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Minimization of counter-examples in SPIN

Paul Gastin, Pierre Moro, and Marc Zeitoun

LIAFA, Univ. of Paris 7, Case 7014,
2 place Jussieu, F-75251 Paris Cedex 05, France
{gastin,moro,mz}@liafa. jussieu.fr

Abstract. We propose an algorithm to find a counter-example to some
property in a finite state program. This algorithm is derived from SPIN’s
one, but it finds a counter-example faster than SPIN does. (In particular
it still works in linear time.) Moreover, it does not require more memory
than SPIN. We further propose another algorithm to compute a counter-
example of minimal size. Again, this algorithm does not use more mem-
ory than SPIN does to approximate a minimal counter-example. The
cost to find a counter-example of minimal size is that one has to re-
visit more states than SPIN. We provide an implementation and discuss
experimental results.

1 Introduction

Model-checking is used to prove correctness of properties of hardware and soft-
ware systems. When the program is incorrect, locating errors is important to
provide hints on how to correct either the system or the property to be checked.
Model checkers usually exhibit counter-examples, that is, faulty execution traces
of the system. The simpler the counter-example is, the easier it will be to locate,
understand and fix the error. A counter-example can mean that the abstraction
of the system (formalized as the model) is to coarse; several techniques allow
to refine it, guided by the counter-example found by the model-checker. Since
the refinement stage is done manually, it is very important to compute small
counter-examples (ideally of minimal size) in case the property is not satisfied.

It is well-known that verifying whether a finite state system M satisfies
an LTL property ¢ is equivalent to testing whether a Biichi automaton A =
Am N A, has no accepting run, where Ax is a Kripke structure describing
the system and A-, is a Biichi automaton describing executions that violate
. It is easy, in theory, to determine whether a Biichi automaton has at least
one accepting run. Since there is only a finite number of accepting states, this
problem is indeed equivalent to finding a reachable accepting state and a loop
around it. A counter-example to ¢ in M can then be given as a path p = p1po
in the Biichi automaton, where p; is a simple (loop-free) path from the initial
state to an accepting state, and p, is a simple loop around this accepting state
(see Figure 1). The counter-examples given by SPIN are always of this form.
Our goal is to find short counter-examples. The first trivial remark is that we
can reduce the length of a counter-example if we do not insist on the fact that



Fig. 1. An accepting path in a Biichi automaton

the loop starts from an accepting state. Hence, we consider counter-examples of
the form p = p1pap3 where p1po is a path from the initial state to an accepting
state, and pop3 is a simple loop around this accepting state (see Figure 2). A
minimal counter-example can then be defined as a path of this form, such that
the length of p is minimal.

O=-0O==0
p3

Fig. 2. An accepting path in a Biichi automaton

Finding a counter-example, even of minimal size, can of course be done in
polynomial time using minimal paths algorithms based on breadth first traver-
sals. However, breadth-first traversals are not well-suited to detect loops. More-
over, the model of the system frequently comes from several components working
concurrently, and the resulting Biichi automaton can be huge. Therefore, mem-
ory is a critical resource and, for instance, we cannot afford to store the minimal
distance between all pairs of states. Therefore, we retain SPIN’s approach and
we use a depth first search-like algorithm [6, 2].

With this approach, there are actually two difficulties: the first one is to find
one counter-example, the second one is to find a small counter-example, and
ideally a minimal one.

SPIN has an option to reduce the size of counter-examples it finds. Yet,
it does mnot provide the smallest one and results remain frequently too large
and difficult to read, even when considering simple systems. For instance, on a
natural liveness property on Dekker’s mutual exclusion algorithm, SPIN provides
a counter-example with 173 transitions. In this case, it is not difficult to see that
an error occurs after 21 steps. One reason is that SPIN looks for counter-examples
as a path to an accepting state followed be a loop around this state. The second
reason is that SPIN’s algorithm for reducing the size of counter-examples misses
lots of them and therefore fails to find the shortest one. Our contribution is the
following;:

— We propose an algorithm to find a counter-example of a SPIN program in
linear time. This algorithm is derived from SPIN’s one, but finds a counter-
example faster than SPIN does. Moreover, our algorithm does not use more
memory than SPIN.



— We propose another algorithm to compute a counter-example of minimal
size, once a first counter-example has been found. This algorithm does not
use more memory than SPIN does with option -i when trying to reduce the
size of counter-examples. The cost we have to pay for finding the shortest
counter-example is to revisit more states than SPIN does.

— We have implemented a version of the last algorithm whose results are indeed
much smaller than those given by SPIN. For instance, for Dekker’s algorithm,
it actually finds the 21 states counter-example.

— We finally propose other improvements to SPIN’s algorithm.

The paper is organized as follows. In Section 2, we describe an algorithm to
find a first counter-example and we prove its correctness. However, there is no
guarantee that this counter-example is of minimal size. In Section 3, we present
an algorithm finding a minimal counter-example. While explaining these algo-
rithms, we exhibit various problems that may arise when computing a counter-
example with the current SPIN algorithm. An implementation and experimental
results are described in Section 4.

2 Finding the first counter-example

Let A = (S, E, s, F) be a Biichi automaton where S is a finite set of states,
E C S x S is the transition relation, sy € S is the initial state and F' C S is
the set of accepting states. Usually transitions are labeled with actions but since
these labels are irrelevant for the emptiness problem, they are ignored in this
paper. In pictures, the initial state is marked with an ingoing edge and accepting
states are doubly circled. If a state has k outgoing transitions, we number them
from 1 to k. Transitions from a state will be considered by the algorithms in the
order given by their labels.

Recall that a path in an automaton is a sequence of states s1sq--- si (also
denoted s1, 9, ..., s) such that for all i = 1,...,k — 1 there is a transition from
8; t0 8;i+1. The empty path, with no transition, is denoted by . A loop is a path
5182 - -+ S with s, = s1. A path s1s2---si, is simple if s; # s; for all i # j. A
loop s182--- sk is a cycle if s182- - sx—1 is a simple path. A loop (resp. a cycle)
is accepting if it contains an accepting state. Finally, an accepting path is of the
form v = sg---si - Sgre where sqg--- Sk1¢—1 is a simple path and si - - - Sg4¢ iS
an accepting cycle. We call sq - - - s the head of 7. Note that an accepting path
starts in the initial state. We also call counter-ezample an accepting path.

In this section, we describe an algorithm finding the first counter-example.
It is similar to the nested DFS described in [6], with two improvements: the
first one concerns the detection of accepting cycles and the second one avoids
revisiting unnecessarily some states. Both improvements are also useful when
minimizing the size of the counter-example.

The algorithm uses 4 colors to mark states: white < blue < red < black. (We
also mark states in grey, but this is just for simplifying the proof.) The color of a
state can only increase. At the beginning, all states are white and the algorithm
DFS_blue is called on the initial state sg.



Two DFSs alternate, the blue and red ones. The blue DFS is used to locate
reachable accepting states and to start red DFSs from these accepting states in
postfix order with respect to the (blue) covering tree defined by the blue DFS.
A red DFS starts (and interrupts the blue one) whenever one pops an accepting
state in the blue DFS. A red DFS only visits blue states, that is states already
visited by the blue DFS. We will show that if a red DFS initiated from an
accepting state r terminates without finding a counter-example then no state
reachable from r may be part of an accepting path. Hence, the color of all states
reachable from r may be set to black. This is the purpose of the black DFS.

The DFSs used define, at any time, a current path from the initial state to
the current state. For convenience, this current path is stored in a global variable
cp. Note that SPIN also stores the current path in a global variable. Actually,
this is not necessary since it may be obtained from the execution stack when the
counter-example is found.

Each state s € S is represented by a structure and the algorithm only requires
the following additional fields. The extra cost of these data is only 3 bits for each
state (this is the same cost as for SPIN’s algorithm).

— Color color initially white.
— Boolean is_in_cp initially false. This flag is used to test in constant time
whether a state lies on the current path.

When we write for all s’ € E(s) in the algorithms (see e.g. Algorithm 1),
we assume that the successors {s’ € S| (s,s') € E} of s are returned in a fixed
order, which is in particular the same in DFS_blue and DFS_red. This fact is
important for the correctness of Algorithm 1. We establish simultaneously the
following invariants.

Lemma 1. (1) Invariant for DFS_blue: no black state is part of an accepting
path and aoll states reachable from a black state are also black.

(2) Invariant for DFS_red initiated from DFS_red(r) with r € F': either no state
reachable from r is part of an accepting path, or there is an accepting path going
through r and using no black or grey state.

Proof. (1) During DFS_blue(s), if we execute line 8 then all successors of s are
black and the result is clear by induction. Now, assume that we execute line 11.
Then DFS_red(s) was executed completely and the color of s is grey. Using (2)
(with » = s) we deduce that no state reachable from s is part of an accepting
path. Hence, after executing DFS_black(s), the invariant is still satisfied.

(2) This is the difficult part. First, note that when entering DFS_red(r) there are
no grey states and we get property (2) directly from (1). Now, inside DFS_red(s),
this invariant is only affected at line 10 when the color of s is set to grey. When
executing this statement, all successors of s are either black, grey, or red. Note
that a red state is necessarily on the current path. Assume that there exists an
accepting path p going through r and using no black or grey state. If s ¢ p then
the invariant still holds after setting the color of s to grey in line 10. Assume
now that s € p and let s’ be the successor of s on the path p.



Algorithm 1 A version of the nested DFS algorithm

void DFS_blue (State s)

1: Bli] = (i.color == blue);

2: if (s’—is_in cp and s’ € F) then exit with cp - s’ as counter-example;
3: else if s'—color = white then DFS_blue(s’); end if
4: pop(cp); s—is_in_ cp := false;
5: if Vs’ € E(s), s’—color = black then
6: s—color := black;
7: else if s € F then

8: DFS_red(s);

9: DFS_ black(s);
10: end if

void DFS_red (State s)

1: push(cp, s); s—is_in_cp := true; s—color := red;

2: for all s’ € E(s) do

3 if (5'—>is_in_cp and (s’ € F or s'—color = blue)) then
4: exit with cp - s’ as counter-example;

5: else if s'—color = blue then

6: DFS_red(s');

7:  end if

8: end for

9: pop(cp); s—is_in_cp := false;

10: s—color := grey;

/*

* Note that line 10 of DFS_red is not part of the actual algorithm.
* Its purpose is simply to clarify the correctness proof.
Therefore there are actually only four colors as stated in the

* description above.

*/

*

void DFS_black (State s)

1: s—color := black;

2: for all s’ € FE(s) do

3: if s'—color # black then DFS_black(s’); end if
4: end for




Note that all paths using no black state and going from r to an accepting
state must cross cp(r) where ¢p(r) is the current path when DFS_red(r) was
called. This is due to the postfix order of the calls DFS_red(t) for ¢ € F.

Since s’ is reachable from r and since following p (unwinding once its cycle
if necessary) we can reach an accepting state from s’, we find in p a subpath p’
containing no accepting state and going from s’ to some state s” in cp(r). Note
that s ¢ p’ since p is simple. Then, p” = ¢p(s’) - p’ is an accepting path going
through r, containing no black or grey state and such that s ¢ p”. Hence the
invariant still holds after setting the color of s to grey in line 10. ad

Remark 1. One can prove that if a call DFS_red(r) with r € F terminates with-
out finding a counter-example, then all states reachable from r are black or grey.
Therefore, in line 10 of DFS_red(s), we could set the color of s to black directly
and remove line 11 (the call to DFS_black) in DFS_blue. This modification is
fine if we are only interested in finding the first counter-example. But when the
color of some state s is set to grey, then we do not know whether s is part of a
counter-example or not. In other words, one can deduce that a grey state cannot
be part of a counter-example only when the initial call DFS_red(r), with r € F,
terminates. In order to avoid revisiting unnecessarily some states, the minimiza-
tion algorithm presented in Section 3 can use the fact that a black state cannot
be part of a counter-example. This is why we do not use this modification.

Since the algorithm visits a state at most 3 times, Algorithm 1 terminates.
Moreover, one gets as a corollary of Lemma, 1 the following statement.

Proposition 1. If a Biichi automaton A admits a counter-example, then Algo-
rithm 1 finds a counter-example on input A.

2.1 Comparison with SPIN’s algorithm

There are essentially two differences between our algorithm and SPIN’s one. The
first one is that SPIN does not paint states in black to avoid unnecessary revisits
of states. More precisely, in SPIN’s algorithm, lines 7 to 12 of DFS_blue are
replaced with

if s € F then r := s; DFS_red(s); endif

where r is a global variable used to memorize the origin of the red DFS. To
illustrate the benefit of black states, consider the automaton below. Recall that
the transition labels indicate in which order successors are considered by the
DFSs. With SPIN’s algorithm, the large tree is visited twice. The first visit
is started with DFS_blue(2) and the second one with DFS_red(3). With our
algorithm, when DFS_blue(2) terminates, state 2 is black. Therefore the tree
will not be revisited by DFS_red(3).

@@a Large tree with

no accepting state




The second difference is that SPIN only looks for accepting cycles around
an accepting state. This means that in SPIN’s algorithm, the test in line 3 of
DFS_blue is replaced by false and the test in line 3 of DFS_red is replaced by
s’ = r where r is the global variable storing the origin of the red DFS (see above).
Again, the benefit of our method is illustrated with the automaton below. Both
algorithms behave similarly until DFS_red(3) is called. When considering the
successor s’ = 1 of s = 3, our algorithm immediately find a counter-example.
On the contrary, SPIN will call DSF_red(1) which revisits state 2 and the large
graph before going to the successor 3 of 1 and finding the counter-example.

2 .
1 Large graph with
@_a a no accepting run

3 Finding a minimal counter-example

To find a minimal counter-example, we use a depth first search which does not
necessarily stops when it reaches a state already visited. Indeed, reaching a state
s with a distance to the initial state so smaller than for the previous visit of s
may lead to a shorter counter-example.

Therefore, in addition to the fields used in Algorithm 1, each state has an
integer field depth, storing the minimal distance (from sp) at which s has been
seen on a current path. It is therefore an upper bound of the distance from the
initial state sg. It remains infinite as long as the state has not been visited, and it
can only decrease during the algorithm. We also use an additional variable mce, a
stack of states containing the minimal counter-example found so far. It is initially
empty. At the end of the algorithm, it will contain a minimal counter-example
of the whole automaton.

Algorithm 2 has two operating modes: a normal one where several criteria
can make the algorithm backtrack, and a more careful one, where the visit can
only stop when either the current path loops, or becomes longer than the size of
the minimal counter-example found so far. In this mode, states may be revisited
several times (in contrast with Algorithm 1 where a state is visited at most 3
times, its color switching to blue, then to red, and finally to black).

The current algorithm implemented in SPIN to find a small counter-example
does not guarantee to find a minimal one. This algorithm is a variation of the
Nested-DFS algorithm [2]. It visits a state either if it is new or if it is found
more quickly than during the previous visits. To check this last condition, it
maintains for each state the distance from the initial state sq. Since the counter-
examples are searched as a loop around an accepting state, one cannot hope to
get a minimal example. But there is another problem with SPIN’s algorithm:
after finding the first counter-example, SPIN backtracks whenever it reaches a
state with a path longer than the stored distance to the initial state. This is due
to the false intuition that using a longer path will never yield a shorter counter-
example. There are two cases where this is not appropriate and the minimal



counter-example is missed. The following examples illustrate these two cases. As
before, the numbers on transitions indicate in which order they are visited.

S0 2 -@3\ S4

1

()

With the automaton above, the first counter-example found is sg — s; —
S2 — 83 — 84 — $o. During this visit, the state depths are set as follows: (sg, 0),
(s1,1), (82,2), (s3,3), (84,4). Then s3 is reached from sy with depth 1. Since
this is smaller than the previous depth of s3 the visit continues to s4 which is
reached now at depth 2. Again, 2 is smaller than the previous depth of s; and
the visit continues to s with depth 3. But 3 is larger than the previous depth of
s2 and SPIN’s algorithm would backtrack missing the shortest counter-example
which is s) — s3 — s4 — s2 — s3. This example explains why we switch to
careful mode in lines 11-12 of Algorithm 2.

()
o

The second case is when an accepting state is on the current path. Then, even if
no depth was reduced after finding the first counter-example, one should revisit
already visited states. This situation is illustrated in the automaton above. The
first counter-example found is sy — s; — s3 — s4 — sy — s1 and the state
depths are (so,0), (s1,1), (s2,2), (s3,2), (s4,3). Now, when we reach so from
s3 with the current path s9 — s3 — s2, no depth has been reduced and again
SPIN’s algorithm would backtrack missing the shortest counter-example which
is sg — s1 — s3 — so — 1. In this case, the relevant length that was reduced
is the length from the accepting state s3 to s (from 2 to 1). Because memory is
the most critical resource, it is not possible to store the length from a state to all
accepting states. Therefore, we have to revisit states already visited. As above,
this example explains why we switch to careful mode in line 7-8 of Algorithm 2.

Recall that in the classical depth-first algorithm, the spanning tree is the
tree rooted at sop whose branches are the maximal values, for the prefix ordering,
taken by the current path during the execution of the algorithm. Since the visit
will sometimes proceed to already visited states, our algorithm will generate an
acyclic spanning graph of the automaton, not a tree: a state can occur on two
prefix-incomparable current paths from sg.



Algorithm 2 is again presented by a recursive procedure which tags states
while visiting them. Its first argument is the state to be visited. Its second
argument is the mode, initially normal, used for the visit. When we detect that
some counter-example might be missed in that mode, we switch to the careful
mode by calling the procedure with careful as the second argument. The mode
could be implemented as well as a global variable, which saves memory. Making
it an argument of the procedure yields a simpler presentation of the algorithm.

Also, to keep the presentation simple, we describe the algorithm starting from
a fresh input. However, one can also start from an automaton already tagged by
Algorithm 1. Since no counter-example can go through a black state, this allows
to backtrack in the depth-first search as soon as a black state is seen. Moreover,
one can also bound the search by the upper bound for the size of the minimal
counter-example produced by Algorithm 1.

In the description of Algorithm 2, we use the following functions:

— int length(p) returns the length of the path p. Since we only use it with cp
and mce as arguments, one can maintain their lengths in two global variables,
hence we may assume that this call requires O(1) time.

— Boolean closes_accepting(s) returns true iff cp - s is an accepting path
(assuming that cp itself is not accepting). To implement this function, one
can use another stack of states recording, for each state s of the current
path cp the last accepting state of cp located before s. For instance, if the
current path is [sg, s1, S2, 83, 84, $5] and only s1,s4 are accepting, then this
stack contains [ L, s1, s1, $1, S4, S4] (where | means that there is no accepting
state). The function is_accepting can then be implemented:

e in O(1)-time if we accept to store the depth of each state on the current
path. To check that a state closing a cycle creates an accepting cycle,
one checks that the depth of its first occurrence on the current path is
smaller than the depth of the last accepting state on the current path
(which we can recover from the stack of accepting states).

e in O(n)-time otherwise, where n is the length of the current path. Nev-
ertheless, the stack of accepting states still gives useful information to
avoid visiting the current path. For instance, if s—depth (which will be
smaller than the depth of s in cp) is larger than the depth of the last
accepting state on the current path, or if there is no accepting state on
it, we know that s does not close an accepting path.

To prove the correctness of Algorithm 2, we introduce the lexicographic or-
dering on paths starting from the initial state of the automaton. Recall that if
a state has k outgoing transitions, they are labeled from 1 to k£ according to
the order in which they will be processed by the algorithm. Let A : § xS — N
assigning to each edge its labeling. We can extend ) to paths starting at sg by
letting A(so) = € and A(so, $1,...,5k) = A(S0,81)A(S1,82) - A(Sk—1,8k). If v
and ~/ are two paths starting at sg, we sat that ~y is lexicographically smaller
than 4/, noted v <jex v/, if A(7) is lexicographically smaller than A(y’) (with the
usual order over N). We let 7 <jex 7/ iff v <jex 7' or v =7'.

Since the algorithm revisits states, we first prove that it cannot loop forever.



Algorithm 2 Finding a minimal counter-example
void DFS_MIN (State s, Boolean mode)

1: s—depth := min(length(cp), s—depth);

2: push(cp, s);

3: for all s’ € E(s) do

4:  if (mce = ¢ or (length(cp) + 1 < length(mce))) then
5: if s’ € cp then

6: if closes_accepting(s’) then mce := cp.s’; end if
T else if (mode = careful or s’ € F) then

8: DFS_MIN(s', careful);

9: else if s'—depth = co then

10: DFS_MIN(s’, mode);

11: else if ((s'—depth > length(cp) + 1) and mce # ¢) then
12: DFS_MIN(s', careful);

13: end if

14:  end if

15: end for

16: pop(cp);

Lemma 2. Algorithm 2 stops on any input.

Proof. First observe that the test at line 5 guarantees that the current path
cp remains simple. That is, DFS_MIN will not be called on a state that would
close the current path. Second, each call to DFS_MIN makes the current path
greater in the lexicographic ordering: let cp; = sgs;---s; be the value of the
current path after statement 2 in the call DFS_MIN(s;) and consider the next
call to DFS_MIN. After popping k& > 0 states, the algorithm pushes sj_,; on the
current path. By definition of the transition labeling A, sj_, _ ; is the successor of
s¢— such that A(s,_; 1) = A(s¢—r+1) + 1. Hence, the new value of cp is cp, =
5081 S0—kSy_j41 and so A(cpy) > A(cp;). We conclude that the algorithm
stops on any input: there is a finite number of simple paths in a finite automaton,
cp takes its values in this finite set and each recursive call makes it greater. O

Let s be a state and let v(s) be the simple path between sy and s which is
minimal in the lexicographic ordering. Observe that v(s) is a prefix of a branch
of the spanning tree in the classical depth-first search algorithm.

Lemma 3. Let s be a state visited by the algorithm while mce is empty. Let 6(s)
be the value of the current path cp after line 2 of the first call to DFS_MIN(s).
Then 6(s) = ~(s).

Proof. By definition of y(s), we have v(s) <jex (s). Assume that y(s) # d(s)
and let v(s) = v -t -~ where v is the longest prefix of y(s) stored into cp
during the algorithm. Observe that v(t) = v - t. After pushing s onto cp, t is
examined as a successor of the last state of . (Since mce is empty, the test line
4 succeeds.) Since v(s) is simple, the test at line 5 for s’ = ¢ fails. By definition
of t, all subsequent tests (lines 7, 9, 11) have to fail. In particular, t—depth is

10



not infinite, so ¢t was already visited by the algorithm, that is, while the current
path was lexicographically smaller than v -t = ~(¢), a contradiction with the
definition of ~(t). O

Let S be the finite set of accepting paths. Since the lexicographic ordering is
total, we can define a sequence (7;)o<i<k as follows:

Yo = min'<lex N
Yipr=ming {y €S ||y < |vl}

where || denotes the length of . By construction, the last element +; of this se-
quence is an accepting path of minimal length. Note that the sequence o, . ..,V
is increasing in the lexicographic ordering and decreasing in length.

Lemma 4. Let v = «' - s be the value of the current path after line 2 in a
call to DFS_MIN(s) and assume that the algorithm is in careful mode. Let 1 be
the value of mce at this point. Assume that there exists 6 = minx, {p | p =
~vp', p is accepting and |p| < |u|}. Then 6 is the next value assigned to mce.

Proof. Since the algorithm is in careful mode after the call DFS_MIN(s), it re-
mains in that mode at least as long as s is not popped from cp. In that mode,
the visit proceeds until either the current path becomes longer than mce (line
4), or a cycle is found (line 5). Indeed, if these conditions are meet, the test at
line 7 always succeeds. We can now conclude since the sequence of values taken
by cp after each push (line 2) is increasing. O

Proposition 2. The successive values taken by the variable mce during the ex-
ecution of Algorithm 2 are ,v0, ..., Vk-

Proof. Clearly, all values of mce are accepting paths. Hence, if there is no counter-
example, the algorithm ends up with an empty value for mce, which is correct.

Notice also that the search remains bounded by the length of the shortest
accepting paths found so far (line 4). Since, as noted above, the current path can
only increase (in the lexicographic ordering) at each recursive call, the sequence
of paths assigned to mce is necessarily a subsequence of vy, . . . , 7x. We shall show
that no element of this sequence can be missed.

Assume that there exists at least one accepting path. We show that the first
accepting path in the lexicographic ordering, that is, 7o, is the first value assigned
to mce during the execution of Algorithm 2.

Let v9 = dpd1702, where &g is the head of ~y, where §17d> is its cycle, and
where r is its last accepting state. The situation is depicted in Figure 3.

We claim that «y(r) = dpd17. Indeed, we have v(r) <jex dod17 by definition
of y(r). If v(r) # dpd1r, then either y(r) is a strict prefix of dpdir, which is
impossible since r does not appear in dgd1; or, by definition of the lexicographic
ordering, there exists a transition (x,y) in ~v(r) and (u,v) in 6pd17r such that
y(r) =y (x,y) -7, dob1r = v (2,t) - & with Au,v) < A(z,t). We deduce that
Y(r)02017 <1ex 001702 = Yo. Let t be the first repeated state on ~(r)d2017. Since

11



0, A~

7
/

51~7‘
20
do

Fig. 3. Finding vo

r is repeated, ¢ is well-defined. Since 7y is an accepting path, d2d; is simple, so the
first occurrence of ¢ has to be in v(r) and its second occurrence in d2617. Hence,
¥(r)d261r = v(r)yty', whence y(r)~yt is an accepting path, in contradiction with
Y(r)vt <1ex Y0 = ming,, S.

Hence, 79 = v(r)d2017. Since y(r) is the smallest path from s¢ to r in the
lexicographic ordering, it is visited by the algorithm by Lemma 3. Since r is
final, the algorithm switches to the careful mode and discovers 7y by Lemma 4.

Assume now that mce has been set successively to vo,...,7y;—1 by the algo-
rithm, with ¢ < k. We show that the algorithm finds v; as the next counter-
example. Assume by contradiction that there exists a state on 7; which is not
visited by the algorithm, and let ¢ be the first of these states: set vy, = v} -t - v/,
where cp takes the value ] and DFS_MIN(¢) is not called after this assignment.
Since mce is not empty (by the induction hypothesis, 7o has been found) and
|7il < |vi—1l, the test at line 4 succeeds on s’ = ¢t. Next, ¢ does not close v, oth-
erwise, v/ would be empty and mce would be updated correctly. All subsequent
tests fail, hence in particular, the mode is not careful and ¢ was already visited.
If the depth of ¢ on ~/t is smaller than its stored depth t—depth, then the test
at line 11 would succeed and DFS_MIN(¢) would be called. Hence, ¢ was visited
with a depth smaller than |v/t| on a path ¢, from s to ¢, such that § <jex 7} - ¢
and |d] < |7} - t|. We distinguish two cases, according whether ¢ belongs to the
head or to the loop of 7; (see Figures 4 and 5).

Fig. 4. First case: ¢t on the head of v;

In the first case, 07/ is an accepting path of smaller than +; (in size and in
the lexicographic ordering), a contradiction. (Since it follows immediately from
the definition of (v;); that there is no accepting path both smaller than ~; in
size and in the lexicographic ordering.)

Therefore, ¢ belongs to the cycle of ; (see Figure 5). In this case, § followed
by the cycle is again smaller than ~; in both the lexicographic ordering and the
size ordering. Hence, if it is an accepting path, we get a contradiction. Otherwise,
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Fig. 5. Second case: ¢ on the cycle of ;

this implies that there is some state appearing both in § and in the loop. Arguing
as for the proof that vy is found, we find an accepting path smaller than ~; in
both the lexicographic ordering and the size ordering, which concludes the proof.

O

4 Implementation and experimental results

The algorithm presented in Section 2 is quite efficient and visits each state
at most twice (in view of Remark 1) in order to find a first counter-example.
The second algorithm on the other hand finds the shortest counter example at
the expense of revisiting states much more often. In the worst case, its time
complexity is exponential. In order to get the best of the two, we start with the
first algorithm until a first counter-example is found (if any) and then switch
to the second algorithm to find the shortest counter-example. For this, before
switching to the minimization algorithm, we have to pop the execution stack
until the first (oldest) accepting state is reached.

In the prototype used to obtain the experimental results presented below, we
actually used SPIN’s algorithm for finding the first counter-example instead of
our algorithm presented in Section 2. Then we switch to our minimization algo-
rithm of Section 3. The reason is that more in-depth changes have to be carried
out on SPIN’s code to implement our algorithm of Section 2 and our primary
goal was just to minimize the size of the counter-example. We are currently im-
plementing the algorithm of Section 2 and since it is always more efficient than
SPIN’s one, more improvements can be expected.

In the synchronized product between the model and the LTL automaton
built by SPIN, there is a strict alternation between transitions of the model and
transitions of the LTL automaton (see [5]). Therefore all accepting paths are
of odd length and when minimizing the size of a counter-example we can set
the bound to length(mce) -2 instead of length(mce)-1 for an arbitrary Biichi
automaton. This trivial optimization is important for our algorithm since it may
revisit states quite often.

We have conducted experiments for various algorithms and specifications.
Experiments for which the model does not satisfy the specification and counter-
examples exist are gathered in Table 1. In this case we compare our algorithm
with SPIN -i which tries to reduce the size of the counter-example. Clearly
SPIN -i does not find the shortest counter-example while we have proved in
Section 3 that our algorithm does. For each experiment, we show, in addition to
the size of the minimal counter-example found, the number of different states
visited by the algorithms (states stored). The last information (states matched)
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is the number of states (re)visited during the algorithm. Here, each time a state is
(re)visited this counter is incremented. The execution time which is not indicated
is roughly proportional to the number of states matched. We see that as expected
our algorithm needs to revisit more states that SPIN’s one in order to really find
the minimal counter-example.

| | |[SPIN -i [Contrex]

counter-example length|55 19
Peterson 1|states stored 80 75
states matched 1968 9469
time 0.030s 0.040s
counter-example length|33 19
Peterson 2|states stored 80 80
states matched 1389 4244
counter-example length|173 21
Deckker 1 [states stored 539 417
states matched 48593 2.5 % 10°
time 0m0.270s| 12.850s
counter-example length|97 17
Hyman states stored 123 157
states matched 7389 40913

Table 1. Experiments for various algorithms when a counter-example does exist

There are two versions of Peterson’s and Dekker’s algorithms. They only differ
by the order in which the transitions are considered by the DFS algorithms. We
obtained the best version just by reordering by hand the transitions of the LTL-
automata. As we can see, the impact on the efficiency is important both for our
algorithm and SPIN’s one.

5 Conclusion and open problems

The main contribution of this paper is the algorithm presented in Section 3
which finds a shortest accepting path in a Biichi automaton. It has been im-
plemented and the comparison with SPIN’s algorithm clearly demonstrates its
superiority. We also proposed an algorithm to find a counter-example, without
trying to minimize its length, which is more efficient than SPIN’s one. It avoids
unnecessary revisits of states and hence finds a counter-example more quickly.
It also finds a shorter counter-example because it does not insist on having a
cycle starting from an accepting state. We plan to implement this algorithm and
to compare it experimentally with SPIN. Further, this algorithm detects states
that cannot be part of an accepting path (black states). Hence, using it instead
of SPIN’s one before searching for a minimal counter-example should improve
the performance of our second algorithm.
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Finding a shortest counter-example is time consuming because we need to
revisit states many times. A general goal for improving the efficiency is to detect
more states that need not be revisited.

Experiments have shown that the order in which transitions are considered
by DFS algorithms influences strongly the performances. This is easy to explain.
Assume that an LTL formula is described by the automata below which only
differ by the order in which transitions from state 1 will be considered in DFS
algorithms. With the first automaton the whole model of the system will be
explored since the loop on state 1 is visited first. On the contrary the second
automaton may find a counter-example immediately. It seems that ordering the
transitions of the LTL automaton so that accepting states are visited as soon as
possible gives good results. This should be further investigated and automatized.

true true true true

Finally, it would be interesting to find ways to minimize the length of the
counter-example with respect to the model and the LTL specification. Instead,
existing algorithms search for counter-examples for the model and a specific
automaton associated with the LTL specification. It is often the case that this
specific automaton is not optimal for finding a short counter-example for the
LTL formula.
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