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Abstract. We address the verification problem of programs manipigadine-
selector linked data structures. We propose a new autorapfgdach for check-
ing safety and termination for these programs. Our appraadased on using
counter automata as accurate abstract models: contresstatrespond to ab-
stract heap graphs where list segments without sharingadlessed, and coun-
ters are used to keep track of the number of elements in tleggeents. This
allows to apply automatic analysis techniques and tooledonter automata in
order to verify list programs. We show the effectivenesswfapproach, in par-
ticular by verifying automatically termination of some 8ng programs.

1 Introduction

The design of automatic verification methods for programsimaating dynamic linked
data structures is a challenging problem. Indeed, the sisadf the behaviour of such
programs requires reasoning about complex transformmtibdata structures involv-
ing both creation and deletion of objects as well as moditioatof the links between
them (pointer manipulations). The heap of such programshmagg in fact an arbitrary
size and shape (a graph structure). There are several appofor tackling this prob-
lem addressing different subclasses of programs and usfageaht kinds of formalisms

for representing and reasoning about infinite sets of heaptstes, e.g., [21, 19, 22, 9].

We consider in this paper the class of programs manipuléitikgd data structures
with a single data-field selector. It corresponds to programanipulating linked lists
with the possibility of sharing and circularities. We prepa new approach for the au-
tomatic verification of such programs which is mainly basedising counter automata
as accurate abstract (infinite-state) models. These moaelse used for checking both
safety properties and termination of the considered prognasing techniques such as
(abstract) symbolic reachability analysis (for safety amvdriance checking) and auto-
matic generation of decreasing ranking functions (for teation checking).

Let us present in more details the proposed approach. Wdrstarthe observation
that if we do not consider garbage (parts of the heap not eddelrom the pointer
variables of the program), the heap graph is always a finileatmon of graphs of a
special form close to a tree: it is either a tree (where edgesligected towards the
root) or a set of trees having all their roots connected torgoks cycle. The number of
such graphs is infinite, but it can be proved that for eachafitithe number of vertices
where sharing occurs is bounded by the number of pointeavias of the program.

Then, for data-insensitive programs (e.g., a list revgnsadram), a natural abstrac-
tion consists in mapping each sequence of elements betweesharing points into an



abstract sequence of some (fixed) bounded size. Howeverafidr given value of the
bound, this abstraction is obviously not precise in gendémabrder to define a precise
abstraction, we need in fact to reason about the size of eagheace between two shar-
ing points. This leads to the idea of using counters in ordéetp this information in
the abstract model (and therefore to use counter automatasrsict models).

In fact, considering counter automata-based models hasaeadvantages. Not
only it allows to define accurate abstractions, it allows is® &0 handle quantitative
properties depending on the sizes of some parts of the héaig, We can handle pro-
grams with integer variables whose value is somehow retattte contents of the lists
(e.g., to their length). Moreover, it provides a powerfulywfar checking termination
which typically requires reasoning about decreasing wa(aegy., the size of the part of
the list to be treated).

A first contribution of the paper is to define an abstractiorppiag from data-
insensitive programs to counter automata for which we ptbaethe (concrete) pro-
gram and its abstraction abésimilar. This result is interesting since it means that our
abstraction preserves all properties of the class of des@nisitive programs. The con-
trol states of the built automaton correspond to abstraape$ (heap graphs where
sequences between shared points are reduced to singleesgriand each transition
corresponds to the execution of a program statement. lesepts a modification in
the shape together with a modification on the counters (@thto vertices abstracting
sequences between sharing nodes).

The control structure of the built counter automata can birary in general. How-
ever, it turns out that these automata have an importaneptyapve prove that if we
consider the evolution of the sum of all counters, the eftdatxecuting any control
loop is to increment this sum by a constant which depends erpthgram. We use
this fact to establish a new decidability result for list grams: for every given (data-
insensitive) list program, if the control structure of trengrated counter automaton has
no nested loops, the verification problems of safety progeeand termination are both
decidable.

Subsequently, we go further by considering the issue of-skatsitivity. We con-
sider the class of programs manipulating objects rangireg apotentially infinite data
domain supplied with an ordering relation, and we assumettiesonly allowed oper-
ation on these data values is the comparison w.r.t. thisriogleelation. This class of
programs includes, for instance, sorting programs. Wenelxéair previous abstraction
principle to the heap graphs of these programs by takingantmunt (in addition to
the size) some information about the order of the elemerttsaeimbstracted sequences
between sharing points, and we provide a construction wdsbciates with each pro-
gram a counter automaton-based abstract model. We shothithabstraction is sound
and complete w.r.t. the choice of ordering predicates.

Finally, we show the application of our approach on threemglas of programs (list
reversal, insertion sort, and bubble sort). We have desystematically their counter
automata models, and then we used (1) our ARMC tool [10] (andescompile-time
techniques) for checking safety properties, and (2) thenifeator tool based on [13]
for termination.

Related Work: Programs manipulating singly-linked lists have gained alattention
within the past two years, as shown by the fairly large nunalbegcent publications on
the subject[5, 7, 20, 4, 9]. Interestingly, the idea of adudtng away all the list segments



with no incoming edges is common to many of these works, ekiengh they are
independent and use different approaches and framewoigksstatic analysis [20],
predicate abstraction [4]. symbolic reachability anay5] and proof search [7]). The
fact that the number of sharing points in abstract heap tstre€ is bounded by the
number of variables in the program is also behind the teclasigproposed in [20, 9].

In [11], the authors use an abstract shape model with casyrtiat their concerns
are mostly related to the decidability of a specificationido@he approach that is the
closestto oursis [5]. However, it is rather pointed towastdewing particular properties
such as absence of segmentation faults and memory leak dgitan checking general
safety properties, and the work does not address the prafflearifying termination.
Moreover, the work reported in [5] offers less automatiothef verification than ours.
Recently, the same authors have started independentlyla[®@)ron automatic con-
struction of models based on counter automata similar t@pproach.

The use of ordering predicates in order to handle sortingnaras is similar to the
one considered in [15, 22] based on the shape analysis aproa

Termination is tackled by works such as [23, 4]. In all of #nesrks, ranking func-
tions must be given manually, whereas our approach is fullyraated.

2 Programs with Lists

In this section we define a model for programs manipulatingadyic list data struc-
tures. We consider that lists are implemented using referémointer) data types with
one selector (next) field, as it is the case in most objeerbed imperative program-
ming languages (e.g. Java, C, C++). For the time being weidengrograms without
recursion or concurrency constructs, therefore all véegare assumed to be global. In
addition to the list data structures, the programs can haegér variables.

2.1 Syntactic Definitions

We consider imperative programs working with a: while i # null do

set of pointer variable®Var and a set of integer2: k :=i.next;

counter variables$var. The pointer variables refer to3: i.next:=j;4:j:=1i

list cells. Pointers can be used in assignments sugh i:=k;

asu := null,u:= wandu : = w. next, selector up- 6: od

datesu. next := wandu.next := null, and new

cell creatioru: = new. Counters can be incremented Fig. 1. List Reversal Program
;=1 + 1, decremented :=i - landreset :=

0. The control structure is composed of iteratiahi(l €) statements and conditionals
(i f-then-el se). The guards of the control constructs are pointer equality w, data
comparisons. data <= v. dat a, zero tests for counters = 0 and boolean combina-
tions of the above. An example is the list reversal prografigure 1.

To simplify the definition of the operational semantics, vemsider that all pro-
grams are precompiled, by introducing right before any f@riassignment of the form
u (u.next) := new(w, w next) an assignment (u.next) := null. In particular, a
pointer assignment of the form : = u. next isturned intov := u; u :=null; u
. = V. next, possibly introducing a fresh variable



2.2 Concrete Operational Semantics

In order to define the concrete semantics of programs with, ige have to formalize
the notion ofheap In principle, a heap is a graph in which each node has at most
one successor. In addition, some nodes are designateddigldpbels (variables from
PVan). If all the edges are reversed, one can imagine a heap asbdigjpint trees, in
which, for each tree there might be an extra edge from arrarpinode back to the root.

In the rest of the paper, for a s&twe denote byA, the setAU{_L}. The element
1 is used to denote that a (partial) function is undefined at@ngpoint, e.gf (x) = L.
Also, for a functionf we denote byf | o the projection off onAi.e. fNA X A.

Definition 1. Let (D, <) be a totally ordered set, and PVar a set of pointer variables.
A heapis a tuple H= (N,SV,D), where N is a finite set of nodes; 8 — N, is a
successor functigr : PVar — N, is a function associating nodes to variables, and
D : N — @ is a function associating each node a data element.

The set of all heaps using variables fréar is denoted by+ (PVar). We denote
by n; - n, the fact thain, is the successor of; in H, and byu = n that the pointer

variableu € PVar refers to a node whose successan.isl might be omitted when it is
clear from the context. We denote lefy» the reflexive and transitive closure ?f A

nodenis said to be @ut pointin H, denoted asuty (n), if either it has two predecessors
or it is pointed to by a variablé.

The state of a program with lists is a tripldl,1,H) wherel € Lab is the cur-
rent program label, : IVar — Z is the current valuation of counter variables, and
H € s (PVar) is the current heap configuration. Each assignment modifeestate as

|/
follows: (I,1,H) sl (I",V';H"), wherel’ is the label of the next statement,is the
new valuation of counters, computed as usual, lahi$ a heap configuration such that

H = H’, in conformance with the rules in Figure 2.2. As a result efioging a node

from the heap, other nodes might become unreachable fropoihéer variables. This
set of nodes, whose lifetimdepends exclusivenn € N, is denoted adepy(n). Herr

is a special sink heap configuration, attained as the rekalhall pointer dereference.
A pointer equality testi = v evaluates to true in a heap = (N,S V) if and only if
V(u) =V (v). Also, u = null is true if and only ifV(u) = L. Due to the lack of space,
the rules for the assignment statemants w, u: =new, u. next := null andu. next

: = ware deferred to the long version of this paper [8].

3 Counter Automata

A counter automata with counters is a tuplé. = (Q,X,—), whereQ is a finite set

of control statesX = {xs,...,Xn} are the counter variables arde Q x ® x Q are
the transitions, wher@ is the set of Presburger formulae with free variables from
{xi,% | 1 <i < n}. A configuration of a counter automata withcounters is a tuple
(q,v), wherev is a mapping fromX to N. The set of all configurations is denoted

4 Formally, cuty (n):3n,neN.Ng#MASN) =SNz)=nV JueVar.V(u)=n.



V) = 1 Jw € PVar\ {u} .W%V(u)

pu= null H

Vu=neN N =N\dep(n)
vw € PVar\ {u} . ﬁw% n

u:=null
=5

H N,SV[u— 1],D)

V(w)=neN

UEWNeX (N, S V[u— S(n)), D)

H u:=null (

N'.S|n.V In,DIn) H
Fig. 2. Concrete Semantics of Heap Updatesi £ (N,SV,D), depy(n) £ {meN |Vue

Pvar. —u m}.
(N\{n},Sinn (VI g Dl )

by ¢ . The transition relation>C ¢ x ¢ is defined by(q,v) < (¢,V) iff there ex-

ists a transitiong LA g such that, ifo is an assignment of the free variables ¢of

(FV(9)), wherea(x) = v(x) anda(X') = v'(x), we have thath(FV(¢)a) holds and
v(x) = V/(x), for all variablesx with X ¢ FV(¢). A run of Ais a sequence of configu-

rations(do, Vo), (01,V1), (02,V2) ... such thaig;,vi) N (Qi+1,Vi+1), for eachi > 0.

Definition 2. Let A= (Q,X,—) be a counter automaton, where=X{x,...,X,} are
counter variables, that range over positive integers. Aaisl $0 belinearif all its tran-
sitions are of the formd(X) A Ai<i<nX = fi(X), whereg is a formula of Presburger
arithmetic, and f= y_; &jxj + bi, 1 <i < n are linear functions with integer coeffi-
cients. Moreover, A is said to ositiveif a;; > 0, forall 1 <i,j <n. Ais also said to
berestrictiveif, there exists a constante N such that, for each control stateiQ, on
each runmtthat visits g, the sum of values taken by the counfglts, x;, increases by at
mosta between any two consecutive times when the control state is q

The control graph of a counter automatiis the graph having as vertices the set
Q of control states, and, for any two stagandd/, there is an edge betwegnand

g in the control graph if and only if there exists a transit'[q)F?Q g in A. A counter
automaton is said to bt if its control graph has no nested loops. We can prove:

Theorem 1. The problems of reachability and termination for flat linqaositive re-
strictive counter automata are decidable.

We give a brief sketch of the proof. First notice that the ¢sifaons of a loop can be
composed into one single loop of the fotm¢$(X) A X’ = AX+ B. Then, we estab-
lish that for every operatioX’ = AX + B, the set{A'}i>; is finite, whereA! = A and
A+l = Al x A wherex is the product of square matrices. This implies that thel@ac
bility relation corresponding to the iterationlois expressible in Presburger arithmetics
[3,17]. Since our automata are flat it is easy to deduce thhtieachability and termi-
nation problems are decidable (it suffices to decide thesglgams for each loop).

4 Abstract Semantics of Programs with Lists

A common way of representing heaps compactly, consists pgping an entire list seg-
ment with no incoming edges into a special (abstract) notles ilea constitutes also



the basis of our abstraction. Lgt be a set ofbstract nodeandx be a set otounter
variables one for each node. We shall first define the abstract streicfuneaps.

Definition 3. Anabstract structuris a tupleH = (N,S V), where:

— N C «¢ is the set of abstract nodes, and
- S:N—N,,V:PVar— N, are the successor and variable mappings,

An abstract structure is moreover said to beriarmal formif, for each ne N, there
exists ue PVar such that u= n, and n is a cut point ifrl.
H

Intuitively, each abstract node corresponds to a set ofrebmoodes, and the counter
corresponding to each node gives the number of nodes inghiBar abstract structures
in normal form, we do not allow sequences of successiveadisiode that are neither
pointed by a variable, nor have the indegree greater thanTdrig condition is needed
in order to ensure that any such abstract structure definedeofinite set of variables

is finite.;(PVar) denotes the set of all abstract structures with variabtes RVar.

Lemma 1. Let PVar= {ui,...,un} be a set of variables, anid = (N,S V) be an ab-
stract structure in normal form such that d@vh) C PVar. Then|N| < 2n. As a conse-
guence, the number of such heaps is bounded asymptotigallydnd the bound is tight.

Let us define now a first abstraction function, denotedxgythat maps concrete
heaps into abstract structures. Given a concrete HeapN,SV,D), let>y CN x N
be a relation on the set of nodes, definedmassy N2 : ng 7 ny A —cut(ny). We denote

by ~y the reflexive, symmetric and transitive closurerefi. The H subscript shall
be further omitted for simplicity. For a node< N, we denote byn] the equivalence
class ofn with respect to~, also referred to st segmentThequotient heap K. =
(N/~, S/, V) is defined as follows:

= N/ ={[n] | ne N}, _

— foralln,me N, S, ([n]) = [m] iff 3ng € [n] Imp € [M] . S(ng) = My A cuty (M),
— forallue Pvar,ne N, V,_(u) = [n] iff V(u) € [n], and

- S/ andV,.. are undefined, otherwise.

Note thatS, . andV,.. are well defined partial functions.

Definition 4. Let H = (N,SV,D) be a concrete heap and/H= (N,.,S,.,V,.) its
quotient. An abstract structurd = (N,SV) is said to be astructural abstractionf
H if and only if there exists a bijective functi@n: N, U{L} — NU{L} such that,
B(L) =1, andforallue PVar:

= S(B([n))) = B(S/~([n])), andV/(u) = B(V/~.(u)).

Two abstract structures that differ only in the naming ofemdnd counter variables
are semantically equivalent, in the sense that they areaalisins of the same set of
concrete heaps. In practice, this increases the numberstifaab structures generated
by a symbolic state exploration tool. This problem can beraw@e by choosing a
canonical representation of abstract structures, asideddn e.g. [18]. We define the

structural abstraction functioms : s (PVar) — s (PVar), as(H) = H, iff H is the
canonical representative of a structural abstractidd .of



4.1 Data Insensitive Programs

This section is devoted to the description of counter autartiat abstract the behaviour
of the programs with lists. We formalize the correctnesswfamnstruction by proving
bisimulation between the semantics of a list program andehgantics of a counter au-
tomaton. This entails the strong preservation of tempoxgtiproperties. In particular,
safety and termination are strongly preserved by the coaut®maton, meaning that
one can accept and/or refute them based on the behaviole tEtter.

Consider a list program witkpointer variables anidcounter variables, i.4PVar|| =

k and||IVar| = I. We construct a counter automatan= (Q, X, ) with 2k+1 coun-

ters as follows. The control stat€sof the counter automaton are elements of the set
Labx (# (PVar)U{Her}). Letac = U{N | (N,SV) € # (PVar)} be the set of nodes
used in the structural abstraction. The countersXare {x, | n € a¢ } UIVar, one for
each node, and including the counter variables from thdr@igrogram. The transi-

tions are given by the triplee;& q with g = (I,H), g = (I’,H’) such that there is a

statement : s;1” in the program and the relatid % H’ is described by the structural

rules in Fig. 3. Due to a lack of space, the rules for the ass@n statements: = w,
u: =new, andu. next := nul | are deferred to the long version of this paper [8].

In order to simplify the treatment of the different cases, vage introduced two
low-level operations, that perform merging and splittifgabstract nodes (Figure 3.
Intuitively, we need to perform merging of two abstract nedendm (u(H,n, m)) in
order to re-normalize the abstract structure, after a detste update. In the case of
;= w. next, we need to split€(H,n,m)) the abstract nodereferred to byw in H, into
two nodes andm, based on whether the value of its corresponding counteeeter
than one or onexg = 1, X, > 1). The semantics of conditional tests € v andu =
nul I') is similar to the concrete case. For more details concgrttia translation, the
reader is referred to the list reversal example in Figure 4.

Now we can state the main theorem of this section. Given aidagmsitive pro-

gramP, let (s,) be its concrete semantics with set of states: Lab x (IVar —
Z) x s (PVar) and = its transition relation. Le = Q x (X — Z) be the set of all

configurations of the corresponding counter automaton-arits transition relation.

Theorem 2. (s,<) and (s, ~) are bisimilar.

List Reversal Example Figure 4 shows the counter automaton for the list reversal
program from Figure 1, started with a non-circular list gethto byi, as input. The
counter variable corresponding to each abstract node istéddpnside the node itself.

4.2 Ordered Data Programs

In this section we complete the definition of abstraction gomgrams with lists, by
introducing an abstraction for heaps containing data fraror@ered domair®, <).

More precisely, we need to abstract the order relationsrtiet occur inside a list
segment, and between two list segments. We shall therefmsider five predicates,



Vu=neN vweVar\{u}.V(w)#n
JweVar\{u} V(w)=V(u)#Ll ImpeN\{n}.p£EmA Sm)=3p)=n

Vu =neN vwe Var\ {u} . %L
V(u=neN vweVar\{u}.V(w)#n Sn)=meN\{n} YweVar\{u}.V(w)#m
Ime N\ {n} . S(m) =n Ip eN\{nm} . Sp =m "

vq

Vpe N\ {n} . S(p) #n eN\{np} Sag#m N =N\{n}
F 200 (N 8V — 1)), mn) B0 (N SV L) o)
Vw)=neN Vw)=neN mex \N
H-—1  (N,SV[u—§n)) A0 G0N SV (U — mi,nm)

u:=w.next

Fig. 3. The Counter Automaton for Data Insensitive ProgramsLet H 2 (N,SV). The merg-
ing functionisp : # (Var) x a¢ x a¢ — # (Var) given bypu(H,n,m) = (N, S|z [n — S(m)],V)
whereN’ = N\ {m}. The splitting function iso : # (Var) x &t x . — # (Var) given by
o(ﬁvnvm) = <NU{m}7§7\_/> whereS = (g\{(nv p)[n ? p}) U {(m7 p) ‘ n ? p} U {(nvm)}

with the following meanings. For each predic®ewve denote byP° its semantics, i.e.
the relation it induces on a set of nodes.

LetH =(N,SV,D) be a concrete heap ahi.. its quotient as defined above. Then,
o°([n]) is true for a list segmerjn] iff all its elements are ordered w.rx. Similarly,
[n] =, [m] foro € {ff, fa,af,aa} iff the first (all) element(s) ofn] is (are) less than the
first (all) element(s) ofm|.

Definition 5. An abstract heafs a tupleH = (H,0, <, <fa, <af, <aa), WhereH =
(N,S\V) is an abstract structureg C N is a unary ordering predicate, and faaf aaC
N x N are binary ordering predicates.

An abstract hea|b1 (H,o, <ff =ta, <af, <aa) Sharing the same structuke =
(N,SV) as another abstract heatﬁ (H,0, <%, =2 ks> <na), is said to bemore

precise denoted a8 = H', if and only if, for eactn,m e N we have ¢n) < o/(n) and
n=.m<n=.m, foralloec {ff,faaf,aa}. Intuitively, the absence of a predicate
indicates incertitude w.r.t. the concrete ordering comfigon. For instance if @) does
not hold, this means that, in the concrete settimgepresents” a list segment that may
or may not be ordered.

Given a seSof abstract heaps sharing the same structure, we denatSthe least
upper bound, and bySthe greatest lower bound & with respect ta_. Note that |
andr1are undefined for sets of abstract heaps that have differestisres. The domain

of abstract heaps is denoted by (PVar),C).

Definition 6. Let H= (N,SV,D) be a concrete heap with data from the ordered do-
main (9,=) and H.. = (N,_,S,.,V.) its quotient. An abstract hedp = (H,0, <t
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Fig. 4. Non-circular List Reversal

,=fa, Zaf, Zaa) IS said to be arabstractiorof H if and only ifas(H) = H, wherep is
the bijection from Definition 4, and for alh],[m € N, ., o € {ff, fa,af,aa}:

— o(B([n])) = o([n]) andB([n]) = B([m]) = [n] < [m].

We definen : s (PVar) — # (PVar) asa(H) = n{H | H is an abstraction dfi }.
Note that all abstract heaps that are abstractiort$ share the same structure, hence
M is defined for this set. Theoncretizatiorfunction isy : # (PVar) — » (s (PVar)),
defined ag/(H) = {H | a(H) C H}. Clearly,y(H1) C y(Hy) if Hi C Hp, but the dual
does not necessarily holds.

4.3 Counter Automata Semantics with Ordering Predicates

Taking ordering predicates 8¢ taaf,aa iNt0 account refines our notion of counter au-
tomaton, previously introduced. The counter automatomddfin this section keeps

track of the ordering information, allowing one to verifyoperties related to the order-

ing of lists, as it is the case for sorting programs, e.g.risset, bubblesort, etc.

A counter automaton with ordering predicate8ds= (Qa, X, i>. The set of control

states is defined now &3 = Labx (# (PVar) U{Her}), and the set of configurations
is sa = Qa x (X — Z), with the usual notation. In addition to updating the aledtra

structure, the transition relatio® has to also update the ordering predicates. Our goal

is to define the "best transformer” in the sense of [14]. Morecfsely, our loss of
information is due only to the choice of ordering predicathae definition of2 does

not introduce further imprecision. Theorem 4 below formmedi this statement.

In order to achieve completeness of the abstract operatsmmaantics, we have
designed our abstract state transformer function in twgestaThe first stage yields
the actual change of the predicates, and the second one eaation of "saturation”
whose goal is to add all the predicates that can be derived fh@ existing ones, on



Transitivity

Weakenin
; 5 nXgprmAM=Z4r p=n=z¢f p
L n=Xaam=n=am
2. NZgaMm=N=faMm 6. NZafMA M=ff p=N=af P
3. N=arm=n=gm 7. N=fprMAM=fap=nN=faP
4. n:famén:ffm 8. nﬁaam/\mjaap :>njaap
“Reflexivity 9. NZaaN AN=ZfaM = n=gam
12. n<ffn lO.njffm/\o(m) :>njfam

11 n =<3t m A o(m) = N=gam
Symmetry
15 n=3tn A n=<fan = nN=zNn

13. n<aan = o(n)
14. o(n) = N=faNn

Fig. 5. Saturation rules

a given abstract heap, without changing the correspondingfsconcrete heaps. For
the remainder of this section, we fix an abstract hdap (H,0,<tt,=<ta, <af, =aa),

with its abstract structurel = (N,S,V), and letH’ be just likeH, except that all the
components of the tuples are primed.

Let us begin by the presentation of the second stage. Givabstract heapl, we
define thesaturationof H to be the most precise abstract heap whose concretization
is the concretization ofl. This notion of saturation is necessary to define an abstract
operational semantics that is most precise w.r.t. the orgebstraction, induced by
the o and=<++ faaf.aa Predicates. Unfortunately, this definition does not allave do
effectively check thakl’ is the saturation off for arbitrary abstract heaps. The problem
is that the sey(H) is infinite. To overcome this problem, we introduce “synicait
saturation rules, given in Figure 5. The closure of an abstreapH w.r.t. the rules in
Figure 5 is denoted amat(H).

The saturation rules need to be applied with the followingnuise: if(ﬁ,v) is
a configuration of the counter automaton, anés an abstract node dfi such that
v(Xn) = 1, then it must be the case thgnpandn <, n,o € {ff, fa,af,aa} all hold in
H. The reason is that, list segments of size one are orderddnati possible ordering
relations with themselves. The generated counter autanveitbtest, at each step, for
each noda € N, thatx, = 1 and update the ordering predicates accordingly. The next
Theorem shows the soundness and completeness of the isatunes.

Theorem 3. Given an abstract heal, we have sgH) = I‘I{W | y(W) =y(H)}.

We define now how the change of abstract predicates is beifigrpeed. Most of
the rules that affect only the abstract structure of theesteg very similar with the data
insensitive case. To be more precise, all rules from Figuweit the exception of the
ones that use the merging)(or the splitting ¢) functions, will simply maintain the
same predicates between the source and destination ofatingtion. For example, if
we hadV (u) = V(w) = n andn <4 m, then the result of applying the statement =

null isV' =V[u— L] andn <%, M. The remaining rules are dealt with by introducing
orderedversions of the merging and splitting functions, caligdanda,, respectively.
As a general rule, the new merging and splitting operatioaparformed on saturated
abstract heaps, and another saturation is applied to th#,resorder to maintain the
desired precision.

Letn,me N be such tha§(n) = mandmis not a cut point irH. We recall that the
result ofu(H,n, m) in this case is the abstract structure in whidakes the place of both
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nandm. Thenpo(ﬁ,n,m) = (U(H,n,m), 0, =<5, <ha <hss Saa) Where 6, <ff faaf.aa
are the (unique) relations dw andN x N satisfying the following constraints, for all
peN,q,r e N\{p,n}ando c {ff faaf aa}:

o(n) A o(m) A Nn=<aams o (n) N=af P A M=qs p<:>n<af p
N=aaP A M=aaPp&N=5P P=faN A p=fame p=i,
P=<aaN A P=aaMm< p=4.n O(Q)@O’(Q)andqjor@qjér

The following Lemma shows that no information is lost by amplagation of p,
provided that the source of the transition was a saturatsttadh heap. The intuition
is that, by merging two abstract nodes, where one of themtia sat point, the set of
concretizations is preserved.

Lemma 2. LetH = (H,0, <, <fa, <af, <aa) € st (PVar) whereH = <N SV)e (PVar)
and nme N such thaB(n) = m and m is nota cut pointiH. Theny(H) = y(po(sat(H),n,m)).

The splitting operation on abstract structures replacesmlen with two nodes
n andm, such thaim becomes the successorroind the previous successorrobe-
comes the successor of In addition, the effect of the split operation on the order-
ing predicates is modeled by the rules given in the followﬁlgmally,oo(ﬁ, n,m) =
(o(H,n,m), 0, <, <fa <ar, Sha)» Where &, < ¢, a1 1o are the (unique) relations on
N andN x N that satisfy the following constraints, for adle N\ {n}, q,r € N\ {p,n},
and allo € {ff fa,af,aa}:

o(N) & N=gam P=tane p=f,M  P=aahe p=gMm

o(n) < o/ (m) N=aaN<& M5, m N=aa P& M=L, P
N=<atPpemM=;p N<aanem=yn o(q) & d(qandg=.reqg=ir
The following Lemma formalizes the correctness

Lemma 3. LetH = (H,0, <, <fa, <af, <aa) € I (PVar), whereH = (N,S V) € H(PVar),
ne N and mg N'. Theny(H) = y(go(sat(H),n,m)).

A conditional test involving data. data < w. dat a evaluates true in the abstract
heapH if and only if V(u) <¢¢ V(w) holds onsat(H). Otherwise, such tests introduce
non-determinism in the generated counter automaton. Tdrerghe semantics of the
counter automaton is a simulation of the semantics of thgirai program, but not a
bisimulation anymore.

Theorem 4. Let{l,1,H) € s be a concrete program state. Then there exiéts ,H') €
s such that(l,1,H) < (I”.//,H’) if and only if there exists an abstract stateH’,v') €

sasuch that(l,a(H),v) & (I”.H’,v') and H € y(H').

The following is a consequence of Theorems 1, 2 and 4.

Corollary 1. For every program with lists, if its counter automaton is fliten safety
and termination are decidable properties.

Notice that the number of objects created by a flat list pnogisaalways bounded by
a constant, therefore its counter automaton is linear igesind restrictive (but not
necessarily flat). If this automaton is moreover flat, we ggiyaTheorem 1.
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5 Experimental Results

In order to obtain experimental evidence about how our tieghes behave in practice,
we have applied them to several non-trivial procedures pudating singly-linked lists.
In particular, we have considered a procedureréwersing lists whose behaviour we
have studied both for aacyclic as well ascyclic input, and then two procedures for
sorting lists, namelynsertSortandBubbleSort

For all the examples, we generated (by hand—an implementafi the transla-
tion procedure is our future work) the corresponding couatéomata. Sizes of the
automata—after some trivial simplifications joining segces of states with no varia-
tion in the underlying heap graph—varied as follows: (1) filies and 3 counters for
reversing acyclic lists (no optimizations were used in tase), (2) 11 states and 3
counters for reversing cyclic lists, (3) 88 states and 6 tensrfor InsertSort, and (4)
149 states and 7 counters for BubbleSort (we considered @minpd version of the
sort with a pointer remembering the already sorted part @fit). For list reversing,
no ordering predicates were used.

As for thesafety propertiesf the considered programs, we checked that there are no
null pointer assignments, no elements are lost, the shapeserved, and—in the case
of the sorting algorithms—that the result is sorted. Thespgrties may be checked by
generating a symbolically encoded set of the reachablegumations of the counter au-
tomaton corresponding to the program. Using an implemiemntaf the abstract regular
model checking technique [10] based on LASH automata lisdd ], the verification
took 10 sec for the acyclic list reversion case study and €cSar cyclic list reversion
on a Pentium 4 machine with a 2.6 GHz processor.

Moreover, let us note that all the above properties may dieechecked already
at thecounter automaton extraction phasehe checking is mostly straightforward. A
slight complication is just checking that no elements ofltsteare lost via thei. next
= w operations. However, even here a simple (fully automajdiderristic may be
used. When we generate a counter automaton state containieg abstract heap and
we can grant that some of its nodes have size one (e.g., afterFaw. next statement),
we remember this fact. Later when we again encounter suchmdred we cannot stat-
ically guarantee that the appropriate nodes have size anmay drop the information.
Then, when we see that annext : = woperation is performed on a node for which
we remembered that its size is one, we know that we do not langdist elements.
If this is not the case, we have to analyse the dynamic bebhawbthe counter au-
tomaton and check whether it may actually happen that weslsome elements. In our
examples, however, we were able to perform all the checkisaits.

In addition to checking safety properties, we have alsgfalitomatically checked
that all the considered prograresminate For checking termination, we analysed the
generated counter automata using the tool described in Qi8the same machine as
above, we were able to check termination in 4 sec for revgmsiyclic lists, 1.5 sec for
reversing cyclic lists, 90 sec for InsertSort, and 150 se®tdbleSort.

6 Conclusion
We have presented an approach for automatic verificatiomagframs with 1-selector

dynamic linked structures. It is based on using counterraata as accurate abstract
models for such programs. These infinite-state models camhbdled using various
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advanced techniques and tools which have been designetlyefoe their automatic
analysis (e.g., [1, 2, 6]), and in particular concerningoltireg termination and liveness
properties (e.g., [13, 12]). Indeed, using counters rifgro the sizes of parts of the
heap structure (e.g., list segments) of a program is a palwmdgans for dealing with
quantitative reasoning about programs, and in particldautitheir termination. Our
future work naturally includes extending this approach ty@rgeneral linked structures
such as doubly linked lists, tree-like structures, etc.
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