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03. E-mail: Jerome.Idier@irccyn.ec-nantes.fr.

Abstract. The localization and the sizing of 3D flaws within a homogeneous metallic

media is a major task for non destructive evaluation (NDE). This paper adresses

the problem of the reconstruction of such flaws using an efficient binary algorithm.

Basically, the method rests on the fact that a simple binary constraint suffices for an

accurate and robust reconstructions in the context of NDE. A heuristic minimization,

computationally attractive, is designed in order to provide fast reconstructions. The

proposed algorithm is compared with standard binary (the iterated conditional mode

algorithm) and non binary (penalized approach with convex potentials Gibbs random

fields) reconstruction techniques.
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1. Introduction

Reconstruction of binary volumes from noisy projections is an attractive tool for non

destructive evaluation (NDE) of metal structures [2, 3]. It amounts to the simultaneous

detection and sizing of small defects in an homogeneous material. However, such a

tomographic reconstruction problem is challenging when only limited-angle projections

are available, since it is then very hard to recover the geometry of the defects along

the average direction of the rays. As far as in situ NDE is considered, this unfavorable

observation context is often a direct consequence of the operational constraints imposed

on the NDE setup. In [1], for instance, the radiographic inspection of in-service pipes

in the nuclear industry is considered with a total angular excursion of 30◦, see figure 1.

In limited-angle tomography, faithful reconstructions of the 3D attenuation map

cannot be expected without adequate prior constraints on the solution [4, 5, 6]. One
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Figure 1. Left – 3D representation of the instrumental setup. Right – Schematic

representation of the measurement context for the synthetic problem considered in this

paper. Note that all the dimensions are drawn from a real NDE setup in the nuclear

industry, cf. [1, Fig. 1].

possible approach is to adopt a parametric model for the shape of the defect (for instance,

that it is spherical), and to estimate the few corresponding parameters, say, in the least-

square sense [7]. However, this approach relies on strong assumptions, which are not

natural in the NDE context, where the number and/or the shape of the hypothetical

defects are not known. In [8], a genetic-algorithm strategy is proposed to handle an

unknown number of defects, but the constraint of a parameterized shape remains. A

potentially more flexible extension is obtained using a description of objects in terms of

contours. Again, parametric contour based methods [9, 10] hardly handle the case of an

unknown number of contours, at completly unknown positions. Fully non-parametric

modeling of the contour via a level-set formulation [11] yields a more suited approach.

This leads to gradient-based iterations that aim to compute a local minimizer of the 3D

partitioning problem [12].

A large part of the litterature rather assumes a voxel decomposition for the

attenuation map. Then, the tomographic reconstruction x̂ is usually defined as the

minimizer of a penalized least-square criterion, such as

{
min

x

‖y −Hx‖2 + ψ(x; θ) (1a)

subject to x ∈ X ⊆ RN (1b)

where θ is a vector of hyperparameters. Within this framework, the solution x̂ is clearly

a trade-off: whereas the first term favors the solutions that fit the data, the second one

discards the solutions that are not compatible with prior information.

A usual choice is to consider ψ as the energy of a Markov random field with

positive interactions, in order to favor clusters of voxels in the reconstruction [13].

More specifically, the well-known Ising model is of special interest here, since the
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spatial information to encode is binary: each voxel either belongs to an inclusion

(of negligible attenuation), or to a sound region of the inspected object (of known

attenuation). Only few works have been based on the Ising model to tackle NDE issues.

Among the noticeable exceptions, let us mention [3], where it clearly appears that a

major numerical obstacle must then be faced, of combinatorial nature, and that no

simple, satisfying solution is available. Several authors have rather chosen to relax

the binary constraint and to cope with NDE in the framework of continuous-valued

Markovian reconstruction [2, 1]. The resulting problem is easier to deal from the

numerical viewpoint, since gradient-based optimization algorithms are then available.

Unfortunately, the regularizing character of the binary constraint is lost, so that the

reconstructed defects appear as streched along some directions [1]. Let us remark here

that the resort to Markov models strengthens such a tendancy to produce oversized

defects. This motivates our choice of an independent, identically distributed (iid) binary

model for the voxels: the binary constraint is then the only regularizing ingredient, while

the iid assumption corresponds to the simplest possible spatial model. Although the

resulting optimization problem is still intractable under an exact form, it lends itself to

a simple and satisfactory solution. Its main features are as follows:

i) Firstly, a region-of-interest (ROI) is determined through straightforward

computations, such that the maximum posterior mode of voxels outside the ROI is

zero, i.e., Pr(Xn = 0 |y) > Pr(Xn = 1 |y). This results in a dramatic reduction in

the dimensionality of the problem.

ii) Secondly, we rely on a modified version of the single most likely replacement

algorithm (SMLR) introduced in [14] to explore efficiently the binary configurations

in the ROI. Whereas the original algorithm considers a “single site” update in

the volume, the block most likely replacement (BMLR) proposed here considers

“blockwise” updates within cubes of 2 × 2 × 2 voxels. For limited-angle

reconstructions, it is empirically observed that such a strategy allows to escape

from local minima where the SMLR would be trapped.

Based on a realistic synthetic NDE problem, our numerical procedure is shown to be very

efficient, both in terms of computational load and accuracy of reconstructed attenuation

map. Moreover, the proposed method does not depend on any hyperparameter, in

contrast with many high-resolution tomographic reconstruction methods.

The paper is organized as follows. In Section 2, the modeling of the tomographic

measurement in NDE is introduced, and several Bayesian estimators are envisaged to

solve the reconstruction problem This section ends with some remarks concerning the

computation of these estimators that motivate the design of a computationally efficient

heuristic. Section 3 deals with the construction of the ROI that allows a reduction of the

voxels involved in the reconstruction process. In Section 4, the problem of binary object

reconstruction within a ROI is stated. Standard binary reconstruction algorithms are

introduced and the BMLR is derived. In Section 5, the performances of the BMLR are

compared to the standard iterated conditional mode algorithm (ICM) and to a penalized
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approach with convex potentials Gibbs random fields. Finally, a discussion of this work

and some conclusions are presented in Section 6.

2. Binary constraint for NDE

Let S = {1, · · · , N} be an arbitrary enumeration of the N voxels that constitute

the unknown three-dimensional attenuation map x. Under usual assumptions, the

tomographic measurement along the m-th ray follows the Beer-Lambert relation [15,

Section 4.1.1]: for all m = 1, · · · ,M ,

ym
def
= − log

τm
τs

= ht
m�

x + em, (2)

where hm�
∈ RN

+ stands for the projection process along the mth ray (see for instance

[15, Section 7.1]), τs and τm are the photon emission rate of the source and the counting

rate of detector m, respectively. em is a noise term that accounts for the statistical

fluctuations in the measurement. Stacking all the measurements into a vector y
def
= (ym)

yields the following observation model

y = Hx + e (3)

where H is a matrix of size M ×N , so that ht
m�

is the mth line of H .

In this paper, it will be assumed that both the geometry and composition of the

inspected object are known, up to the possible presence of defects, of course. In more

precise terms, we restrict ourselves to the case where the object would be perfectly

known if it was free of any defect. Let r ∈ RN
+ denote the corresponding defect-free

attenuation map, and let us introduce a binary map x̃ ∈ {0, 1}N to encode the geometry

of the defects: voxels that belong to a defect are assigned the value ‘1’, whereas the others

are assigned the value ‘0’. Given that the defects are assumed to be composed of air, of

negligible attenuation, the actual attenuation map x is made of voxels such that

xm =

{
0 if x̃m = 1,

rm otherwise,

for all m = 1, · · · ,M . In compact notations, we have x = r − diag(r)x̃, so that a new

linear observation model can be deduced from (3):

ỹ = H̃x̃ + ẽ,

where ỹ = Hr − y, H̃ = Hdiag(r), and ẽ = −e. Thus, the reconstruction problem

can be reformulated as a linear inverse problem with binary unknowns. In the rest of

the paper, the tilde signs will be omitted for sake of notational simplicity, so that the

attenuation map itself will be considered as binary.

In the sequel, e is assumed to be an outcome of a normal random vector E with

zero mean and iid components

E ∼ N (0, σ2I) (4)
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where I is the identity matrix and σ > 0 is the standard deviation of the noise. Provided

that the counting rates at each detector are high and of same magnitude, the Gaussian

additive observation model is of sufficient accuracy. These assumptions are realistic in

NDE and the Gaussian model will be adopted in this paper. For low signal to noise

ratio (SNR), however, a Poisson model is more appropriate to describe the random

fluctuations in the measurements, see [16] for details.

Under assumptions (3) and (4), the likelihood of the observation vector reads

fY |X(y |x) ∝ exp

{
−

1

2σ2
‖y −Hx‖2

}
(5)

where “∝” stands for “proportional to”. Considering the Bayesian framework, a simple

iid model for the prior distribution is introduced:

Pr(X = x) =

N∏

n=1

Pr(Xn = xn) = pk
1 p

N−k
0

where ∀n ∈ S, Pr(Xn = 1) = p1, Pr(Xn = 0) = p0 = 1 − p1, and k is the number of

voxels that are equal to ‘1’. Then the posterior probability reads

Pr(X = x |y) =
fY |X(y |x) Pr(X = x)∑

x′∈S
fY |X(y |x′) Pr(X = x′)

(6)

where S = {0, 1}N is the set of the binary configurations. The maximum a posteriori

(MAP) solution

X̂MAP def
= arg max

x∈S

Pr(X = x |y) (7)

amounts to minimizing the following quadratic criterion

J (x)
def
= ‖y −Hx‖2 + 2σ2µ1tx (8)

under the binary constraint x ∈ S, where 1
def
= (1, · · · , 1)t ∈ RN and µ

def
= log(p0/p1).

Beside the MAP solution, the Bayesian setting allows to define alternate estimators.

In particular, the posterior mean of voxel n reads

E[Xn |Y ] =
∑

xn∈{0,1}

xn Pr(Xn = xn |y) = Pn

where

Pn
def
= Pr(Xn = 1 |y).

Following [17], let us also define the marginal posterior mode (MPM) estimator according

to:

X̂MPM

n

def
= arg max

xn∈{0,1}

Pr(Xn = xn |y), (9)
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which is easy to deduce from Pn:

X̂MPM

n =

{
1 if Pn > 1/2

0 otherwise.
(10)

Unfortunately, none of the latter solutions are easily computable. In particular, (7) is a

binary quadratic programming problem. In the terms and notations of statistical physics,

it amounts to minimize the following energy:

H(s) = −
∑

(m,n)∈E

Jmnsmsn +
∑

n∈S

Fnsn, (11)

where sn = 2xn − 1 ∈ {−1,+1} are Ising spins, Jmn = −ht
�mh

�n,

E =
{
(m,n) ∈ S2, m < n,ht

�mh
�n 6= 0

}

is the set of interacting spins, and

Fn = −ht
�n

(
2y −

∑

m∈S

h
�m

)
+ 2σ2µ

plays the role of the nth component of an exterior magnetic field. In some particular

cases, like the one encountered in binary image denoising [18], solving such a problem

can be done in an acceptable number of operations, that is a polynomial function of

N . On the contrary, our case falls within the class of NP-hard problems, for which it is

very unlikely that a polynomial algorithm exists [19]. The first reason for NP-hardness

is the fact that Jmn takes negative values (i.e., the interactions are antiferromagnetic)

in a nonzero magnetic field. Moreover, the non-planarity of the neighborhood graph E

is another source of NP-hardness [20].

On the other hand, computing X̂MPM
n requires the computation of partition functions

involving summations over S or large subsets of S. More specifically, the evaluation of

the key quantity Pn can be envisaged as follows. Let Si
n

def
= {x ∈ S : xn = i}, so that

Pn =
∑

x∈S1
n

Pr(X = x |y) =

∑
x∈S1

n
Pr(X = x |y)

∑
x∈S

Pr(X = x |y)
=

1

1 +Rn(y)
,

where

Rn(y)
def
=

∑
x∈S0

n
Pr(X = x |y)

∑
x∈S1

n
Pr(X = x |y)

. (12)

Again, the computation of the sums entering the expression of R forms NP-hard

problems [19, 20].

Despite the NP-hardness of the problem, some contributors resort to Markov Chain

Monte-Carlo (MCMC) technics to solve such combinatory problems. In [17], a Gibbs

sampler is used to compute the posterior mean estimator for binary denoising problems.

In [21], the authors resort to simulated annealing in order to minimize a least-square
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criterion under binary contraint. By nature, such MCMC technics converge in the

asymptotic limit. When strong spatial correlations exist in the posterior probability,

an efficient sampling is difficult and the resulting algorithms may ask for unrealistic

computation time before a useful estimate is available. In practice, we found that

this problem is a major obstacle in designing MCMC based techniques for binary

reconstruction in limited-angle tomography. Hence, our main concern in this paper

is to develop an efficient heuristic that computes a local maximizer of Pr(X = x |y)

in a finite number of iterations. For this purpose, our strategy is twofold. Firstly, we

aim at reducing the dimensionnality of the problem by an appropriate selection of the

voxels that should be discared in the reconstruction process, see Section 3. Then, a

local maximizer of Pr(X = x |y) is computed via a deterministic iterative procedure,

see Section 4.

3. Region-of-interest (ROI) selection

As far as large 3D problems are considered, a first step toward a computationally

attractive algorithm is to reduce the number of voxels involved in the reconstruction.

As shown in the next section, it can be established that X̂MPM
n = 0 for a large amount

of voxels, from costless preprocessing operations involving the data.

3.1. MPM based ROI in the Gaussian data case

Although Pn is not straightforward to calculate, it admits an easily computable upper

bound P n that will be fruitful to manipulate.

Let 0 denote the null vector of length N and en the nth canonical vector ofRN . Indeed, the following proposition holds in the case of centered white Gaussian

observation noise.

Proposition 1 The posterior probability Pn admits the following upper bound:

Pn ≤ P n
def
=

1

1 +Rn(y)
(13)

where

Rn(y)
def
=

Pr(X = 0 |y)

Pr(X = en |y)
(14)

= exp
(
−∆n

)
, (15)

with

∆n
def
=

1

2σ2

(
2ht

�ny − ‖h�n‖
2)− µ. (16)

Proof : See Appendix A.

Interestingly, it is clear from (10) that

P n ≤ 1/2 =⇒ X̂MPM

n = 0. (17)
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The computation of P n plays a pivotal role in our method since it allows a significant

reduction of the effective dimension of the reconstruction problem. Let us introduce the

set I of voxels for which implication (17) is inactive, i.e.,

I = {n ∈ S : P n > 1/2}.

The latter set defines a ROI in the sense that the reconstruction algorithm will be

restricted to I, while the other voxels will be assumed to match their MPM estimation,

i.e., X̂MPM
n = 0, ∀n ∈ S \ I.

Let us remark that

P n ≤ 1/2 ⇐⇒ ∆n ≤ 0

⇐⇒ ht
�ny ≤

1

2
‖h

�n‖
2 + σ2µ (18)

so that a threshold test on the backprojection Hty of the data allows to determine I,

where the threshold value is generally not spatially invariant. Moreover, the test does

not depend on the noise variance provided that the binary states are considered equally

probable, i.e., p0 = p1.
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Figure 2. Central 2D section of the backprojection (left) and of the map of the upper

bound Pn (right), repectively, obtained from noisy projections (σ = 0.01), for a pair

of superimposed defects (L = 26mm).

A direct extension of Proposition 1 can be established in the general Gaussian case

of a noise with mean m and covariance R. A less trivial but richer extension is provided

in Subsection 3.3 to encompass some cases of log-concave likelihoods.

Finally, let us note that Proposition 1 admits a formal counterpart, which yields a

sufficient condition to ensure X̂MPM
n = 1. The latter condition is hardly met in our

situation, because too few voxels are equal to one, but it would be interesting to

implement Condition (18) in more balanced situations. The proof is omitted, since

it is almost a paraphrase of that of Proposition 1.
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Proposition 2 The posterior probability Pn admits the following lower bound:

Pn ≥ P n

def
=

1

1 +Rn(y)

where

Rn(y)
def
=

Pr(X = 1− en |y)

Pr(X = 1 |y)
= exp (−∆n) ,

with

∆n

def
=

1

2σ2

(
2ht

�n (y −H1) + ‖h
�n‖

2)+ µ.

3.2. Synthetic example

For illustrative purpose, let us compute the threshhold value in a simple, yet realistic

context. The inspected object is made of an homogeneous material, with two

homogeneous defects of spherical shape. Its discrete representation contains 64×64×64

voxels, while each of the two defects spreads over 32 voxels. Some schematic illustrations

of the measurement context are provided in Fig. 1. The data y consists in seven 2D

projections (each one being a 128 × 128 image) that were corrupted by zero mean

iid Gaussian perturbations with standard deviation σ = 0.01, which is close to the

maximum amplitude of the projection of a single voxel. Both the ROI I and the

backprojection were deduced from this data set. The former was computed with the

additional assumption that p1 = p0 (i.e., µ = 0).

Fig. 2(a) and (b) depict the “central” 2D cross-section of the backprojection Hty

and of the upper bound P n, respectively.

In this case, 17.3% of the 64×64 voxels of the central cross-section happen to belong

to the ROI, and only 1.5% of the 64×64×64 voxels of the object belong to it, while the

ROI incorporates all the 64 voxels of the defects. This example shows that ROI selection

can lead to an impressive reduction of the problem dimension. However, it is worth to

stress that such a preliminary operation does not raise the main ambiguity concerning

the position of the defects, since the voxels that belong to the ROI are organized along

the vertical axis, which is the average direction of the rays. It is only aimed at lowering

the dimensionality of the reconstruction problem, not at solving it. However, as far as

combinatory issues are involved, the size of the vector of unkowns is known as a crucial

parameter.

From (18), it should be clear that the achievable reduction depends on the number

of flaws in the volume, the noise in the data, and the number and the angular excursion

of the projections. Therefore, it is not easy to assess quantitative results concerning

the size of the ROI. However, our experience indicates that increasing the number of

projections and/or their angular excursion decreases the size of the ROI. Likewise, a

smaller SNR yields a larger ROI.
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3.3. Generalization to log-concave likelihoods

Proposition 1 can actually be stated in more general terms, provided that the

observations y be independent given the object x, and that the likelihood of ym be

a log-concave function‡ of ht
m�

x.

Proposition 3 Let the likelihood function take the following form

fY |X(y |x) =

M∏

m=1

φm(ht
m�

x), (19)

where φm are log-concave functions. Then (13)-(14) still hold.

Proof : See Appendix B.

The main non Gaussian model we have in mind is the Poisson data model, which

is the acknowledged model to describe that the measurements are related to a counting

process. In the present case of transmission tomography, the corresponding data

likelihood reads

Pr(Y = y |X = x) =

M∏

m=1

(zm)ym

ym!
exp (zm) . (20)

In the latter expression, zm = τs exp (−ξm), where τs is the emission rate of the source

and ξm is related to the attenuation along the ith ray according to

ξm = ht
m�

x + gm,

where g = (gm) stands for a background component that accounts for the Compton

scattering effect. Taking the scattering into account (gm 6= 0) leads to non-logconcave

functions. However, when the scattering can be neglected the Poisson likelihood (20) is a

product of log-concave functions of x and Proposition 3 applies with the corresponding

expression for Rn(y)

Rn(y) =
M∏

m=1

exp (τs (exp (−hmn)− 1) + ymhmn) . (21)

Here we shall not investigate the Poisson data model further since our main concern

is to consider gamma or X ray tomographic measurements with high counting rates,

which are well approximated by the simple Gaussian described in Section 2.

4. Reconstruction using a BMLR approach

In the case of limited-angle tomography, designing a computationaly attractive algorithm

that leads to high quality binary reconstructions is a challenge. Here, the proposed

approach is twofold. Firstly, the reconstructed volume is reduced to the ROI as defined

‡ By definition, φ is a log-concave function if log φ is a concave function.
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in the previous section. Our aim is then to minimize the penalized least-square criterion

(8) with respect to the binary voxels that pertain to the ROI, while the others are

forced to zero. For this purpose, we propose a deterministic procedure called block

most likely replacement (BMLR). It is an heuristic procedure comparable to ICM.

However, it provides significantly better results than ICM, while being still of a moderate

computational cost for the considered NDE problems.

4.1. ROI constrained formulation

Let us introduce the set I = {x ∈ S : xn = 0 if n 6∈ I}. Hereafter, the assumption x ∈ I

is taken for granted. It is then natural to consider the problem of maximizing (8) under

the constraint x ∈ I. Let us remark here that such a constrained formulation is not

necessarily equivalent to the unconstrained one. Actually, it is easy to check that the

two problems admit the same solution if X̂MAP ∈ I only. Unfortunately, it is far from

easy to check the latter condition since X̂MAP is unknown. Nonetheless, maximizing (8)

under the constraint x ∈ I remains coherent and likely to produce a meaningful solution.

Moreover, it can be checked by practice that the proposed maximization procedure with

or without the ROI provides close reconstruction results — see Section 5.

4.2. ICM and SMLR heuristics

>From the sake of low computational complexity, the ICM procedure introduced in [13]

is of particular interest since it amounts to simple successive scalar relaxation of voxels.

Let N
def
= {n1, · · · , n|I|} be an arbitrary permutation of the set I. From any initial

solution x(1) ∈ I, the kth iteration of ICM can be formally defined by

x(k,1) = x(k)

ℓ = 1 · · · |I|, x(k,ℓ+1) =

{
ζ(k,ℓ) if J (ζ(k,ℓ)) < J (x(k,ℓ)),

x(k,ℓ) otherwise,

x(k+1) = x(k,|I|+1),

where ζ(k,ℓ) is a proposition vector defined by

ζ(k,ℓ) def
= x(k,ℓ) ⊕ enℓ

, (22)

and ⊕ stands for the componentwise logical exclusive or.

The ICM iterations can be implemented efficiently in a recursive fashion, as follows.

Let x and x′ be two binary N -length vectors that only differ at index n, i.e., x′n = xn±1.

Then, it is easy to establish that

J (x′) = J (x) + ht
�n (h

�n ∓ 2ε)± 2σ2µ, (23)

where ε = y −Hx. Moreover, we have also

ε′ = y −Hx′ = ε∓ h
�n (24)
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In the implementation of ICM, Equations (23) and (24) can be used to compare J (ζ(k,ℓ))

to J (x(k,ℓ)) and to recursively compute ε(k,ℓ) = y −Hx(k,ℓ), respectively.

By construction, the ICM ensures that the criterion J never increases. Moreover,

convergence occurs after a finite number of iterations, as soon as x(k+1) = x(k). However,

an obvious drawback of this heuristic is that the solution is not invariant with respect

to the scanning order in I.

The latter limitation of ICM can be made for by a single most likely replacement

(SMLR) procedure, as introduced by Kormylo and Mendel [14] in the field of sparse

spike train restoration. According to SMLR, each scan yields the swap of only one

voxel, the one that produces the largest decrease of the criterion:

x(k+1) = arg max
x∈V(x(k))

J (x), (25)

where V(x(k)) = {ζ(k,ℓ) : 1 ≤ ℓ ≤ |I|} is the set of all proposition vectors generated by

elementary modifications of x(k). SMLR shares several features of ICM:

• An efficient implementation is obtained thanks to the recursive expressions (23)

and (24).

• The criterion J never increases, and convergence occurs after a finite number of

iterations, as soon as x(k+1) = x(k).

Although very attractive from the computational side, none of these heuristics

provide faithfull reconstructions in our context. In particular, we have found that the set

V(x(k)) is not rich enough to prevent ICM and SMLR to get stuck into bad solutions. To

gain efficiency, richer sets of propositions should prioritarily allow neighboring voxels to

swap their values, so that the position of the hypothetical defects can adjust more easily

along the iterations. A possible solution would be to adapt Chi and Mendel’s single-

spike-shift detector [22]. We found more appropriate to develop an original variation of

it, which is developed in the next section.

4.3. The BMLR heuristic

Whereas the SMLR only explores the two possible values of a single voxel at each step,

the new heuristic explores the 28 = 256 configurations of a basic 2×2×2 cube of voxels

in the ROI. The resulting procedure is called block most likely replacement (BMLR).

4.3.1. Formal expression of the heuristic Let Ω stands for the set of nonempty

intersections between the ROI and the 2 × 2 × 2 cubes. Hereafter, such intersections

will be called blocks. Most of the blocks contain eight voxels, but some of those located

at the boundaries of the ROI may contain a fewer number of voxels.

In what follows, the compact notation xω is employed for the subvector {xn, n ∈ ω},

where ω is a set of sites, i.e., a subset of {1, . . . , N}. Let us also introduce the notation
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ζ(k,ω,b) for the proposition vector defined by

ζ(k,ω,b)
ω

= x(k)
ω
⊕ b,

ζ
(k,ω,b)
I\ω = x

(k)
I\ω,

where ω ∈ Ω and b ∈ {0, 1}|ω|. Then, the updating equation (25) still holds for the

BMLR heuristic, with an extended set of proposition vectors:

V(x(k)) =
{
ζ(k,ω,b) : ω ∈ Ω, b ∈ {0, 1}|ω|

}
.

Again, the criterion J never increases, and convergence occurs after a finite number

of iterations, as soon as x(k+1) = x(k). However, the examination of each block ω

requires 2|ω| evaluations of the criterion, where the bloc-size |ω| varies between 1 and 8.

The resulting computational cost can be prohibitive if the implementation issue is not

carefully dealt. The next subsection proposes an efficient solution based on Gray codes.

4.3.2. Efficient implementation using Gray codes A Gray code (or reflected code) is a

binary numeral system where two successive values differ in only one digit [23, Section

20.2]:

(0, 1, 11, 10, 110, 111, 101, 100, 11000, 11001, . . .)

Let us remark that the first 2n elements are obtained by some permutation of the first

2n natural numbers.

For each block ω, we propose to explore the 2|ω| binary configurations in the Gray

code order rather than in the usual one. Then, two successive trials b and b′ respectively

correspond to two vectors ζ(k,ω,b) and ζ(k,ω,b′) that only differ at a single index. As a

consequence, the recursive expressions (23) and (24) can be applied to explore the 2|ω|

values of J (ζ(k,ω,b)) at an affordable numerical cost, for all ω ∈ Ω.

An even more efficient version consists in introducing fn = ht
�nε and gmn = ht

�mh
�n

for all m,n ∈ ω, so that (23) can be replaced by

J (x′) = J (x) + gnn ∓ 2fn ± 2σ2µ,

while the |ω| scalars fn can be recursively computed using

f ′
m = ht

�nε
′ = fm ∓ gmn.

While each of the 2|ω| applications of (23) involves a scalar product, none is required

anymore in the new recursion. Only |ω| (|ω| + 1)/2 scalar products are required to

compute gmn for all m,n ∈ ω.

Table 1 depicts the pseudo-code for the central part of the BMLR scheme. For the

sake of brevity, the set of blocks Ω is assumed available from previous calculation, as

well as the projection matrix H . For large size problems, H cannot be stored and its

entries must rather be recalculated when required.
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Figure 3. Left – Pairs of voxelized spheres considered in the data generation process,

in configuration separated (L = 26mm) and close (L = 12mm), respectively.

Right – Corresponding noisy projection from source S6 with noise standard deviation

σ = 0.01.

In Table 1, the initial configuration is the null object x0 = 0. However, a different

initialization point could be easily considered. In particular, a faster but less optimal

method could provide an initial solution, e.g., ICM, that would be refined using BMLR.

For the sake of computational time, such a two-step approach would be of particular

interest to reconstruct objects of larger extent than localized defects.

5. Test on synthetic data sets

The 3D synthetic NDE problem presented in Section 3.2 is now considered in order to

test the proposed reconstruction algorithm. The aim is to illustrate the detection, sizing

and separation capabilities of the method on the ground of simulations.

5.1. The simulation context

The considered reconstruction problem involves two superimposed defects of spherical

shape, in an homogeneous material. The volume of interest contains 64 × 64 × 64

voxels, while each of the two defects spreads over 32 voxels. Two different values

have been considered for the distance between the two defects: L ∈ {26mm, 12mm}

(see Figure 3(a)). The data set y consists in seven projections that were corrupted

by an uncorrelated Gaussian noise with standard deviation σ ∈ {0, 0.005, 0.01} (see

Figure 3(b)). The geometric dimensions of the problem are given by Figure 1. They

correspond to a realistic situation of in-service pipe inspection in the nuclear industry

[1, Fig. 1].
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Table 1. Pseudo-code of BMLR.

K ← 8; G1 ← 1; λ← 2σ2µ

for i = 1 : K − 1 do

k ← 2i; Gk ← i+ 1 % G ∈ {0, 7}: position of

for j = 1 : k − 1 do % changing bit between

Gk+j ← Gk−j % successive elements in

end for % Gray code of length 28

end for

x0 ← 0; ε0 ← y;J 0 ← ‖y‖2 % Initialization

repeat % Main loop

Jmax ← J 0;

for all ω ∈ Ω do % Loop on all blocks

for all n ∈ ω do

fn ← ht
�nε

gnn ← ht
�nh�n

for all m ∈ ω, m < n do

gmn ← gnm ← ht
�mh

�n

end for

end for

J ← J 0; x← x0

for k = 0 : 2|ω| − 1 do % Loop on all block states

n← ωGk

s← 2xn − 1 % s = 1 if xn = 1→ 0,

xn ← 1− xn % s = −1 if xn = 0→ 1

J ← J + gnn + s(2fn − λ)

for all m ∈ ω do

fm ← fm + sgmn

end for

if J < Jmax then % New best configuration

Jmax ← J ; nmax ← n; smax ← s

end if

end for % End of loop on block states

end for % End of loop on blocks

if Jmax < J 0 then % New configuration

J 0 ← Jmax; x
0
nmax
← 1− x0

nmax
; ε0 ← ε0 + smaxh�n

end if

until Jmax = J 0 % End of main loop. The best

% found configuration is x0.
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5.2. Non-binary reconstruction results

Here, a non-binary penalized approach tested in [1] is used as a comparative tool. It

consists of considering an optimization problem of the form (1) with X = RN
+ and

ψ(x; θ) = λ
∑

i∼j

φ(xi − xj ; δ) + α

N∑

n=1

|xn| , (26)

where λ, α ≥ 0, i ∼ j stands for all pairs of neighboring sites in the first-order

neighborood system (hence, each voxel has six neighbors) and φ(t; δ) is a Huber function

[24]. The role of such a penalty function is to favor piecewise homogeneous solutions.

In practice, the penalized approach requires the tuning of the three hyperparameters

θ = (λ, δ, α)t. Here, they have been empirically adjusted according to qualitative

appreciation. The corresponding reconstruction results are depicted by Fig. 4. As

expected, the estimated attenuations are underestimated, while the extension of the

defects is overestimated along the vertical axis. In particular, the result does not allow

to clearly discriminate the two spheres in the case L = 12mm.

The penalized least-square criterion being convex, the global minimizer can be

computed from an initial guess x(0) by an appropriate iterative descent algorithm.

Here, x(0) has been chosen as the backprojection of the data and the minimization step

was performed using a projected-gradient method, i.e., a straightforward adaptation

of steepest-descent that handles the positivity constraint in a natural way [25, p.203].

However, this algorithm inherits the slow asymptotic convergence of a gradient method.

Table 2 shows that several hours are required to reach the adopted convergence criterion

ψ(x(k−1))−ψ(x(k)) < 10−6, where k ∈ N the iteration number. Let us remark here that

the same constrained minimization problem could probably be adressed using more

efficient, but more complex algorithms (see for instance [26]).

5.3. Binary reconstruction results

In this section, the proposed BMLR algorithm is compared to the ICM. In all cases,

the initial state is chosen as a defect-free object, i.e., x(0) = 0. Both heuristics require

the tuning of the hyperparameter µ = log(p0/p1). Since the defects are expected to

constitute a very small part of the total volume, a strict Bayesian viewpoint would lead

to choose prior probabilities p0 and p1 = 1 − p0 such that p0 ≫ p1. For two distinct

reasons, we rather set p0 = p1.

• On the one hand, false positives are preferable to false negatives, which justifies

to overvalue p1/p0. This could be reformulated more rigorously according to

the Bayesian cost theory, by replacing the MAP estimator by another Bayesian

estimator that accounts for distinct costs for false negatives and false positives,

respectively c0 and c1. Then our choice corresponds to the assumption that

p0/c0 = p1/c1.

• On the other hand, choosing p0 = p1 leads to a fully unsupervised version of BMLR.
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Figure 4. Reconstructions from noisy projections of a pair of voxelized spheres using

a penalized approach.

The reconstruction results are shown in Figs. 5 and 6 for the ICM and the BMLR

algorithms, respectively. Even in the noiseless case, the ICM fails to provide a faithful

reconstruction in the case of two close spheres. In comparison, the BMLR algorithm

achieves a perfect reconstruction in all cases of high or moderate SNR.

On the other hand, the number of false positive voxels is subject to a threshold

effect: when the noise standard deviation reaches the magnitude of the projection of a

single voxel (whose maximum value is σth = 1/64 ≈ 0.015 in the present simulation),

many spurious, isolated voxels appear in the reconstruction. This is clearly visible on

Fig. 6 in the case σ = 0.01. In this case, two distinct strategies may be adopted to

reduce the number of false positive voxels.
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Figure 5. Reconstructions from noisy projections of a pair of voxelized spheres using

an ICM approach.

The first one rests upon the fact that the BMLR reconstruction remains acceptable,

let alone those spurious voxels. As far as real defects can be assumed to extend over

several neighboring voxels, the idea is then to remove isolated voxels by simple post-

processing. For sake of computational burden, it is interesting to also discard isolated

voxels from the ROI. In the considered cases where σ = 0.01, a large amount of iterations

are spent to activate voxels that are isolated in the ROI, and can thus be saved. The

resulting reconstruction is depicted in the first column of Fig. 8.

An alternate strategy is to introduce a penalization of active voxels by assigning a

positive value to the regularization parameter λ
def
= 2σ2µ in criterion (8). The tuning

of λ has a great impact on the final quality of the 3D attenuation map. As illustrated

in Fig. 9, a correct tuning of λ significantly reduces the number of spurious voxels and

produces a satisfactory reconstruction of the flaws. However, over estimating λ leads to

false negative voxels, so that the tuning of λ must be cautiously handled.
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Figure 6. BMLR reconstructions from noisy projections of a pair of discretized defects.

The number of iterations and the CPU time required for convergence for the ICM

and BMLR heuristics are shown in Table 2. Not surprinsingly, ICM is a very fast

method. However, BMLR remains very attractive in terms of computing time. The

step of building the ROI is not expensive since it results from a simple thresholding

of the backprojection map, see (18). Depending on the SNR and on the positions of

the spheres, the ROI varies from 1.1% to 1.6% of the total number of voxels in the

considered examples. The total number of iterations is roughly proportional to the

number of activated voxels in the solution. Obviously, the latter depends on the volume

of the defects, which is expected to be small in NDE. However, it is also dependent on

the SNR: the BMLR heuristic converges in a dozen of iterations if σ < σth whereas a

few hundreds are required if σ > σth. In the former case, the convergence is fast and

the solution is reached within two seconds. In the latter case, most of the iterations

activate only one isolated site of the ROI and the time needed for convergence increases

significantly. As shown in Table 2, removing isolated sites from the ROI allows to speed-
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Figure 7. BMLR reconstructions from noisy projections of a pair of continuous

defects.

up the convergence of the BMLR in this case. As stated earlier in this section, this

pre-processing of the ROI is natural provided that flaws extend over more than a single

voxel in the volume.

In principle, the BMLR heuristic can provide different solutions whether the ROI

is considered or not. In order to test the variability of the solution, we also ran the

BMLR heuristic with I = S, i.e., we ignored the ROI. For high to moderate SNR values,

the results were strictly identical to the previous ones, while only marginal differences

appeared for the low SNR case. Finally, let us remark that the BMLR heuristic asks

for an unrealistic computation time of several hours when the ROI is ignored, or if all

the voxels belong to the ROI. In such a defavorable situation, the BMLR could still

be efficiently implemented using a parallel structure, since the blocks can be explored

independently one from each other.
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Figure 8. For the lowest SNR values, removing isolated voxels in the final BMLR

reconstruction provides a better solution to both discretized (left) and continuous

(right) defect problems.

5.4. BMLR: robustness with respect to modeling errors

In the previous subsection, the data are noisy projections of discretized objects.

Obviously, real objects are continuous and (3) only constitutes an approximate model.

Therefore, we found appropriate to further investigate the robustness of the method

by considering projections from perfectly spherical objects, given that closed-form

expressions are available for the projection of ellipsoids. The reconstructions provided by

the BMLR are shown in Figure 7. In the case of distant objects, a good reconstruction

is obtained whatever the SNR — up to the fact that spurious, isolated voxels must

be removed for σ = 0.01, as shown on the second column of Figure 8. In the case of

closer objects, the quality of the reconstruction deteriorates slightly, but the BMLR still

provides meaningful results, since the two objects are still clearly distinguishable one

from each other.
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Figure 9. Impact of the regularization parameter λ = 2σ2 log(p0/p1) on BMLR

reconstruction at the lowest SNR (i.e., σ = 0.01). Whereas under regularization (left)

does not efficiently eliminate spurious voxels and over regularization (right) cancels

most of the voxels in the flaws, a correct tuning of λ (center) produces a satisfactory

reconstruction.

6. Conclusion

Spatially interacting models such as Markov random fields are usually employed within

a Bayesian approach to reconstruction. Here, we rather resorted to a simpler iid model,

and we proposed an efficient binary reconstruction algorithm, both in terms of robustness

and computational burden. For high to moderate SNR, the binary constraint is sufficient

to regularize the inversion of the tomographic problem. For low SNR, however, the

number of false positive voxels increases dramatically. A simple strategy to deal with

this problem is to cancel isolated voxels. Another strategy is to perform a penalization

of active voxels by assigning a positive value to the regularization parameter λ = 2σ2µ

in criterion (8). However, the supervised tuning of λ must then be handled.
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Table 2. Number of iterations and CPU time for the penalized approach and the ICM

and BMLR heuristics on a Pentium III 2.4 Ghz (586 series) with 1Go RAM.

Algorithm L [mm] σ # it. CPU time

Penalized

approach

26 0 333 3h 5min

5.10−3 97 1h 25min

10−2 198 2h 55min

12 0 325 3h 42min

5.10−3 356 5h 11min

10−2 410 5h 58min

ICM

26 0 9 0.408s

5.10−3 11 0.452s

10−2 11 0.501s

12 0 7 0.306s

5.10−3 8 0.331s

10−2 8 0.333s

BMLR

26 0 30 1.57s

5.10−3 27 1.55s

10−2 346 16.94s

12 0 19 1.18s

5.10−3 19 1.23s

10−2 339 17.08s

BMLR

(with

isolated

voxels

discarded

from the

ROI)

26 0 30 1.57s

5.10−3 27 1.53s

10−2 173 8.37s

12 0 19 1.17s

5.10−3 19 1.29s

10−2 170 8.43s

With a view to reconstruction from real data, several comments can be made about

the physical model considered here. Firstly, the additive Gaussian noise assumption

may not be appropriate for low counting rates τm. In such cases, the Poisson model (20)

provides a more accurate description of the data. The ROI should then be computed

using (21), and straightforward modifications should be brought to the BMLR algorithm.
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Secondly, it should be noted that the Beer-Lambert relation (2) is only valid for a

monochromatic emission of photons under a non-diffractive propagation assumption. In

particular, Compton scattering is then negligible, which is not necessarily true for high

energy gamma-ray sources (beyond 100 keV). In the latter case, further investigations

would be required to define an appropriate ROI, for instance on the basis of the scattering

model developped in [27].
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Appendix A. Proof of Proposition 1

First, it is immediate to check that

∆n = − logRn(y) =
1

2σ2

(
‖y‖2 − ‖y − h

�n‖
2)− µ,

which readily gives expression (16).

Now let us show that

Rn(y) ≤
fY |X(y |x)

fY |X(y |x′)
(A.1)

for all couples (x,x′) ∈ S0
n × S1

n such that x′ = x + en: given (5), the latter inequality

holds, since

1

σ2
‖y −Hx′‖

2
−

1

σ2
‖y −Hx‖2 + ∆n =

2

σ2
ht

�nHx ≥ 0.

Given (12), inequalities (A.1) jointly imply that (13) holds.

Appendix B. Proof of Proposition 3

In the more general setting of Proposition 3, let us show that (A.1) is still valid for all

couples (x,x′) ∈ S0
n×S1

n such that x′ = x+en. Given (19), this amounts to prove that

M∏

m=1

φm(a)φm(d)

φm(b)φm(c)
≤ 1,

with a = 0, b = Hmn, c = ht
m�

x, and d = b + c, where Hmn denotes the (m,n)-entry of

matrix H . It is actually true that each term of the above product belongs to [0, 1]. This

is obvious for those terms for which Hmn = ht
m�

x = 0, since we have then a = b = c = d.

Otherwise, let us remark that a ≤ b ≤ d and a ≤ c ≤ d, so that

logφm(b) ≥ θ logφm(a) + (1− θ) logφm(d) (B.1)

log φm(c) ≥ θ′ logφm(a) + (1− θ′) logφm(d) (B.2)
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where

θ =
d− b

d− a
=

c

b+ c
, θ′ =

d− c

d− a
=

b

b+ c
= 1− θ.

Finally, term-to-term summation of inequalities (B.1) and (B.2) allows to conclude that

φm(a)φm(d) ≤ φm(b)φm(c).
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