N
N

N

HAL

open science

Verifying Programs with Dynamic 1-Selector-Linked
Structures in Regular Model Checking

Ahmed Bouajjani, Peter Habermehl, Pierre Moro, Tomas Vojnar

» To cite this version:

Ahmed Bouajjani, Peter Habermehl, Pierre Moro, Tomas Vojnar. Verifying Programs with Dynamic
1-Selector-Linked Structures in Regular Model Checking. Tools and Algorithms for the Construction
and Analysis of Systems, 11th International Conference, Apr 2005, Edimbourg, United Kingdom.
pp-13-29. hal-00147978

HAL Id: hal-00147978
https://hal.science/hal-00147978
Submitted on 21 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00147978
https://hal.archives-ouvertes.fr

Verifying Programs with Dynamic 1-Selector-Linked
Structures in Regular Model Checking

Ahmed Bouajjani, Peter Habermeh| Pierre Mord, and Tomas Vojnar

1 LiaFa, University of Paris 7, Case 7014, 2 place Jussieu, F-7528% B, France.
e-mail: {abou, haberm moro}@i af a. j ussi eu. fr
2 FIT, Brno University of Technology, BoZetéchova 2, C2266, Brno, Czech Republic.
e-mail:voj nar @it.vutbr.cz

Abstract. We address the problem of automatic verification of prograrits
dynamic data structures. We consider the case of sequamtigrecursive pro-
grams manipulating 1-selector-linked structures suclraditional linked lists
(possibly sharing their tails) and circular lists. We prepan automata-based
approach for a symbolic verification of such programs uskirgregular model
checking framework. Given a program, the configurationshef tnemory are
systematically encoded as words over a suitable finite Aithaotentially infi-
nite sets of configurations are represented by finite-statevaata, and statements
of the program are automatically translated into finiteesteansducers defining
regular relations between configurations. Then, absteggtlar model checking
techniques are applied in order to automatically checkgai®perties concern-
ing the shape of the computed configurations or relating nipeitiand output
configurations. For that, we introduce new techniques fercttmputation of ab-
stractions of the set of reachable configurations, and toadfiese abstractions if
spurious counterexamples are detected. Finally, we pres@erimental results
showing the applicability of the approach and its efficiency

1 Introduction

In this paper, we address the problem of automatic veritioadif programs withdy-
namic linked data structuresSuch programs are in general difficult to write and un-
derstand, and so the possibility of thésrmal verificationis highly desirable. Formal
verification of such programs is, however, a very difficuit@o. Dynamic allocation
leads to a necessity of dealing with infinite state spaces.dlijects to be dealt with
are in general graphs whose shape is difficult to be resfriotadvance. The problem
is that the linked data structures may fulfill some shaperiawés at certain program
points, but these invariants may be temporarily broken nious ways while perform-
ing some operations over the data structures.

We consider in this work the case of sequential non-rece@iggrams manipulat-
ing structures with one next pointer such as traditionajlgitinked lists and circular
lists (possibly sharing their parts) that belong among tlestreommonly used struc-
tures in practice. We propose an automata-based approasyfibolic verification of

* This work was supported in part by the French Ministry of Resk (ACI project Securité
Informatique) and the Czech Grant Agency (projects GA CRA4®780 and 102/03/D211).

such programs using thregular model checking framewofk1, 19, 3]. To the best of
our knowledge, this is the first time regular model checkmgystematically used in
this area—so far, there has only been an isolated ad-houpattte do so in [2].

As our first contribution, we provide systematic encodingf the configurations
of programs we consider as words over a suitable finite ahd&otentially infinite
sets of configurations can then be represented by finite-atébmata. Moreover, we
further propose aautomatic translatiorof non-recursive sequential C-like programs
(without pointer arithmetics and with suitably abstraatesh-pointer data values) into
finite-state transducers applicable to the sets of progfigurations represented by
automata and defining regular relations between these cwafigns. The translation is
done statement-by-statement, and one can then either takiermof all the statement
transducers or work with them separately. For some of thetpomanipulating state-
ments, the translation cannot be achieved by providingectaonstruction of a single
transducer, and we thus propose to simulate them by a repapfdication of some
auxiliary transducers.

By repeatedly applying the transducer (or transducersgsgmting a program to the
automaton encoding a set of possible initial configurationg can obtain the sets of
configurations reachable in any finite number of steps. figgever, usually impossible
to obtain the set of all reachable configurations in this wélye-eomputation will not
terminate for most programs with loops. One thus has to densechniques that will
accelerate the computation such that termination is aeti@s often as possible—a
general termination result cannot be obtained as the \atitiic problem considered is
clearly undecidable.

In the literature, several different general-purposeriggpines have been proposed
to accelerate the computatiasf reachable states in regular model checking. They in-
clude, e.g., widening [3, 17], collapsing of automata stéi@sed on the history of their
creation by composing transducers [10, 1], abstractionutdraata [2], or inference of
languages [6]. In this work, however, as our further conitiin, we propose a new set
of acceleration techniques that are more tailored for thergdomain and thus promise
much better performance results. These techniques ard baseew language abstrac-
tions, which contrary to those we have introduced in [2],raoedefined on the repre-
sentation structures (i.e. the automata representingpfetmnfigurations), but defined
on words (corresponding to configurations). Such abstmastare defined by means
of finite-state transducers following different generibesmas. The definitions of these
abstractions is guided by the observation that in the cordtgns of the programs we
consider there are some repeated patterns for which it iEisut to remember their
number of repetitions precisely up to some fixed bound, arabgiract this number
by an arbitrary one if it is beyond the bound. The abstracticmemas we define are
refinable in the sense that they define infinite sequencesstrfagtion mappings with
increasing precision. Therefore, our verification apphoiacbhased on computing ab-
stractions of the sets of reachable configurations, andforing the abstractions when
spurious counterexamples are detected.

These techniques allow us fially automatically computeafe overapproximations
of the state space of programs with 1-selector-linked dyoatata structures from
whose elements the non-pointer fields are abstracted amtysiway, we can automat-

ically check many important safety properties related tomext use of dynamically
allocated memory—absence of null pointer dereferenceskimg with uninitialized
pointers, memory leakage (i.e. the fact that there doesns# any unfreed and un-
accessible garbage), etc. Furthermore, we can autontaticatdle the cases where
a finite number of elements of the considered dynamic datietsires are allowed to
carry other than pointer fields. Using this fact and a simetdhhique which we pro-
pose for describing the desired input/output configuratiere can then automatically
verify various properties relating the input and outputraf tonsidered programs (e.g.,
that the output of a list reversing procedure is really dyatte reverse of the input
list, etc.). Finally, with a little help from the user, thectmiques can also be applied to
dealing with linked dynamic data structures whose elemeors$ain any data fields of
finite type. Moreover, the manual help of the user may be ogpldy using a heuristic
that we have very recently proposed (and which we briefly roarat the end of the pa-
per), or the user may decide to use some of the slower, futyraatic, general-purpose
acceleration methods.

We have implemented the proposed techniques in a protobypeind tried it out
on a number of procedures manipulating classical singlgeld lists as well as cyclic
lists. The results are very encouraging and show the afiyiliiyeof our approach.

Related Work. Out of the work on verification of programs with dynamic letkdata
structures published in the literature, the two approathatsare probably the closest
to our approach are the ones related to the tools Pale [15T'6héd [16].

Pale (or more precisely its version for singly-linked stuwes) based on [8] uses a
similar encoding of configurations as the one we proposetkipaper. The possibility
of sharing parts of the lists is, however, not consideredethi&loreover, there is no
translation of the programs to transducers for manipuasiets of configurations in
the Pale approach. The effect of the program is expressedaoypuoiating a logical
description of the configurations, and automata come irgyp phly when deciding the
resulting WS1S formulae in Mona [12]. The approach of Paleosas automatic as
ours—only loop-free code can be handled automaticallyiefeé are loops in the code
to be checked, the user has to manually provide their invexidVe adopt a different
methodology based on abstract symbolic reachability aisailyhich can also be used
to automatically generate invariants.

TVLA is based on abstractions of the arising pointer strreguwlescribed in a 3-
valued logic [16]. The approach is more automatic than the amPale, but still the
user may be required to provide some instrumentation patgiqor simulation invari-
ants in the later approach of [7]) to make the abstractioficserfitly precise. The recent
work [13] presents the first steps towards automaticallpiolig the necessary instru-
mentation predicates by an analysis of spurious countergbes. Moreover, up to very
recently, TVLA had difficulties with cyclic structures thaere resolved in a way [14]
which like our approach exploits the observation that sidiglked structures exhibit
some internal repeated structural patterns.

Both Pale and TVLA are extended to handle structures withertitan a single next
pointer. We are preparing such an extension of our approasédoon tree (or more
general) automata too.

Finally, representations of linked memory structures base least partially) on
automata were used in [9,5, 18, 4] too. In [5,18], the spagiablem of may-alias
analysis is primarily considered, and automata are condbivith various classes of
constraint systems. In [4], an alias logic with a Hoare-fikeof systems is introduced.
Itis, however, not clear how to exploit the automata-baspdasentations proposed in
these works in a context where the automata should be habglednsducers.

Outline. The rest of the paper is organised as follows. In Section thweduce basic
concepts about automata and transducers. In Section 3 wehl#esur encoding of
pointer programs with automata and transducer. Then, weaiv verification method
in Section 4. Finally, we describe our experimental redalSection 5 and conclude.

2 Automata and Transducers

A finite-state automators a 5-tupleA = (Q,Z,d, ginit, F) whereQ is a finite set of
statesy a finite alphabet) C Q x Z x Q a set of labelled transitiong;,iy € Q the initial
state and C Q a set of final states.

The transition relation~C Q x 2* x Q of A is defined as the smallest relation sat-
isfying: (1) Vg€ Q:q-=q, (2) if (g.a,q) € 5, theng > ¢, and (3) ifq = o and
q N q’, thenqg =, q”. The (regular) language recognisedAdyrom a stateg € Q is
L(A,q) = {w : 3¢ € F.q q}. The language oh is L(A) = L(A,ginit). We suppose
here that automata are manipulated in their canonicahfirmal deterministic) form.

A finite-state transduceover is a 5-tuplet = (Q, ¢ x Z¢, 8, Ginit, F) whereQ is
a finite set of stateg,, = U {€}, d C Q x Z¢ X Z¢ X Qis a set of transitiongnit € Q
is the initial state, andc C Q a set of final states. The transition relatiesiC Q x
>* x 2* x Qis defined as the smallest relation satisfying:c(ﬁi g for everyq € Q,
(2) if (g,a,b,d) € 3, theng ab, g and (3) ifq —% ¢ andq/ ab, q’, theng Lavh, q’.
A transducer defines a (regular) relatid® = {(u,v) : 3q € F. Ginit 2, ql.

Given a language C =* and a relatiorR C * x =¥, let R(L) be the sef{ve =* :
Ju € L. (u,v) € R}. Sometimes, we abuse the notation by identifying a trarsduc
(resp. an automatoty) with the relationR; (resp. the languade(A)). For instance, we
write T(A) to denoteR;(L(A)).

Letid C ¥* x Z* be the identity relation and the composition of relations. Given
a transducer, let1° = id, T+ = 1o T, and lett* = UP 4T be the reflexive-transitive
closure oft.

3 From Programs to Transducers

In this section, we describe the translation we propose fiboraatic verification of
sequential, non-recursive programs with 1-selectorelthlynamic data structures in
the framework of regular model checking. Our translatiogéseral enough to cover
anyprogram of this kind (not containing pointer arithmeticsl @t explicitly covering
the possibly necessary abstraction of non-pointer data).

We first describe how to encode as words the so-called progtanes i.e. the dy-
namic memory part of program configurations containing dyically allocated mem-
ory cells linked by pointers. This encoding is similar to tme used in [8], but extended
with the possibility of lists sharing their parts. Then, wepose an encoding of the stan-
dard C pointer operations (apart from pointer arithmetiecghe form of transducers.
This is different from [8] where operations are encoded bgngfing a logical descrip-
tion of the configurations. Some of the pointer operatiomsmoabe translated directly
to a single transducer, therefore we propose to simulaiedfiect by computing a limit
of a repeated application of certain simple auxiliary tchreers.

In the following, we will use as a running example the follagiprocedure revers-
ing a listl. We suppose the data fields normally present in the elemétite data type
Li st to be abstracted away and just the next-pointer fields to ésepved.

List x,y,1;

[1:y = null;

[2: while (I '=null) { // i.e. if (I'=null) goto |3; else goto |7
[3: y = |->next;

| 4: | ->next = x;

| 5: X =1;

| 6: I =y, [/ i.e. | =vy; goto |2;

[7: 1 =x;

18: // end of program

3.1 Encoding Stores as Words

Basically, a store is encoded as the concatenation of dewerds (separated by a
special symbol), each of them representing a list of elemeéhiccessive elements of
these lists are given from the left to the right, with posiSmf pointer variables marked
by special symbols. We suppose for the moment that list eiesrentain no data—
later we show that adding data of a finite type is not a probW#malso suppose for the
beginning that the store does not contain cycles nor shagd ¢.e. no two different
next-pointers point to the same list element). To encodé stares as words, we use
the following alphabek. For every pointer variable used in the program at hand, we
requirex € Z. We further use the following lettersto separate lists (and some special
parts of the configurations),to separate list elements (i erepresents a next-pointer),
to express that a next-pointer points to null, and ! to detiwdt the next-pointer value
is undefined.

Then, we can encode stores without sharing and cycles asltbeihg sequence
of three parts separated by the sympol

— The first part contains a sequence of pointer variables wiases are undefined.
In order not to have to consider all their possible orderjnggs fix in advance a
certain ordering ox that is respected here as well as in similar situations helow

— The second part contains pointer variables pointing ta null

— Finally, the third part contains the list sequences sepdragjain by the symbal
Each list sequence is encoded as follows:

O a E
Wg/ S

Fig. 1. A store with sharing

e Every list element is represented by a (possibly empty) eecgl of pointer
variables pointing to it.

e The lists elements are separated by the symbol

e The lists end either with the symbol # (null) or ! (undefined).

For example, the wordy| || / / # | encodes a possible initial configuration of the
list reversion examplex andy are undefined, no variable points to null, drbints to
a list with two elements.

Now, regular expressions (or alternatively finite-stattomata) can be used to de-
scribe sets of stores. For instance, the regular expressipn| | /™ #|)+(xy| 1)
encodes all possible initial stores for our list reversigaraple.

Notice that in our encoding, we do not allow garbage (partthefmemory not
accessible from pointer variables). As soon as an operateates garbage, an error is
reported. In fact, such a situation corresponds to a mensaty ih C (in Java, on the
other hand, we can always perform “garbage collection” &mdave the garbage).

Remark: Clearly, pointer variables appear exactly once in everydwdhe separatdr
and the symbols # and ! appear a bounded number of times smckwot consider
stores with garbage. Finally, the symbatan appear an unbounded number of times.

Lists with Sharing and/or Loops. To encode sharing of parts of lists as, for example,
in Figure 1, we extend the alphal¥®by a finite set of pairs of markers¢, m, ns, n,
etc.). A “from” markerX; may be used after a next-pointer sigmo indicate that the
given next-pointer points to an element markedbythe corresponding “to” marker).
Then, for instance, the woid x / m¢ |y / / ns | e m / / #]| encodes the store of
Figure 1. As one can easily see, this store could be encodesl@ral other ways too
(e.g.ag|x/n//#|y//nt).

Notice also that markers allow us to encode circular lists €ag.,| | xn. / / ng |
corresponding to a circular list of two elements pointedytod

Itis not difficult to see that given a store witpointer variables encoded with more
thank pairs of markers, one can encode the same store with atkneestkers provided
that no garbage is allowed: If a “to” marker is at the begigroha sequence of cells that
is not accessible without using markers, we can put thesgeseg directly in place of
the corresponding “from” marker and save one pair of markewss example, the store
|| m //#|x/ms|y//ns|of Figure 1 can be described with one pair of markers
as||x/n//#|y//ni|oralsoas |x/mi|y//m//#.

Typically, the number of markers that is really needed imesrealler thark as we
will demonstrate in our experiments.

Remark: A given store can have several encodings. Although we figrtiarmalize
the encoding by imposing a certain ordering on the symbalstie attached to the same

memory location, we do not define a canonical representafitee store. However,
our experimental results (see Section 5) show that thistism@bstacle to a practical
applicability of our method—at least not in the context ofifygng particular, pointer-
intensive library routines that we have considered so farddver, there is a hope
that one can further normalize the encoding and implememhalization over a set of
configurations as a special operation on the structure afut@maton representing this
set—we leave this question for our further research.

3.2 Encoding Program Statements as Transducers

We now describe our encoding of program statements as traesst We consider
non-recursive C programs without pointer arithmetics. W& filso suppose all non-
pointer data manipulations to be abstracted away—we brieflyn to handling them
later. Such programs may easily be pre-processed to canthistatements of the form
poi nter _assi gnment; goto |; orif (pointer_test) goto |1; else goto |2;.
Moreover, by introducing auxiliary variables, we can ehiatie multiple pointer deref-
erences of the form- >next - >next and consider single dereferences only.

To encode full configurations of the considered programsextend the encoding
of stores by adding a letter for the line of the program thetmdiis currently at fol-
lowed by a separatdr Moreover, for the needs of our verification procedure, we @d
single letter indicating the so-called computation modee fode is eithem (normal),

e (error—a null pointer dereference or working with an undadipointer has been de-
tected),s (shifting, used later for a realization of the pointer mau@tion statements

that cannot be implemented as a single transducer)ugndknown result that arises
when an insufficient number of markers is used). For instahednitial configurations

of the list reversion example are themly | xy| |1 /T #)+(nly | xy]|l]).

Conditional jumps based on tests like=nul | or x==y are now quite easy to en-
code. The transducer just checks whethisrin the null section or in the same section as
y (taking/ and| as section separators), and according to this changestérediecoding
the currentline. Ik ory is in the undefined section, we go to the error mode. Similarly
assignments of the formenul | orx=y are easy to handlexis deleted from its current
position (using arx, € transition) and put to the section p{using are, x transition).

A slightly more involved case is the one of tests based onx{h@ext construct
and the one of thg=x- >next assignment. Apart from generating an error wieis
undefined or null, one has to consider the successgnaiiich may involve going from
a “from” marker to the appropriate “to” marker. However, he umber of markers is
finite, the transducer can easily remember from which markerhich it is going and
skip the part of the configuration between these markers.

Adding/removing markers The most difficult case is then the one of theonext =y
assignment. The transducer first tries to commit the opardty using a pair of unused
markers (sayn;/m) out of the in advance fixed set of marker pairs (an unusedenark
pair is one that does not appear in the current configuratiomaw Then, behind the

3 Due to space limitations, we cannot provide a fully precissctiption here—an interested
reader is referred to the full paper.

y
@ x—F—AF -
o f
® x5 o

= Y=
© E
Fig. 2. An example store, the store after the statenhemrhext =x, and after a rearrangement

section ofx, the transducer puts;, and marks the section gfby m. For instance, in
the list reversion procedure,la | | | x/ / #]| 1 /y / #] is transformed vi&- >next =x
intonls || |mx//#|l /ms|y/#]asshown in Figure 2 (a), (b).

However, there may not be any unused markers left. In this,dhs transducer
tries to reclaim some by re-arranging the configurationsTdan be done by moving
some sequence of cells that starts with a “to” marker diyeictio the place of the
corresponding “from” marker (provided these markers doquststitute a loop). As
explained in Section 3.1, this is always possible provideddadhosen number of pairs
of markers is sufficiently big (more than the number of paintgiables). For example,
nis|||mx//#|1/mi|y/#]|canbere-arrangedtols | | || /x/ /#|y/#]|as
sketched in Figure 2 (c).

This operation, however, cannot be encoded as a singlaltiaesas it may require
an unbounded sequence (such as the list afterour example) to be shifted to an-
other place, and a finite-state transducer is incapablenoémgbering such sequences.
To circumvent this problem, we use a very simple transduegnich does one step of
the shifting—i.e. it shifts a single element of the sequemngeleleting it from its cur-
rent location and re-producing it at its required locatibhe desired result is then the
limit t(Conf) whereConf is a regular set of configurations on which the operation
is applied. The limit (or an upper approximation of it) is qamed using our abstract
reachability analysis techniques. In order not to mix Ishlfted sequences with the
ready-to-use ones, the shifting is done in a special cortipatenode when no other
operations are possibfe.

If some marker has to be eliminated but this cannot be dongjonte theu mode
and stop the computation. Such a situation cannot happemwéese as many markers
as pointer variables. Nevertheless, it may happen whengéetries to use a smaller
number of them with the aim of reducing the verification timehich is often, but
not always possible). If one does not want to use markerd,ahaltwo operations of
introducing and eliminating a pair of markers (includingftsihg) are done at once.

Finally, the remainingal | oc(x) andfree(x) operations are again easy to encode.
Themal | oc(x) operation introduces a sequence of elements with a singlaesit,

4 Let us add that we have some preliminary evidence that siftould be implemented as
an atomic, special purpose (and rather complex) operatien automata. We will further
investigate this possibility in the future.

pointed to byx, and with an undefined successor. Thee(x) operation removes an
element, makes and all its aliases undefined, and possibly makes undefimeiietkt-
pointer originally leading ta.

Adding Data Values to List Elements The encoding can be easily extended to handle
list elements containing data of a finite type. Their valuesadded int& and then
every memory cell encoded as a sequence surroundgdaby/or| contains not only
the pointers (markers) pointing to it, but also the appprdata value. The tests and
assignments ohx may then easily be added by testing whether the appropréte d
letter is in the section of or changing the data letter in this section.

4 Automatic Verification Techniques

We introduce in this section infinite-state verificationhmeitjues based on the regu-
lar model checking framework. These techniques combimmaatia-based reachability
analysis with abstraction techniques. We concentratasnibrk on the verification of
safety properties. In the context of regular model checKiregsafety verification prob-
lem consists in, given a transduaemodeling some infinite-state system, an initial set
of configurationgnit, and a set of bad configuratioBad, decide whether

T"(Init)NBad=10 (1)

Since the problem is undecidable in general (the transtidrany Turing machine
can be straightforwardly encoded by a finite-state transjuwe adopt an approach
based on computing abstractions of thet$éinit), and refining these abstractions when
spurious counterexamples are detected.

4.1 Abstract Regular Model Checking

A language abstractiois a mappingx : 2> — 2 such that'L € 2. L C a(L). An
abstractioro’ refines(or is arefinemenbf) an abstraction if VL € 2. o’ (L) C a(L).
An abstractioru is finite-rangeif the set{L € 2> : 3L’ € 2*". a(L’) = L} is finite. We
say that an abstraction mappingegularif it can be defined by a finite-state transducer.

Given a transducerand a language abstractianlet 14 be the mapping such that
VL € 2% . 1q(L) = a(t(L)).

The first step of our approach is to define a language abstre@tand compute
the setty(Init). Clearly, if a is a finite-range abstraction, the iterative computation
of i (Init) astq(Init) UT3(Init) U... eventually terminates. By definition af, the
obtained set} (Init) is an overapproximation af*(Init), and therefore, it (Init) N
Bad= 0 then the problem (1) haspositive answerOtherwise, the answer to the prob-
lem (1) is not necessarily negative since the abstraationay introduce during the
computation ofty (Init) extra behaviours leading Bad.

Let us examine this case. Assume tigafinit) N Bad# 0, which means that there
is a symbolic path:

Init, T (Init), T2 (Init),--- T~ (Init), T3 (Init) 2)

such that{ (Init) "Bad+# 0. We analyze this path by computing the séts= 13 (Init) N

Bad, and for everyk > 0, X, = & (Init) N T-1(Xc,1). Two cases may occuri)(either

Xo = Init N (T71)"(Xq) # 0, which means that the problem (1) hasegative answer

or (ii) there is ak > 0 such thatXx = 0, and this means that the symbolic path (2)
is actually aspurious counterexampbiue to the fact thatt is too coarse. In this last
situation, we need to refirreand iterate the procedure. Therefore, our approachis based
on the definition of abstraction schemas allowing to comfartélies of (automatically)
refinable abstractions.

In a previous work [2], we have proposegresentation-orienteabstractions which
consist in defining finite-range abstractions on automatadas symbolic representa-
tion structures for sets of configurations). The generaigiple of these abstractions
is to collapse automata according to some given equivaleziagon on their states,
regardless of the kind of the represented configurationiseoahalyzed system.

In this work, we adopt an alternative approach by considegrimfiguration-oriented
abstractions which are defined on configurations. This amprallows to define ab-
straction techniques which are more adapted to the apiplicdomain we are consid-
ering here. In the next subsections, we propose genericrechéor defining families
of refinable configuration-oriented abstractions. Instamf these schemas have been
implemented in a prototype tool and used in several expetisr(gee Section 5).

4.2 Piecewis®-k counter abstractions

The idea behind the first abstraction schema we introduceabstract each word by
considering some finite decomposition of it, and by applyddg counter abstraction
(which looses the information about the ordering betweentzys and only keeps
track of their numbers of occurrences upkjoto each piece of the word in this de-
composition. Formally, fok € X*, let deqw) = (a1, W1,a2,Wo, -+ ,8n,Wp) such that
W= ayWiaWs - --anWn, Vi, j € {1,...,n}. & € Zanda; # aj, andvi € {1,...,n}. w; €
{as,...,a}*. Intuitively, deqw) corresponds to the unique decompositiomafccord-
ing to the first occurrences im of each of the symbols iB.

Given a wordw and a symboh, let |w|; denote the number of occurrenceseof
in w. Givenk € N>0, we define a mappingy from words to languages such that, for
everyw € 2*, if deqw) = (ag, Wy, a2,Wo, -+ ,an,Wn), thenoy(w) = ajliasls---anln
wherevi € {1,...,n}. Li={u€ {as,...,a}" : Vje{l,...,i}. wila < kand|ulg =
|Wi|aj, or |Wi|aj > kand|u|,slj > k}. We generalizex, from words to languages in the
straightforward way in order to obtain a language abswactiVe can easily prove that:

Proposition 1. For every k> 0, ay is regular and effectively representable by a finite-
state transducer.

Clearly, for every given alphabgt the set of possible R-abstractions is finite, and
therefore, the number of piecewisek@bstractions is also finite since they consist in
concatenations of a bounded number of symbols akdl@stractions.

Proposition 2. For every ke N, the abstractior is finite-range.

We consider in fact a generalization of the schema abovendutas follows. We
allow that decompositions may be computed according to thedccurrences afnly
a subsetof the alphabet, calledecomposition symbolgurthermore, we allow that
the abstraction does not concern some symbols, catiethig symbolsi.e. all their
occurrences are preserved at their original positionsc@ly, strong symbols are those
which are known to have a bounded number of occurrences toaBidered words.
For instance, in words corresponding to encodings of pragranfigurations, strong
symbols correspond to markers, separators, and pointietbles which are known to
have either a fixed or a bounded number of occurrences in rafligeorations.

Formally, letZ;,2> C ¥ be two sets of symbols such thai N2, = 0, whereX;
is the set of decomposition symbols abglis the set of strong symbols. (Notice that
there may be symbols which are neitherip nor in Z5.) Then, givenw € Z*, we
definedeqw) to be the decompositiofay, wi,ap,Wo,--- ,an,Wn) such that (1w =
aWiaWs - --apWn, (2) Vi € {1,....n}. a € 21U and g € X1 = |a1d@2---anla = 1,
and (3Vi e {1,...,n}.w; € ({a1,...,a} \ Z2)*. Then, the abstractiam, for each given
k, is defined precisely as before.

The previous proposition still holds if the number of ocemtes of each strong
symbol is bounded. Let us ca->,-bounded language any set of woldsuch that
Ywe L. VaeZy. |wla < p.

Proposition 3. For every bound p> 0, and for every ke N, the abstractiomy is finite-
range when it is applied to p»-bounded languages.

As for the abstraction refinement issue, it is easy to sedkaibstraction schema
introduced above defines a family of refinable abstractions.

Proposition 4. For every p,-bounded language L, and for every>k0, we have
ok+1(L) C ak(L). Moreover, if L is infinite, theny1(L) € ak(L).

4.3 Closure abstractions

We introduce hereafter another family of regular abstomsti The idea now is to apply
iteratively extrapolation rules which may be seen as révgitules replacing words of
the formuX, for some given wordi and positive integek, by the language®u*.

Letu € * and letk € N0 be a strictly positive integer. A relatidRC =* x * is an
extrapolation rulewrt. the pair(u,k) if R= {(w,w) € Z* x Z* : w= uukup andw’ €
uruu*up}. An extrapolation systeris a finite union of extrapolation rules.

Clearly, for every languagde, we havel. C R(L) (i.e. Rdefines a language abstrac-
tion). In fact, we are interested in abstractions which heerésult ofterating extrapo-
lation systemsTherefore, let us definedosure abstractioras the reflexive-transitive
closureR* of some extrapolation systeR

It is easy to see that every extrapolation system corresptmnd regular relation
(i.e. definable by a finite-state transducer). The questiovhiether closure abstractions
of regular languages are still regular and effectively cataple. In the general case,
the answer is not known. However, we provide a reasonabldittomon extrapolation
systems which guarantees the effective regularity of clabstractions.

First of all, we can prove that if we consider a single exttapon rule, the corre-
sponding closure abstraction if effectively computable.

Lemma 1. For every extrapolation rule R, and for every regular langed., the set
R*(L) is regular and effectively constructible.

Proof: Let A be an automaton recognizihgLet B be an automaton recogniziofu®,
and letq; (resp.gs) be its initial (resp. final) state. Then, for every pair aftes(q,q)
of A that are related by¥, we extendA by a unique copy oB and twoe transitions
q-=q; andgs - g (which can then be removed by the classical algorithms). O

Now, letR= Ry U--- UR, be an extrapolation system where each ofigis an
extrapolation rule wrt. a paiu;, ki) € =* x N>°,

Our idea is to define a condition étsuch that the computation Bf (L), for every
languagéd., can be done by computing sequentially closures wrt. eatteaéxtrapola-
tion rulesR’s in some ordering.

Let <C X* x Z* be the smallest relation such that for evary € *, u < vif (1) u
is not a factor o¥/ (i.e. u does not appear as a subword/pfand (2)u cannot be written
aswiVPws, for any p € N and two wordswy, w, such thatw is a suffix ofv andw; is
a prefix ofv. We can prove the following lemma which says that ik v, thenu can
never appear in any power of

Lemma 2. Yu,v e Z*, if u < vthenVp > 0. Ywy,Wp € Z*. vP # wiuwe

Proof: Immediate from the definition ok: the fact thatu can never appear in some
power ofv implies that one of the two conditions defining< v is false. o

We say that the extrapolation systdRnis serialisableif the reflexive closure of
the relation< (i.e. < Uid) defines a partial ordering on the _{eff, .Uk (e < is
antisymmetric and transitive on this set).

Lemma 3. Let R be a serialisable extrapolation system and IlgRR...R;, be total
ordering of the rules of R which is compatible with Then, R=R; oR' ---o R .
Proof: Follows from Lemma 2: closing by soni®; never creates new rewriting con-
texts for any of thdr;, with ¢ < j.]

From the two lemmas 1 and 3 we deduce the following fact:

Theorem 1. For every serialisable extrapolation system R and for evegular lan-
guage L, the setRL) is regular and effectively constructible.

Closure abstractions (even serialisable ones) are natfiaitge in general. To see
this, consider as an example the infinite family of (finite)daage&., = (ab)" forn>0
and the extrapolation rule corresponding t&J = {a} andk = 1. Then, the images of
the languages above form an infinite family of languages ddfbyR*(L,,) = (a*b)"
for everyn > 0.

Therefore, in the verification framework described in Setd.1, the use of a clo-
sure abstractioo does not guarantee the termination of the computagjoimit). How-
ever, as our experiments show (see Section 5) the extragofainciple used in these

abstractions is powerful enough to force termination in yranactical cases while pre-
serving the necessary accuracy of the analysis of compégpepties.

Let us finally mention that the abstraction schema introdadxve defines a family
of refinable abstractions.

Proposition 5. Let R be an extrapolation system wrt. a set of p&irs;, ki), ..., (Un,kn) },
letk,...,k, be integers such thati. k¥ > ki, and let S be the extrapolation system wrt.
{(ug,K}),...,(un,kp,)}. Then, for every language L, we havelS C R*(L). Moreover,

if L is infinite, then S(L) C R*(L).

5 Applications and Experimental Results

We have experimented with a prototype implementation ofteanniques on several
procedures manipulating linked lists. We have implemeatprbtotype compiler trans-
lating programs into transducers as explained in Sectioks3hown in Table 1, we
have considered procedures for reversing a list, inseatingement into a list at a given
position, deleting an element of a list at a given positioargimg two lists element-by-
element, and the procedure of Bubblesort over a list. Letais that although these
procedures primarily work with simple linear lists, temaily they may yield several
lists sharing their tails or create circular links. Moregwge have considered work-
ing directly with circular lists too, namely a procedure fexwersing such lists and a
procedure for removing a segment of a circular list (the wadithg example of [14]).

As remarked in Section 3, a store can have several encodihgeefore, to perform
correctly the checky (Init) nBad = 0, we require the seBad to containall possible
encodings of bad stores.

5.1 Checking Consistency of Working with the Dynamic Memory

For all the examples, we have firstly checked a basic comsigtaroperty that consisted
in checking that there is no null pointer dereference, nokwdth undefined pointers,
no memory leak (i.e. there does not arise any undeleted acdéssible garbage), and
that the result is a single list pointed to by the appropnatéable. The specification
of such a property for a given procedure is easy and can beedesiuitomatically. For
example, for the list reversion example, the set of bad stzda be specified using the
below extended regular expressiamhereV = x?y?:

((e+W))+ (218 27) & =(nlg [V [((IV)+ (V[IV (/V)"/#])))

The expression says that it is bad when we try to do a null poitereference or work
with an undefined pointer value—this is recognized autaradlyi in the transducers
and signalized by the first letter of the resulting configioratset toe. If the first letter
becomes (for unknown), the program cannot be verified using the giwember of
markers and we have to add some. Finally, it is bad when wétbadinal linelg, and
the result is not an empty list (represented lehind #) nor a single list pointed to by
I. We do not care about the valuesxadndy.

5 We use “?” to denote zero or one occurrences and “&” to dermiesection.

The above property of course holds for the correct versidral athe considered
procedures. In such a case, our tool provides the user wafeaoserapproximation of
all the configurations reachable at every line. In this wagy, &(g., automatically obtain
the following invariant of the loop of the list reversion pexdure:

(nlz2 [y [1x [)+(nl2 [y [X[T(/)T#])+ (nl2 [[y [(/)" #])+ 0l | | [X(/) T #[1y(/) #])
Roughly, this invariant says that the list is either empypdinted to from, from x, or
partially fromx and partially froml.

To try out the ability of our techniques to generate coundangples, we have also
tried to examine a faulty version of the list reversion paho® where lines 4 and 5
were swapped. In this case, an error is reported and we atehtati from a list with
one element (i.e. from a configuratiarly | xy| || / #]), we can obtain a circular list
(a configuratiom Ig | y | m | x / m¢ | wherem; andm represent the “from” and “to”
versions of a markem). The user can then also trace the program forwards from the
initial configuration or backwards from the erroneous one.

5.2 Checking More Complex Properties

Further, we have tried to verify some more complex propexiethe considered pro-
grams. Let us start, e.g., with the Bubblesort procedureemMtthecking just its basic
consistency property, we have completely abstracted dweagldta values stored in the
list and made all the conditional jumps fully nondetermtiiisTo check that the pro-
cedure really sorts, we used a technique inspired by [15]cdsidered the values of
the list elements to be abstracted to being either greatessithan or equal than their
successors. The abstracted data values were represertied bgecial lettersgt and
Ite) associated with every list item. We suppo$eandgt to be distributed arbitrarily
in the initial configurations. We then checked that the basitsistency property holds
and, moreover, the result is a sorted list (i.e. a sequenekeofents labelled—up to the
last element—nbyte).

In the case of the merge procedure, we let all elements ofrdtdi§it be labelled as
a elements in the initial configuration and all elements ofdhiger list ash elements.
Then we checked that the output list contains a regular meéxtfia andb elements.

Finally, for the list reversion and insertion and circulat teversion procedures, we
did a fully precise verification of their effect. In the caddist reversion, this means
that the output contains exactly the same elements as béiatrén a reversed order.
For the insertion procedure, the required property is theblutput list is precisely the
input list up to one new element added into the appropriates|

To check the above rather strong property, we have proposiaide, yet efficient
technique. Let us explain it on the case of list reversiothéninitial configurations, we
let the first and last element be labelled by special labgteandend Next, we consider
as initial all the configurations that can arise from the imagjinitial configurations by
attaching two further labels—namefist andsnd—to an arbitrary pair of successive
elements. The labels are invisible for the unmodified pnograhey stay attached to
their initial elements. Then, to check the desired propéyffices that every reachable
final configuration starts witlend, ends withbgn, and contains a sequensnd/ fst.
This guarantees that no element can be dropped (then, tloerd Wye a way to obtain

a configuration without some of the labels), no element caadoled (eitheendwould
not be the firstbgn the last, or somend/fst pair would get separated by another
element), and the elements must be re-arranged in the gasgotherwise the required
resulting ordering of the labels could be broken).

5.3 The Results of the Experiments

For each verification example, we applied one instance ofbstractions presented
in Section 4. For checking the basic consistency propestiesised the piecewise 0-2
counter abstraction with no decomposition symba@ls=£ 0) and with strong symbols
¥, containing the pointer variables, the separatand the symbol #. Therefore, just
the parts of words containing exclusively tiesymbols are abstracted. As noticed in
Section 3.1,/ is the only symbol which can appear an unbounded number @stim
in lists without data. Therefore, our abstraction is finige by Proposition 3. For
the more complex properties, we used closure abstracfidresextrapolation rules we
applied correspond to the loops one naturally expects tsilplgsarise in the consid-
ered structures (e.d./a,2), (/b,2), (/a/b,2) for the list merge procedure)—providing
such information seems to be easy in many practical situsfiéon all the cases, the
abstractions we used are defined by serialisable extrapolsystems. Therefore, by
Theorem 1, they are regular and effectively computable.

We tried out both verification over programs described bynglsi transducer as
well as over programs described by a set of transducers (@narp of the program
control flow graph—such transducers can easily be obtaigexplitting the particular
statement transducers according to the line the contralldproceed to). Columit
of Table 1 shows the running times obtained in the latter.CHsey were about 1.6 to 6
times better than in the former case (and prevented us framimg out of the memory
in the full Bubblesort example). The computation times aespnted for the minimum
number of markers necessary not to run into the “do not knawsllt. In the case of
inserting into a list, we, however, indicate that sometirite@say be advantageous to
use more than a necessary number of markers, which is ebpé#uoiacase of loop-free
procedures where it may completely eliminate the need f@rcttmplex operation of
shifting. For every experiment, we also indicate the nunabfstates and transitions of
the biggest encountered automaton (including the traresdjc

We further made a comparison with the abstract regular neduaiking techniques
based on automata abstraction introduced in [2]. We coreidiée case of programs
modelled by a single transducer for which these techniquee Wwnplemented. We ob-
served an equal performance on the faulty reverse examglenlithe other examples,
the new techniques were about 2.9 to 88 times better (natdakio account the Bub-
blesort example and checking of the correct mixture prggdertthe list merge example
where we stopped the tool based on [2] after 2000 seconds).

We believe that the verification times obtained from our piyyte are very encour-
aging. Some of the verification times that can be found in itegature for similar
verification experiments (especially the ones obtainethfRale) are lower but that is

6 Moreover, it is possible to come up with heuristics that eatically derive the necessary
extrapolation rules as mentioned in the conclusions.

Table 1. Some results of experimenting with classical and circuilakeld lists (obtained at
2.4GHz Intel Pentium 4 from an early prototype tool based ap Prolog and the FSA library)

Program Markers|M|g®%; | Tsec Program Markersg [M|32%; | Tsec
Reverse, bas.cons. 0 51+105| 0.3 Merge, bas.cons. 0 209+279| 2.7

Reverse, full 0 [281+369 4.2 Merge, corr.mix. 0 [1080+141540.4
Faulty reverse 1 61+138| 0.2 || Bubblesort, bas.cons. 2 2095+2872 305
Insert, bas.cons, 0 81+102| 0.5 Bubblesort, full 2 2339+2887 279
Insert, bas.cons, 2 [165+577 0.15|/Circ.listrev., bas.cons. 3 655+764| 5.4
Insert, full 0 755+936 10.8|| Circ.list reverse, full 3 2349+282?. 50.6
Delete, bas.cons. 0 55+113| 0.3 ||Circ.l. rem.seg., bas.c. 2 116+291| 1.0

partly due to an incomparable degree of automation (edpetid’ale where a signif-
icant amount of user intervention is needed) and partly dube fact that our tool is
just an early Prolog-based prototype. We expect much biattes from a more solid
implementation of our tool, which we are now working on.

6 Conclusion

We have proposed a new approach to automatic verificatiorograms with dynamic
linked structures based on a combination of automata-tsseldolic reachability anal-
ysis with abstraction techniques.

Our approach applies to C-like sequential programs witleléesor linked struc-
tures, for which it allows to verify automatically (safetgjoperties concerning their
data structures. The same techniques can also be used donatia invariant genera-
tion for these programs. Notice that our approach is noticgstl to C programs but
can be adapted to other languages with similar operatiofisked structures too.

The techniques we define are based on simple abstractioeguér sets of config-
urations which, on one hand, are abstract enough to forggrtation in many practical
cases and, on the other hand, are accurate enough to hanghegproperties of the
considered data structures. The experimental resultsigeeencouraging and show the
applicability of our approach at least to particular poiriteensive library routines.

The techniques we propose in this paper are defined in a devegravhich makes
them not restricted to the application domain we consideg.He fact, they can be used
as efficient acceleration techniques in the generic frameafregular model checking
for the verification of various classes of infinite-stateteyss as well.

A certain deficiency of the closure abstraction techniquprasented above is the
need to manually provide the extrapolation rules. Howexesy recently, we have pro-
posed a heuristic for automatically deriving such rulesedamn on-the-fly monitoring
of non-looping sequences of states in the encountered atacand on trying to divide
them to a given number of equal subsequences, which can thaedu as a basis for
extrapolation. This heuristic was successful in all thesidered examples with a simi-
lar time and space efficiency as presented above (the véofidanes being sometimes
worse but sometimes even better). A proper theoretical #igwartical investigation
of this technique is a part of our future work.

For the future, it is further interesting to investigate gassibility of normalizing
the automata encoding the sets of stores, which could bapgdone via some special
purpose operation over the automata. Such an operatiod beuliseful when dealing
with larger programs. Our future work then also includesxdaresion of our framework
to the case of more general linked data structures usingseptations based on more
general classes of automata.

References

1. P.A. Abdulla, J. d’Orso, B. Jonsson, and M. Nilsson. Aitjonic Improvements in Regular
Model Checking. IrProc. of CAV’'03 volume 2725 oLNCS Springer, 2003.
2. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Ragilodel Checking. IProc. of
CAV’04, volume 3114 ot NCS Springer, 2004.
3. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. ReguModel Checking. IProc. of
CAV’'00, volume 1855 of. NCS Springer, 2000.
4. M. Bozga, R. losif, and Y. Lakhnech. Storeless SemanticsAdias Logic. InProc. of
PEPM’03 ACM Press, 2003.
5. A. Deutsch. Interprocedural May-Alias Analysis for Reis: Beyond k-Limiting. IrProc.
of PLDI'94. ACM Press, 1994,
6. P. Habermehl and T. Vojnar. Regular Model Checking Usinfgrence of Regular Lan-
guages. IrProc. of the 6th Infinity Worksho2004.
7. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yors#rification via Structure
Simulation. InProc. of CAV’'04 volume 3114 o NCS Springer, 2004.
8. J.L.Jensen, M.E. Jgrgensen, N. Klarlund, and M.I. Scizlvach. Automatic Verification of
Pointer Programs Using Monadic Second-order Logid?roc. of PLDI '97, 1997.
9. H.B.M. Jonkers. Abstract Storage StructuresAlgorithmic LanguagedFIP, 1981.
10. B. Jonsson and M. Nilsson. Transitive Closures of Redrédations for Verifying Infinite-
State Systems. IRroc. of TACAS’'0Qvolume 1785 oL NCS Springer, 2000.
11. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahgmi$olic Model Checking with
Rich Assertional Language¥heoretical Computer Scienc256(1-2), 2001.
12. N. Klarlund and A. MgllerMONA Version 1.4 User ManuaBRICS, Department of Com-
puter Science, University of Aarhus, Denmark, 2001.
13. A. Loginov, T. Reps, and M. Sagiv. Abstraction Refinenfent3-Valued-Logic Analysis.
Technical Report 1504, Computer Science Dept., Univeddity¥isconsin, USA, 2004.
14. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. RegdiAbstraction and Canonical
Abstraction for Singly-Linked Lists. IiProc. of VMCAI'05 Springer, 2005.
15. A.Mgller and M.I. Schwartzbach. The Pointer Assertiogic Engine. IrProc. of PLDI '01,
2001. Also in SIGPLAN Notices 36(5) (May 2001).
16. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shapdyaisavia 3-Valued Logic.
TOPLAS 24(3), 2002.
17. T. Touili. Widening Techniques for Regular Model ChexkiENTCS 50, 2001.
18. A. Venet. Automatic Analysis of Pointer Aliasing for Yped ProgramsScience of Com-
puter Programming35(2), 1999.
19. P. Wolper and B. Boigelot. Verifying Systems with Infenibut Regular State Spaces. In
Proc. of CAV’98 volume 1427, 1998.

