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Abstract. We address the problem of automatic verification of programswith
dynamic data structures. We consider the case of sequential, non-recursive pro-
grams manipulating 1-selector-linked structures such as traditional linked lists
(possibly sharing their tails) and circular lists. We propose an automata-based
approach for a symbolic verification of such programs using the regular model
checking framework. Given a program, the configurations of the memory are
systematically encoded as words over a suitable finite alphabet, potentially infi-
nite sets of configurations are represented by finite-state automata, and statements
of the program are automatically translated into finite-state transducers defining
regular relations between configurations. Then, abstract regular model checking
techniques are applied in order to automatically check safety properties concern-
ing the shape of the computed configurations or relating the input and output
configurations. For that, we introduce new techniques for the computation of ab-
stractions of the set of reachable configurations, and to refine these abstractions if
spurious counterexamples are detected. Finally, we present experimental results
showing the applicability of the approach and its efficiency.

1 Introduction

In this paper, we address the problem of automatic verification of programs withdy-
namic linked data structures. Such programs are in general difficult to write and un-
derstand, and so the possibility of theirformal verificationis highly desirable. Formal
verification of such programs is, however, a very difficult task too. Dynamic allocation
leads to a necessity of dealing with infinite state spaces. The objects to be dealt with
are in general graphs whose shape is difficult to be restricted in advance. The problem
is that the linked data structures may fulfill some shape invariants at certain program
points, but these invariants may be temporarily broken in various ways while perform-
ing some operations over the data structures.

We consider in this work the case of sequential non-recursive programs manipulat-
ing structures with one next pointer such as traditional singly-linked lists and circular
lists (possibly sharing their parts) that belong among the most commonly used struc-
tures in practice. We propose an automata-based approach for symbolic verification of
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such programs using theregular model checking framework[11, 19, 3]. To the best of
our knowledge, this is the first time regular model checking is systematically used in
this area—so far, there has only been an isolated ad-hoc attempt to do so in [2].

As our first contribution, we provide asystematic encodingof the configurations
of programs we consider as words over a suitable finite alphabet. Potentially infinite
sets of configurations can then be represented by finite-state automata. Moreover, we
further propose anautomatic translationof non-recursive sequential C-like programs
(without pointer arithmetics and with suitably abstractednon-pointer data values) into
finite-state transducers applicable to the sets of program configurations represented by
automata and defining regular relations between these configurations. The translation is
done statement-by-statement, and one can then either take aunion of all the statement
transducers or work with them separately. For some of the pointer manipulating state-
ments, the translation cannot be achieved by providing a direct construction of a single
transducer, and we thus propose to simulate them by a repeated application of some
auxiliary transducers.

By repeatedly applying the transducer (or transducers) representing a program to the
automaton encoding a set of possible initial configurations, one can obtain the sets of
configurations reachable in any finite number of steps. It is,however, usually impossible
to obtain the set of all reachable configurations in this way—the computation will not
terminate for most programs with loops. One thus has to consider techniques that will
accelerate the computation such that termination is achieved as often as possible—a
general termination result cannot be obtained as the verification problem considered is
clearly undecidable.

In the literature, several different general-purpose techniques have been proposed
to accelerate the computationof reachable states in regular model checking. They in-
clude, e.g., widening [3, 17], collapsing of automata states based on the history of their
creation by composing transducers [10, 1], abstraction of automata [2], or inference of
languages [6]. In this work, however, as our further contribution, we propose a new set
of acceleration techniques that are more tailored for the given domain and thus promise
much better performance results. These techniques are based on new language abstrac-
tions, which contrary to those we have introduced in [2], arenot defined on the repre-
sentation structures (i.e. the automata representing setsof configurations), but defined
on words (corresponding to configurations). Such abstractions are defined by means
of finite-state transducers following different generic schemas. The definitions of these
abstractions is guided by the observation that in the configurations of the programs we
consider there are some repeated patterns for which it is sufficient to remember their
number of repetitions precisely up to some fixed bound, and toabstract this number
by an arbitrary one if it is beyond the bound. The abstractionschemas we define are
refinable in the sense that they define infinite sequences of abstraction mappings with
increasing precision. Therefore, our verification approach is based on computing ab-
stractions of the sets of reachable configurations, and on refining the abstractions when
spurious counterexamples are detected.

These techniques allow us tofully automatically computesafe overapproximations
of the state space of programs with 1-selector-linked dynamic data structures from
whose elements the non-pointer fields are abstracted away. In this way, we can automat-



ically check many important safety properties related to a correct use of dynamically
allocated memory—absence of null pointer dereferences, working with uninitialized
pointers, memory leakage (i.e. the fact that there does not arise any unfreed and un-
accessible garbage), etc. Furthermore, we can automatically handle the cases where
a finite number of elements of the considered dynamic data structures are allowed to
carry other than pointer fields. Using this fact and a simple technique which we pro-
pose for describing the desired input/output configurations, we can then automatically
verify various properties relating the input and output of the considered programs (e.g.,
that the output of a list reversing procedure is really exactly the reverse of the input
list, etc.). Finally, with a little help from the user, the techniques can also be applied to
dealing with linked dynamic data structures whose elementscontain any data fields of
finite type. Moreover, the manual help of the user may be replaced by using a heuristic
that we have very recently proposed (and which we briefly mention at the end of the pa-
per), or the user may decide to use some of the slower, fully automatic, general-purpose
acceleration methods.

We have implemented the proposed techniques in a prototype tool and tried it out
on a number of procedures manipulating classical singly-linked lists as well as cyclic
lists. The results are very encouraging and show the applicability of our approach.

Related Work. Out of the work on verification of programs with dynamic linked data
structures published in the literature, the two approachesthat are probably the closest
to our approach are the ones related to the tools Pale [15] andTVLA [16].

Pale (or more precisely its version for singly-linked structures) based on [8] uses a
similar encoding of configurations as the one we proposed in the paper. The possibility
of sharing parts of the lists is, however, not considered there. Moreover, there is no
translation of the programs to transducers for manipulating sets of configurations in
the Pale approach. The effect of the program is expressed by manipulating a logical
description of the configurations, and automata come into play only when deciding the
resulting WS1S formulae in Mona [12]. The approach of Pale isnot as automatic as
ours—only loop-free code can be handled automatically; if there are loops in the code
to be checked, the user has to manually provide their invariants. We adopt a different
methodology based on abstract symbolic reachability analysis which can also be used
to automatically generate invariants.

TVLA is based on abstractions of the arising pointer structures described in a 3-
valued logic [16]. The approach is more automatic than the one of Pale, but still the
user may be required to provide some instrumentation predicates (or simulation invari-
ants in the later approach of [7]) to make the abstraction sufficiently precise. The recent
work [13] presents the first steps towards automatically obtaining the necessary instru-
mentation predicates by an analysis of spurious counterexamples. Moreover, up to very
recently, TVLA had difficulties with cyclic structures thatwere resolved in a way [14]
which like our approach exploits the observation that singly-linked structures exhibit
some internal repeated structural patterns.

Both Pale and TVLA are extended to handle structures with more than a single next
pointer. We are preparing such an extension of our approach based on tree (or more
general) automata too.



Finally, representations of linked memory structures based (at least partially) on
automata were used in [9, 5, 18, 4] too. In [5, 18], the specialproblem of may-alias
analysis is primarily considered, and automata are combined with various classes of
constraint systems. In [4], an alias logic with a Hoare-likeproof systems is introduced.
It is, however, not clear how to exploit the automata-based representations proposed in
these works in a context where the automata should be handledby transducers.

Outline. The rest of the paper is organised as follows. In Section 2 weintroduce basic
concepts about automata and transducers. In Section 3 we describe our encoding of
pointer programs with automata and transducer. Then, we give our verification method
in Section 4. Finally, we describe our experimental resultsin Section 5 and conclude.

2 Automata and Transducers

A finite-state automatonis a 5-tupleA = (Q,Σ,δ,qinit ,F) whereQ is a finite set of
states,Σ a finite alphabet,δ ⊆ Q×Σ×Qa set of labelled transitions,qinit ∈ Q the initial
state andF ⊆ Q a set of final states.

The transition relation→⊆ Q×Σ∗×Q of A is defined as the smallest relation sat-
isfying: (1) ∀q ∈ Q : q

ε
−→ q, (2) if (q,a,q′) ∈ δ, thenq

a
−→ q′, and (3) if q

w
−→ q′ and

q′
a
−→ q′′, thenq

wa
−→ q′′. The (regular) language recognised byA from a stateq ∈ Q is

L(A,q) = {w : ∃q′ ∈ F. q
w
−→ q′}. The language ofA is L(A) = L(A,qinit ). We suppose

here that automata are manipulated in their canonical (i.e.minimal deterministic) form.
A finite-state transduceroverΣ is a 5-tupleτ = (Q,Σε ×Σε,δ,qinit ,F) whereQ is

a finite set of states,Σε = Σ∪{ε}, δ ⊆ Q×Σε ×Σε ×Q is a set of transitions,qinit ∈ Q
is the initial state, andF ⊆ Q a set of final states. The transition relation→⊆ Q×

Σ∗×Σ∗×Q is defined as the smallest relation satisfying: (1)q
ε,ε
−→ q for everyq∈ Q,

(2) if (q,a,b,q′) ∈ δ, thenq
a,b
−→ q′ and (3) if q

u,v
−→ q′ andq′

a,b
−→ q′′, thenq

ua,vb
−−−→ q′′.

A transducerτ defines a (regular) relationRτ = {(u,v) : ∃q′ ∈ F. qinit
u,v
−→ q′}.

Given a languageL ⊆ Σ∗ and a relationR⊆ Σ∗×Σ∗, let R(L) be the set{v∈ Σ∗ :
∃u ∈ L. (u,v) ∈ R}. Sometimes, we abuse the notation by identifying a transducer τ
(resp. an automatonA) with the relationRτ (resp. the languageL(A)). For instance, we
write τ(A) to denoteRτ(L(A)).

Let id ⊆ Σ∗×Σ∗ be the identity relation and◦ the composition of relations. Given
a transducerτ, let τ0 = id, τi+1 = τ ◦ τi , and letτ∗ = ∪∞

i=0τi be the reflexive-transitive
closure ofτ.

3 From Programs to Transducers

In this section, we describe the translation we propose for automatic verification of
sequential, non-recursive programs with 1-selector-linked dynamic data structures in
the framework of regular model checking. Our translation isgeneral enough to cover
anyprogram of this kind (not containing pointer arithmetics and not explicitly covering
the possibly necessary abstraction of non-pointer data).



We first describe how to encode as words the so-called programstores, i.e. the dy-
namic memory part of program configurations containing dynamically allocated mem-
ory cells linked by pointers. This encoding is similar to theone used in [8], but extended
with the possibility of lists sharing their parts. Then, we propose an encoding of the stan-
dard C pointer operations (apart from pointer arithmetics)in the form of transducers.
This is different from [8] where operations are encoded by changing a logical descrip-
tion of the configurations. Some of the pointer operations cannot be translated directly
to a single transducer, therefore we propose to simulate their effect by computing a limit
of a repeated application of certain simple auxiliary transducers.

In the following, we will use as a running example the following procedure revers-
ing a list l . We suppose the data fields normally present in the elements of the data type
List to be abstracted away and just the next-pointer fields to be preserved.

List x,y,l;
l1: y = null;
l2: while (l != null) { // i.e. if (l!=null) goto l3; else goto l7;
l3: y = l->next;
l4: l->next = x;
l5: x = l;
l6: l = y; } // i.e. l = y; goto l2;
l7: l = x;
l8: // end of program

3.1 Encoding Stores as Words

Basically, a store is encoded as the concatenation of several words (separated by a
special symbol), each of them representing a list of elements. Successive elements of
these lists are given from the left to the right, with positions of pointer variables marked
by special symbols. We suppose for the moment that list elements contain no data—
later we show that adding data of a finite type is not a problem.We also suppose for the
beginning that the store does not contain cycles nor shared parts (i.e. no two different
next-pointers point to the same list element). To encode such stores as words, we use
the following alphabetΣ. For every pointer variablex used in the program at hand, we
requirex∈ Σ. We further use the following letters:| to separate lists (and some special
parts of the configurations),/ to separate list elements (i.e./ represents a next-pointer),
# to express that a next-pointer points to null, and ! to denote that the next-pointer value
is undefined.

Then, we can encode stores without sharing and cycles as the following sequence
of three parts separated by the symbol|:

– The first part contains a sequence of pointer variables whosevalues are undefined.
In order not to have to consider all their possible orderings, we fix in advance a
certain ordering onΣ that is respected here as well as in similar situations below.

– The second part contains pointer variables pointing to null.
– Finally, the third part contains the list sequences separated again by the symbol|.

Each list sequence is encoded as follows:



y

x

Fig. 1. A store with sharing

• Every list element is represented by a (possibly empty) sequence of pointer
variables pointing to it.

• The lists elements are separated by the symbol/.
• The lists end either with the symbol # (null) or ! (undefined).

For example, the wordx y | | l / / # | encodes a possible initial configuration of the
list reversion example:x andy are undefined, no variable points to null, andl points to
a list with two elements.

Now, regular expressions (or alternatively finite-state automata) can be used to de-
scribe sets of stores. For instance, the regular expression(x y | | l /+ # |)+ (x y | l |)
encodes all possible initial stores for our list reversion example.

Notice that in our encoding, we do not allow garbage (parts ofthe memory not
accessible from pointer variables). As soon as an operationcreates garbage, an error is
reported. In fact, such a situation corresponds to a memory leak in C (in Java, on the
other hand, we can always perform “garbage collection” and remove the garbage).

Remark: Clearly, pointer variables appear exactly once in every word. The separator|
and the symbols # and ! appear a bounded number of times since we do not consider
stores with garbage. Finally, the symbol/ can appear an unbounded number of times.

Lists with Sharing and/or Loops. To encode sharing of parts of lists as, for example,
in Figure 1, we extend the alphabetΣ by a finite set of pairs of markers (mf , mt , nf , nt ,
etc.). A “from” markerXf may be used after a next-pointer sign/ to indicate that the
given next-pointer points to an element marked byXt (the corresponding “to” marker).
Then, for instance, the word| | x / mf | y / / nf | nt mt / / # | encodes the store of
Figure 1. As one can easily see, this store could be encoded inseveral other ways too
(e.g., as| | x / nt / / # | y / / nf |).

Notice also that markers allow us to encode circular lists (as, e.g.,| | x nt / / nf |
corresponding to a circular list of two elements pointed to by x).

It is not difficult to see that given a store withk pointer variables encoded with more
thank pairs of markers, one can encode the same store with at mostk markers provided
that no garbage is allowed: If a “to” marker is at the beginning of a sequence of cells that
is not accessible without using markers, we can put these sequence directly in place of
the corresponding “from” marker and save one pair of markers. For example, the store
| | nt mt / / # | x / mf | y / / nf | of Figure 1 can be described with one pair of markers
as| | x / nt / / # | y / / nf | or also as| | x / mf | y / / mt / / #|.

Typically, the number of markers that is really needed is even smaller thank as we
will demonstrate in our experiments.

Remark: A given store can have several encodings. Although we partially normalize
the encoding by imposing a certain ordering on the symbols that are attached to the same



memory location, we do not define a canonical representativeof the store. However,
our experimental results (see Section 5) show that this is not an obstacle to a practical
applicability of our method—at least not in the context of verifying particular, pointer-
intensive library routines that we have considered so far. Moreover, there is a hope
that one can further normalize the encoding and implement normalization over a set of
configurations as a special operation on the structure of theautomaton representing this
set—we leave this question for our further research.

3.2 Encoding Program Statements as Transducers

We now describe our encoding of program statements as transducers.3 We consider
non-recursive C programs without pointer arithmetics. We first also suppose all non-
pointer data manipulations to be abstracted away—we brieflyreturn to handling them
later. Such programs may easily be pre-processed to containonly statements of the form
pointer assignment; goto l; orif (pointer test) goto l1; else goto l2;.
Moreover, by introducing auxiliary variables, we can eliminate multiple pointer deref-
erences of the formx->next->next and consider single dereferences only.

To encode full configurations of the considered programs, weextend the encoding
of stores by adding a letter for the line of the program the control is currently at fol-
lowed by a separator|. Moreover, for the needs of our verification procedure, we add a
single letter indicating the so-called computation mode. The mode is eithern (normal),
e (error—a null pointer dereference or working with an undefined pointer has been de-
tected),s (shifting, used later for a realization of the pointer manipulation statements
that cannot be implemented as a single transducer), andu (unknown result that arises
when an insufficient number of markers is used). For instance, the initial configurations
of the list reversion example are then(n l1 | x y | | l /+ # |)+ (n l1 | x y | l |).

Conditional jumps based on tests likex==null or x==y are now quite easy to en-
code. The transducer just checks whetherx is in the null section or in the same section as
y (taking/ and| as section separators), and according to this changes the letter encoding
the current line. Ifx or y is in the undefined section, we go to the error mode. Similarly,
assignments of the formx=null orx=y are easy to handle—x is deleted from its current
position (using anx,ε transition) and put to the section ofy (using anε,x transition).

A slightly more involved case is the one of tests based on thex->next construct
and the one of they=x->next assignment. Apart from generating an error whenx is
undefined or null, one has to consider the successor ofx, which may involve going from
a “from” marker to the appropriate “to” marker. However, as the number of markers is
finite, the transducer can easily remember from which markerto which it is going and
skip the part of the configuration between these markers.

Adding/removing markers The most difficult case is then the one of thex->next=y
assignment. The transducer first tries to commit the operation by using a pair of unused
markers (saymf /mt ) out of the in advance fixed set of marker pairs (an unused marker
pair is one that does not appear in the current configuration word). Then, behind the

3 Due to space limitations, we cannot provide a fully precise description here—an interested
reader is referred to the full paper.
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Fig. 2.An example store, the store after the statementl->next=x, and after a rearrangement

section ofx, the transducer putsmf , and marks the section ofy by mt . For instance, in
the list reversion procedure,n l4 | | | x / / # | l / y / # | is transformed vial->next=x
into n l5 | | | mt x / / # | l / mf | y / # | as shown in Figure 2 (a), (b).

However, there may not be any unused markers left. In this case, the transducer
tries to reclaim some by re-arranging the configuration. This can be done by moving
some sequence of cells that starts with a “to” marker directly into the place of the
corresponding “from” marker (provided these markers do notconstitute a loop). As
explained in Section 3.1, this is always possible provided the chosen number of pairs
of markers is sufficiently big (more than the number of pointer variables). For example,
n l5 | | | mt x / / # | l / mf | y / # | can be re-arranged ton l5 | | | l / x / / # | y / # | as
sketched in Figure 2 (c).

This operation, however, cannot be encoded as a single transducer as it may require
an unbounded sequence (such as the list afterx in our example) to be shifted to an-
other place, and a finite-state transducer is incapable of remembering such sequences.
To circumvent this problem, we use a very simple transducerτ which does one step of
the shifting—i.e. it shifts a single element of the sequenceby deleting it from its cur-
rent location and re-producing it at its required location.The desired result is then the
limit τ∗(Con f) whereCon f is a regular set of configurations on which the operation
is applied. The limit (or an upper approximation of it) is computed using our abstract
reachability analysis techniques. In order not to mix half-shifted sequences with the
ready-to-use ones, the shifting is done in a special computation mode when no other
operations are possible.4

If some marker has to be eliminated but this cannot be done, wego to theu mode
and stop the computation. Such a situation cannot happen when we use as many markers
as pointer variables. Nevertheless, it may happen when the user tries to use a smaller
number of them with the aim of reducing the verification time (which is often, but
not always possible). If one does not want to use markers at all, the two operations of
introducing and eliminating a pair of markers (including shifting) are done at once.

Finally, the remainingmalloc(x) andfree(x) operations are again easy to encode.
The malloc(x) operation introduces a sequence of elements with a single element,

4 Let us add that we have some preliminary evidence that shifting could be implemented as
an atomic, special purpose (and rather complex) operation over automata. We will further
investigate this possibility in the future.



pointed to byx, and with an undefined successor. Thefree(x) operation removes an
element, makesx and all its aliases undefined, and possibly makes undefined the next-
pointer originally leading tox.

Adding Data Values to List Elements The encoding can be easily extended to handle
list elements containing data of a finite type. Their values are added intoΣ and then
every memory cell encoded as a sequence surrounded by/ and/or| contains not only
the pointers (markers) pointing to it, but also the appropriate data value. The tests and
assignments on*x may then easily be added by testing whether the appropriate data
letter is in the section ofx or changing the data letter in this section.

4 Automatic Verification Techniques

We introduce in this section infinite-state verification techniques based on the regu-
lar model checking framework. These techniques combine automata-based reachability
analysis with abstraction techniques. We concentrate in this work on the verification of
safety properties. In the context of regular model checkingthe safety verification prob-
lem consists in, given a transducerτ modeling some infinite-state system, an initial set
of configurationsInit , and a set of bad configurationsBad, decide whether

τ∗(Init )∩Bad= /0 (1)

Since the problem is undecidable in general (the transitions of any Turing machine
can be straightforwardly encoded by a finite-state transducer), we adopt an approach
based on computing abstractions of the setτ∗(Init ), and refining these abstractions when
spurious counterexamples are detected.

4.1 Abstract Regular Model Checking

A language abstractionis a mappingα : 2Σ∗
→ 2Σ∗

such that∀L ∈ 2Σ∗
. L ⊆ α(L). An

abstractionα′ refines(or is arefinementof) an abstractionα if ∀L ∈ 2Σ∗
. α′(L) ⊆ α(L).

An abstractionα is finite-rangeif the set{L ∈ 2Σ∗
: ∃L′ ∈ 2Σ∗

. α(L′) = L} is finite. We
say that an abstraction mapping isregularif it can be defined by a finite-state transducer.

Given a transducerτ and a language abstractionα, let τα be the mapping such that
∀L ∈ 2Σ∗

. τα(L) = α(τ(L)).
The first step of our approach is to define a language abstraction α and compute

the setτ∗α(Init ). Clearly, if α is a finite-range abstraction, the iterative computation
of τ∗α(Init ) as τα(Init )∪ τ2

α(Init )∪ . . . eventually terminates. By definition ofα, the
obtained setτ∗α(Init ) is an overapproximation ofτ∗(Init ), and therefore, ifτ∗α(Init )∩
Bad= /0 then the problem (1) has apositive answer. Otherwise, the answer to the prob-
lem (1) is not necessarily negative since the abstractionα may introduce during the
computation ofτ∗α(Init ) extra behaviours leading toBad.

Let us examine this case. Assume thatτ∗α(Init )∩Bad 6= /0, which means that there
is a symbolic path:

Init , τα(Init ), τ2
α(Init ), · · ·τn−1

α (Init ), τn
α(Init ) (2)



such thatτn
α(Init )∩Bad 6= /0. We analyze this path by computing the setsXn = τn

α(Init )∩
Bad, and for everyk ≥ 0, Xk = τk

α(Init )∩ τ−1(Xk+1). Two cases may occur: (i) either
X0 = Init ∩ (τ−1)n(Xn) 6= /0, which means that the problem (1) has anegative answer,
or (ii ) there is ak ≥ 0 such thatXk = /0, and this means that the symbolic path (2)
is actually aspurious counterexampledue to the fact thatα is too coarse. In this last
situation, we need to refineα and iterate the procedure. Therefore, our approach is based
on the definition of abstraction schemas allowing to computefamilies of (automatically)
refinable abstractions.

In a previous work [2], we have proposedrepresentation-orientedabstractions which
consist in defining finite-range abstractions on automata (used as symbolic representa-
tion structures for sets of configurations). The general principle of these abstractions
is to collapse automata according to some given equivalencerelation on their states,
regardless of the kind of the represented configurations or the analyzed system.

In this work, we adopt an alternative approach by consideringconfiguration-oriented
abstractions which are defined on configurations. This approach allows to define ab-
straction techniques which are more adapted to the application domain we are consid-
ering here. In the next subsections, we propose generic schemas for defining families
of refinable configuration-oriented abstractions. Instances of these schemas have been
implemented in a prototype tool and used in several experiments (see Section 5).

4.2 Piecewise0-k counter abstractions

The idea behind the first abstraction schema we introduce is to abstract each word by
considering some finite decomposition of it, and by applying0-k counter abstraction
(which looses the information about the ordering between symbols and only keeps
track of their numbers of occurrences up tok) to each piece of the word in this de-
composition. Formally, forw ∈ Σ∗, let dec(w) = (a1,w1,a2,w2, · · · ,an,wn) such that
w = a1w1a2w2 · · ·anwn, ∀i, j ∈ {1, . . . ,n}. ai ∈ Σ andai 6= a j , and∀i ∈ {1, . . . ,n}. wi ∈
{a1, . . . ,ai}

∗. Intuitively,dec(w) corresponds to the unique decomposition ofw accord-
ing to the first occurrences inw of each of the symbols inΣ.

Given a wordw and a symbola, let |w|a denote the number of occurrences ofa
in w. Givenk ∈ N>0, we define a mappingαk from words to languages such that, for
everyw∈ Σ∗, if dec(w) = (a1,w1,a2,w2, · · · ,an,wn), thenαk(w) = a1L1a2L2 · · ·anLn

where∀i ∈ {1, . . . ,n}. Li = {u∈ {a1, . . . ,ai}
∗ : ∀ j ∈ {1, . . . , i}. |wi |a j < k and|u|a j =

|wi |a j , or |wi |a j ≥ k and|u|a j ≥ k}. We generalizeαk from words to languages in the
straightforward way in order to obtain a language abstraction. We can easily prove that:

Proposition 1. For every k≥ 0, αk is regular and effectively representable by a finite-
state transducer.

Clearly, for every given alphabetΣ, the set of possible 0-k abstractions is finite, and
therefore, the number of piecewise 0-k abstractions is also finite since they consist in
concatenations of a bounded number of symbols and 0-k abstractions.

Proposition 2. For every k∈ N, the abstractionαk is finite-range.



We consider in fact a generalization of the schema above obtained as follows. We
allow that decompositions may be computed according to the first occurrences ofonly
a subsetof the alphabet, calleddecomposition symbols. Furthermore, we allow that
the abstraction does not concern some symbols, calledstrong symbols, i.e. all their
occurrences are preserved at their original positions. Typically, strong symbols are those
which are known to have a bounded number of occurrences in allconsidered words.
For instance, in words corresponding to encodings of program configurations, strong
symbols correspond to markers, separators, and pointer variables which are known to
have either a fixed or a bounded number of occurrences in all configurations.

Formally, letΣ1,Σ2 ⊆ Σ be two sets of symbols such thatΣ1 ∩Σ2 = /0, whereΣ1

is the set of decomposition symbols andΣ2 is the set of strong symbols. (Notice that
there may be symbols which are neither inΣ1, nor in Σ2.) Then, givenw ∈ Σ∗, we
definedec(w) to be the decomposition(a1,w1,a2,w2, · · · ,an,wn) such that (1)w =
a1w1a2w2 · · ·anwn, (2) ∀i ∈ {1, . . . ,n}. ai ∈ Σ1∪Σ2 and, ai ∈ Σ1 ⇒ |a1a2 · · ·an|ai = 1,
and (3)∀i ∈{1, . . . ,n}. wi ∈ ({a1, . . . ,ai}\Σ2)

∗. Then, the abstractionαk, for each given
k, is defined precisely as before.

The previous proposition still holds if the number of occurrences of each strong
symbol is bounded. Let us callp-Σ2-bounded language any set of wordsL such that
∀w∈ L. ∀a∈ Σ2. |w|a ≤ p.

Proposition 3. For every bound p≥ 0, and for every k∈ N, the abstractionαk is finite-
range when it is applied to p-Σ2-bounded languages.

As for the abstraction refinement issue, it is easy to see thatthe abstraction schema
introduced above defines a family of refinable abstractions.

Proposition 4. For every p-Σ2-bounded language L, and for every k≥ 0, we have
αk+1(L) ⊆ αk(L). Moreover, if L is infinite, thenαk+1(L) ( αk(L).

4.3 Closure abstractions

We introduce hereafter another family of regular abstractions. The idea now is to apply
iteratively extrapolation rules which may be seen as rewriting rules replacing words of
the formuk, for some given wordu and positive integerk, by the languageuku∗.

Let u∈ Σ∗ and letk∈ N>0 be a strictly positive integer. A relationR⊆ Σ∗×Σ∗ is an
extrapolation rulewrt. the pair(u,k) if R= {(w,w′) ∈ Σ∗×Σ∗ : w = u1uku2 andw′ ∈
u1uku∗u2}. An extrapolation systemis a finite union of extrapolation rules.

Clearly, for every languageL, we haveL ⊆ R(L) (i.e.R defines a language abstrac-
tion). In fact, we are interested in abstractions which are the result ofiterating extrapo-
lation systems. Therefore, let us define aclosure abstractionas the reflexive-transitive
closureR∗ of some extrapolation systemR.

It is easy to see that every extrapolation system corresponds to a regular relation
(i.e. definable by a finite-state transducer). The question is whether closure abstractions
of regular languages are still regular and effectively computable. In the general case,
the answer is not known. However, we provide a reasonable condition on extrapolation
systems which guarantees the effective regularity of closure abstractions.

First of all, we can prove that if we consider a single extrapolation rule, the corre-
sponding closure abstraction if effectively computable.



Lemma 1. For every extrapolation rule R, and for every regular language L, the set
R∗(L) is regular and effectively constructible.

Proof: Let A be an automaton recognizingL. Let B be an automaton recognizinguku∗,
and letqi (resp.qf ) be its initial (resp. final) state. Then, for every pair of states(q,q′)
of A that are related byuk, we extendA by a unique copy ofB and twoε transitions
q ε
−→qi andqf

ε
−→q′ (which can then be removed by the classical algorithms). 2

Now, let R= R1∪ ·· · ∪Rn be an extrapolation system where each of theRi ’s is an
extrapolation rule wrt. a pair(ui ,ki) ∈ Σ∗×N>0.

Our idea is to define a condition onRsuch that the computation ofR∗(L), for every
languageL, can be done by computing sequentially closures wrt. each ofthe extrapola-
tion rulesRi ’s in some ordering.

Let ≺⊆ Σ∗×Σ∗ be the smallest relation such that for everyu,v∈ Σ∗, u≺ v if (1) u
is not a factor ofv (i.e.u does not appear as a subword ofv), and (2)u cannot be written
asw1vpw2 for any p ∈ N and two wordsw1,w2 such thatw1 is a suffix ofv andw2 is
a prefix ofv. We can prove the following lemma which says that ifu≺ v, thenu can
never appear in any power ofv.

Lemma 2. ∀u,v∈ Σ∗, if u ≺ v then∀p≥ 0. ∀w1,w2 ∈ Σ∗. vp 6= w1uw2

Proof: Immediate from the definition of≺: the fact thatu can never appear in some
power ofv implies that one of the two conditions definingu≺ v is false. 2

We say that the extrapolation systemR is serialisableif the reflexive closure of
the relation≺ (i.e.≺ ∪id) defines a partial ordering on the set{uk1

1 , . . . ,ukn
n } (i.e.≺ is

antisymmetric and transitive on this set).

Lemma 3. Let R be a serialisable extrapolation system and let Ri1Ri2 . . .Rin be total
ordering of the rules of R which is compatible with≺. Then, R∗ = R∗

in ◦R∗
in−1

· · · ◦R∗
i1

.

Proof: Follows from Lemma 2: closing by someRi j never creates new rewriting con-
texts for any of theRi` with ` < j. 2

From the two lemmas 1 and 3 we deduce the following fact:

Theorem 1. For every serialisable extrapolation system R and for everyregular lan-
guage L, the set R∗(L) is regular and effectively constructible.

Closure abstractions (even serialisable ones) are not finite-range in general. To see
this, consider as an example the infinite family of (finite) languagesLn = (ab)n for n≥ 0
and the extrapolation ruleR corresponding toU = {a} andk = 1. Then, the images of
the languages above form an infinite family of languages defined byR∗(Ln) = (a+b)n

for everyn≥ 0.
Therefore, in the verification framework described in Section 4.1, the use of a clo-

sure abstractionα does not guarantee the termination of the computationτ∗α(Init ). How-
ever, as our experiments show (see Section 5) the extrapolation principle used in these



abstractions is powerful enough to force termination in many practical cases while pre-
serving the necessary accuracy of the analysis of complex properties.

Let us finally mention that the abstraction schema introduced above defines a family
of refinable abstractions.

Proposition 5. Let R be an extrapolation system wrt. a set of pairs{(u1,k1), ...,(un,kn)},
let k′1, . . . ,k

′
n be integers such that∀i. k′i ≥ ki , and let S be the extrapolation system wrt.

{(u1,k′1), . . . ,(un,k′n)}. Then, for every language L, we have S∗(L) ⊆ R∗(L). Moreover,
if L is infinite, then S∗(L) ( R∗(L).

5 Applications and Experimental Results

We have experimented with a prototype implementation of ourtechniques on several
procedures manipulating linked lists. We have implementeda prototype compiler trans-
lating programs into transducers as explained in Section 3.As shown in Table 1, we
have considered procedures for reversing a list, insertingan element into a list at a given
position, deleting an element of a list at a given position, merging two lists element-by-
element, and the procedure of Bubblesort over a list. Let us note that although these
procedures primarily work with simple linear lists, temporarily they may yield several
lists sharing their tails or create circular links. Moreover, we have considered work-
ing directly with circular lists too, namely a procedure forreversing such lists and a
procedure for removing a segment of a circular list (the motivating example of [14]).

As remarked in Section 3, a store can have several encodings.Therefore, to perform
correctly the checkτ∗α(Init )∩Bad= /0, we require the setBad to containall possible
encodings of bad stores.

5.1 Checking Consistency of Working with the Dynamic Memory

For all the examples, we have firstly checked a basic consistency property that consisted
in checking that there is no null pointer dereference, no work with undefined pointers,
no memory leak (i.e. there does not arise any undeleted and inaccessible garbage), and
that the result is a single list pointed to by the appropriatevariable. The specification
of such a property for a given procedure is easy and can be derived automatically. For
example, for the list reversion example, the set of bad states can be specified using the
below extended regular expression5 whereV = x? y?:

(((e+u) Σ∗)+ (Σ l8 Σ∗)) & ¬(n l8 |V | ((l V |)+ (V | l V (/ V)∗ / # |)))

The expression says that it is bad when we try to do a null pointer dereference or work
with an undefined pointer value—this is recognized automatically in the transducers
and signalized by the first letter of the resulting configuration set toe. If the first letter
becomesu (for unknown), the program cannot be verified using the givennumber of
markers and we have to add some. Finally, it is bad when we reach the final linel8, and
the result is not an empty list (represented byl behind #) nor a single list pointed to by
l . We do not care about the values ofx andy.

5 We use “?” to denote zero or one occurrences and “&” to denote intersection.



The above property of course holds for the correct versions of all the considered
procedures. In such a case, our tool provides the user with a safe overapproximation of
all the configurations reachable at every line. In this way, we, e.g., automatically obtain
the following invariant of the loop of the list reversion procedure:

(nl2 | y | lx |)+(nl2 | y | x | l(/)+# |)+(nl2 | | ly | x(/)+# |)+(nl2 | | | x(/)+# | ly(/)+# |)

Roughly, this invariant says that the list is either empty, is pointed to froml , from x, or
partially fromx and partially froml .

To try out the ability of our techniques to generate counterexamples, we have also
tried to examine a faulty version of the list reversion procedure where lines 4 and 5
were swapped. In this case, an error is reported and we are told that from a list with
one element (i.e. from a configurationn l1 | x y | | l / # |), we can obtain a circular list
(a configurationn l8 | y | mt l x / mf | wheremf andmt represent the “from” and “to”
versions of a markerm). The user can then also trace the program forwards from the
initial configuration or backwards from the erroneous one.

5.2 Checking More Complex Properties

Further, we have tried to verify some more complex properties of the considered pro-
grams. Let us start, e.g., with the Bubblesort procedure. When checking just its basic
consistency property, we have completely abstracted away the data values stored in the
list and made all the conditional jumps fully nondeterministic. To check that the pro-
cedure really sorts, we used a technique inspired by [15]. Weconsidered the values of
the list elements to be abstracted to being either greater orless than or equal than their
successors. The abstracted data values were represented bytwo special letters (gt and
lte) associated with every list item. We supposedlte andgt to be distributed arbitrarily
in the initial configurations. We then checked that the basicconsistency property holds
and, moreover, the result is a sorted list (i.e. a sequence ofelements labelled—up to the
last element—bylte).

In the case of the merge procedure, we let all elements of the first list be labelled as
a elements in the initial configuration and all elements of theother list asb elements.
Then we checked that the output list contains a regular mixture ofa andb elements.

Finally, for the list reversion and insertion and circular list reversion procedures, we
did a fully precise verification of their effect. In the case of list reversion, this means
that the output contains exactly the same elements as before, but in a reversed order.
For the insertion procedure, the required property is that the output list is precisely the
input list up to one new element added into the appropriate place.

To check the above rather strong property, we have proposed asimple, yet efficient
technique. Let us explain it on the case of list reversion. Inthe initial configurations, we
let the first and last element be labelled by special labelsbgnandend. Next, we consider
as initial all the configurations that can arise from the original initial configurations by
attaching two further labels—namelyf st andsnd—to an arbitrary pair of successive
elements. The labels are invisible for the unmodified program—they stay attached to
their initial elements. Then, to check the desired property, it suffices that every reachable
final configuration starts withend, ends withbgn, and contains a sequencesnd/ f st.
This guarantees that no element can be dropped (then, there would be a way to obtain



a configuration without some of the labels), no element can beadded (eitherendwould
not be the first,bgn the last, or somesnd/ f st pair would get separated by another
element), and the elements must be re-arranged in the given way (otherwise the required
resulting ordering of the labels could be broken).

5.3 The Results of the Experiments

For each verification example, we applied one instance of theabstractions presented
in Section 4. For checking the basic consistency properties, we used the piecewise 0-2
counter abstraction with no decomposition symbols (Σ1 = /0) and with strong symbols
Σ2 containing the pointer variables, the separator| and the symbol #. Therefore, just
the parts of words containing exclusively the/ symbols are abstracted. As noticed in
Section 3.1,/ is the only symbol which can appear an unbounded number of times
in lists without data. Therefore, our abstraction is finite range by Proposition 3. For
the more complex properties, we used closure abstractions.The extrapolation rules we
applied correspond to the loops one naturally expects to possibly arise in the consid-
ered structures (e.g.,(/a,2), (/b,2), (/a/b,2) for the list merge procedure)—providing
such information seems to be easy in many practical situations.6 In all the cases, the
abstractions we used are defined by serialisable extrapolation systems. Therefore, by
Theorem 1, they are regular and effectively computable.

We tried out both verification over programs described by a single transducer as
well as over programs described by a set of transducers (one per arc of the program
control flow graph—such transducers can easily be obtained by splitting the particular
statement transducers according to the line the control should proceed to). ColumnT
of Table 1 shows the running times obtained in the latter case. They were about 1.6 to 6
times better than in the former case (and prevented us from running out of the memory
in the full Bubblesort example). The computation times are presented for the minimum
number of markers necessary not to run into the “do not known”result. In the case of
inserting into a list, we, however, indicate that sometimesit may be advantageous to
use more than a necessary number of markers, which is especially the case of loop-free
procedures where it may completely eliminate the need for the complex operation of
shifting. For every experiment, we also indicate the numberof states and transitions of
the biggest encountered automaton (including the transducers).

We further made a comparison with the abstract regular modelchecking techniques
based on automata abstraction introduced in [2]. We considered the case of programs
modelled by a single transducer for which these techniques were implemented. We ob-
served an equal performance on the faulty reverse example, but on the other examples,
the new techniques were about 2.9 to 88 times better (not taking into account the Bub-
blesort example and checking of the correct mixture property for the list merge example
where we stopped the tool based on [2] after 2000 seconds).

We believe that the verification times obtained from our prototype are very encour-
aging. Some of the verification times that can be found in the literature for similar
verification experiments (especially the ones obtained from Pale) are lower but that is

6 Moreover, it is possible to come up with heuristics that automatically derive the necessary
extrapolation rules as mentioned in the conclusions.



Table 1. Some results of experimenting with classical and circular linked lists (obtained at
2.4GHz Intel Pentium 4 from an early prototype tool based on Yap Prolog and the FSA library)

Program Markers|M|max
st.+tr. Tsec Program Markers |M|max

st.+tr. Tsec

Reverse, bas.cons. 0 51+105 0.3 Merge, bas.cons. 0 209+279 2.7
Reverse, full 0 281+369 4.2 Merge, corr.mix. 0 1080+1415 40.4

Faulty reverse 1 61+138 0.2 Bubblesort, bas.cons. 2 2095+2872 305
Insert, bas.cons. 0 81+102 0.5 Bubblesort, full 2 2339+2887 279
Insert, bas.cons. 2 165+577 0.15 Circ.list rev., bas.cons. 3 655+764 5.4

Insert, full 0 755+936 10.8 Circ.list reverse, full 3 2349+2822 50.6
Delete, bas.cons. 0 55+113 0.3 Circ.l. rem.seg., bas.c. 2 116+291 1.0

partly due to an incomparable degree of automation (especially in Pale where a signif-
icant amount of user intervention is needed) and partly due to the fact that our tool is
just an early Prolog-based prototype. We expect much bettertimes from a more solid
implementation of our tool, which we are now working on.

6 Conclusion

We have proposed a new approach to automatic verification of programs with dynamic
linked structures based on a combination of automata-basedsymbolic reachability anal-
ysis with abstraction techniques.

Our approach applies to C-like sequential programs with 1-selector linked struc-
tures, for which it allows to verify automatically (safety)properties concerning their
data structures. The same techniques can also be used for automatic invariant genera-
tion for these programs. Notice that our approach is not restricted to C programs but
can be adapted to other languages with similar operations onlinked structures too.

The techniques we define are based on simple abstractions of regular sets of config-
urations which, on one hand, are abstract enough to force termination in many practical
cases and, on the other hand, are accurate enough to handle complex properties of the
considered data structures. The experimental results are quite encouraging and show the
applicability of our approach at least to particular pointer-intensive library routines.

The techniques we propose in this paper are defined in a general way which makes
them not restricted to the application domain we consider here. In fact, they can be used
as efficient acceleration techniques in the generic framework of regular model checking
for the verification of various classes of infinite-state systems as well.

A certain deficiency of the closure abstraction technique aspresented above is the
need to manually provide the extrapolation rules. However,very recently, we have pro-
posed a heuristic for automatically deriving such rules based on on-the-fly monitoring
of non-looping sequences of states in the encountered automata and on trying to divide
them to a given number of equal subsequences, which can then be used as a basis for
extrapolation. This heuristic was successful in all the considered examples with a simi-
lar time and space efficiency as presented above (the verification times being sometimes
worse but sometimes even better). A proper theoretical as well practical investigation
of this technique is a part of our future work.



For the future, it is further interesting to investigate thepossibility of normalizing
the automata encoding the sets of stores, which could be perhaps done via some special
purpose operation over the automata. Such an operation could be useful when dealing
with larger programs. Our future work then also includes an extension of our framework
to the case of more general linked data structures using representations based on more
general classes of automata.
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