
HAL Id: hal-00148002
https://hal.science/hal-00148002

Submitted on 21 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programs with Lists are Counter Automata
Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu Iosif, Pierre Moro,

Tomas Vojnar

To cite this version:
Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu Iosif, Pierre Moro, et al.. Programs with
Lists are Counter Automata. Computer Aided Verification, Aug 2006, Seattle, United States. pp.517-
531. �hal-00148002�

https://hal.science/hal-00148002
https://hal.archives-ouvertes.fr

Programs with Lists are Counter Automata

Ahmed Bouajjani2, Marius Bozga1, Peter Habermehl2, Radu Iosif1, Pierre Moro2, and
Tomáš Vojnar3

1 VERIMAG, 2 av. de Vignate, F-38610 Gières, e-mail:{iosif,bozga}@imag.fr
2 LIAFA, Paris University 7, Case 7014, 2, place Jussieu, F-75251 Paris Cedex 05

e-mail:{Ahmed.Bouajjani,Peter.Habermehl,Pierre.Moro}@liafa.jussieu.fr
3 FIT, Brno University of Technology, Božetěchova 2, CZ-61266, Brno

e-mail:vojnar@fit.vutbr.cz

Abstract. We address the verification problem of programs manipulating one-
selector linked data structures. We propose a new automatedapproach for check-
ing safety and termination for these programs. Our approachis based on using
counter automata as accurate abstract models: control states correspond to ab-
stract heap graphs where list segments without sharing are collapsed, and coun-
ters are used to keep track of the number of elements in these segments. This
allows to apply automatic analysis techniques and tools forcounter automata in
order to verify list programs. We show the effectiveness of our approach, in par-
ticular by verifying automatically termination of some sorting programs.

1 Introduction

The design of automatic verification methods for programs manipulating dynamic linked
data structures is a challenging problem. Indeed, the analysis of the behaviour of such
programs requires reasoning about complex transformations of data structures involv-
ing both creation and deletion of objects as well as modifications of the links between
them (pointer manipulations). The heap of such programs mayhave in fact an arbitrary
size and shape (a graph structure). There are several approaches for tackling this prob-
lem addressing different subclasses of programs and using different kinds of formalisms
for representing and reasoning about infinite sets of heap structures, e.g., [21, 19, 22, 9].

We consider in this paper the class of programs manipulatinglinked data structures
with a single data-field selector. It corresponds to programs manipulating linked lists
with the possibility of sharing and circularities. We propose a new approach for the au-
tomatic verification of such programs which is mainly based on using counter automata
as accurate abstract (infinite-state) models. These modelscan be used for checking both
safety properties and termination of the considered programs using techniques such as
(abstract) symbolic reachability analysis (for safety andinvariance checking) and auto-
matic generation of decreasing ranking functions (for termination checking).

Let us present in more details the proposed approach. We start from the observation
that if we do not consider garbage (parts of the heap not reachable from the pointer
variables of the program), the heap graph is always a finite collection of graphs of a
special form close to a tree: it is either a tree (where edges are directed towards the
root) or a set of trees having all their roots connected to a simple cycle. The number of
such graphs is infinite, but it can be proved that for each of them, the number of vertices
where sharing occurs is bounded by the number of pointer variables of the program.

Then, for data-insensitive programs (e.g., a list reversalprogram), a natural abstrac-
tion consists in mapping each sequence of elements between two sharing points into an

abstract sequence of some (fixed) bounded size. However, foreach given value of the
bound, this abstraction is obviously not precise in general. In order to define a precise
abstraction, we need in fact to reason about the size of each sequence between two shar-
ing points. This leads to the idea of using counters in order to keep this information in
the abstract model (and therefore to use counter automata asabstract models).

In fact, considering counter automata-based models has several advantages. Not
only it allows to define accurate abstractions, it allows us also to handle quantitative
properties depending on the sizes of some parts of the heap. Thus, we can handle pro-
grams with integer variables whose value is somehow relatedto the contents of the lists
(e.g., to their length). Moreover, it provides a powerful way for checking termination
which typically requires reasoning about decreasing values (e.g., the size of the part of
the list to be treated).

A first contribution of the paper is to define an abstraction mapping from data-
insensitive programs to counter automata for which we provethat the (concrete) pro-
gram and its abstraction arebisimilar. This result is interesting since it means that our
abstraction preserves all properties of the class of data-insensitive programs. The con-
trol states of the built automaton correspond to abstract shapes (heap graphs where
sequences between shared points are reduced to single vertices), and each transition
corresponds to the execution of a program statement. It represents a modification in
the shape together with a modification on the counters (attached to vertices abstracting
sequences between sharing nodes).

The control structure of the built counter automata can be arbitrary in general. How-
ever, it turns out that these automata have an important property: we prove that if we
consider the evolution of the sum of all counters, the effectof executing any control
loop is to increment this sum by a constant which depends on the program. We use
this fact to establish a new decidability result for list programs: for every given (data-
insensitive) list program, if the control structure of the generated counter automaton has
no nested loops, the verification problems of safety properties and termination are both
decidable.

Subsequently, we go further by considering the issue of data-sensitivity. We con-
sider the class of programs manipulating objects ranging over a potentially infinite data
domain supplied with an ordering relation, and we assume that the only allowed oper-
ation on these data values is the comparison w.r.t. this ordering relation. This class of
programs includes, for instance, sorting programs. We extend our previous abstraction
principle to the heap graphs of these programs by taking intoaccount (in addition to
the size) some information about the order of the elements inthe abstracted sequences
between sharing points, and we provide a construction whichassociates with each pro-
gram a counter automaton-based abstract model. We show thatthis abstraction is sound
and complete w.r.t. the choice of ordering predicates.

Finally, we show the application of our approach on three examples of programs (list
reversal, insertion sort, and bubble sort). We have derivedsystematically their counter
automata models, and then we used (1) our ARMC tool [10] (and some compile-time
techniques) for checking safety properties, and (2) the Terminator tool based on [13]
for termination.

Related Work: Programs manipulating singly-linked lists have gained a lot of attention
within the past two years, as shown by the fairly large numberof recent publications on
the subject [5, 7, 20, 4, 9]. Interestingly, the idea of abstracting away all the list segments

2

with no incoming edges is common to many of these works, even though they are
independent and use different approaches and frameworks (e.g. static analysis [20],
predicate abstraction [4]. symbolic reachability analysis [5] and proof search [7]). The
fact that the number of sharing points in abstract heap structures is bounded by the
number of variables in the program is also behind the techniques proposed in [20, 9].

In [11], the authors use an abstract shape model with counters, but their concerns
are mostly related to the decidability of a specification logic. The approach that is the
closest to ours is [5]. However, it is rather pointed towardsshowing particular properties
such as absence of segmentation faults and memory leak errors, than checking general
safety properties, and the work does not address the problemof verifying termination.
Moreover, the work reported in [5] offers less automation ofthe verification than ours.
Recently, the same authors have started independently a work [16] on automatic con-
struction of models based on counter automata similar to ourapproach.

The use of ordering predicates in order to handle sorting programs is similar to the
one considered in [15, 22] based on the shape analysis approach.

Termination is tackled by works such as [23, 4]. In all of these works, ranking func-
tions must be given manually, whereas our approach is fully automated.

2 Programs with Lists

In this section we define a model for programs manipulating dynamic list data struc-
tures. We consider that lists are implemented using reference (pointer) data types with
one selector (next) field, as it is the case in most object-oriented imperative program-
ming languages (e.g. Java, C, C++). For the time being we consider programs without
recursion or concurrency constructs, therefore all variables are assumed to be global. In
addition to the list data structures, the programs can have integer variables.

2.1 Syntactic Definitions

1: while i 6= null do
2: k := i.next;
3: i.next := j; 4: j := i;
5: i := k;
6: od

Fig. 1.List Reversal Program

We consider imperative programs working with a
set of pointer variablesPVar and a set of integer
counter variablesIVar. The pointer variables refer to
list cells. Pointers can be used in assignments such
asu := null, u:= w andu := w.next, selector up-
datesu.next := w and u.next := null, and new
cell creationu:= new. Counters can be incrementedi
:= i + 1, decrementedi := i - 1 and reseti :=
0. The control structure is composed of iteration (while) statements and conditionals
(if-then-else). The guards of the control constructs are pointer equalityu = w, data
comparisonsu.data <= v.data, zero tests for countersi = 0 and boolean combina-
tions of the above. An example is the list reversal program inFigure 1.

To simplify the definition of the operational semantics, we consider that all pro-
grams are precompiled, by introducing right before any pointer assignment of the form
u (u.next) := new (w, w.next) an assignmentu (u.next) := null. In particular, a
pointer assignment of the formu := u.next is turned intov := u; u := null; u
:= v.next, possibly introducing a fresh variablev.

3

2.2 Concrete Operational Semantics

In order to define the concrete semantics of programs with lists, we have to formalize
the notion ofheap. In principle, a heap is a graph in which each node has at most
one successor. In addition, some nodes are designated by special labels (variables from
PVar). If all the edges are reversed, one can imagine a heap as a setof disjoint trees, in
which, for each tree there might be an extra edge from an arbitrary node back to the root.

In the rest of the paper, for a setA we denote byA⊥ the setA∪{⊥}. The element
⊥ is used to denote that a (partial) function is undefined at a given point, e.g.f (x) = ⊥.
Also, for a functionf we denote byf ↓A the projection off onA i.e. f ∩A×A.

Definition 1. Let 〈D,�〉 be a totally ordered set, and PVar a set of pointer variables.
A heapis a tuple H= 〈N,S,V,D〉, where N is a finite set of nodes, S: N → N⊥ is a
successor function, V : PVar→ N⊥ is a function associating nodes to variables, and
D : N → D is a function associating each node a data element.

The set of all heaps using variables fromPVar is denoted byH (PVar). We denote
by n1 −→

H
n2 the fact thatn2 is the successor ofn1 in H, and byu−→

H
n that the pointer

variableu∈ PVar refers to a node whose successor isn. H might be omitted when it is
clear from the context. We denote by

∗
−→
H

the reflexive and transitive closure of−→
H

. A

noden is said to be acut pointin H, denoted ascutH(n), if either it has two predecessors
or it is pointed to by a variable.4

The state of a program with lists is a triple〈l , ι,H〉 where l ∈ Lab is the cur-
rent program label,ι : IVar → Z is the current valuation of counter variables, and
H ∈ H (PVar) is the current heap configuration. Each assignment modifies the state as

follows: 〈l , ι,H〉
l :s;l ′
−−→ 〈l ′, ι′,H ′〉, wherel ′ is the label of the next statement,ι′ is the

new valuation of counters, computed as usual, andH ′ is a heap configuration such that
H

s
−→ H ′, in conformance with the rules in Figure 2.2. As a result of removing a node

from the heap, other nodes might become unreachable from thepointer variables. This
set of nodes, whose lifetimedepends exclusivelyonn∈ N, is denoted asdepH(n). Herr
is a special sink heap configuration, attained as the result of a null pointer dereference.
A pointer equality testu = v evaluates to true in a heapH = 〈N,S,V〉 if and only if
V(u) = V(v). Also, u = null is true if and only ifV(u) = ⊥. Due to the lack of space,
the rules for the assignment statementsu:= w, u:=new, u.next := null andu.next
:= w are deferred to the long version of this paper [8].

3 Counter Automata

A counter automata withn counters is a tupleA = 〈Q,X,→〉, whereQ is a finite set
of control states,X = {x1, . . . ,xn} are the counter variables and→∈ Q×Φ×Q are
the transitions, whereΦ is the set of Presburger formulae with free variables from
{xi ,x′i | 1 ≤ i ≤ n}. A configuration of a counter automata withn counters is a tuple
〈q,ν〉, whereν is a mapping fromX to N. The set of all configurations is denoted

4 Formally,cutH (n) : ∃n1,n2 ∈ N . n1 6= n2∧S(n1) = S(n2) = n ∨ ∃u∈Var . V(u) = n.

4

V(u) = ⊥

H
u := null
−−−−−−→ H

∃w∈ PVar\{u} . w
∗
−→
H

V(u)

H
u := null
−−−−−−→ 〈N,S,V[u→⊥],D〉

V(u) = n∈ N N′ = N\depH (n)

∀w∈ PVar\{u} . ¬w
∗
−→
H

n

H
u := null
−−−−−−→ 〈N′,S↓N′ ,V ↓N′ ,D↓N′〉

V(w) = n∈ N

H
u := w.next
−−−−−−−−→ 〈N,S,V[u→ S(n)],D〉

Fig. 2. Concrete Semantics of Heap Updates. H
∆
= 〈N,S,V,D〉, depH (n)

∆
= {m ∈ N | ∀u ∈

PVar . ¬u
∗

−−−−−−−−−−−−−−−−−−−→
〈N\{n},S↓N\{n},V↓N\{n},D↓N\{n}〉

m}.

by C . The transition relation
C
−→⊆ C × C is defined by(q,ν)

C
−→ (q′,ν′) iff there ex-

ists a transitionq
ϕ
−→ q′ such that, ifσ is an assignment of the free variables ofϕ

(FV(ϕ)), whereσ(x) = ν(x) and σ(x′) = ν′(x), we have thatϕ(FV(ϕ)σ) holds and
ν(x) = ν′(x), for all variablesx with x′ 6∈ FV(ϕ). A run of A is a sequence of configu-

rations(q0,ν0),(q1,ν1),(q2,ν2) . . . such that(qi ,νi)
C
−→ (qi+1,νi+1), for eachi ≥ 0.

Definition 2. Let A= 〈Q,X,→〉 be a counter automaton, where X= {x1, . . . ,xn} are
counter variables, that range over positive integers. A is said to belinear if all its tran-
sitions are of the form:ϕ(X) ∧

V

1≤i≤nx′i = fi(X), whereϕ is a formula of Presburger
arithmetic, and fi = ∑n

j=1ai j x j + bi, 1≤ i ≤ n are linear functions with integer coeffi-
cients. Moreover, A is said to bepositiveif ai j ≥ 0, for all 1≤ i, j ≤ n. A is also said to
berestrictiveif, there exists a constantα ∈ N such that, for each control state q∈ Q, on
each runπ that visits q, the sum of values taken by the counters,∑n

i=1xi , increases by at
mostα between any two consecutive times when the control state is q.

The control graph of a counter automatonA is the graph having as vertices the set
Q of control states, and, for any two statesq andq′, there is an edge betweenq and

q′ in the control graph if and only if there exists a transitionq
ϕ
−→ q′ in A. A counter

automaton is said to beflat if its control graph has no nested loops. We can prove:

Theorem 1. The problems of reachability and termination for flat linearpositive re-
strictive counter automata are decidable.

We give a brief sketch of the proof. First notice that the transitions of a loop can be
composed into one single loop of the forml : ϕ(X) ∧ X′ = AX+ B. Then, we estab-
lish that for every operationX′ = AX+ B, the set{Ai}i≥1 is finite, whereA1 = A and
Ai+1 = Ai ×A, where× is the product of square matrices. This implies that the reacha-
bility relation corresponding to the iteration ofl is expressible in Presburger arithmetics
[3, 17]. Since our automata are flat it is easy to deduce that both reachability and termi-
nation problems are decidable (it suffices to decide these problems for each loop).

4 Abstract Semantics of Programs with Lists

A common way of representing heaps compactly, consists in mapping an entire list seg-
ment with no incoming edges into a special (abstract) node. This idea constitutes also

5

the basis of our abstraction. LetN be a set ofabstract nodesandX be a set ofcounter
variables, one for each node. We shall first define the abstract structure of heaps.

Definition 3. Anabstract structureis a tupleH = 〈N,S,V〉, where:

– N ⊆ N is the set of abstract nodes, and
– S: N → N⊥, V : PVar→ N⊥, are the successor and variable mappings,

An abstract structure is moreover said to be innormal formif, for each n∈ N, there
exists u∈ PVar such that u

∗
−→
H

n, and n is a cut point inH.

Intuitively, each abstract node corresponds to a set of concrete nodes, and the counter
corresponding to each node gives the number of nodes in this set. For abstract structures
in normal form, we do not allow sequences of successive abstract node that are neither
pointed by a variable, nor have the indegree greater than one. This condition is needed
in order to ensure that any such abstract structure defined over a finite set of variables
is finite.H (PVar) denotes the set of all abstract structures with variables fromPVar.

Lemma 1. Let PVar= {u1, . . . ,un} be a set of variables, andH = 〈N,S,V〉 be an ab-
stract structure in normal form such that dom(V) ⊆ PVar. Then||N|| ≤ 2n. As a conse-
quence, the number of such heaps is bounded asymptotically by nn, and the bound is tight.

Let us define now a first abstraction function, denoted byαs, that maps concrete
heaps into abstract structures. Given a concrete heapH = 〈N,S,V,D〉, let �H ⊆ N×N
be a relation on the set of nodes, defined as:n1 �H n2 : n1 −→

H
n2∧¬cut(n2). We denote

by ∼H the reflexive, symmetric and transitive closure of�H . The H subscript shall
be further omitted for simplicity. For a noden ∈ N, we denote by[n] the equivalence
class ofn with respect to∼, also referred to alist segment. Thequotient heap H/∼ =
〈N/∼,S/∼,V/∼〉 is defined as follows:

– N/∼ = {[n] | n∈ N},
– for all n,m∈ N, S/∼([n]) = [m] iff ∃n0 ∈ [n] ∃m0 ∈ [m] . S(n0) = m0∧cutH(m0),
– for all u∈ PVar, n∈ N, V/∼(u) = [n] iff V(u) ∈ [n], and
– S/∼ andV/∼ are undefined, otherwise.

Note thatS/∼ andV/∼ are well defined partial functions.

Definition 4. Let H = 〈N,S,V,D〉 be a concrete heap and H/∼ = 〈N/∼,S/∼,V/∼〉 its
quotient. An abstract structureH = 〈N,S,V〉 is said to be astructural abstractionof
H if and only if there exists a bijective functionβ : N/∼∪{⊥}→ N∪{⊥} such that,
β(⊥) = ⊥, and for all u∈ PVar:

– S(β([n])) = β(S/∼([n])), andV(u) = β(V/∼(u)).

Two abstract structures that differ only in the naming of nodes and counter variables
are semantically equivalent, in the sense that they are abstractions of the same set of
concrete heaps. In practice, this increases the number of abstract structures generated
by a symbolic state exploration tool. This problem can be overcome by choosing a
canonical representation of abstract structures, as described in e.g. [18]. We define the
structural abstraction functionαs : H (PVar) → H (PVar), αs(H) = H, iff H is the
canonical representative of a structural abstraction ofH.

6

4.1 Data Insensitive Programs

This section is devoted to the description of counter automata that abstract the behaviour
of the programs with lists. We formalize the correctness of our construction by proving
bisimulation between the semantics of a list program and thesemantics of a counter au-
tomaton. This entails the strong preservation of temporal logic properties. In particular,
safety and termination are strongly preserved by the counter automaton, meaning that
one can accept and/or refute them based on the behaviour of the latter.

Consider a list program withk pointer variables andl counter variables, i.e.||PVar||=
k and||IVar|| = l . We construct a counter automatonA = 〈Q,X,

s
−→〉 with 2k+ l coun-

ters as follows. The control statesQ of the counter automaton are elements of the set
Lab× (H (PVar)∪{Herr}). LetN =

S

{N | 〈N,S,V〉 ∈ H (PVar)} be the set of nodes
used in the structural abstraction. The counters areX = {xn | n ∈ N }∪ IVar, one for
each node, and including the counter variables from the original program. The transi-

tions are given by the triplesq
ϕ
−→ q′ with q = 〈l ,H〉, q′ = 〈l ′,H ′〉 such that there is a

statementl : s; l ′ in the program and the relationH
ϕ
−→
s

H ′ is described by the structural

rules in Fig. 3. Due to a lack of space, the rules for the assignment statementsu:= w,
u:=new, andu.next := null are deferred to the long version of this paper [8].

In order to simplify the treatment of the different cases, wehave introduced two
low-level operations, that perform merging and splitting of abstract nodes (Figure 3.
Intuitively, we need to perform merging of two abstract nodes n andm (µ(H,n,m)) in
order to re-normalize the abstract structure, after a destructive update. In the case ofu
:= w.next, we need to split (σ(H,n,m)) the abstract noden referred to byw in H, into
two nodesn andm, based on whether the value of its corresponding counter is greater
than one or one (xn = 1, xn > 1). The semantics of conditional tests (u = v andu =
null) is similar to the concrete case. For more details concerning the translation, the
reader is referred to the list reversal example in Figure 4.

Now we can state the main theorem of this section. Given a datainsensitive pro-
gram P, let 〈S ,

c
−→〉 be its concrete semantics with set of statesS = Lab× (IVar →

Z)×H (PVar) and
c
−→ its transition relation. LetS = Q× (X → Z) be the set of all

configurations of the corresponding counter automaton and
s
−→ its transition relation.

Theorem 2. 〈S , c
−→〉 and〈S ,

s
−→〉 are bisimilar.

List Reversal Example Figure 4 shows the counter automaton for the list reversal
program from Figure 1, started with a non-circular list pointed to byi, as input. The
counter variable corresponding to each abstract node is depicted inside the node itself.

4.2 Ordered Data Programs

In this section we complete the definition of abstraction forprograms with lists, by
introducing an abstraction for heaps containing data from an ordered domain〈D,�〉.
More precisely, we need to abstract the order relations thatmay occur inside a list
segment, and between two list segments. We shall therefore consider five predicates,

7

∃w∈Var\{u} V(w) = V(u) 6= ⊥

H
true

−−−−→
u:=null

〈N,S,V[u→⊥]〉

V(u) = n ∈ N ∀w ∈ Var \ {u} . V(w) 6= n
∃m, p∈ N\{n} . p 6= m ∧ S(m) = S(p) = n

H
true

−−−−→
u:=null

〈N,S,V[u→⊥]〉

V(u) = n∈ N ∀w∈Var\{u} . V(w) 6= n
∃m ∈ N \ {n} . S(m) = n
∀p ∈ N \ {n} . S(p) 6= n

H
x′m=xm+xn
−−−−−−→

u:=null
µ(〈N,S,V[u→⊥]〉,m,n)

V(u) = n ∈ N ∀w ∈ Var \ {u} . w 6
∗
−→
H

n

S(n) = m∈ N\{n} ∀w∈Var\{u} . V(w) 6= m
∃p ∈ N \ {n,m} . S(p) = m
∀q ∈ N \ {n, p} . S(q) 6= m N′ = N \ {n}

H
x′p=xp+xm
−−−−−−→

u:=null
µ(〈N′,S↓N′ ,V ↓N′〉, p,m)

V(w) = n∈ N

H
xn=1

−−−−−−→
u:=w.next

〈N,S,V[u→ S(n)]〉

V(w) = n∈ N m∈ N \N′

H
xn>1∧ x′m=xn−1
−−−−−−−−−−→

u:=w.next
σ(〈N,S,V[u→ m],n,m)

Fig. 3. The Counter Automaton for Data Insensitive ProgramsLet H
∆
= 〈N,S,V〉. The merg-

ing function isµ : H (Var)×N ×N → H (Var) given byµ(H,n,m) = 〈N′,S↓N′ [n→ S(m)],V〉

whereN′ = N \ {m}. The splitting function isσ : H (Var)× N × N → H (Var) given by
σ(H,n,m) = 〈N∪{m},S′,V〉 whereS′ =

(
S\{(n, p) | n−→

H
p}

)
∪ {(m, p) | n−→

H
p} ∪ {(n,m)}.

with the following meanings. For each predicateP, we denote byPc its semantics, i.e.
the relation it induces on a set of nodes.

Let H = 〈N,S,V,D〉 be a concrete heap andH/∼ its quotient as defined above. Then,
oc([n]) is true for a list segment[n] iff all its elements are ordered w.r.t.�. Similarly,
[n]�� [m] for � ∈ { f f , f a,a f,aa} iff the first (all) element(s) of[n] is (are) less than the
first (all) element(s) of[m].

Definition 5. An abstract heapis a tupleH̃ = 〈H,o,� f f ,� f a,�a f ,�aa〉, whereH =

〈N,S,V〉 is an abstract structure,o⊆N is a unary ordering predicate, and� f f , f a,a f ,aa⊆

N×N are binary ordering predicates.

An abstract heap̃H = 〈H,o,� f f ,� f a,�a f ,�aa〉 sharing the same structureH =

〈N,S,V〉 as another abstract heap̃H ′ = 〈H,o′,�′
f f ,�

′
f a,�

′
a f ,�

′
aa〉, is said to bemore

precise, denoted as̃H v H̃ ′, if and only if, for eachn,m∈ N we have o(n) ⇐ o′(n) and
n �� m⇐ n �′

� m, for all � ∈ { f f , f a,a f,aa}. Intuitively, the absence of a predicate
indicates incertitude w.r.t. the concrete ordering configuration. For instance if o(n) does
not hold, this means that, in the concrete setting,n ”represents” a list segment that may
or may not be ordered.

Given a setSof abstract heaps sharing the same structure, we denote bytSthe least
upper bound, and byuS the greatest lower bound ofS, with respect tov. Note thatt
andu are undefined for sets of abstract heaps that have different structures. The domain

of abstract heaps is denoted by〈H̃ (PVar),v〉.

Definition 6. Let H = 〈N,S,V,D〉 be a concrete heap with data from the ordered do-
main 〈D,�〉 and H/∼ = 〈N/∼,S/∼,V∼〉 its quotient. An abstract heap̃H = 〈H,o,� f f

8

lab= 5

x

i

x

i

x

i

x

i, j

x

j

y xz

j i k

xy

j i ,k

j i

y x

j i

y x

i k

xy

i, j k

y x

xy

i k

i, j

y

y z x

j i k

i, j k

y x

[x = 1]

x := 1

[x= 1]

x := 1 y := 1

y := y+x

x := y

x := x−1
y := 1
[x> 1]

x := x−1
z := 1
[x> 1]

z := 1

y := y+z

lab= 2

lab= 3

lab= 7

lab= 4

Fig. 4.Non-circular List Reversal

,� f a,�a f ,�aa〉 is said to be anabstractionof H if and only ifαs(H) = H, whereβ is
the bijection from Definition 4, and for all[n], [m] ∈ N/∼, � ∈ { f f , f a,a f,aa}:

– o(β([n])) ⇒ oc([n]) andβ([n]) �� β([m]) ⇒ [n] �c
� [m].

We defineα : H (PVar) → H̃ (PVar) asα(H) = u{H̃ | H̃ is an abstraction ofH}.
Note that all abstract heaps that are abstractions ofH share the same structure, hence

u is defined for this set. Theconcretizationfunction isγ : H̃ (PVar) → P (H̃ (PVar)),
defined asγ(H̃) = {H | α(H) v H̃}. Clearly,γ(H̃1) ⊆ γ(H̃2) if H̃1 v H̃2, but the dual
does not necessarily holds.

4.3 Counter Automata Semantics with Ordering Predicates

Taking ordering predicates o,� f f , f a,a f ,aa into account refines our notion of counter au-
tomaton, previously introduced. The counter automaton defined in this section keeps
track of the ordering information, allowing one to verify properties related to the order-
ing of lists, as it is the case for sorting programs, e.g. insertsort, bubblesort, etc.

A counter automaton with ordering predicates isAa = 〈Qa,X,
a
−→〉. The set of control

states is defined now asQa = Lab× (H̃ (PVar)∪{Herr}), and the set of configurations
is Sa = Qa × (X → Z), with the usual notation. In addition to updating the abstract
structure, the transition relationa−→ has to also update the ordering predicates. Our goal

is to define the ”best transformer” in the sense of [14]. More precisely, our loss of
information is due only to the choice of ordering predicates, the definition of

a
−→ does

not introduce further imprecision. Theorem 4 below formalizes this statement.
In order to achieve completeness of the abstract operational semantics, we have

designed our abstract state transformer function in two stages. The first stage yields
the actual change of the predicates, and the second one is an operation of ”saturation”
whose goal is to add all the predicates that can be derived from the existing ones, on

9

Weakening
1. n�aa m ⇒ n�a f m
2. n�aa m ⇒ n� f a m
3. n�a f m ⇒ n� f f m
4. n� f a m ⇒ n� f f m

Reflexivity
12. n� f f n
13. n�aa n ⇒ o(n)
14. o(n) ⇒ n� f a n

Transitivity
5. n� f f m ∧ m� f f p ⇒ n� f f p
6. n�a f m ∧ m� f f p ⇒ n�a f p
7. n� f f m ∧ m� f a p ⇒ n� f a p
8. n�aa m ∧ m�aa p ⇒ n�aa p
9. n�aa n ∧ n� f a m ⇒ n�aa m
10. n� f f m ∧ o(m) ⇒ n� f a m
11. n�a f m ∧ o(m) ⇒ n�aa m

Symmetry
15. n�a f n ∧ n� f a n ⇒ n�aa n

Fig. 5. Saturation rules

a given abstract heap, without changing the corresponding set of concrete heaps. For
the remainder of this section, we fix an abstract heapH̃ = 〈H,o,� f f ,� f a,�a f ,�aa〉,

with its abstract structureH = 〈N,S,V〉, and letH̃ ′ be just likeH̃, except that all the
components of the tuples are primed.

Let us begin by the presentation of the second stage. Given anabstract heap̃H, we
define thesaturationof H̃ to be the most precise abstract heap whose concretization
is the concretization of̃H. This notion of saturation is necessary to define an abstract
operational semantics that is most precise w.r.t. the ordering abstraction, induced by
the o and� f f , f a,a f ,aa predicates. Unfortunately, this definition does not allow one to

effectively check that̃H ′ is the saturation of̃H for arbitrary abstract heaps. The problem
is that the setγ(H̃) is infinite. To overcome this problem, we introduce “syntactical”
saturation rules, given in Figure 5. The closure of an abstract heapH̃ w.r.t. the rules in
Figure 5 is denoted assat(H̃).

The saturation rules need to be applied with the following premise: if (H̃,ν) is
a configuration of the counter automaton, andn is an abstract node of̃H such that
ν(xn) = 1, then it must be the case that o(n) andn�� n, � ∈ { f f , f a,a f,aa} all hold in
H̃. The reason is that, list segments of size one are ordered, and in all possible ordering
relations with themselves. The generated counter automaton will test, at each step, for
each noden∈ N, thatxn = 1 and update the ordering predicates accordingly. The next
Theorem shows the soundness and completeness of the saturation rules.

Theorem 3. Given an abstract heap̃H, we have sat(H̃) = u{H̃ ′ | γ(H̃ ′) = γ(H̃)}.

We define now how the change of abstract predicates is being performed. Most of
the rules that affect only the abstract structure of the state are very similar with the data
insensitive case. To be more precise, all rules from Figure 3, with the exception of the
ones that use the merging (µ) or the splitting (σ) functions, will simply maintain the
same predicates between the source and destination of the transition. For example, if
we hadV(u) = V(w) = n andn� f a m, then the result of applying the statementu :=

null isV
′
= V[u→⊥] andn�′

f a m. The remaining rules are dealt with by introducing
orderedversions of the merging and splitting functions, calledµo andσo, respectively.
As a general rule, the new merging and splitting operations are performed on saturated
abstract heaps, and another saturation is applied to the result, in order to maintain the
desired precision.

Let n,m∈ N be such thatS(n) = mandm is not a cut point inH. We recall that the
result ofµ(H,n,m) in this case is the abstract structure in whichn takes the place of both

10

n andm. Thenµo(H̃,n,m) = 〈µ(H,n,m),o′,�′
f f ,�

′
f a,�

′
a f ,�

′
aa〉 where o′,�′

f f , f a,a f ,aa

are the (unique) relations onN andN×N satisfying the following constraints, for all
p∈ N, q, r ∈ N\ {p,n} and� ∈ { f f , f a,a f,aa}:

o(n) ∧ o(m) ∧ n�aa m⇔ o′(n) n�a f p ∧ m�a f p⇔ n�′
a f p

n�aa p ∧ m�aa p⇔ n�′
aa p p� f a n ∧ p� f a m⇔ p�′

f a n
p�aa n ∧ p�aa m⇔ p�′

aa n o(q) ⇔ o′(q) andq�� r ⇔ q�′
� r

The following Lemma shows that no information is lost by an application of µo,
provided that the source of the transition was a saturated abstract heap. The intuition
is that, by merging two abstract nodes, where one of them is not a cut point, the set of
concretizations is preserved.

Lemma 2. LetH̃ = 〈H,o,� f f ,� f a,�a f ,�aa〉 ∈ H̃ (PVar) whereH = 〈N,S,V〉 ∈H (PVar),
and n,m∈N such thatS(n)= m and m is not a cut point inH. Thenγ(H̃)= γ(µo(sat(H̃),n,m)).

The splitting operation on abstract structures replaces one noden with two nodes
n andm, such thatm becomes the successor ofn and the previous successor ofn be-
comes the successor ofm. In addition, the effect of the split operation on the order-
ing predicates is modeled by the rules given in the following. Formally,σo(H̃,n,m) =
〈σ(H,n,m),o′,�′

f f ,�
′
f a,�

′
a f ,�

′
aa〉, where o′,�′

f f , f a,a f ,aa are the (unique) relations on

N andN×N that satisfy the following constraints, for allp∈ N\{n}, q, r ∈ N\{p,n},
and all� ∈ { f f , f a,a f,aa}:

o(n) ⇔ n�′
aa m p� f a n⇔ p�′

f a m p�aa n⇔ p�′
aa m

o(n) ⇔ o′(m) n�aa n⇔ m�′
aa m n�aa p⇔ m�′

aa p
n�a f p⇔ m�′

a f p n�aa n⇔ m�′
aa n o(q) ⇔ o′(q) andq�� r ⇔ q�′

� r

The following Lemma formalizes the correctnessσo:

Lemma 3. LetH̃ = 〈H,o,� f f ,� f a,�a f ,�aa〉 ∈ H̃ (PVar), whereH = 〈N,S,V〉 ∈H(PVar),
n∈ N and m6∈ N′. Thenγ(H̃) = γ(σo(sat(H̃),n,m)).

A conditional test involving datau.data ≤ w.data evaluates true in the abstract
heapH̃ if and only if V(u) � f f V(w) holds onsat(H̃). Otherwise, such tests introduce
non-determinism in the generated counter automaton. Therefore, the semantics of the
counter automaton is a simulation of the semantics of the original program, but not a
bisimulation anymore.

Theorem 4. Let〈l , ι,H〉 ∈ S be a concrete program state. Then there exists〈l ′, ι′,H ′〉 ∈

S such that〈l , ι,H〉
c
−→ 〈l ′, ι′,H ′〉 if and only if there exists an abstract state〈l ,H̃ ′,ν′〉 ∈

Sa such that〈l ,α(H),ν〉 a
−→ 〈l ′,H̃ ′,ν′〉 and H′ ∈ γ(H̃ ′).

The following is a consequence of Theorems 1, 2 and 4.

Corollary 1. For every program with lists, if its counter automaton is flat, then safety
and termination are decidable properties.

Notice that the number of objects created by a flat list program is always bounded by
a constant, therefore its counter automaton is linear positive and restrictive (but not
necessarily flat). If this automaton is moreover flat, we can apply Theorem 1.

11

5 Experimental Results

In order to obtain experimental evidence about how our techniques behave in practice,
we have applied them to several non-trivial procedures manipulating singly-linked lists.
In particular, we have considered a procedure forreversing lists, whose behaviour we
have studied both for anacyclic as well ascyclic input, and then two procedures for
sorting lists, namelyInsertSortandBubbleSort.

For all the examples, we generated (by hand—an implementation of the transla-
tion procedure is our future work) the corresponding counter automata. Sizes of the
automata—after some trivial simplifications joining sequences of states with no varia-
tion in the underlying heap graph—varied as follows: (1) 15 states and 3 counters for
reversing acyclic lists (no optimizations were used in thiscase), (2) 11 states and 3
counters for reversing cyclic lists, (3) 88 states and 6 counters for InsertSort, and (4)
149 states and 7 counters for BubbleSort (we considered an optimized version of the
sort with a pointer remembering the already sorted part of the list). For list reversing,
no ordering predicates were used.

As for thesafety propertiesof the considered programs, we checked that there are no
null pointer assignments, no elements are lost, the shape ispreserved, and—in the case
of the sorting algorithms—that the result is sorted. These properties may be checked by
generating a symbolically encoded set of the reachable configurations of the counter au-
tomaton corresponding to the program. Using an implementation of the abstract regular
model checking technique [10] based on LASH automata libraries [1], the verification
took 10 sec for the acyclic list reversion case study and 0.5 sec for cyclic list reversion
on a Pentium 4 machine with a 2.6 GHz processor.

Moreover, let us note that all the above properties may oftenbe checked already
at thecounter automaton extraction phase. The checking is mostly straightforward. A
slight complication is just checking that no elements of thelist are lost via theu.next
:= w operations. However, even here a simple (fully automatable) heuristic may be
used. When we generate a counter automaton state containinga new abstract heap and
we can grant that some of its nodes have size one (e.g., after au := w.next statement),
we remember this fact. Later when we again encounter such a heap and we cannot stat-
ically guarantee that the appropriate nodes have size one, we may drop the information.
Then, when we see that anu.next := w operation is performed on a node for which
we remembered that its size is one, we know that we do not looseany list elements.
If this is not the case, we have to analyse the dynamic behaviour of the counter au-
tomaton and check whether it may actually happen that we loose some elements. In our
examples, however, we were able to perform all the checks statically.

In addition to checking safety properties, we have also fully-automatically checked
that all the considered programsterminate. For checking termination, we analysed the
generated counter automata using the tool described in [13]. On the same machine as
above, we were able to check termination in 4 sec for reversing acyclic lists, 1.5 sec for
reversing cyclic lists, 90 sec for InsertSort, and 150 sec for BubbleSort.

6 Conclusion

We have presented an approach for automatic verification of programs with 1-selector
dynamic linked structures. It is based on using counter automata as accurate abstract
models for such programs. These infinite-state models can behandled using various

12

advanced techniques and tools which have been designed recently for their automatic
analysis (e.g., [1, 2, 6]), and in particular concerning checking termination and liveness
properties (e.g., [13, 12]). Indeed, using counters referring to the sizes of parts of the
heap structure (e.g., list segments) of a program is a powerful means for dealing with
quantitative reasoning about programs, and in particular about their termination. Our
future work naturally includes extending this approach to more general linked structures
such as doubly linked lists, tree-like structures, etc.

References

1. The LASH toolset. http://www.montefiore.ulg.ac.be/ ˜ boigelot/research/lash/.
2. A. Bouajjani A. Annichini and M.Sighireanu. TReX: A Tool for Reachability Analysis of

Complex Systems. InCAV, 2001.
3. B. Boigelot and P. Wolper. Symbolic Verification with Periodic Sets. InCAV, 1994.
4. I. Balaban, A. Pnueli, and L. Zuck. Shape Analysis by Predicate Abstraction. InVMCAI,

volume 3385 ofLNCS, 2005.
5. S. Bardin, A.Finkel, and D. Nowak. Toward Symbolic Verification of Programs Handling

Pointers. InAVIS, Barcelona, Spain, 2004.
6. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration of Symbolic

Transition systems. InCAV, volume 2725, pages 118–121, 2003.
7. J. Berdine, C. Calcagno, and P. O’Hearn. A Decidable Fragment of Separation Logic. In

FSTTCS, volume 3328 ofLNCS, 2004.
8. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P.Moro, and T. Vojnar. Programs with list

are Counter Automata. Technical report, 2006. to appear.
9. A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying Programs with Dynamic 1-

Selector-Linked Structures in Regular Model Checking. InTACAS, volume 3440 ofLNCS,
2005.

10. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Regular Model Checking. InCAV,
volume 3114 ofLNCS, 2004.

11. M. Bozga and R. Iosif. Quantitative Verification of Programs with Lists. Technical report,
2005.

12. A. Bradley, Z. Manna, and H. Sipma. Termination Analysisof Integer Linear Loops. In
CONCUR, volume 3653 ofLNCS, 2005.

13. B. Cook, A. Podelski, and A. Rybalchenko. Abstraction Refinement for Termination. In
SAS, volume 3672 ofLNCS, 2005.

14. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL, 1977.

15. N. Dor, M. Rodeh, and S. Sagiv. Checking Cleanness in Linked Lists. InSAS, volume 1824
of LNCS, 2000.

16. A. Finkel, 2006. Personal communication.
17. A. Finkel and J. Leroux. How to Compose Presburger-Accelerations: Applications to Broad-

cast Protocols. InFSTTCS, volume 2556 ofLNCS, 2002.
18. R. Iosif. Symmetry Reductions for Model Checking of Concurrent Dynamic Software.STTT,

pages 302–319, 2004.
19. S. Ishtiaq and P. O’Hearn. BI as an assertion language formutable data structures. InPOPL,

2001.
20. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate Abstraction and Canonical

Abstraction for Singly-Linked Lists. InVMCAI, volume 3385 ofLNCS, 2005.
21. A. Møller and M.I. Schwartzbach. The Pointer Assertion Logic Engine. InPLDI, 2001.
22. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic.

TOPLAS, 2002.
23. E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying Temporal Heap Properties Specified

via Evolution Logic. InESOP, 2003.

13

