).
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