N

N

Automatic Verification of Recursive Procedures with
One Integer Parameter
Ahmed Bouajjani, Peter Habermehl, Richard Mayr

» To cite this version:

Ahmed Bouajjani, Peter Habermehl, Richard Mayr. Automatic Verification of Recursive Procedures
with One Integer Parameter. Theoretical Computer Science, 2003, 295 (1-3), pp.85-106. hal-00148237

HAL Id: hal-00148237
https://hal.science/hal-00148237
Submitted on 22 May 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00148237
https://hal.archives-ouvertes.fr

Automatic Verification of Recursive
Procedures with one Integer Parameter

Ahmed Bouajjani® Peter Habermehl® Richard Mayr >*

aLIAFA - Université Denis Diderot - Case 7014 - 2, place Jussieu, F-75251 Paris
Cedex 05. France.

b Department of Computer Science, Albert-Ludwigs- University Freiburg,
Georges-Koehler-Allee Geb. 051, D-79110 Freiburg, Germany.

Abstract

Context-free processes (BPA) have been used for dataflow analysis in recursive pro-
cedures with applications in optimizing compilers [6]. We introduce a more refined
model called BPA(Z) that can model not only recursive dependencies, but also the
passing of an integer parameter to a subroutine. Moreover, this parameter can be
tested against conditions expressible in Presburger arithmetic. This new and more
expressive model can still be analyzed automatically. We define Z-input 1-CM, a
new class of 1-counter machines that take integer numbers as input, to describe
sets of configurations of BPA(Z). We show that the Post* (the set of successors)
of a set of BPA(Z)-configurations described by a Z-input 1-CM can be effectively
constructed. The Pre* (set of predecessors) of a regular set can be effectively con-
structed as well. However, the Pre* of a set described by a Z-input 1-CM cannot
be represented by a Z-input 1-CM in general and has an undecidable membership
problem. Then we develop a new temporal logic based on reversal-bounded counter
machines (i.e. machines which use counters such that the change between increasing
and decreasing mode of each counter is bounded [9]) that can be used to describe
properties of BPA(Z) and show that the model-checking problem is decidable.

Key words: Verification, Model Checking, Context-free Processes

* An extended abstract of this paper appeared in the proceedings of MFCS 2001.
This work was partially supported by the European Commission (Project Advance
IST 1999-29082)
* Corresponding author.

Email addresses: abou@liafa. jussieu.fr (Ahmed Bouajjani),
haberm@liafa. jussieu.fr (Peter Habermehl),
mayrri@informatik.uni-freiburg.de (Richard Mayr).

Preprint submitted to Elsevier Science 19 February 2002

1 Introduction

Besides their classical use in formal language theory, pushdown automata have
recently gained importance as an abstract process model for recursive proce-
dures. Algorithms for model checking pushdown automata have been presented
in [3,1,14,4]. Reachability analysis for pushdown automata is particularly use-
ful in formal verification. For example, the satisfaction of a safety property
corresponds to the fact, that a certain set of “bad” configurations is not reach-
able. Polynomial algorithms for reachability analysis have been presented in
[1] and further optimized in [5]. For most purposes in formal verification it is
sufficient to consider BPA (‘Basic Process Algebra’; also called context-free
processes), the subclass of pushdown automata without a finite control. BPA
have been used for dataflow analysis in recursive procedures with applications
in optimizing compilers [6].

The weakness of BPA is that it is not a very expressive model for recursive
procedures. It can model recursive dependencies between procedures, but not
the passing of data between procedures or different instances of a procedure
with different parameters.

Example 1 Consider the following abstract model of recursive procedures
P,Q,R,S and F, which take an integer number as argument: (x|y means “x
divides y”).

P(z): Ifz>16 Q(z): If 2|z then R(x)
If 8|z then Q(xz + 1) else S(x + 1)
else P(z — 2)
else F(z)

If one starts by calling procedure P (with any parameter) then procedure R will
never be called, because P never calls) with an even number as parameter.
However, a BPA model for these procedures cannot detect this.

Thus, we define a new more expressive model called BPA(Z) that extends
BPA with an integer parameter. Procedures are now called with an integer
parameter that can be tested, modified and passed to subroutines. We limit
ourselves to one integer parameter, because two would give the model full Tur-
ing power and make all problems undecidable. BPA(Z) is a compromise be-
tween expressiveness and automatic analysability. On the one hand it is much
more expressive than BPA and can model more aspects of full programs. On
the other hand it is still simple enough such that most verification problems
about BPA(Z) stay decidable. For the verification of safety properties, it is
particularly useful to have a symbolic representation of sets of configurations

and to be able to effectively construct representations of the Pre* (the set of
predecessors) and the Post™ (the set of successors) of a given set of configu-
rations. While finite automata suffice for describing sets of configurations of
BPA, a more expressive formalism is needed for BPA(Z). We define Z-input
1-CM, a new class of 1-counter machines that take integer numbers as input,
to describe sets of configurations of BPA(Z). We show that the Post™ (the set
of successors) of a set described by a Z-input 1-CM can be effectively con-
structed. The Pre* (the set of predecessors) of a regular set can be effectively
constructed as well. However, the Pre* of a set described by a Z-input 1-CM
cannot be represented by a Z-input 1-CM in general and has an undecidable
membership problem.

We develop a new temporal logic based on reversal-bounded counter machines
that can be used to describe properties of BPA(Z). By combining our result on
the constructibility of the Post™ with some results by Ibarra et al. on reversal

bounded counter machines [9,10] we show that the model-checking problem is
decidable.

2 BPA(Z)

We define BPA(Z), an extension of BPA, as an abstract model for recursive
procedures with an integer parameter.

Presburger arithmetic is the first-order theory of integers with addition and
linear ordering (see, e.g. [7,8,2]).

Definition 2 A n-ary Presburger predicate P(ky, ..., k,) is an expression in
Presburger arithmetic of type boolean (i.e., the outermost operator is a logical
operator or quantifier) that contains exactly n free variables k1, . .., k, of type
integer. A set S of n dimensional integer vectors is Presburger definable if there
exists a n-ary Presburger predicate P(ky,. .., k) such that (ky,...,k,) € S iff
P(ky, ..., ky,) is true.

Presburger definable sets are also known as semilinear sets.

Definition 3 We define integer symbol sequences (1SS) to describe configura-
tions of processes. ISS are finite sequences of the form X (k1) Xa(ka) ... Xn(ky)
withn > 0, where the X; are symbols from a given finite set and the k; € Z are
integers. (The brackets are mere ‘syntactic sugar’ and can be omitted.) Greek
letters a, B, ... are used to denote ISS. The constant € denotes the empty se-
quence.

Definition 4 Let Act = {r1,a,b,c,...} and Const = {X,Y,Z,...} be dis-

joint sets of actions and process constants, respectively. A BPA(Z) (a, A) is
given by an initial configuration o (where « is an ISS) and a finite set A of
conditional rewrite rules of the form

X(k) L) Xl(el)Xg(ez) SN Xn(en), P(k)

where

e X € Const, a € Act, k is a free variable of type integer.

o Vie {l,...,n}. X; € Const.

e For every i € {1,...,n} e; is an expression of one of the following two
forms:
- e; = k; for some constant k; € Z, or
- e; = k + k; for some constant k; € 7.

e P(k) is a unary Presburger predicate.

Note that n can be 0. In this case the rule has the form X (k) —— ¢, P(k).
We denote the finite set of constants used in A by Const(A) and the finite
set of actions used in A by Act(A). These rewrite rules induce a transition
relation on ISS by prefiz-rewriting as follows: For any o we have X (q)a ——a
X1(q1)X2(qe) - .. Xn(gn)a if there is a rewrite rule

X(k) i) Xl (61)X2(62) SN Xn(en), P(l{))

such that the following conditions are satisfied.

e P(q)
o Ife;=k; then ¢ =k;.
o Ife,=k+k; thenq =q+k;.

In the following we use also the notation o —a B if &« == B for some a.

Remark 5 The Presburger predicates can be used to describe side conditions
for the application of rules, e.g., the rule

X(k)SY(k-7Z(k+1), 3lkAk>S8

can only be applied to ISS starting with X (q) where q is at least 8 and divisible
by 3. Furthermore, we can use Presburger predicates to express rules with con-
stants on the left-hand side, e.g., the rule X (5) = Y (2)Z(17) can be expressed
by X(k) =Y (2)Z(17), k=>5. In the following we sometimes use rules with
constants on the left-hand side as a shorthand notation.

Remark 6 If one extends the model BPA(Z) by allowing two integer param-
eters instead of one (i.e., BPA(Z,7,)), it becomes Turing-powerful, because it

can simulate a Minsky 2-counter machine (in the sense that one can reduce
the halting problem of a Minsky-2 counter machine to the reachability problem
of a BPA(Z,Z)).

If one extends the model by allowing multiplication and division on the one
integer parameter, it becomes Turing-powerful as well. This is because in this
case one can encode two counters into one by Godel-coding. Two counters that
hold numbers ny and ny are represented by one counter holding 2"*3™*. Thus,
all verification problems for these extensions of BPA(Z) become undecidable.

Definition 7 We say that a BPA(Z) is in normal form if it only contains the
following three types of rules:

X(l{?) L)Xl(el)Xg(ez), P(k)
X(k)—=Y(e), P(k)
X(k)-2re, P(k)

where e, eq, ey are expressions and P(k) is a unary Presburger predicate as in

Def. 4.

We call the rules of the third type decreasing and the first two types nonde-
creasing.

Remark 8 It is easy to see that general BPA(Z) can be simulated by BPA(Z)
in normal form (it can execute the same sequences of actions different from
T) with the introduction of some auxiliary constants. Long rules are split into
several short rules. For example the long rule X (k) = Y (k+1).Z(k—2).W (k+
7) is replaced by X (k) = X'(k)W(k+7) and X'(k) > Y(k+1).Z(k — 2).
If one is only interested in the set of reachable configurations of the original
BPA(Z) then one has to filter out the intermediate configurations that contain
auxiliary constants. It will turn out in Section 4 that this is possible. We will
show that the set of reachable configurations of a BPA(Z) in normal form can
be represented by a Z-input 1-CM (a special type of 1-counter machine). These
Z-input 1-CMs are closed under synchronization with finite automata. Thus,
to filter out the intermediate configurations it suffices to synchronize with the
finite automaton that accepts exactly all sequences not containing auxiliary
constants.

It is clear that a BPA(Z) can simulate a 1-counter machine. However, the
set of reachable configurations of a BPA(Z) cannot be described by a normal
1-counter machine.

Example 9 Consider the BPA(Z) with just one rule X (k) = X (k + 1)X (k)
and initial state X (0). The set of reachable configurations are all decreasing
sequences of the form X (n)X(n—1)X(n—2)...X(0) for anyn € N. The lan-
gquage consisting of these sequences cannot be accepted by a normal I1-counter

machine, no matter how the integer numbers are coded (e.g., in unary cod-
ing or in binary as sequences of 0 and 1). The reason is that one cannot test
the equality of the counter against the input without losing the content of the
counter during the test.

The central problem in this paper is to compute a representation of the set of
reachable states of a BPA(Z).

Definition 10 Let A be the set of rules of a BPA(Z) and L a language of
ISS (describing configurations of the BPA(Z)). We define Posta\(L) = L.
By Posta(L) we denote the set of all successors (reachable configurations) of
elements of L w.r.t. A in one step. Posta(L) = {f | Ja € L.a —a [}. Then,
Post'x (L) is inductively defined as Postk (L) = Posta(Postx *(L)) forn > 0.
By Posty (L) we denote the set of all successors (reachable configurations) of
elements of L w.r.t. A, i.e. Posty(L) = U,>oPostx(L). In the same way
we define Prea(L) = {a | 36 € L.av —a B}, PreA(L) and Pre)(L) for the
predecessors of elements of L.

3 Automata

We define several classes of automata that are used in our constructions. For
alternating pushdown automata we use the definitions of [1].

Definition 11 An alternating pushdown automaton (APDA for short) is a
triple P = (P,T', A) where P is a finite set of control locations, T is a finite
stack alphabet and A is the set of transition rules with A C (P x T') x 2P%T",

A configuration is a tuple (g, w) with ¢ € P, w € I'*.

If ((p,7), {(p1,w1),...,(Pn,wn)}) € A then for every w € I'* the configuration
(p,yw) is an immediate predecessor of the set {(p1, wiw), ..., (p,, w,w)}, and
this set is an immediate successor of (p, yw). Intuitively, at the configuration
(p,yw) the APDA selects nondeterministically a transition rule of the form
((p,7), {(p1,w1),...,(Pn,wy,)}) and forks into n copies in the configurations
(p1,wrw), ..., (P, Waw).

A run of P for an initial configuration c is a tree of configurations with root
¢ such that the children of each node ¢’ are the configurations that belong to
one of its immediate successors (nodes of the form (p, €) have no successors).
We define the reachability relation =C (P xI'*) x 2P*I" between configurations
and sets of configurations. Informally, ¢ = C iff C is a finite frontier (finite
maximal set of incomparable nodes) of a run of P starting from c. Formally,
= is the smallest subset of (P x I'*) x 2P*I" such that:

e ¢ = {c} for every c € P x I'*,

e if ¢ is an immediate predecessor of C, then ¢ = C,
e ifc={c1,...,cp}and ¢; = C; foreach 1 <i < n, then c = (C1U...UC,).

The set of predecessors of a set of configurations C is defined as pre(C) =
{ce PxI*|3C"CC.c=C"}.

We can add a new accepting state ¢, to P and designate an initial state ¢y € P.
Then the language L(P) C T™* accepted by P is defined as the set of initial
stack contents w for which P starting in g accepts, i.e. L(P) = {w | (qo,w) €

prep({(ge, w') | w' € T*})}.

An alternating 1-counter machine is an automaton with one integer counter
which can be incremented, decremented, set to a value and tested for 0. Ad-
ditionally, Presburger tests on the counter can be performed.

Definition 12 An alternating 1-counter machine (ACM) is a tuple M =
(Qur, Apr), where Q) is a finite set of states and Ay C Qpp x 29M*OP s g set
of transition rules, where Op ={c:=c+k|ke€Z}U{c:=k| ke Z} U{c=
0} U{P(c) | P(c) is a unary Presburger predicate}.

A configuration of an ACM is a tuple (g, d) with ¢ € Q) and d € Z. If
(q’{ (q17c = C+k1)7--'7(anc = C+kn)7

(qlla C = kll)a ceey (Q’:’L’7 C:= k;ﬁ)v (qllla Pl(c))7 SR (q;;”v Pn”(c))}) €Ay
then the configuration (q,d) is an immediate predecessor of the set {(q1,d +
ki), ..o qn, d+kn), (g1, Ky) - {dy kb)), (g d)Y ... (gL, d)} provided that P;(d)
is true for all 1 < ¢ < n” and this set is an immediate successor of (q,d). If

(¢,{ (q1,c:=c+k1),...,(qn,c:=c+ky),(q,c:=k}),....(¢y,c:=k,),

(qlllv c= 0)7 SRR (qx”v €= 0)7 (qu/7 Pl(c))7 SRR (qgi”v Pn’”(c))}) €Ay

then the configuration (g, 0) is an immediate predecessor of the set {{q1, k1), - . .,
(s kn) (@1 K1), (s) (15 05 - -+, (@, 0), (g1, 0), - . .., (g, 0) } provided
that P;(0) is true for all 1 < ¢ < n and this set is an immediate successor of
(q,0). In the same way as for APDA, we define a run, the reachability relation,
and prej,(C).

We can add an accepting state g, to Qs and designate an initial state ¢g € Q-
Then the language L(M) C Z accepted by M is defined as the set of ini-
tial counter values d € Z for which M starting in ¢y accepts, i.e. L(M) =

{d] (q0,d) € prep({{ga, &) | d" € Z})}.
We show in Lemma 17 that Presburger tests can be eliminated.

If we restrict the set of transition rules to a subset of Q) X Q@ X Op we ob-
tain I-counter machines with Presburger tests. Their reachability relation =C
(Qu X Z) X (Qnr X Z) is defined in the obvious way. We define reachp(q, d, q') =
{d €Z]|{q,d) = (¢,d)}, i.e. the set of all counter values at state ¢’ reachable

from a configuration (g, d).
Pushdown counter automata (PCA) have been introduced by Ibarra in [9].

Definition 13 A pushdown counter automaton (PCA) [9] is a pushdown au-
tomaton that is augmented with a finite number of reversal-bounded counters
(containing integers) which can be incremented, decremented and tested for 0.
A counter is reversal bounded iff there is a fized constant k s.t. in any accept-
ing computation the counter can change at most k times between increasing
and decreasing.

Now we define a new class of 1-counter machines with infinite input. These
Z-input 1-counter machines consider whole integer numbers as one piece of
input and can compare them to constants, or to the internal counter without
changing the counter’s value. Additionally, they have several other useful fea-
tures like Presburger tests on the counter. Z-input 1-counter machines will be
used in Section 4 to represent sets of reachable configurations of BPA(Z).

Definition 14 A Z-input 1-counter machine M is described by a finite set of
states @, an initial state go € @), a final state qy € @), a non-accepting state
fail € Q, and a counter ¢ that contains initially 0. The initial configuration
is given by the tuple (qo,0). It reads pieces of input of the form S(i) where
S 1s a symbol out of a given finite set and i € Z is an integer number. The
instructions have the following form (q is different from q; and fail):

(1) (q¢: c¢:=c+1;goto ¢')

(2) (g: c:=c—1;goto ¢')
(¢ : If ¢ >0 then goto ¢ else goto ¢").

(4) (q: If ¢=0 then goto ¢ else goto ¢").
(¢: Read input S(7). If S =X and i = K then goto ¢’ else goto ¢").

(6) (q: Read input S(i). If S = X and i = c then goto ¢’ else goto ¢").

(7) (q : If P(c) then goto ¢ else goto ¢"), where P is a unary Presburger
predicate.

where X € Const is a symbol constant and K € Z is an integer constant.

Z-input 1-counter machines can be nondeterministic, i.e., there can be several
instructions at the same control state. Each transition arc to a new control
state can be labeled with an atomic action. The language L(M) accepted by
a machine M is the set of ISS which are read by M in a run from the initial
configuration to the state g;.

In the following we use several shorthand notations for operations which can
be encoded by the standard operations above. We use ¢ := ¢+ j (incrementing
the counter by a constant j), ¢ := j (setting the counter to a given constant
j) and the operation guess(c) (setting the counter to a nondeterministically

chosen integer).

It is now easy to see that the set of reachable states of Example 9 can be
described by the following Z-input 1-counter machine:

Qo : guess(c); goto ¢
¢ : Read input S(7). If S = X and i = ¢ then goto ¢, else goto fail
q : c:=c— 1l;goto ¢4

g2 : If ¢ =0 then goto ¢; else goto fail

While instructions of type 6 (integer input) do increase the expressive power
of 1-counter machines, this is not the case for instructions of type 7 (Pres-
burger tests). The following lemma shows that instructions of type 7 can be
eliminated from Z-input 1-counter machines if necessary. We use them only
as a convenient shorthand notation.

Lemma 15 For every Z-input 1-counter machine M with Presburger tests
(i.e., instructions of type 7), an equivalent Z-input 1-counter machine M' with-

out Presburger tests can be effectively constructed (Equivalent means L(M) =
L(M")).

PROOF. Any Presburger formula can be written in a normal form that
is a boolean combination of linear inequalities and tests of divisibility. As we
consider only Presburger formulae with one free variable, it suffices to consider
tests of the forms ¢ > k, ¢ < k and k|c for constants k € Z. Let K be the
set of constants k used in these tests. K is finite and depends only on the
Presburger predicates used in M. Let K’ = {ky,...,kyn} C K be the finite set
of constants used in divisibility tests. For every control state q¢ of M we define
a set of control states of M’ of the form (q, j1, ..., jm) where j; € {0,..., k;—1}
for every i € {1,...,m}. Now M’ simulates the computation of M in such a
way that M’ is in a state (s, j1, ..., jm) iff M is in state s and j; = ¢ mod k;.
For example if K’ = {2,5} then the step (s,n) “=3' (s, n + 1) of M yields
e.g. the step ((s,1,2),n) “=3"' ((s/,0,3),n 4 1) of M. The divisibility tests
thus become trivial in M’, because this information is now encoded in the
control states of M’. The linear inequality tests are even easier to eliminate.
For example the test ¢ > 5 can be done by decrementing the counter by 5,
testing for > 0 and re-incrementing by 5. Thus, the Presburger tests can be
eliminated from M'. O

It is only a matter of convention if a Z-input 1-CM reads the input from left to
right (the normal direction) or from right to left (accepting the mirror image

as in the example above). It is often more convenient to read the input from
right to left (e.g., in Section 5), but the direction can always be reversed, as
shown by the following lemma.

Lemma 16 Let M be a Z-input 1-CM that reads the input from right to left.
A Z-input 1-CM M’ can be constructed that reads the input from left to right
and accepts the same language as M.

PROOF. (sketch) M' has the same control states as M plus a new initial
state gy and a new final state ¢}. M’ starts in configuration (gg,0). It guesses
a value for its counter and goes to gs. Then it does the computation of M in
reverse (reading the input from left to right) until it reaches go. It tests if the
counter has value 0. If yes, it goes to ¢; and accepts. If no, then it doesn’t
accept. O

Now, we give some results concerning APDA and ACMs. In the same way as
in Lemma 15 we can show the following lemma for ACMs:

Lemma 17 For every alternating 1-counter machine M with Presburger tests,
an equivalent alternating 1-counter machine M’ without Presburger tests can
be effectively constructed. (Equivalent means L(M) = L(M’)).

Theorem 18 [1] Given an APDA P and a regular set of configurations C,
Prex(C) (in particular L(P)) is reqular and effectively constructible.

With an APDA we can easily simulate an alternating 1-counter machine with
Presburger tests: First, we eliminate the Presburger tests with Lemma 17.
Then, with the stack we can easily simulate the counter. Because the Parikh-
image of regular sets is Presburger definable (semilinear) [12], we obtain the
following:

Corollary 19 Let M be an alternating 1-counter machine with Presburger
tests. Then, L(M) is effectively Presburger definable.

The next corollary follows from the fact that for a 1-counter machine without
alternation successors correspond to predecessors of the reversed machine.

Corollary 20 Let M be a 1-counter machine with Presburger tests, q,q' €
Qv and d € Z. Then, reachp(q,d, q') is effectively Presburger definable.

10

4 Constructing Post*

In this section we prove the following theorem:

Theorem 21 Let A be a set of BPA(Z) rules in normal form and M a Z-
input 1-counter machine. Then a Z-input 1-counter machine M' with L(M') =
Post\(L(M)) can be effectively constructed.

To prove this theorem we generalize the proof of a theorem in [1] which shows
that the Post* of a regular set of configurations of a pushdown automaton is
regular. This proof uses a saturation method, i.e. adding a finite number of
transitions and states to the automaton representing configurations.

We cannot directly adapt this proof to BPA(Z), because process constants in
a configuration can disappear for certain values of the parameter by applying
decreasing rules. We show how to calculate a Presburger formula to charac-
terize these values. This allows us to eliminate decreasing rules from A. This
means that symbols produced by rules in some derivation can not disappear
later. Then, we can apply the saturation method.

First, we show how to characterize for a given X the set {d | X(d) =} €}
by a Presburger formula. We transform the set of rules A into an alternating
1-counter machine and use Corollary 19.

Lemma 22 Let A be a set of BPA(Z) rules and X a process constant. Then
a Presburger formula Px(d) with {d | Px(d)} = {d | X(d) =% €} can be
effectively constructed.

PROOF. We construct an alternating 1-counter machine M with Presburger
tests such that L(M) = {d | X(d) =} €}, i.e. M with initial counter value d
has an accepting run iff X (d) —% €. Then, we apply Corollary 19.

We construct M = (Qar, Apr) as follows: To each process constant Y of the
BPA(Z) we associate a state gy in Q. The initial state of M is gx and its
accepting state q,. Ajps is the smallest set such that:

If A contains a non-decreasing rewrite rule Z(k) —— Xi(e1)Xa(ez), P(k),
then (qz, {(ax.,0p1), (¢x,,0p2), (4o, P(c))}) € Anr (where op; (1 =1,2) is ¢ :=
c+k;ife; = k+k; and op; is ¢ := k; if e; = k;). If A contains a non-decreasing
rewrite rule Z (k) — Xi(e1), P(k), then (qz,{(gx,,0p1), (qa, P(c))}) € A
(where opy is ¢ :==c+ ky if e; = k+ ky and op; is ¢ := ky if e; = ky). If A
contains a decreasing rule Z(k) — ¢, P(k) then (gz,{(qa, P(c))}) € Au.
It is a clear, that a run of M with initial counter value d is accepting iff X (d)
can disappear with rules of A. O

11

Lemma 23 Let A be a set of BPA(Z) rules and M a Z-input 1-counter ma-
chine representing a set of configurations. Then, we can effectively construct a

set of rules A" without decreasing rules and a Z-input 1-counter machine M’,
such that Posty(L(M)) = Posty,(L(M")).

PROOF. The proof is done in two steps. First we construct a machine M’
such that L(M') = Posty (L(M)) (where Ag C A is the set of decreasing rules
in A), i.e. M is the closure of M under decreasing rules. Then, we construct A’
without decreasing rules such that Post)(L(M)) = Postj,(Posta (L(M))).

Let us first construct M': The machine M represents a set of configurations. M’
represents the closure of this set under application of decreasing rules. For each
state ¢ we add a new transition from the initial state gy to ¢q. These transition
is composed of guess(c) (which sets the counter non-deterministically to some
value) and a Presburger test P,(c) which characterizes all the counter values
which can be obtained at state ¢ by following a path from ¢y to ¢ such that
all process constants read on this path can disappear by applying rules of A.

We obtain P,(c) by first constructing a 1-counter machine with Presburger
tests M” mimicking the counter operations of M and then using Corollary
20. M" is constructed from M as follows: M" has the same states as M. All
transitions which read a process constant X are replaced by the corresponding
Presburger test Px (k) (with Lemma 22). Then P,(c) is the Presburger formula
we get by applying Corollary 20 to characterize the set reachp(qo, 0, q)-

Clearly, L(M') = Post} (L(M)).

Now, we construct A’ which provides rules which non-deterministically guess
what process constants will disappear later in a derivation. Obviously, only
the first process constant from the left can disappear. A’ contains all non-

decreasing rules of A. Furthermore, for each conditional rewrite rule in A of
the form

X(k) L) X1(€1)X2(€2), P(k)

we add the rule

X(k}) L) Xg(eg), P(k) A PX1 (61)

to A’, where Py, is the Presburger formula of Lemma 22. Clearly, we have
Postj(L(M)) = Posty,(Posty (L(M))). O

12

We use this lemma to prove Theorem 21. To construct a counter machine
M’ representing Posti(L(M)), given a counter machine M and a set of
BPA(Z) rules A, it suffices to consider A which doesn’t contain decreasing
rules. Before giving the detailed construction and its correctness proof we ex-
plain the main idea with an example: Suppose we have a rule of the form
X(k) - Y(k+3)Z(k —2), P(k)in A and the automaton M is of the
following form:

guess(c) Read X(i);i=c? c=07?

Notice that the counter is not tested before the input instruction. This is not
a restriction (see Lemma 25). We add a new state ¢y for Y and transitions to
M and obtain:

guess(c) Read X(i);i=c? c=07?

c:=c- 5 Read Z(i);i=c¢c 7

Read Y (i c:=c+ 2; P(c) ?

i=c?

qQy

The transition going out of ¢y changes the counter value in such a way that
if Y is read with parameter k£ then Z is read with parameter kK — 5, where —5
is the difference between —2 and 3. Then, the transition restores the counter
value to the value before application of the rule by adding 2 and tests P(c).
Now consider instead a rule X (k) — X (k+1)Y(k—2) P'(k) in A. Follow-
ing the same principle as before we add a state for X and transitions. This
will create a loop:

guess(c)

@)
/t qx

c:=c-3;Read Y(i);i=c?c:=c+2; P'(c) ?

It is clear that in this way we only add a finite number of states (one for each
process constant) and transitions. In the following we give the detailed proof

13

of our main theorem.

Proof of Theorem 21

First we show how to transform a Z-input 1-CM into a special form:

Definition 24 A Z-input 1-CM M 1is said to be in special form iff

¢ From the initial state qq there is only an instruction guess(c) going to q.
No instructions go back to qy or q;.

All instructions from g, are of the form

(¢1: Read input S(i). If S = X and i = c then goto ¢’ else goto fail)

or

(¢1 : Read input S(i). If S = X and i # ¢ then goto ¢ else goto fail)

We call this instructions first input instructions.

All instructions with a test of the counter (¢ >0 or ¢ =0) are of the form
(q: If test(c) then goto ¢ else goto fail)

Machines in special form guess a counter value, read an input and only then
can test the counter and continue. We can prove the following lemma:

Lemma 25 Any Z-input 1-CM M can be replaced by a Z-input 1-CM M’ in
special form which accepts the same language.

PROQF. Putting the test instructions into the required form is trivial. To
construct a machine where no tests on the counter are done before an input,
we have to characterize all the counter values which can be obtained by taking
a path (without inputs) from the initial configuration (go,0) to another state
q'. We can construct a Presburger formula P(c) for this (using Corollary 20).
Then we can construct a machine with states gy and ¢; as required by the
special form (by putting the corresponding Presburger test behind each input
instruction). At last, input instructions starting at ¢; of the form

(¢1 : Read input S(7). If S = X and i = K then goto ¢ else goto fail)
can be replaced by
(g1 : Read input S(7). If S = X and i = ¢ then goto ¢” else goto fail)

(q" "else goto fail)
(q

: If ¢ = K then goto ¢
: guess(c); goto q')

"

The same is done for instructions with inequations. O

14

To prove Theorem 21 we have to show, that given a set A of BPA(Z) rules and
a Z-input 1-counter machine M we can construct a Z-input 1-counter machine
M'" with L(M') = Posty(L(M)). Because of Lemma 23 we can suppose that
A does not contain decreasing rules. We suppose that rules of A are in normal
form and that M is in special form (Lemma 25). We first give the construction
of M" and then we prove that L(M') = Posti (L(M)).

Construction of M’

In the following we will omit the else-part of all the instructions (they all go
to fail). The construction of M’ is done by adding states and instructions to
the machine M. The basic idea is the following: Each rule of A can replace a
process constant read starting from the initial state of the automaton M by
other process constants. Therefore, instructions have to be added to M. These
instructions have to change also the counter in order to simulate correctly the
change in the parameters. Therefore, the counter has to be changed in such a
way, that after reading the symbols on the right-hand side of a rule its value is
the same as before. The special form of M insures that the counter is not tested
before the input instructions. Furthermore, because there are no decreasing
rules, only symbols read in the first input instructions can be replaced.

Let go be the initial state of M and ¢; the state after the initial state. To
simplify the presentation we only show how to treat input instructions with
a test of the form ¢ = ¢. The same can be done for ¢« # c. For each process
constant X we add a new state gx and an instruction

(¢1 : Read input S(7). If S = X and i = c then goto ¢x).

Now, for each input rule of the form
(q1 : Read input S(z). If S = X and ¢ = c then goto ¢')

in M (including instructions added before) and for each rule in A of the
following forms, we add instructions to M to obtain M.

® X(k) L)Xl(k-f-kl), P(k)
add one instruction

(gx, : ¢:=c— ky; If P(c) then goto ¢')
L] X(k) L) Xl(k}l), P(k)

add two instructions (g, is a new state)

15

(gx, : If ¢ = k; then goto ¢,)
(gn : guess(c); If P(c) then goto ¢)

o X(k) - Xi(k+ k1) Xa(k + ko), P(k):
add two instructions (g, is a new state)

(gx, :¢:=c— k1 + k2; Read input S(7).
If S= X5 and i = c then goto ¢,)
(qn:c:=c—ko; If P(c) then goto ¢')

L] X(k’) L>X1(k1)X2(l€+k2), P(k’)
add three instructions (gy,, ¢,, are new states)

(qx, : If ¢ = k; then goto q,,)
(gn, : guess(c); Read input S(i). If S = X5 and i = ¢ then goto ¢,,)
(Gn, : ¢:=c—ko; If P(c) then goto ¢')

o X(k) = Xi(k+ k1) Xa(ks), P(k):
add two instructions (g, is a new state)

(gx, : ¢ :==c—ky; Read input S(7).
If S= X5 and i = ky then goto ¢,)
(gn : If P(c) then goto ¢)

(] X(k) L) Xl(kl)Xz(k)g), P(k)
add three instructions (¢y,, ¢,, are new states)

(gx, : If ¢ = k; then goto q,,)
(gn, : Read input S(3). If S = X5 and i = k5 then goto ¢,,)
(Gn, : guess(c); If P(c) then goto ¢')

Since there are only a finite number of instructions starting at ¢; and a finite
number of rules in A, it is obvious that only a finite number of instructions are
added. In M’ loops containing the states gx can be created by the construction.

Correctness of M’

We have to show that Post*(L(M)) = L(M').

First, Post*(L(M)) C L(M'):

We show by induction that Post’ (L(M)) C L(M') for all n € IN. Base case:
Obviously, we have L(M) C L(M') because M' is obtained by adding states
to M. Induction step: Consider an a € PostAt'(L(M)). Then, there exists an
o' € Post}(L(M)) with o —a «a. By induction hypothesis o € L(M'). Now,

16

the construction of M’ insures that a € L(M'), because for each rule of A
there are corresponding transitions which are added to obtain M.

Second, L(M') C Post*(L(M)):

We prove this by induction on the number of new instructions (added to M
by the construction) taken in accepting runs of M’. Let oo € L(M’). If no new
instruction is taken in an accepting run of «, then o € L(M) and therefore
a € Post*(L(M)). Now, suppose that an accepting run of o in M’ takes some
new instructions. These are all taken at the beginning of the run. a must be
of the form X;(m)a/. The machine M’ takes first the guess(c) instruction and
then an input instruction of the form

(¢1 : Read input S(7). If S = X; and i = ¢ then goto gx, else goto fail)

Then, there are several cases to consider depending on the next instruction
taken. We give the proof in detail for one case. All the others are done analo-
gously. Suppose that the next instruction taken by the machine is

(gx, : ¢:=c— ky; If P(c) then goto ¢')

Therefore, P(m — k;) is true. By construction there is an instruction in M’

(¢1 : Read input S(i). If S = X and i = ¢ then goto ¢')

for some process constant X. Furthermore there is a rule X (k) - X;(k +
k1), P(k) in A. Because of o € L(M') we have X(m — ki)o/ € L(M')
with an accepting run which takes less new instructions than the one for
a. By induction hypothesis, X (m — k;)a/ € Post*(L(M)) and furthermore
X(m —k1)a! —-a X(m)o' = a. It follows, that o € Post*(L(M)).

Thus Theorem 21 is proven. O

Remark 26 While the language of reachable states of any BPA(Z) can be
described by a Z-input 1-CM, the converse is not true. Some Z-input 1-CMs
describe languages that cannot be generated by any BPA(Z). Consider the
language

It is easy to construct a Z-input 1-CM for this language (it just ignores the
values of the j;). However, no BPA(Z) generates this language, since it cannot

guess the values of the arbitrarily many j; without losing the value for k, which
it needs again at the end.

17

The complexity of constructing a representation of Post* must be at least as
high as the complexity of the reachability problem for BPA(Z). A special case
of the reachability problem is the problem if the empty state € is reachable
from the initial state.

e-REACHABILITY FOR BPA(Z)

Instance: A BPA(Z) A with initial state X (0).
Question: X (0) »* € ?

It is clear that for BPA(Z) with Presburger constraints the complexity of
e-reachability is at least as high as that of Presburger arithmetic. Consider
a closed (i.e., without free variables) Presburger formula P and a BPA(Z)
with one rule X(k) — ¢, P(k). Then we have X(0) —* ¢ iff P is true.

Presburger arithmetic is complete for the class Uy, T’ A[22nk, n] (see [13]), and
thus requires at least doubly exponential time. Now we consider a restricted
case of BPA(Z) without full Presburger constraints. In Remark 5 it was shown
how Presburger constraints can be used to encode rules with constants on the
left-hand side. Without rules with constants on the left-hand side BPA(Z)
would not be very meaningful. In the following theorem we do not use full
Presburger constraints, but we do use rules with constants on the left-hand
side.

Theorem 27 The e-reachability problem for BPA(Z) without full Presburger
constraints, but using integer constants in the left-hand sides of rules, is N P-
hard.

PROOF. We reduce 3-SAT to ereachability. Let @ := Q1 A ... A Q; be
a boolean formula in 3-CNF with j clauses over the variables z1,...,z,. We
construct a BPA(Z) A with initial state X (0) s.t. X (0) —4 e iff @ is satisfiable.
Let p; be the [-th prime number. We encode an assignment of boolean values
to x1,...,x, in a natural number x by Goédel coding, i.e., x; is true iff z is
divisible by p;. The set of rules A is defined as follows:

X(k) —» X(k+1)

X(k) = Qi1(k+1).Q2(k+1)..... Q;(k+1)

Qi(k) — X,(k) if z; occurs in clause Q;.
Qi(k) — Xi(k) if Z; occurs in clause Q;.
Xi(k) = Xi(k—mp)

X;(0) — €

X,(k) — Xi(k —)

Xi(r) — € for every r € {1,...,p, — 1}

18

The X (k) is used to guess a number k that encodes an assignment to 1, . . . , Zy,.
If follows from the construction that Q;(k) —* € iff k¥ encodes an assignment
that makes clause Q; true, X;(k) —* € iff k£ encodes an assignment where z;
is true and X;(k) —* ¢ iff k encodes an assignment where z; is false. Thus we
get X(0) —* e iff Q) is satisfiable. As the [-th prime number is O(l - log!), the
size of A is O(jn+ n’logn). O

5 The Constructibility of Pre*

In this section we show that the Pre* of a regular set of configurations (w.r.t.
a BPA(Z)) is effectively constructible. However, the Pre* of a set of config-
urations described by a Z-input 1-CM is not constructible. It is not even
representable by a Z-input 1-CM in general. Regular sets are given by finite
automata. We define that finite automata ignore all integer input and are only
affected by symbols. So, in the context of BPA(Z) we interpret the language
(ab)* as {a(k1)b(K}) ... a(k,)b(K,) | n € Ny, Vi. k;, ki € Z}.

Theorem 28 Let A be a BPA(Z) and R a finite automaton. Then a Z-input
1-CM M can be effectively constructed s.t. M = Pre;(L(R)).

PROOF. Every element in Prej(L(R)) can be written in the form aX (k)y
where a —* ¢, X (k) —* and 7y € L(R). Thus there must exist a state r in
R s.t. there is a path from the initial state ry of R to r labeled 8 and a path
from r to a final state of R labeled . We consider all (finitely many) pairs
(X,r) where X € Const(A) and r € states(R). Let R, be the finite automaton
that is obtained from R by making r the only final state. We compute the set
of integers k for which there exists a 3 s.t. X(k) —=* § and 8 € L(R,). First
we compute the Z-input 1-CM My in special form that describes Post™(X (k))
as in Theorem 21. Then we compute the product of Mx with R,, which is
again a Z-input 1-CM in special form. The set of counter values at state ¢
of Mx for which Mx x R, is nonempty is Presburger definable and effectively
computable (like in Corollaries 19 and 20). Let Px, be the corresponding
unary Presburger predicate. Let R, be the finite automaton that is obtained
from R by making r the initial state. We define Mx , to be the Z-input 1-CM
that behaves as follows: First it accepts X (k) iff Px (k) and then it behaves
like R!. Let M, be the Z-input 1-CM that accepts all sequences a s.t. a —* €.
M, is effectively constructible, since for every symbol Y the set of k for with
Y (k) —* € is Presburger and effectively constructible by Lemma 22. Then
finally we get

M=M. - |JMx,

X,r

19

and M = Pre;(L(R)). O

Now we consider the problem of the Pre* of a set of configurations described
by a Z-input 1-CM.

MEMBERSHIP IN Pre* oF Z-INPUT 1-CM

Instance: A BPA(Z) A, a Z-input 1-CM M and a state X(0)
Question: X,(0) € Prej (M) ?

Theorem 29 Membership in Pre* of Z-input 1-CM is undecidable.

PROOF. We reduce the undecidable halting problem for Minsky 2-counter
machines (with both counters initially 0) to the membership in Pre* of a Z-
input 1-CM. The first observation is that Xo(0) € Prex (M) iff Posta(Xo(0))N
L(M) # 0. Let M’ be a Minsky 2-counter machine. We will define the BPA(Z)
A and the Z-input 1-CM M in such a way that each of them simulates a 1-
counter machine and together they simulate the 2-counter machine M’.

We define the BPA(Z) A in such a way that it correctly simulates the part
of the computation of M’ that only affects the first counter ¢;. The integer
parameter is used to store the first counter c;.

e For every instruction of M’ of the form (X : ¢; := ¢; + 1;goto X') we have
arule X(k) - X'(k+ 1) X (k).

e For every instruction of M’ of the form
(X : If ¢; = 0 then goto X’ else ¢; := ¢; — 1;goto X”) we have two rules
X(0) = X'(0)X(0) and X (k) = X"(k—1)X(k), k>0.

e For every instruction of M’ of the form (X : ¢ := ¢y + 1;goto X') we have
arule X(k) — X'(k)X (k).

e For every instruction of M’ of the form
(X : If cg = 0 then goto X’ else ¢y := ¢o — 1;g0to X”) we have two rules
X (k) — X'(k)X (k) and X (k) — X" (k)X (k).

In the last of these four cases the BPA(Z) guesses the successor state, because
it knows nothing about the counter cy. Thus, Post (Xo(0)) contains all correct
computation sequences of M’ starting at the initial control state Xy and initial
counter value 0, but also some wrong ones (if it has guessed wrongly in the
fourth case). These sequences are read from right to left.

Then we use the Z-input 1-CM M to simulate the other part of the compu-

tation of M’ which affects the second counter cy. The counter of M is used to
store the second counter ¢y of M’ (which is initially 0). M ignores all integer

20

input and only checks the symbols.

e For every instruction of M’ of the form (X : ¢; := ¢; + 1;goto X') the
machine M reads the input, but ignores it, goes to control state X’ and
leaves the internal counter unchanged.

e For every instruction of M’ of the form
(X : If ¢; =0 then goto X else ¢; := ¢; — 1;goto X”) the machine M reads
the input symbol, which is either X or X', and changes the control state
accordingly to X or X’. M ignores the integer input and leaves the internal
counter unchanged.

e For every instruction of M’ of the form (X : ¢y := ¢y + 1;goto X') the
machine M increases the internal counter by 1 and goes to the control state
X'

e For every instruction of M’ of the form
(X : If cg = 0 then goto X' else ¢ := ¢3 — 1;goto X”) the machine M
checks if the internal counter is 0.

- If the internal counter is 0, then it reads the input symbol and checks if
it is X’. If yes, then it goes to the control state X'. If no, then it stops
and rejects. The internal counter is left unchanged. The integer input is
ignored.

- If the internal counter is > 0 then it decrements the internal counter by
1, reads the input symbol and checks if it is X”. If yes, then it goes to
the control state X”. If no, then it stops and rejects. The integer input is
ignored.

The machine M only accepts in the final control state X¢, which is also the
final state of M’'. As for the BPA(Z) above, these computation sequences of
M are read from right to left. This is not a restriction by Lemma 16.

Together A and M simulate the computation of M’. A ensures that the com-
putation step is correct when the first counter is concerned. M does the same
for the second counter and ensures that only those sequences are accepted
that end in the final state X; of M.

So we get that Xo(0) € Prey(M) <= PostA(Xo(0))NL(M) #0 —
M halts, and thus the membership problem in Pre* is undecidable. O

Theorem 29 does not automatically imply that the Pre* of a Z-input 1-CM
(w.r.t. A) cannot be represented by a Z-input 1-CM. It leaves the possibil-
ity that this Z-input 1-CM is just not effectively constructible. (Cases like
this occur, e.g., the set of reachable states of a classic lossy counter machine
is semilinear, but not effectively constructible [11].) However, the following
theorem shows that the Pre* of a Z-input 1-CM is not a Z-input 1-CM in
general.

21

Theorem 30 Let A be a BPA(Z) and M a Z-input 1-CM. Then, the set
Pre\ (L(M)) cannot be represented by a Z-input 1-CM in general.

PROOF. Let M’ be the 2-counter machine that accepts if and only if the
initial counter value in the first counter ¢; is a power of 2, i.e., 2™ for some
positive integer m. Let A and M be defined as in the proof of Theorem 29.

We assume that Pre; (M) could be represented by a Z-input 1-CM and derive
a contradiction. If there were a Z-input 1-CM that represents Pre; (M) then
there would also exist a Z-input 1-CM that represents Prey (M)N{Xo(n) | n €
N} = {Xo(n) | Im € N.n = 2™}. This is a contradiction, because the set
{n|3Im € N.n = 2™} is not Presburger definable. O

6 The Logic and its Applications

We define a logic called ISL (Integer Sequence Logic) that can be used to
verify properties of BPA(Z). It is interpreted over ISS (see Def. 3). We define
a notion of satisfaction of an ISL formula by a BPA(Z) and show that the
verification problem is decidable.

Let const denote the projection of ISS on sequences of constants obtained by
omitting the integers; formally const(X1 (k1) Xa(ka) ... Xin(km)) = X1 Xo ... Xopn.
Then, the logic ISL is defined as follows:

Definition 31 ISL formulae have the following syntax:

F = (Al,...,An,P)
where Ay, ..., A, are finite automata over an alphabet of process constants,
and P is an (n — 1)-ary Presburger predicate. Formulae are interpreted over

sequences w of the form Xi(k1)Xa(kz) ... X;m(km), where the satisfaction re-
lation is defined as follows:

w = F iff there exist words wy, ..., w,, constants Yi,...,Y, 1 and integers
kl, ceey kn—l s.t.w = wlyl(kl)’LUQYQ(kg) . wn_lYn_l(kn_l)wn and

o Vie{l,...,n—1}. A; accepts const(w;)Y;.
e A, accepts const(w,) and P(ki,..., k,_1) is true.

The set of sequences which satisfy a formula F is given by [F] = {w|w = F}.
Intuitively, ISL formulae specify regular patterns (using automata) involving a

finite number of integer values which are constrained by a Presburger formula.

22

We use ISL formulae to specify properties on the configurations of the systems
and not on their computation sequences, the typical use of specification log-
ics in verification. For instance, when BPA(Z)’s are used to model recursive
programs with an integer parameter, a natural question that can be asked is
whether some procedure X can be called with some value k satisfying a Pres-
burger constraint P. This can be specified by asking whether there is a reach-
able configuration corresponding to the pattern Const* X (k)Const®, where
P(k) holds. Using ISL formulae, we can specify more complex questions such
as whether it is possible that the execution stack of the recursive program can
contain two consecutive copies of a procedure with the same calling parame-
ter. This corresponds to the pattern Const* X (ky)(Const—{X })* X (k) Const™,
where k1 = ks.

The first result we show, is that we can characterize [F] by means of reversal
bounded counter automata. However, elements of [F] are sequences over an
infinite alphabet, since they may contain any integer. To characterize over a
finite alphabet an element w € [F] we can encode the integers in w in unary:
a positive (resp. negative) integer k; is replaced by k; (resp. —k;) occurrences
of a symbol p; (resp. n;). Hence, given a set L of ISS, let L d/eilote the set of all
sequences in L encoded in this way. We can characterize [F] with a reversal
bounded counter automaton.

Lemma 32 We can construct a reversal bounded counter automaton M over
a finite alphabet ¥ such that [F]| = L(M).

PROOF. The reversal bounded counter automaton M simulates sequentially
the automata Aj, ..., A, in order to check if the input is of the correct regular
pattern. After reading w; (A; has to be in an accepting state), the machine
reads a sequence of symbols p; or n; and stores their length in corresponding
reversal bounded counters. After the input has been completely read, the
Presburger formula can be tested by using a finite number of other reversal
bounded counters. O

Now, we define a notion of satisfaction between BPA(Z)’s and ISL formulae.

Definition 33 Let (wg,A) be a BPA(Z) with initial configuration wy and set
of rules A. Let F be an ISL-formula. We define that (wo,A) satisfies the
formula F iff it has a reachable configuration that satisfies F'. Formally

(wo, A) EF <= 3Jw € Posth(wp).w = F
To prove the decidability of the verification problem (wg, A) = F, for a given

23

BPA(Z) (wy, A) and a formula F' we need the following definition and a lemma.

Definition 34 Let L be a set of ISS. Then, L|, is the set of sequences w such
that there exists a sequence w' € L with k' > k integers such that w is obtained
from w' by removing k' — k integers and encoding the remaining integers in
unary.

Lemma 35 Let (wy, A) be a BPA(Z) with initial configuration wy and set of
rules A. Then we can construct a PCA M such that L(M) = Post (wo)|-

PROOF. First by Theorem 21 we construct a Z-input 1-CM M that accepts
Posty (wp). We construct a PCA from M by (1) using the pushdown store to
encode the counter (2) choosing non-deterministically exactly &k input values
which are compared to the counter. For these comparisons we need £k additional
reversal bounded counters (to avoid losing the counter value). O

Theorem 36 Let (wg, A) be a BPA(Z) with initial configuration wy and set
of rules A and F = (Ay, ..., A,, P) an ISL-formula. The problem (wy,A) = F
15 decidable.

PROOF. Clearly, we have Post} (wo) N [[F]] # 0 iff Post} (wo) N [[F]] # 0,
which is also equivalent to Post (w0)|n 1N [[F] # 0 since F' cannot constrain

more than n — 1 integers. Then we show that Post}(wg)|n—1 N [[F]] # 0 is
decidable. This follows from Lemma 35, Lemma 32, the fact that the inter-
section of a CA language with a PCA language is a PCA language (Lemma
5.1 of [9]), and Theorem 5.2 of [9] which states that the emptiness problem of
PCA is decidable. O

Finally, we consider another interesting problem concerning the analysis of
BPA(Z)’s. When used to model recursive procedures, a natural question is
to know the set of all the possible values for which a given procedure can be
called. More generally, we are interested in knowing all the possible values
of the vectors (ki,...,k,) such that there is a reachable configuration which
satisfies some given ISL formula F' = (A4, ..., Ap41, P). We show that this set
is effectively semilinear.

Theorem 37 Let (wg, A) be a BPA(Z) with initial configuration wy and set
of rules A, and let F be an ISL formula. Then, the set

{(k1,-..,ky) € Z"| 3w = un Y1(k1) . . . w0, Yy (kn)wns1 € Posti(wg). w = F}
is effectively semilinear.

24

PROOF. As in the proof of Theorem 36, we can construct a PCA which

recognizes the language Post’ (wo)|, N [F]. Then, the result follows from the
fact that the Parikh image of a PCA language is semilinear (see Theorem 5.1
of [9])). O

7 Conclusion

We have shown that BPA(Z) is a more expressive and more realistic model
for recursive procedures than BPA. The price for this increased expressive-
ness is that a stronger automata theoretic model (Z-input 1-CM) is needed to
describe sets of configurations, while simple finite automata suffice for BPA.
As a consequence, the set of predecessors is no longer effectively constructible
for BPA(Z) in general. However, the set of successors is still effectively con-
structible in BPA(Z) and thus many verification problems are decidable for
BPA(Z), e.g., model checking with ISL. Thus, BPA(Z) can be used for veri-
fication problems like dataflow analysis, when BPA is not expressive enough.
We expect that our results can be generalized to more expressive models (e.g.,
pushdown automata with an integer parameter), but some details of the con-
structions will become more complex.

References

[1] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: application to model checking. In International Conference on
Concurrency Theory (CONCUR’97), volume 1243 of LNCS. Springer Verlag,
1997.

[2] A. Boudet and H. Comon. Diophantine equations, presburger arithmetic and
finite automata. In Proc. of CAAP’96, volume 1059 of Lecture Notes in
Computer Science, pages 30—43. Springer-Verlag, 1996.

[3] O. Burkart and B. Steffen. Pushdown processes: Parallel composition and model
checking. In CONCUR’9/, volume 836 of LNCS, pages 98-113. Springer Verlag,
1994.

[4] O. Burkart and B. Steffen. Model checking the full modal mu-calculus for
infinite sequential processes. In Proceedings of ICALP’97, volume 1256 of LNCS.
Springer Verlag, 1997.

[5] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms
for model checking pushdown systems. In Proc. of CAV 2000, volume 1855 of
LNCS. Springer Verlag, 2000.

25

[6] J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural
data-flow analysis. In Proc. of FoSSaCS’99, volume 1578 of LNCS, pages 14-30.
Springer Verlag, 1999.

[7] M. Furer. The complexity of presburger arithmetic with bounded quantifier
alternation depth. Theoretical Computer Science, 18:105-111, 1982.

[8] E. Gradel. Subclasses of presburger arithmetic and the polynomial-time
hierarchy. Theoretical Computer Science, 56:289-301, 1988.

[9] O. Ibarra. Reversal-bounded multicounter machines and their decision
problems. Journal of the ACM, 25:116-133, 1978.

[10] O. Ibarra, T. Bultan, and J. Su. Reachability analysis for some models of
infinite-state transition systems. In Proc. of CONCUR 2000, volume 1877 of
LNCS. Springer Verlag, 2000.

[11] R. Mayr. Undecidable problems in unreliable computations. In Proc. of LATIN
2000, volume 1776 of LNCS. Springer Verlag, 2000. Journal version to appear
in TCS.

[12] R. J. Parikh. On context-free languages. Journal of the ACM, 13(4):570-581,
1966.

[13] J. van Leeuwen, editor. Handbook of Theoretical Computer Science: Volume A,
Algorithms and Complexity. Elsevier, 1990.

[14] 1. Walukiewicz. Pushdown processes: Games and model-checking. Information
and Computation, 164(2):234-263, 2001.

26

