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ABSTRACT

Aims. Recent measurements on the Stark broadening of radio recombination lines show values and trends in disagreement with con-
ventional theories. Different attemps to explain those disagreements have not been successfull for any of the employed theoretical
models. In particular, the impact model that describes well the physical conditions at which the studied broadenings occur, shows a
functional trend upon the principal quantum number of the studied transitions that does not correspond to the experimental observa-
tions.
Methods. High values of the principal quantum number require computable formulas for the calculation of transition probabilities.
Some of those expressions have been published, leading to approximate formulas on the dependence of the line width versus the
principal quantum number of the upper level of the transition.
Results. In this work an exact expression for the hydrogen Stark width in the frame of impact approximation is given.
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1. Introduction

Recent measurements of the width of radiofrequency spectral
lines (Bell et al. 2000), together with discrepancies between ex-
perimental data (Smirnov et al. 1984; Smirnov 1985; Wilson &
Jäger 1987; Sorochenko 1989; Bell et al. 2000) and conventional
models (Baranger 1958a–c; Griem et al. 1959; Griem 1967,
1974) have stimulated the interest in this type of transitions. In
this framework a controversy (see Griem 2005 and works cited
therein) in explaining these disagreements without changing the
usual frame of Stark broadening theories occur. To our knowl-
edge, these discrepancies remain and have even been qualified
as “mysterious” (Griem 2005; Watson 2006)1.

In this context, approximate expressions are required to cal-
culate transition probabilities between states with very high prin-
cipal quantum numbers (n > 100) (Watson 2006; Hey 2006).
This need rises because, although the analytical expressions of
those transitions probabilites are known (Gordon 1929; Bethe &
Salpeter 1957), they are not computationally manageable due
to the large value of the factorials involved. In recent works
(Watson 2006; Hey 2006) recurrence relations have been used
to obtain transition probabilities that are much easier to evalu-
ate. The investigation can be carried out in this way for high val-
ues of n; although, as recognised by one of the authors (Watson
2006), the mystery of the discrepancy with the experiments can-
not be solved with those approximate expressions.

In this work, the study relies on exact expressions of the
width operator, resulting from the usual impact approximation
frame, that will be given.

1 About this “mystery” see the comment in the conclusions of Griem
(2005) that appears as a private communication with M. Bell.

2. Initial expressions

Following Griem (Griem et al. 1959), the electronic collision
contribution to the width of a transition n → n′ is given by the
expression
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where v̄e =
√
πkT/2me; Ne is the electron density; ρe

max and ρe
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are the upper and lower cutoff values respectively;
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(2)

and

S nn′ = 2
∑

lml′m′α

〈nlm|Rα|n′l′m′〉〈n′l′m′|Rα|nlm〉. (3)

In these expressions, Rα,α = X, Y, Z, is the position operator for
the atomic electron. Parameters ρe

max and ρe
min are necessary to

overcome the divergences ocurring in the formal treatment due
to the long and short range distances properties of the emitter-
perturber interaction potential. The first term in (1) corresponds
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to the so-called strong collisions, that give rise to a line broaden-
ing more similar to the Lorentz treatment of total coherence rup-
ture. The second term fits the so-called impact approximation. It
is obtained from the values of the dipole transition probabilities
for transitions between the states of the emitter that, in our case,
is a hydrogen atom.

The study of recombination transitions requires the evalua-
tion of matrix elements of operator R between states with high
principal quantum number n. This is impossible when n ) 50
(see Hey 2006 for a numerical solution of this problem).

Expression (1) is the quantum version of the classical ex-
pression labeled as (4) in Minaeva et al. (1968). These authors
pointed out the difficulty of obtaining an analytical expression
for the line widths. This is what we want to do here. We aim
to obtain an exact and compact expression corresponding to the
second term in (1), that is, corresponding to the Stark width due
to the electron collisions that fulfil the requirements of impact
approximation (rapid though weak collisions). The part corre-
sponding to the first term in (1), the strong collisions term, will
not be studied here.

In the next section, a review of the physical model as well
as of the mathematical approximations leading to the so-called
impact model in Stark broadening will be given. The expression
used is not exactly (1), although it fits the same physical model.
In particular, we do not analyze the final expression concerning
the statistics of collisions, because it is removed from our sub-
ject: the dependence between the line widths and the principal
quantum numbers of the levels involved in the transitions.

3. Review of impact model

Since Anderson’s first works (Anderson 1949), dipole
spontaneous-emission spectral profiles have been obtained
from the autocorrelation function C(t) of the dipole moment of
the emitter D(t), via a Fourier transform of an average {} of the
autocorrelation function over a given statistical sample:

I(∆ω) = Re
1
π

∫ ∞

0
dt {C(t)} ei∆ωt, (4)

C(t) = tr
[

D(t) · D(0)ρ
]

(5)
D(t) = U+(t)D(0)U(t), (6)

where U(t) is the time-evolution operator of the emitter, which
satisfies the Schrödinger equation

i!
d
dt

U(t) = H(t)U(t) =
(
H0 + qE(t) · R

)
U(t), (7)

where the Hamiltonian H(t) includes the structure of the unper-
turbed states, H0, and the action of the charged perturbers via the
dipole interaction, qE(t) ·R. In (7), E(t) is the electric microfield
temporal sequence undergone by the emitter. The average indi-
cated with {} in (4) is calculated over a representative sample
of the microfield sequence. The trace in Eq. (5) averages over
all initial states of the emitter. The density matrix ρ in (4) takes
account of the population of the relevant states.

Following Baranger (1958a), the model considers the evo-
lution of perturbers and emitter separately. In this sense, the
plasma is considered as a “thermal bath” which alters the pro-
cess of emission. The spectrum is then obtained as an incoherent
superposition, i.e., a sum of intensities of the emission of inde-
pendent atoms or ions.

In the majority of cases we study the transition between a
group of upper and other of lower energy levels, and the rele-
vant energy differences are in the optic or ultraviolet range. Since

in the astrophysical applications of interest, the energy transfers
in collisions between emitter and perturbers are usually much
smaller than this energy difference, we can consider that the col-
lisions never induce transitions between the two groups of levels
within the characteristic time of the emission (no quenching ap-
proximation). This is a limitation of the model, but, in spite of
that, it has a very general scope, because we are dealing with the
dominant effect for nearly all applications. Thus, we consider an
evolution operator of the following form

U(t) =
(

Uu(t) 0
0 Ul(t)

)
(8)

where Uu(t) and Ul(t) are two evolution matrices which give the
independent time-evolution of the states in the upper and lower
groups respectively. The ρ matrix, which accounts for the pop-
ulations at the beginning of the emission process, has the same
structure: there are no coherences in the matrix. In the cases we
will consider below, the states belonging to each group – upper
and lower – have, in practice, equal populations and we can do
without the density matrix.

On the other hand, when we consider the emission spectrum
we are only interested in a rather small zone around the center of
the spectral line. The frequency displacements are small enough
to ignore dipole transitions that involve states not belonging to
our two groups of states. Dipole transitions between two states
of the same group, with energy differences much smaller than
those of the optic transitions, can also be ignored. Accordingly,
the dipole moment matrix in (6) is of the form

D =
(

0 d
d+ 0

)
. (9)

Hence, the trace in (5) can be written as follows

C(t) = tr (U+u d Ul · d+) + tr (U+l d+Uu · d). (10)

Matrices Uu and Ul are, respectively, the solution of equations

i!
d
dt

Uu = HuUu, i!
d
dt

Ul = HlUl (11)

with

Hu = Eu + H0u + E(t) · Ru

Hl = El + H0l + E(t) · Rl (12)

where Eu + H0u and El + H0l are the projections over the
upper and lower subspaces, respectively, of the total unper-
turbed Hamiltonian for the emitter, and an equivalent notation
is used for the projections of the operator R over the same sub-
spaces. Matrices Eu and El, both proportional to unity, take ac-
count of the energy gap between the two groups of states. We
can proceed without these constants replacing Uu and Ul with
Uu exp (−iEut/!) and Ul exp (−iElt/!) in (10) and, analogously,
removing E from Hu and Hl. We can then write the autocorrela-
tion function as follows

C(t) = eiω0t tr (U+u d Ul · d+)

+e−iω0t tr (U+l d+Uu · d), (13)

with ω0 ≡ (Eu − El)/!. Let us write

tr
(

U+l (t)d+Uu(t) · d
)
≡ CR(t) + i CI(t) (14)

with CR(t) and CI(t) real functions of time. With this definition

C(t) = 2CR(t) cos (ω0t) + 2CI(t) sin (ω0t). (15)
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The emission profile is, then,

I(ω) =
1
π

∫ ∞

0
dt cos (ωt) [2CR(t) cos (ω0t) + 2CI(t) sin (ω0t)]

=
1
π

∫ ∞

0
dt {[cos ((ω + ω0)t) + cos ((ω − ω0)t)] CR(t)

+ [sin ((ω + ω0)t) − sin ((ω − ω0)t)] CI(t)} . (16)

Now we write ω = ω0 + ∆ω, and calculate the spectrum
around ω0. Moreover we ignore contributions to the spectrum
of quantities such as

∫ ∞
0 dt cos ((ω + ω0)t)CR(t) which would be

significant if the functions CR(t) or CI(t) had temporal fluctua-
tions in this frequency scale. Therefore we have

I(∆ω) =
1
π

∫ ∞

0
dt [cos (∆ω t) CR(t) − sin (∆ω t) CI (t)] . (17)

3.1. Formalism in Liouville space

The cyclic invariance of the trace in (14) gives:

CR(t) + i CI(t) = tr(d+ · Uu d U+l ). (18)

We then define

d(t) ≡ Uu(t)d U+l (t), (19)

and use Eqs. (11) to calculate the evolution of matrices d(t):

i!
d
dt

d(t) = Hu(t)d(t) − d(t)Hl(t). (20)

Each element di j of matrix d connects a state |ψ(u)
i 〉 belonging

to the upper group with a state |ψ(l)
j 〉 of the lower group. It is

useful to work in a Liouville space with states of the form |i, j〉 ≡
|ψ(u)

i 〉 ⊗ |ψ
(l)
j 〉. In this new space, matrices d have vector structure

and differential Eq. (20) can be written as:

i!
d
dt
|| d(t)〉〉 = L|| d(t)〉〉, (21)

where each matrix element
(
Ld
)

i j
is calculated from

(
Ld
)

i j
=
∑

k

H(u)
ik dk j −

∑

k

dikH(l)
k j

=
∑

n,m

(
H(u)

in δ jm − δinH(l)
m j

)
dnm. (22)

More compactly, we can write

L = Hu ⊗ − ⊗ Ht
l (23)

where the upper index t denotes matrix transposition.
Within this formalism, the autocorrelation function can be

written

CR(t) + i CI(t) = 〈〈d(0) || d(t)〉〉 (24)

with a “scalar product” of matrices A and B defined as

〈〈A || B〉〉 ≡ tr
(
A+B
)
. (25)

3.2. Characteristic time scales

There are three characteristic time scales in our problem. First,
the typical correlation time of the perturbing field E(t), and in
consequence, the characteristic time of L(t). This time scale is
ruled by the kinetics of the charged particles in the plasma. Its
order of magnitude is

τc -
r0

v0
(26)

r0 =

(
3

4πN

) 1
3

(27)

v0 =

√
2kT
m

(28)

where r0 denotes the typical inter-particle distance, v0 the mean
quadratic velocity. N and T are the density and temperature of
charged particles, and m their mass.

A second time scale is fixed by the correlations of the dipole-
moment d(t). The spectral width is determined by this lifetime,
τd, which is the true “unknown” of our problem.

Finally, a last time scale is fixed by characteristic values
of L/!:

1
τH
- 1
!
L - 1

!
qE0

n2a0

Z
, (29)

E0 =
q

4πε0

1
r2

0

· (30)

In the expressions above a0 is the Bohr radius, n the princi-
pal quantum number of the upper group of states, Z the nu-
clear charge of the emitter and E0 the typical local electric field.
Evolution of the dipole moment d(t) would be fixed by this fre-
quency scale if the perturbing electric field were static.

The relationship between τH and τc will determine the rel-
evant physical phenomenon in spectral line broadening. When
τc ! τH we have “quasistatic” broadening, and both shape and
width of the spectral line are fixed by the statistical distribution
of the perturbing fields. Then we have τd ∼ τH.

If τc / τH the evolution of the dipole moment d(t) is much
slower than the evolution of the perturbing fields and the cor-
relation between L(t) and d(t) is quickly lost. In this case, per-
turbations are less efficient, since the emitter has enough time
to “average” the electric field, and the time average of the field
is considerably smaller than its statistical typical value. This
regime is known as “impact broadening”. In next section we will
see that in this regime the width of the spectral line and therefore
the lifetime τd ) τH ) τc, is determined by the integral of the
autocorrelation function of the perturbing field.

3.3. Impact approximation

The solution of Eq. (21) can be formally written as (the sym-
bols || 〉〉 are ignored for simplicity):

d(t) = d(t0) +
1
i!

∫ t

t0
dt′ L(t′) d(t′) (31)

= d(t0) +
1
i!

∫ t

t0
dt′ L(t′) d(t0)

+

(
1
i!

)2 ∫ t

t0
dt′ L(t′)

∫ t′

t0
dt′′ L(t′′) d(t′′). (32)
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In order to calculate the spectral profile we need to average the
correlation functions in Eq. (24):

{CR(t) + i CI(t)} = tr
(
d+(0) · {d(t)}

)
, (33)

so we have to calculate

{d(t)} = {d(t0)} + 1
i!

∫ t

t0
dt′ {L(t′) d(t0)}

+

(
1
i!

)2 ∫ t

t0
dt′
∫ t′

t0
dt′′ {L(t′)L(t′′) d(t′′)}. (34)

The average in the first integral satisfies {L(t′) d(t0)} =
{L(t′)}{d(t0)} since L(t′) is posterior, and thus independent of
d(t0). Moreover, we are interested in the calculation of spectra
for hydrogenlike emitters. For them, states in each group – up-
per and lower – are degenerate, and H0u = H0l = 0. Thus

L(t′) = qE(t′) ·
(
Ru ⊗ − ⊗ Rt

l

)
(35)

and, consequently, {L(t′)} = 0.
We will use the arguments of the previous paragraph to cal-

culate the double integral in (34). In the impact approximation
(τc / τd) the dipole moment d(t) evolves much more slowly
than L(t) and we can choose a time interval ∆t = t − t0 simulta-
neously satisfying the following two conditions:

∆t / τd, (36)
∆t ) τc. (37)

In this case, the dipole moment d(t′′) is almost constant in the
integration interval (t0, t′) of (34) and we have d(t′′) ≈ d(t0).
Thus, we can rewrite exp. (34) in the form:

{d(t0 + ∆t)} − {d(t0)}

=

(
1
i!

)2 ∫ t

t0
dt′
∫ t′

t0
dt′′ {L(t′)L(t′′)} {d(t0)} (38)

since, as previously, t′ and t′′ are later than t0.
The perturbation L(t) felt by the emitter is a stationary ran-

dom process, and thus the average {L(t′)L(t′′)} only depends on
the difference τ = t′ − t′′. The last average is, precisely, the au-
tocorrelation function of L(t) and can be written in terms of the
autocorrelation function of the perturbing field (see exp. (35)):

{L(t′)L(t′′)} = q2
∑

i, j=x,y,z

{Ei(t′)E j(t′′)}

×
(
R(u)

i ⊗ − ⊗ R(l)t
i

) (
R(u)

j ⊗ − ⊗ R(l)t
j

)

=
q2

3
{E(t′) · E(t′′)}

(
Ru ⊗ − ⊗ Rt

l

)
2

≡ q2

3
Γ(t′ − t′′) R2, (39)

where we have considered an isotropic system, so that
{Ei(t′)E j(t′′)} = 1

3δi j{E(t′) · E(t′′)}.
Now we take the last result into (38). The integration range

is shaded gray in Fig. 1. We change variables of integration to

τ = t′ − t′′ ; ζ = t′ + t′′ ; dt′dt′′ =
1
2

dτdζ,

0 ≤ τ ≤ ∆t, τ ≤ ζ ≤ 2∆t − τ. (40)

The region where the function Γ(τ) has significant values is
shaded darker in Fig. 1. Integration over ζ gives rise to a fac-
tor ∆t. Given that the range of the integration over τ includes all

t
t

τ

t"

t’
τ

0

0

c

t +  t∆0

t +  t∆0

Fig. 1. Integration zone in exp. (38).

the relevant zone, we can change its upper limit to +∞ (remem-
ber that ∆t = t− t0 ) τc). The double integral in (38), therefore,
becomes

−∆t Φ · {d(t0)} ≡ ∆t
( q
i!

)2 ∫ ∞

0
dτ Γ(τ)

1
3
R2 {d(t0)}, (41)

where we have put

Φ ≡
[

1
3

(q
!

)2 ∫ ∞

0
dτ Γ(τ)

]
R2. (42)

In this way, (38) may be written:

{d(t0 + ∆t)} − {d(t0)}
∆t

= −Φ · {d(t0)}. (43)

Since ∆t / τd, this difference equation accounts for the rough
sketch of the time derivative of d(t). Consequently, we can write:

{d(t)} = exp
[
−Φ t
]

d(0). (44)

As Baranger wrote, (Baranger 1958b,c), “when the impact ap-
proximation is valid, it is allowable to replace the exact, fluctu-
ating interaction between the atom and the perturbers by a con-
stant effective interaction Hamiltonian” Φ. 2 The time behavior
of the average of the dipole moment is determined both by the
integral of the perturbing electric-field autocorrelation function
and by the values of the R2 matrix elements. In general, for any
transition it is convenient to diagonalize the matrix R2 and to
write the vector operator d(0) in the eigenbase of R2. When this
is done, the autocorrelation function becomes

{CR(t) + i CI (t)} =
∑

k

e−φkt 〈k|d+(0) · d(0)|k〉, (45)

where the summation covers all eigenstates |k〉 of R2 with eigen-
values φk. The corresponding matrix element accounts for the
intensity of that spectral component. But in the case of the hy-
drogen atom everything is easier. For hydrogen, the vector d(0)
is an eigenvector of R2, that is (in atomic units)

R2 d = φnn′d, (46)

being

φnn′ =
9
4

[ (
n2 − n′2

)
2 −
(
n2 + n′2

) ]
. (47)

2 The characteristic values of Φ give the width of the spectral line,
which has a Lorentzian shape. The value of the integral of function Γ(τ)
is proportional to E2

0τc, E0 being the typical perturber fields and τc the
time of correlation loss for that field. These magnitudes are E0 ∼ N2/3

and τc ∼ N−1/3T−1/2 so that the line width is proportional to N T−1/2.
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Fig. 2. Stark width parameter depending on the upper group principal
quantum number. The values φnn′ have been represented as a function
of n with n′ = n−∆n given as pointed out in the figure. The broken line
gives the values corresponding to the Balmer series, in which n′ = 2.
The trend for fixed ∆n is ∼n2, while for fixed n′, φnn′ changes as n4.

(n and n′ are the principal quantum numbers for the upper and
the lower group respectively). The proof of this result is shown
in Appendix A.

Under these conditions, expression (45) becomes simpler:

{CR(t)} = e−φt, {CI(t)} = 0, (48)

φ = φnn′
1
3

(qa0

Z!

)2 ∫ ∞

0
dτ Γ(τ), (49)

with a0 the Bohr radius and Z the emitter nuclear charge. (We
have normalized the function so that CR(0) = tr [d+ · d] = 1).

The particular case with n = n′ + 1 is interesting. Then

φn+1 n =
9
2

n(n + 1). (50)

Compare this expression with the approximate expression la-
belled as (27) in Griem (1967), and see Fig. 2, where the de-
pendency of impact width upon the principal quantum number
of the upper level is shown for different values of ∆n.

4. Results and discussion

The former section gave the analysis of the Stark broadening
term in the frame of the impact approximation completely ex-
cluding slow varying fields. It is necessary, then, to consider
that collisions are weak and rapid. When a strong collision takes
place – when a perturber passes very close to the emitter atom
– the resulting phase change in the evolution operator cannot
be considered very small. As a consequence, the approximation
allowing us to pass from expresion (34) to (38) cannot be con-
sidered valid and these collisions must be excluded from our cal-
culation. Of course there are few such events, but the so-called
“strong collisions” must be taken into account. These collisions
represented by the first term in (1) have not been considered here.
The most adequate treatment for these cases is the original one
from Lorentz that correctly considers that those collisions are
all independent, never overlap in time and that, when they hap-
pend the effect of the rest of the perturbers is completely neg-
ligeable. These collisions may be considered to be independent
of the weak collisions that give rise to the broadening that is
being studied here. Therefore, their effect may be taken into ac-
count simply adding a term to the result of the broadening due

to weak collisions, as is done in expression (1). The analysis of
those cases is beyond the scope of this work.

Slowly varying fields due to ionic perturbers have not been
considered in our study. Such fields with correlation time τc !
τH, or τc ! τd induce “quasistatic broadening”. For this to hap-
pen the ionic density must be high enough. However, when the
ion density is very low, ions can no longer be considered static
during the typical dipole relaxation time. As already pointed out
by Griem (2005) – see also Griem (1967, 1974) –, this hap-
pens, for example, for the conditions of radio recombination
lines studied in Bell et al. (2000), where ions effect can be con-
sidered as “impact”. In those cases, then, the dominant broad-
ening is ionic impact, as their fields, as they are slower, have a
correlation integral (42) larger than that of electrons3.

The treatment considered in the previous section differs from
the standard treatment by a fundamental point. Usually, in the
traditional treatment, the statistics over the perturbation under-
gone by the emitter is calculated considering the quantities that
charaterize the collisions, i.e. the velocity and impact parameter
of the individual perturbers. The treatment followed here does
not consider how to perfom such averages as this is unnecessary
here. Statistics over particle perturbation conditions is consid-
ered in an average over the perturber field correlation function.
Whatever the value of such a function, the proportions between
the broadenings of the different hydrogen spectral lines are not
affected provided the impact approximation is valid.

However, there is a problem in the calculation of the per-
turber electric field correlation function Γ(t) appearing first in
exp. (39). When one studies a plasma formed by independent
particles – as is usually done in the analytical simplifications of
Stark broadening – that function diverges when t → 04. This di-
vergence is a consequence of the field divergence for very short
distances. In this way, the average appearing in expression (39)
must be determined carefully, excluding the configurations in
which a perturber is very close to the emitter. Therefore the lim-
itation mentioned in the first paragraph is common to both the
present and the traditional formalism. In this last one, the prob-
lem is solved considering a lower integration limit for the im-
pact parameters of the perturbers and including the effect of very

3 In this work we have been calling “impact approximation” the pro-
cess allowing us to derive (38) from Eq. (34). That is, it is necessary
that the average that appears in the second integral in (34) can be writ-
ten as it appears in (38). This requires that the dipole correlation time is
much higher than the perturber field typical fluctuation time. However,
the term “impact approximation” is usually employed with the meaning
used in the first works on Stark broadening that also include the elas-
tic collision approximation. These two approximations are of course
independent. The Liouville operator in Eq. (34) may, or may not, in-
clude innelastic collisions, which does not affect the argument used in
the derivation of Eq. (38) from Eq. (34). In order to follow the usual
denomination we could substitute along all our work the term “impact
approximation” by perturber field “fast fluctuation approximation”. In
particular, when it is said that impact broadening is the dominant ef-
fect for radio recombination lines we possibly need to include inelastic
collisions but we can keep the frame of fast fluctuations. Of course, the
expression obtained here for the width operator is valid only when one
only considers elastic collisions.

4 If one considers free and independent particles with straight line
trajectories as in standard theory, Γ(t) ∼ 1/t. This gives rise to a log-
arithmic divergence at both limits. For very long times this divergence
is trivially corrected using a cutting radius (such as the Debye radius)
given that real trajectories are affected by the other perturbers. For short
distances the correction of the minumum radius must be introduced to
separate the effects of strong and weak collisions, as already mentioned
before.
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close collisions through a strong collision term in the frame of
the Lorentz model.

In anycase, we insist, the limitations of impact broadening
may affect the magnitude accuracy of the integral appearing
in (49), but would not affect expression (47), i.e. the relationship
between the Stark width and the principal quantum numbers of
the levels involved in the transition under study that is what we
are considering in this work.

Expressions (46) and (47) show that Stark widths of the indi-
vidual components of the transition are independent of the angu-
lar momentum quantum numbers involved. All the components
are equally broadened. This is a consequence of the symmetry
properties of the hydrogen atom, and, in general, one cannot ex-
pect it to happen for other elements. Appendix A shows that
this homogeneity is due to the so-called “interference term”
in the width operator. If this term did not appear, the width of
each component arising from a state (n, l,m) to another state
(n′, l′,m′) would have a width proportional to

9
4

[
(n4 − n2) + (n′4 − n′2) − n2l(l + 1) − n′2l′(l′ + 1)

]
. (51)

There is still one thing remaining. More than thirty years ago
a discussion took place about the physical meaning of the so-
called “interference term” (Hey & Griem 1975; Voslamber
1976; Griem & Hey 1976). However, that term does not account
for any physical requirements: it results from a mathematical de-
velopment in series of powers. It is a consequence of the fact that
the states of the upper group and those of the lower group “feel”
the same perturbing field. This keeps coherence in the evolution
of those states and reduces the broadening effect due to the colli-
sions. In our study, transitions due to the collisions between the
states of the upper group and the states of the lower group have
not been taken into account. This is the main limitation of this
treatment, which ignores inelastic collisions that, for many con-
ditions, are dominant (Griem 2005). Accounting for such colli-
sions is beyond our objective in this work, which is to give a sim-
ple and compact expression for the Stark width of hydrogen lines
when both conditions are fullfiled: impact broadening for weak
collisions in the frame of the “no-quenching” approximation.
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Appendix A: Calculation of the width operator

Here we prove expresion (46), reproduced below

R2|| d〉〉 = φnn′ || d〉〉 (A.1)

or, equivalently,

R2
nd + dR2

n′ − 2Rn dRn′ = φnn′d (A.2)

(in this expression we have written

RndRn′ ≡
∑

i=x,y,z

R(n)
i dR(n′)

i (A.3)

that corresponds to the so-called “interference term”).
The proof of exp. (A.2) involves two parts. First, the two first

addends that depend on the squares of R operator in each of the
groups of states with principal quantum number n are evaluated.
Second, the interference term is obtained.

A.1. First part

The hydrogen atom has a special symmetry that gives rise to
accidental degeneracy. Such symmetry leads to conmutation
between the so-called Runge-Lenz vector, A, and the atom
Hamiltonian. That vectorial operator – properly normalized –
forms, together with the angular momentum operator, L, a set
of generators for the S O(4) group that may be separated in the
tensor product of two S O(3) groups. The generators of each of
these groups are vector operators defined using the expresions :

J(1) =
1
2

(L + A) , J(2) =
1
2

(L − A) . (A.4)

These operators conmute between them and their conmutation
rules correspond to those of an angular momentum (Biedenharn
& Louck 1981):
[
Ji(a), J j(a)

]
= iεi jk Jk(a), i, j, k = x, y, z; a = 1, 2. (A.5)

All these matrixes conmute with the hydrogen atom
Hamiltonian. In addition, in each group of states with
principal quantum number n, operators J2(1) and J2(2) are
diagonal matrixes that are proportional to unity with eigenvalues
(Biedenharn & Louck 1981):

J2
n (1) = J2

n(2) =
n2 − 1

4
· (A.6)

In Quantum Mechanics, as in Classical Mechanics, the Runge-
Lenz vector is perpendicular to angular momentum, i.e. L·A = 0
(Biedenharn & Louck 1981).

From these properties, we can write

A2 = J2(1) + J2(2) − 2J(1) · J(2),
L2 = J2(1) + J2(2) + 2J(1) · J(2). (A.7)

Therefore, for each subspace of states with principal quantum
number n it can be written

A2
n = n2 − 1 − L2

n. (A.8)

The Runge-Lenz vector is interesting as it is related to the
R operator that appears in expresion (A.2). To be exact, in the
subspace of states with principal quantum number n one has
(Demkov et al. 1969)

Rn =
3
2

nAn. (A.9)

Then,

R2
n =

9
4

n2
(
n2 − 1 − L2

n

)
(A.10)

in the spherical basis |n, l,m〉, each matrix element of each of the
two first operators in (A.2) are written simply:

〈n, l,m|R2
nd|n′, l′,m′〉 = 9

4
n2
(
n2 − 1 − l(l + 1)

)

×〈n, l,m|d|n′, l′,m′〉 (A.11)

〈n, l,m|dR2
n′ |n′, l′,m′〉 =

9
4

n′2
(
n′2 − 1 − l′(l′ + 1)

)

×〈n, l,m|d|n′, l′,m′〉. (A.12)
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A.2. Second part

For the interference term there is more algebra. Work is done
in the basis |n, l,m〉 of eigenstates of H0, L2 and Lz. It is conve-
nient to work with vector operators using their spherical com-
ponents −1, 0,+1 instead of using the Cartesian basis x, y, z. We
calculate, then, each matrix element of the M̄-th component of
the vector operator appearing in (A.3) using the expression

〈n, l,m|VM̄ |n′, l′,m′〉 ≡ 〈n, l,m|RnDM̄ Rn′ |n′, l′,m′〉
=
∑

M

∑

l1,m1

∑

l2,m2

(−1)M 〈n, l,m|RM |n, l1,m1〉

×〈n, l1,m1|DM̄ |n′, l2,m2〉
×〈n′, l2,m2|R−M |n′, l′,m′〉. (A.13)

We use the Wigner-Eckart theorem to write, for each of the
three vector operators appearing in (A.13) (Biedenharn & Louck
1981),

〈n, l,m|RM |n, l1,m1〉 = Cl1
m1

1
M

l
m 〈n, l||R||n, l1〉 (A.14)

where Ca
α

b
β

c
γ is a Clebsch-Gordan coeficient and 〈n, l||R||n, l1〉 is

the corresponding reduced matrix element. Expression (A.13)
can be rewritten:

〈n, l,m|VM̄ |n′, l′,m′〉=
∑

l1,l2

〈n, l||R||n, l1〉 〈n, l1||d||n′, l2〉

×〈n′, l2||R||n′, l′〉
×
∑

M,m1,m2

(−1)M Cl1
m1

1
M

l
m Cl2

m2

1
M̄

l1
m1

Cl′
m′

1
−M

l2
m2
.

(A.15)

The result of this last summation of products of three
Clebsch-Gordan coefficients is known. For example, in expres-
sion labeled as (18) on page 260 of Varshalovich et al. (1988) it
is written:∑

αβγ

(−1)b+βCb
−β

c
γ

a
αCd
δ

b
β

e
ε Ca
α

f
φ

d
δ = (−1)b+c+d+ f

×
√

(2a + 1)(2d + 1) Cc
γ

f
φ

e
ε

{
abc
e f d

}
. (A.16)

Using the symmetry relation

Ca
α

b
β

c
γ = (−1)a+b−c Cb

β
a
α

c
γ (A.17)

applied to the last Clebsch-Gordan member of the summation,
one finds that exp. (A.15) may be written as:

〈n, l,m|VM̄ |n′, l′,m′〉 =
∑

l1 ,l2

〈n, l||R||n, l1〉 〈n, l1||d||n′, l2〉

× 〈n′, l2||R||n′, l′〉 (−1)l1+l2
√

2l1 + 1
√

2l2 + 1 Cl′
m′

1
M̄

l
m

{
l2 1 l′

l 1 l1

}

≡ Cl′
m′

1
M̄

l
m 〈n, l||V||n′, l′〉. (A.18)

The triangular rules of the 6 j element that appears in this ex-
pression force |l − l′| ≤ 1 (which cannot be different, because
operator V is a vector). This condition, together with the selec-
tion rules for operator R, limit the possible cases of values l1
and l2 to those given in Table (A.1). In that same table the values
of the corresponding 6 j element are shown. These were obtained
from the particular expressions (Brink & Satchler 1993)
{
a1a + 1
a1a + 1

}
=

{
a + 11a
a + 11a

}
=

1
(2a + 1)(a + 1)(2a + 3)

(A.19)
{

a 1a + 1
a + 21a + 1

}
=

{
a + 21a + 1

a 1a + 1

}
=

1
(2a + 3)

· (A.20)

Table A.1. Possible cases of values for l1 and l2 in exp. (A.18) as a func-
tion of the extreme values l and l′. The last column gives the value of the
corresponding 6 j element according to expressions (A.19) and (A.20).

l l1 l2 l′
{

l2 1 l′

l 1 l1

}

l l + 1 l + 2 l + 1 1/(2l + 3)
l l + 1 l l + 1 1/[(2l + 1)(l + 1)(2l + 3)]
l l + 1 l l − 1 1/(2l + 1)
l l − 1 l l + 1 1/(2l + 1)
l l − 1 l l − 1 1/[(2l − 1) l (2l + 1)]
l l − 1 l − 2 l − 1 1/(2l − 1)

In order to develop expression (A.18) it is convenient to write the
reduced matrix elements appearing in it according to the radial
integrals of the hydrogen atom. Then one has (Bethe & Salpeter
1957)

〈n1, l||R||n2, l + 1〉 = −
√

l + 1
2l + 1

Rn1 l
n2 l+1 (A.21)

〈n1, l||R||n2, l − 1〉 =
√

l
2l + 1

Rn1 l
n2 l−1 (A.22)

and using

Rn l
n l−1 = Rn l−1

n l =
3
2

n2 l Anl (A.23)

being

An l =
1
n l

√
n2 − l2. (A.24)

We may develop expression (A.18) for the case l′ = l + 1. The
case l′ = l − 1 may be obtained from our result applying the
formal change n↔ n′ and l↔ (l − 1). One obtains, then,

〈n, l||V||n′, l + 1〉 =
∑

l1,l2

〈n, l||R||n, l1〉 〈n, l1||d||n′, l2〉

×〈n′, l2||R||n′, l + 1〉 (−1)l1+l2
√

2l1 + 1
√

2l2 + 1
{
l2 1 l + 1
l 1 l1

}

= −
√

l + 1
2l + 1

[ l + 2
2l + 3

Rn l
n l+1Rn l+1

n′ l+2Rn′ l+2
n′ l+1

+
1

(2l + 1)(2l + 3)
Rn l

n l+1Rn l+1
n′ l Rn′ l

n′ l+1 +
l

2l + 1
Rn l

n l−1Rn l−1
n′ l Rn′ l

n′ l+1

]
.

(A.25)

We use, now, (A.23) and (A.24):

〈n, l||V||n′, l + 1〉 = −9
4

n2n′2
√

l + 1
2l + 1

l + 1
(2l + 1)(2l + 3)

×
[
(l + 2)2(2l + 1) An l+1An′ l+2Rn l+1

n′ l+2

+An l+1An′ l+1Rn l+1
n′ l + l2(2l + 3) An lAn′ l+1Rn l+1

n′ l

]
. (A.26)

Now we use the recurrence relations for the radial integrals ob-
tained by Infeld & Hull (1951) (see also Hey (2006)), that are
shown here:

2. An′ .Rn .
n′ .−1 = (2. + 1)An .+1Rn .+1

n′ . + An′ .+1Rn .
n′ .+1, (A.27)

2. An .Rn .−1
n′ . = (2. + 1)An′ .+1Rn .

n′ .+1 + An .+1Rn .+1
n′ . . (A.28)

(expression (A.28) may be obtained from (A.27) replacing n
by n′ and taking into account the symmetry of radial integrals
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with regard to an exchange of upper and lower indexes). In order
to obtain a new useful relation between these functions, one may
multiply equality (A.28) by (2.+1), substract it from (A.27) and
substitute the value . by (. − 1) in the result. One obtains:

2. An′ .Rn .−1
n′ . = (2. − 1)An .−1Rn .−2

n′ .−1 − An′ .−1Rn .−1
n′ .−2. (A.29)

With these relations we transform the terms inside
[ ]

in expres-
sion (A.26). We write
[]
= (l + 2)(2l + 1) An l+1

1
2

[
(2l + 3)An l+1Rn l

n′ l+1 − An′ l+1Rn l+1
n′ l

]

+(l + 1) An l+1An′ l+1Rn l+1
n′ l

+l(2l + 3) An′ l+1
1
2

[
(2l + 1)An′ l+1Rn l

n′ l+1 + An l+1Rn l+1
n′ l

]
. (A.30)

The first line in this expression has been obtained substituting the
product (l+ 2)An′ l+2Rn l+1

n′ l+2 using (A.29) with . = l + 2. The third
line in (A.30) is obtained substituting the product lAn l+1Rn l+1

n′ l
using (A.28) with . = l.

Grouping together terms in (A.30):
[ ]
=

[
1
2

(l + 2)(2l + 1)(2l + 3)
]

(An l+1)2Rn l
n′ l+1

+

[
1
2

l(2l + 1)(2l + 3)
]

(An′ l+1)2Rn l
n′ l+1

+

[
1
2

l(2l + 3) + (l + 1) +
1
2

(l + 2)(2l + 1)
]

× An l+1An′ l+1Rn l+1
n′ l

=
1
2

(2l + 1)(2l + 3) Rn l
n′ l+1

{
(l + 1)

[
(An l+1)2 + (An′ l+1)2

]

+
[
(An l+1)2 − (An′ l+1)2

]}
. (A.31)

Now one can use (A.24) to write
[ ]
=

(2l + 1)(2l + 3)
2(l + 1)

Rn l
n′ l+1

[
n2 − (l + 1)2

n2 +
n′2 − (l + 1)2

n′2

+
n2 − (l + 1)2

n2(l + 1)
− n′2 − (l + 1)2

n′2(l + 1)

]

=
1

2n2n′2
(2l + 1)(2l + 3)

l + 1
Rn l

n′ l+1

×
[
2n2n′2 − (l + 1)2(n2 + n′2) + (n2 − n′2)(l + 1)

]

=
1

2n2n′2
(2l + 1)(2l + 3)

l + 1
Rn l

n′ l+1

×
[
2n2n′2 − n2l(l + 1) − n′2(l + 1)(l + 2)

]
. (A.32)

If we now take this result to (A.26):

〈n, l||V||n′, l + 1〉 = −9
8

√
l + 1

2l + 1
Rn l

n′ l+1

×
[
2n2n′2 − n2l(l + 1) − n′2(l + 1)(l + 2)

]
.

(A.33)

But, according to exp. (A.21),

〈n, l||V||n′, l + 1〉 = 9
8

[
2n2n′2 − n2l(l + 1) − n′2(l + 1)(l + 2)

]

×〈n, l||R||n′, l + 1〉. (A.34)

As has been mentioned, this relation equally may be found if
one studies the change from l to l′ = l − 1. Finally, taking into
account (A.13), (A.18) and (A.34), one can write:

〈n, l,m|RndRn′ |n′, l′,m′〉 =
9
8

[
2n2n′2 − n2l(l + 1) − n′2l′(l′ + 1)

]

×〈n, l,m|d|n′, l′,m′〉.
(A.35)

A.3. Third part

We must only group together terms. Joining expres-
sions (A.11), (A.12) and (A.35) one obtains:

〈n, l,m|R2
nd + dR2

n′ − 2RndRn′ |n′, l′,m′〉 =
9
4

[(
n2 − n′2

)
2

−
(
n2 + n′2

)]
〈n, l,m|d|n′, l′,m′〉 (A.36)

leading to expressions (A.1) and (47).
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