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INDUCTIVE CHARACTERIZATIONS OF

HYPERQUADRICS

BAOHUA FU

Abstract. We give two characterizations of hyperquadrics: one
as non-degenerate smooth projective varieties swept out by large
dimensional quadric subvarieties passing through a point; the other
as LQEL-manifolds with large secant defects.

1. Introduction

We work over an algebraically closed field of characteristic zero. In
[Ein], Ein proved that if X is an n-dimensional smooth projective va-
riety containing an m-plane Π0 whose normal bundle is trivial, with
m ≥ n/2 + 1, then there exists a smooth projective variety Y and
a vector bundle E over Y such that X ≃ P(E) and Π0 is a fiber of
X → Y . The bound on m was improved to m ≥ n/2 by Wísniewski in
[Wis]. Later on, Sato [Sat] studied projective smooth n-folds X swept
out by m-dimensional linear subspaces, i.e. through every point of X,
there passes through an m-dimensional linear subspace. If m ≥ n/2,
he proved that either X is a projective bundle as above or m = n/2. In
the latter case, X is either a smooth hyperquadric or the Grassmanian
variety parametrizing lines in Pm+1.

A natural problem is to extend these results to the case where lin-
ear subspaces are replaced by quadric hypersurfaces. In this paper, we
will consider a smooth projective non-degenerate variety X ( PN of
dimension n, which is swept out by m-dimensional irreducible hyper-
quadrics passing through a point (for the precise definition see section
3). Examples of such varieties include Severi varieties (see [Zak]), or
more generally LQEL manifolds of positive secant defect(see section 2
below). As it turns out, the number m is closely related to the secant
defect of X, which makes it hard to construct examples with big m.

Our main theorem is to show (cf. Thm. 2) that if m > [n/2] + 1,
then N = n+1 and X is itself a hyperquadric. This gives a substantial
improvement to the Main theorem 0.2 of [KS], where the same claim
is proved under the assumption that a general hyperquadric in the
family is smooth and that m ≥ 3n/5 + 1. Our proof here, based on
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ideas contained in [IR2] and [Rus], is much simpler and is completely
different from that in [KS]. However, we should point out that a more
general result, without assuming the quadric subspaces pass all through
a fixed point, is proven in [KS].

The same idea of proof, combined with the Divisibility Theorem of
[Rus], allows us to prove (cf. Corollary 3) that for an n-dimensional
LQEL-manifold, either it is a hyperquadric or its secant defect is no
bigger than n+8

3
. This improves Corollary 0.11, 0.14 of [KS]. It also

gives positive support to the general believing that hyperquadrics are
the only LQEL manifolds with large secant defects.

2. Preliminaries

Let δ = δ(X) = 2n + 1 − dim(SX) be the secant defect of a non-
degenerate n-dimensional variety X ⊂ PN , where

SX =
⋃

x 6=y
x,y∈X

〈x, y〉 ⊆ PN

is the secant variety of X ⊂ PN .
Recall([KS], [IR1]) that a smooth irreducible non-degenerate projec-

tive variety Z ⊂ PN is said to be conically connected (CC for short) if
through two general points there passes an irreducible conic contained
in Z. Such varieties have been studied and classified in [IR1] and [IR2].

We begin with a simple but very useful remark, which is probably
well known but we were not able to find a reference.

Lemma 1. Let X ⊂ PN be a smooth projective variety and let z ∈ X
be a point. If there exists a family of smooth rational curves of degree
d on X passing through z and covering X, then through two general
points x, y ∈ X there passes such a curve.

In particular, if d = 1, then X ⊂ PN is a linearly embedded Pn. If
d = 2 and if X ⊂ PN is non-degenerate, then X ⊂ PN is conically
connected.

Proof. By Theorem II.3.11 [Kol], there exists finitely many closed sub-
varieties (depending on z) Vi  X, i = 1, . . . , l, such that for any
nonconstant morphism f : P1 → X with f(0) = z, deg(f∗(P1)) = d
and with f(P1) * ∪l

i=1Vi, we have f ∗TX is ample. Now take a general
point x ∈ X \ ∪l

i=1Vi and a smooth rational curve C ⊂ X of degree d
passing through x and z. The above result implies that f ∗TX = TX |C
is ample and hence that NC|X is ample. Thus there exists a unique
irreducible component Wx of the Hilbert schemes of rational curves of
degree d contained in X and passing through x containing [C]. Since
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NC|X is ample, it is well known that deformations of C parametrized
by Wx cover X. Therefore given a general point y ∈ X, we can find
a smooth rational curve of degree d contained in X joining x and y,
proving the first part of the assertion. To conclude the proof it is suf-
ficient to recall that linear subspaces of PN are the unique irreducible
subvarieties containing the line through two general points of itself. �

The following general result on CC-manifolds is proved in [IR2].

Proposition 1. ([IR2, Prop. 3.2]) Let X ⊂ PN be a CC-manifold and
let C = Cx,y be a general conic through the general points x, y ∈ X.
Then

n + δ(X) ≥ −KX · C ≥ n + 1.

If moreover δ(X) ≥ 3, then X ⊂ PN is a Fano manifold with
Pic(X) ≃ Z〈OX(1)〉, whose index i(X) satisfies

n + δ(X)

2
≥ i(X) ≥

n + 1

2
.

Now consider a smooth projective variety X ⊂ PN . For a general
point x ∈ X, let Yx be the Hilbert scheme of lines on X ⊂ PN pass-
ing through x, which can be naturally regarded as a sub-variety in
P((txX)∗) = Pn−1, where txX is the affine tangent space to X at x.
The variety Yx is the first instance of the so-called variety of mini-
mal rational tangents, introduced and extensively studied by Hwang
and Mok (see [Hwa] and the references therein). When X ⊂ PN is
a Fano manifold with Pic(X) ≃ Z〈O(1)〉, there exists a deep connec-
tion between geometrical properties of Yx ⊂ Pn−1 and the index of X.
The following result contained in [IR1, Prop. 2.4] is essentially due to
Hwang and Kebekus, cf. [HK, Th. 3.14].

Proposition 2. ([HK, Th. 3.14] and [IR1, Prop. 2.4]) Let X ⊂ PN

be a Fano manifold with Pic(X) ≃ Z〈H〉 and −KX = i(X)H, H being
the hyperplane section and i(X) the index of X.

(i) If i(X) > n+1
2

, then X ⊂ PN is ruled by lines and for general
x ∈ X the Hilbert scheme of lines through x, Yx ⊂ P((TxX)∗) =
Pn−1, is smooth. If i(X) ≥ n+3

2
, Yx is also irreducible.

(ii) If i(X) ≥ n+3
2

and SYx = Pn−1, then X ⊂ PN is a CC-manifold.

(iii) If i(X) > 2n
3
, then X ⊂ PN is a CC-manifold with δ(X) > n

3

and such that SYx = Pn−1.
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Recall that (cf. [KS], [Rus], [IR2]) a smooth irreducible non-degenerate
variety X ⊂ PN is said to be a local quadratic entry locus manifold of
type δ ≥ 0 (LQEL-manifold for short) if for general x, y ∈ X distinct
points, there exists a hyperquadric of dimension δ = δ(X) contained
in X and passing through x, y. By definition, a LQEL manifold of
positive secant defect is conically connected, but the converse is not
true. For example, a smooth cubic hypersurface X ⊂ Pn+1 with n ≥ 3
is conically connected but not a LQEL-manifold. Severi varieties and
Scorza varieties are basic examples of LQEL manifolds ([Zak]).

A systematic study of LQEL manifolds has been succesively carried
out by Russo in [Rus], in particular, the following remarkable theorem
has been proved in [Rus].

Theorem 1. ([Rus, Th. 2.8]) For an n-dimensional LQEL-manifold
X ⊂ PN of type δ ≥ 3, let x ∈ X be a general point and let Yx ⊂ Pn−1

be the Hilbert scheme of lines on X passing through x. Then Yx ⊂ Pn−1

is a LQEL-manifold of type δ−2, of dimension (n+ δ)/2−2 and such
that SYx = Pn−1. Let δ = 2rX + 1, or δ = 2rX + 2. Then 2rX divides
n − δ.

3. Varieties swept out by hyperquadrics

Through out this section, let X ( PN be an n-dimensional non-
degenerate projective smooth variety which satisfies the following two
conditions:

i) through a general point x ∈ X, there passes an irreducible
reduced m-dimensional quadric Qx ⊂ X ⊂ PN , where m is a
fixed natural number (i.e. the linear span < Qx > of Qx in PN

is a linear subspace of dimension m + 1 and Qx ⊂< Qx > is a
quadric hypersurface);

ii) there exists a point z ∈ X such that for x ∈ X general, the
quadric Qx passes through z.

We will say such a variety is swept out by m-dimensional hyper-
quadrics passing through z ∈ X. For example, a LQEL manifold with
secant defect δ > 0 is swept out by δ-dimensional hyperquadrics passing
through a point. By Lemma 1, a smooth variety is conically connected
if and only if it is swept out by a 1-dimensional hyperquadrics passing
through a point.

Lemma 2. The secant defect δ of a variety X ⊂ PN swept out by
m-dimensional hyperquadrics passing through a point z ∈ X satisfies
δ ≥ m.
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Proof. Let Hilbconic,z(X) be the Hilbert scheme of conics in X passing
through z and let W1, · · · , Wk be its irreducible components. If z is a
singular point of Qx for x ∈ X general, then the line < z, x > would be
contained in X and by Lemma 1 X ⊂ PN would be degenerated con-
trary to our assumption. Thus for general x ∈ X, z is a smooth point of
Qx and the Hilbert scheme Hilbconic,z(Qx) is irreducible, so that there
exists some i ∈ {1, · · · , k} such that Hilbconic,z(Qx) ⊂ Wi. This implies
that there exists a component W := Wi0 containing Hilbconic,z(Qx) for
x ∈ X general. This gives the dimension estimate:

(3.1) dim W ≥ n + m − 2.

Reasoning as in the proof of Lemma 1, if we take a general point
x ∈ X and an irreducible conic [C] ⊂ Qx joining x and z, then we can
suppose that NC|X is ample. Thus W is smooth at the point [C] and

dim(W ) = dim H0(C, NC|X ⊗OC(−z)) = −KX · C − 2.

Combining with (3.1), we obtain

(3.2) −KX · C ≥ n + m.

By Lemma 1, X ⊂ PN is conically connected so that Proposition 1
gives n + δ ≥ −KX · C ≥ n + m, yielding δ ≥ m. �

An immediate consequence of this lemma and Prop. 1 is the following
result.

Corollary 1. If m ≥ 3, then X ⊂ PN is a Fano variety with Pic(X) =
Z〈O(1)〉 and the index i(X) satisfies

n + δ

2
≥ i(X) ≥

n + m

2
.

Recall that for a general point x ∈ X, the variety Yx is the Hilbert
scheme of lines on X passing through x.

Lemma 3. Assume that m ≥ 3. Then Yx is smooth irreducible of
dimension i(X) − 2. If moreover m > n/3, then Yx is non-degenerate
and SYx = Pn−1.

Proof. Corollary 1 yields i(X) ≥ (n+m)/2 ≥ (n+3)/2. By part (i) of
Prop. 2 we deduce that Yx ⊂ Pn−1 is not empty and irreducible. If lx is
a line through x, then dim(Yx) = H0(Nlx|X) = −KX · lx−2 = i(X)−2.
The last part follows form (iii) of Prop. 2. �

In the sequel we shall use the following simple remark.
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Lemma 4. Assume n ≥ 2 and δ ≥ 1. If Yx ⊂ Pn−1 is a non-degenerate
hypersurface, then Yx ⊂ Pn−1 is a smooth quadric hypersurface and
X ⊂ Pn+1 is a smooth quadric hypersurface.

Proof. Since δ ≥ 1, the second fundamental form |IIx,X| ⊆ |OPn−1(2)|
is a linear system of quadrics of dimension N − n− 1 (see for example
[Rus, Thm. 2.3 (1)]). Since Yx ⊂ Pn−1 is contained in the base locus
scheme of |IIx,X| and since it is a non-degenerate hypersurface, we
obatain that Yx ⊂ Pn−1 is a quadric hypersurface and that N = n + 1,
i.e. X ⊂ Pn+1 is a hypersurface. Let lx ⊂ X be a line passing through
x. Reasoning as in the proof of Lemma 3 we get, by adjunction,

n − 2 = dim(Yx) = −KX · lx − 2 = −(deg(X) − n − 2) − 2,

that is deg(X) = 2 as claimed. �

We now prove a substantial improvement of the Main Theorem 0.2
of [KS], where the same claim is proved under the stronger assumption
that a general hyperquadric is smooth and that m ≥ 3n/5+1 if n = 5, 6
or 10 and m ≥ 3n/5 otherwise.

Theorem 2. Let Xn ( PN be a smooth non-degenerate variety, which
is swept out by m-dimensional hyperquadrics passing through a point.
If m > [n/2]+1, then N = n+1 and X is itself a smooth hyperquadric.

Proof. The condition m > [n/2] + 1 implies m ≥ 3. By Lemma 3 we
know that Yx ⊂ Pn−1 is a smooth non-degenerate variety. Reasoning as
in the proof of Lemma 2 we can suppose that, for x ∈ X general, z is
a smooth point of Qx, so that lines on the quadric Qx passing through
z are parameterized by an (m − 2)-dimensional quadric hypersurface

Q̃x ⊂ Pn−1. Clearly Q̃x ⊂ Yx. By assumption, m − 2 > [(n − 2)/2], so
Yx ⊂ Pn−1 contains a high dimensional variety which is a hypersurface
in its linear span in Pn−1. Then [Zak, Corollary I.2.20] implies that
Yx ⊂ Pn−1 is itself a hypersurface and the conclusion now follows from
Lemma 4. �

The following corollary is analogue to results in [Ein], [Wis] and [Sat],
where they considered linear subspaces instead of quadric subvarieties.

Corollary 2. Let X ⊂ PN be a smooth non-degenerate variety of
dimension n and Q ⊂ X a smooth quadric subvariety of dimension
m whose normal bundle NQ|X is isomorphic to OQ(1)⊕n−m. If m >
[n/2] + 1, then X is a hyperquadric.

Proof. Let Iq be the ideal sheaf of a point q ∈ Q. By the exact sequence
0 → NQ|X ⊗ Iq → NQ|X → NQ|X,q → 0, we get H1(Q, NQ|X ⊗ Iq) = 0,
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since NQ|X ≃ OQ(1)⊕n−m is globally generated and H1(Q,OQ(1)) = 0.
Similarly, since TQ is globally generated and H1(Q, TQ) = 0, we obtain
H1(Q, TQ ⊗ Iq) = 0. Note that the following sequence is exact:

0 → TQ ⊗ Iq → TX |Q ⊗ Iq → NQ|X ⊗ Iq → 0.

The long exact sequence of cohomology gives H1(Q, TX |Q ⊗ Iq) = 0
and the following sequence is exact:
(3.3)
0 → H0(Q, TQ ⊗ Iq) → H0(Q, TX |Q ⊗ Iq) → H0(Q, NQ|X ⊗ Iq) → 0.

Let Mor(Q, X; q) be the variety parameterizing morphisms from Q to
X fixing the point q. Then it is smooth at ι : Q → X, the natural
inclusion.

Consider the evaluation map ev : Q × Mor(Q, X; q) → X. Take a
point p ∈ Q − {q}. The tangent map to ev at point (p, ι) is

TpQ ⊕ H0(Q, TX |Q ⊗ Iq) → Tp,X

given by
(u, σ) 7→ Tpι(u) + σ(p) = u + σ(p).

Thus the image contains TpQ. To show it is surjective, we just need to
show that the composition map H0(Q, TX |Q⊗Iq) → Tp,X → Np,Q|X, σ 7→
[σ(p)] is surjective. By the exact sequence (3.3), it is enough to show
that H0(Q, NQ|X⊗Iq) → Np,Q|X is surjective, i.e. H0(Q,OQ(1)⊗Iq) →
kp is surjective. This is immediate from the very ampleness of OQ(1).

In particular, this implies that the map ev is smooth at points (p, ι)
for p 6= q. Thus the deformations of Q while fixing q dominant X. Now
we can apply the precedent theorem to conclude. �

Next we will consider the case m = [n/2] + 1 with n ≥ 3.

Proposition 3. If N ≥ 3n/2 and m = [n/2] + 1 with n ≥ 3, then X
is projectively isomorphic to one of the following:

i) the Segre 3-fold P1 × P2 ⊂ P5;
ii) the Plücker embedding G(1, 4) ⊂ P9;
iii) the 10-dimensional spinor variety S10 ⊂ P15;
iv) a general hyperplane section of ii) or iii).

Proof. As δ ≥ m > n/2, by Zak’s linear normality theorem ([Zak]), we
have SX = PN . Thus δ = 2n + 1 − N ≥ [n/2] + 1, which gives that
N ≤ 2n− [n/2]. By hypothesis, N ≥ 3n/2, thus N = 2n− [n/2], which
gives δ = m. As a consequence, −KX · C = n + δ for a generic conic
C, which implies that X is a LQEL manifold of type m by [IR2, Prop.
3.2]. Now the claim is given by the classification result in [Rus, Cor.
3.1]. �
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Remark 1. Here we give an outline of an approach to classify such
varieties X with m = [n/2] + 1, based on Hartshorne’s conjecture. We
may assume that Yx is not a hypersurface in Pn−1, i. e. n−2−dim Yx ≥
1. By the proof of Prop. I.2.16 [Zak], for any hyperplane H ⊂ Pn−1

containing the linear span of Q̃x and TyY for some y ∈ Y , H is tangent

to Yx along some variety Z ⊂ Q̃x. The dimension of Z is bounded by

n − 2 − dim Yx ≥ dim Z ≥ 2(m − 2) − dim Yx = 2[n/2] − 2 − dim Yx.

Consider the Gauss map: γn−2 : Pn−2 → (Pn−1)∗ (cf. I.2 [Zak]). By
definition, γ−1

n−2(H) contains the variety Z×{H}. If 2n−2 < 3i(X)−6,
then Harsthorne’s conjecture implies that Yx ⊂ Pn−1 is a complete
intersection. By Prop. I. 2.10 [Zak], the map γn−2 is finite, which gives
dim Z = 0. We deduce that n is odd and i(X) = n − 1, so X is a
smooth Del Pezzo varieties, which have been completely classified.

Thus we may assume 2n − 2 ≥ 3i(X) − 6, which gives 2n + 4 ≥
3/2(n + m) = 3/2(n + [n/2] + 1). This implies that n ≤ 11 or n = 13.
When n ≤ 11, we obtain that i(X) ≥ n − 2, thus X is a Fano variety
with Pic ≃ Z and of coindex at most 3, i. e. X is either a Del Pezzo
variety or a Mukai variety. The case n = 13 with i(X) = 10 requires a
more detailed study.

4. LQEL-manifolds with large secant defects

The idea contained in the proof of Theorem 2 can be combined with
the Divisibility Theorem of [Rus], obtaining new constraints for the
existence of LQEL-manifold with large secant defects.

Let X ⊂ PN be a LQEL-manifold of type δ ≥ 2k + 1. We define
inductively a sequence of smooth varieties: Y1 := Yx ⊂ Pn−1 and let
Yj+1 ⊂ Pdim(Yj)−1 be the Hilbert scheme of lines on Yj passing through
a general point of it, for k − 1 ≥ j ≥ 1. By the previous theorem, we
know that Yj ⊂ Pdim(Yj−1)−1 is a LQEL-manifold of type δ − 2j with
SYj = Pdim(Yj−1)−1. Furthermore for j ≤ k − 1, Yj ⊂ Pdim(Yj−1)−1 is a
Fano variety with Pic(Yj) = Z〈O(1)〉 ([Rus]). Let ij be the index of Yj

and i0 = (n + δ)/2 the index of X. The following lemma can also be
deduced from the Divisibility Theorem cited above.

Lemma 5.

ij =
n − δ

2j+1
+ δ − 2j, 0 ≤ j ≤ k − 1.

Proof. By Theorem 1, we have

2ij = dim Yj + δ(Yj) = ij−1 − 2 + δ − 2j,
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which gives 2(ij + 2j − δ) = ij−1 + 2(j − 1) − δ. We deduce that
ij + 2j − δ = (i0 − δ)/2j, concluding the proof. �

Theorem 3. Let X ⊂ PN be an n-dimensional LQEL-manifold of
type δ. If

δ > 2[log2 n] + 2 or δ > mink∈N{
n

2k−1 + 1
+

2kk

2k−1 + 1
},

then N = n + 1 and X ⊂ Pn+1 is a quadric hypersurface.

Proof. If δ > 2[log2 n] + 2, then n < 2r, where r = [(δ − 1)/2]. By
Theorem 1, 2r divides n − δ. This is possible only if δ = n. Thus X is
a hyperquadric. Now assume we have the second inequality. Note that

for a fixed n, the minimum mink∈N{
n

2k−1 + 1
+

2kk

2k−1 + 1
} is achieved

for some k ≤ n/2, so we may assume that for some k ≤ n/2, we have

δ >
n

2k−1 + 1
+

2kk

2k−1 + 1
= 2k +

n − 2k

2k−1 + 1
≥ 2k, so that δ ≥ 2k + 1.

Now we can consider the variety Yk ⊂ PdimYk−1−1. Note that dim Yk =
i(Yk−1) − 2 and

dim Yk−1 = 2ik−1 − δ(Yk−1) =
n − δ

2k−1
+ δ − 2k + 2.

On the other hand, Yk ⊂ Pdim(Yk−1)−1 is non-degenerate and it con-
tains a hyperquadric of dimension δ − 2k, which is strictly bigger than
(dim Yk−1 − 2)/2 under our assumption on δ. Now [Zak, Corollary
I.2.20] implies that Yk ⊂ Pdim(Yk−1)−1 is a hypersurface. Since it is a
non-degenerate hypersurface by Theorem 1, a repeated application of
Lemma 4 yields the conclusion. �

We now state a sharper Linearly Normality Bound for LQEL-manifolds,
see [Zak, II.2.17]. Moreover, in [Rus, Cor. 3.1, Cor. 3.2] Russo has
classified n-dimensional LQEL-manifolds of type δ ≥ n/2. Combining
these results with the bound on δ in the Theorem 3 we are able to
classify the extremas cases of the bounds.

Corollary 3. Let X ⊂ PN be a LQEL-manifold of type δ, not a
quadric hypersurface. Then

δ ≤ mink∈N{
n

2k−1 + 1
+

2kk

2k−1 + 1
} ≤

n + 8

3
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and

N ≥ dim(SX) ≥ 2n + 1 − mink∈N{
n

2k−1 + 1
+

2kk

2k−1 + 1
} ≥

5

3
(n − 1).

Furthermore δ = n+8
3

if and only if X ⊂ PN is projectively equivalent
to one of the following:

i) a smooth 4-dimensional quadric hypersurface X ⊂ P5;
ii) the 10-dimensional spinor variety S10 ⊂ P15;
iii) the E6-variety X ⊂ P26 or one of its isomorphic projection in

P25;
iv) a 16-dimensional linearly normal rational variety X ⊂ P25,

which is a Fano variety of index 12 with SX = P25, dual defect
def(X) = 0 and such that the base locus scheme Cx ⊂ P15 of
|IIx,X| is the union of 10-dimensional spinor variety S10 ⊂ P15

with CpS
10 ≃ P7, p ∈ P15 \ S10.

Proof. We shall prove only the second part. If δ = n+8
3

, then n − δ =
2n−8

3
. Suppose δ = 2rX + 1, so that n− δ = 12rX−18

3
. By Theorem 1 we

deduce that 2rX should divide 4rX − 6, which is not possible.
Suppose now δ = 2rX + 2, so that n − δ = 12rX−12

3
= 4(rX − 1).

Since 2rX has to divide 4(rX − 1), we get rX = 1, 2, 3 and, respectively,
n = 4, 10, 16 with δ = 4, 6, respectively 8. The conclusion follows from
[Rus, Cor 3.1 and Cor. 3.2]. �

Let us observe that Lazarsfeld and Van de Ven posed the question
if for an irreducible smooth projective non-degenerate n-dimensional
variety X ⊂ PN with SX ( PN the secant defect is bounded, see
[LVdV]. This question was motivated by the fact that for the known
examples we have δ(X) ≤ 8, the bound being attained for the sixteen
dimensional Cartan variety E6 ⊂ P26, which is a LQEL-variety of type
δ = 8. Based on these remarks and on the above results one could
naturally formulate the following problem.

Question: Is a LQEL-manifold X ⊂ PN with δ > 8 a smooth quadric
hypersurface?
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[Wis] Wísniewski, J. A., On deformation of nef values, Duke Math. J. 64

(1991), no. 2, 325–332.
[Zak] Zak, F. L., Tangents and secants of algebraic varieties, Translations of

Mathematical Monographs, 127, American Mathematical Society, Prov-
idence, RI, 1993
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