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Abstract

We provide a mathematical analysis of appearance of the concentrations (as Dirac masses) of the
solution to a Fokker-Planck system with asymmetric potentials. This problem has been proposed
as a model to describe motor proteins moving along molecular filaments. The components of the
system describe the densities of the different conformations of the proteins.

Our results are based on the study of a Hamilton-Jacobi equation arising, at the zero diffusion
limit, after an exponential transformation change of the phase function that rises a Hamilton-
Jacobi equation. We consider different classes of conformation transitions coefficients (bounded,
unbounded and locally vanishing).

Key words. Hamilton-Jacobi equations, molecular motors, Fokker-Planck equations
AMS Class. Numbers. 35B25, 49L25, 92C05

1 Introduction

A striking feature of living cells is their ability to generate motion, as, for instance in muscle contrac-
tion already investigated theoretically in the 50’s ([18]). But even more elementary processes allow
for intra-cellular material transport along various filaments that are part of the cytoskeleton. These
are known as “motor proteins”. For example, myosins move along actin filaments and kinesins and
dyneins move along micro-tubules. In the early 90’s, it became possible to device a new generation of
experiments in vitro where both the filaments and the motor proteins are sufficiently purified. This
lead to an improved biophysical understanding of the biomotor process (see, for instance, [1, 15, 23, 11],
and the tutorial book [17]) and gave rise to a large cellular biology literature. The experimental obser-
vations made possible to explain how chemical energy can be transformed into mechanical energy and
to come up with mathematical models for molecular motors. The underlying principles are elementary
and represent in fact the common basis for all biomotors. On the one hand, the filament provides for
an asymmetric potential (this notion was introduced in the earliest theoretical descriptions by Huxley,
[18]), sometimes referred to as the energy landscape. On the other hand, the protein can reach several
different conformations. This can be ATP/ADP hydrolysis but five to six different states of the protein
could be involved during muscular contraction.
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In this paper we consider the following model: Molecules can reach I configurations with density,
for each i = 1, 2..., I, ni. A bath of such molecules is moving in an asymmetric potential seen differ-
ently by the I configurations denoted, for i = 1, ..., I, by ψi. Fuel consumption triggers a configuration
change among the different states with rates νij > 0, for i, j = 1, 2..., I. Diffusion, denoted below by
σ, is taken into account.

Thes simple considerations lead to the following system of elliptic equations for the densities
(ni)1≤i≤I : 




−σ ∂2

∂x2ni − ∂
∂x(∇ψi ni) + νiini =

∑

j 6=i

νijnj in (0, 1),

σ ∂
∂xni(x) + ∇ψi(x) ni(x) = 0 for x = 0 or 1.

(1)

The zero flux boundary conditions means that the total number of molecules, in each molecular
state, is preserved by transport (but not by configuration exchange).

Throughout the paper we assume that, for i = 1, ..., I

ni > 0 in [0, 1]. (2)

The zero flux boundary condition, motivated by the additional modeling assumption that total
density is conserved, leads to the condition that, for all i = 1, ..., I,

νii =
∑

j, j 6=i

νji. (3)

Several biomotor models, including the one described above, were analyzed in [7, 8, 19, 16] through
optimal transportation methods. In [7] it is proved that there is a positive steady state solution that
can, for instance, be normalized by

∫ 1

0

∑

1≤i≤I

ni(x)dx = 1. (4)

The simplest way to explain this fact is to observe that the adjoint system,





−σ ∂2

∂x2φi + ∇ψi
∂
∂xφi + νiiφi =

∑

j 6=i

νjiφj in (0, 1),

∂
∂xφi = 0 in {0, 1},

(5)

admits the trivial solution φ1 = φ2 = ... = φI = 1. This yields that 0 is the first eigenvalue of the
system and thus of its adjoint (1). The Krein-Rutman theorem gives the ni’s, but the solution is not
explicitly known except for I = 1, a situation where the motor effect cannot be achieved. The stability
of this problem is also related to the notion of relative entropy [12, 21, 22, 20].

The typical results obtained about biomotors in [7, 16] are that, for small diffusion σ, under some
precise asymmetry assumptions on the potentials, the solutions tend to concentrate, as σ → 0, as
Dirac masses at either x = 0 or x = 1. In the sequel such a behavior will be called motor effect.

Our results (i) provide an alternative proof of this motor effect, and (ii) allow for more general
assumptions like, for instance, various scalings on the coefficients νij . While [7, 16] transform the
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system (1) into an ordinary differential equation and analyze directly its solution, here we use a
direct PDE argument based on the phase functions Ri = −σ lnni that satisfy (in the viscosity sense,
[2, 3, 9, 14]) a Hamilton-Jacobi solution. This is reminiscent to the method used for front propagation
([13, 4]). We recall that the appearance of Dirac concentrations in a different area of biology (trait
selection in evolution theory) relies also on the phase function and the viscosity solutions to Hamilton-
Jacobi equations, [10, 5].

In Section 2 we obtain new and more precise versions of the results of [7] by analyzing the asymp-
totics/rates as σ → 0. In Section 3 we present new results for large transition coefficients, while in
Section 4 we consider coefficients that may vanish.

2 Bounded non-vanishing transition coefficients

We begin with the assumptions on the transition rates and potentials. As far as the former are
concerned we assume that

there exists k > 0 such that νij ≥ k > 0 for all i 6= j. (6)

As far as the potentials are concerned we assume that, for all i = 1, 2, ..., I,

ψi ∈ C2,1(0, 1), (7)

there exists a finite collection of intervals (Jk)1≤k≤M such that min
1≤i≤I

ψ′
i > 0 in

⋃
Jk, (8)

and
max
1≤i≤I

ψ′
i > 0 in [0, 1]. (9)

Notice that these assumptions are satisfied by periodic potentials with period 1/M .

Figure 1: Motor effect exhibited by the parabolic system (1) with two asymmetric potentials. Left:

the potentials ψ1, ψ2. Right: the phase functions Rσ
1 = −σ ln(nσ

1 ), Rσ
2 = −σ ln(nσ

2 ). As announced in

Theorem 2.1, we have Rσ
1 ≈ Rσ

2 and are nondecreasing. This means that the densities are concentrated

as Dirac masses at x = 0. Here we have used σ = 10−4. See Figure 2 for another behavior.

Our first result is a new and more precise version of the result in [7]. It yields that the system (1)
exhibits a motor effect for σ small enough and molecules are necessarily located at x = 0. This effect
is explained by a precise asymptotic result in the limit σ → 0.

To emphasize the dependence on the diffusion σ, in what follows we denote, for all i = 1, ..., I, by
nσ

i the solution of (1). Moreover, instead of (4), we use the normalization

∑

1≤i≤I

nσ
i (0) = 1. (10)

We have:

Theorem 2.1 Assume that (3), (6), (7), (8), (9) and (10) hold. Then, for all i = 1, ..., I,

Rσ
i = −σ lnnσ

i −−−→
σ→0

R in C(0, 1), R(0) = 0 and R′ = min
1≤i≤I

(ψ′
i)+ .
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In physical terms, R can be seen as an effective potential for the system. To state the next result,
we recall that throughout the paper we denote by δ0 the usual δ-function at the origin.

We have:

Corollary 2.2 Assume, in addition to (3), (6), (7), (8) and (9), that min
1≤i≤I

ψ′
i(0) > 0, and normalize

nσ
i by (4) instead of (10). There exist (ρi)1≤i≤I such that

nσ
i −−−→

σ→0
ρiδ0, ρi > 0, and

∑

1≤i≤I

ρi = 1.

There are several possible extensions of Theorem 2.1. Here we state one which, to the best of our
knowledge, is not covered by any of the existing results.

To formulate it, we need to introduce the following assumption on the potentials (ψi)1≤i≤I which
replaces (9) and allows to consider more general settings. It is:





the set {x ∈ [0, 1] : max
1≤i≤I

ψ′
i(x) < 0} is a union of finitely many intervals (Kl)1≤l≤M ′ ,

and (∪Jk)
c ∩ (∪Kl)

c is either a finite union of intervals or isolated points.
(11)

We have:

Theorem 2.3 Assume (3), (6), (7), (8), (11) and (10). Then

Rσ
i = −σ lnnσ

i −−−→
σ→0

R in C(0, 1), R(0) = 0 and

R′ =





min
1≤i≤I

(ψ′
i)+ in ∪ Jk,

max
1≤i≤I

ψ′
i in ∪Kl,

0 in Int
(
(∪Jk)

c ∩ (∪Kl)
c
)
.

As a consequence we have:

Corollary 2.4 In addition to (3), (6), (7), (8), (11) and (4), assume that we have the same number
of intervals Jk and Kl in (8) and (11) respectively, that 0 is the left endpoint of J1 and, finally, that,
for all k = 1, ...,M ,

∣∣
∫

Kk

max
1≤i≤I

ψ′
i(y)dy

∣∣ <
∫

Jk

min
1≤i≤I

ψ′
i(y)dy.

Then, for all i = 1, ..., I, there exist (ρi)1≤i≤I such that

nσ
i −−−→

σ→0
ρiδ0, ρi > 0, and

∑

1≤i≤I

ρi = 1.
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Other possible extensions concern coefficients that may vanish somewhere and/or be unbounded.
The former case is studied in Section 4. As far as the νij being unbounded, it will be clear from the
proof of Theorem 2.1, that the coefficients can depend on σ as long as, for σ → 0 and all i, j = 1, ..., I,
there exists α > 0 such that

σνσ
ij → 0 and σ−ανij → ∞.

Going further in this direction leads to a different limits for − lnni
σ that we study in the next Section.

We continue next with the proof of Theorem 2.1. The modifications needed to prove Theorem 2.3
are indicated at the end of this section where we also discuss the proofs of the Corollaries.

Proof of Theorem 2.1 A direct computation shows that the Rσ
i ’s satisfy, for ν̃ii = νii − ψ′′

i , the
system





−σ ∂2Rσ
i

∂x2 +
∂Rσ

i

∂x

2
− ψ′

i(x)
∂Rσ

i

∂x + σ
I∑

j=1

νije
(Rσ

i −Rσ
j )/σ = σν̃ii in (0, 1),

∂Rσ
i

∂x = ψ′
i in {0, 1}.

(12)

Adding the equations of (1) and using (3) yield the conservation law

−σ ∂2

∂x2
[

∑

1≤i≤I

nσ
i ] − ∂

∂x
[

∑

1≤i≤I

ψ′
in

σ
i ] = 0,

which together with the boundary condition gives

−σ ∂

∂x

∑

1≤i≤I

nσ
i −

∑

1≤i≤I

ψ′
in

σ
i = 0. (13)

Setting ∑

1≤i≤I

nσ
i = e−Sσ/σ,

we have
∂Sσ

∂x
=

∑
i ψ

′
in

σ
i∑

i n
σ
i

,

and, as a consequence, the total flux estimate

min
1≤i≤I

ψ′
i ≤

∂Sσ

∂x
≤ max

1≤i≤I
ψ′

i. (14)

The normalization (10) of the nσ
i ’s implies that Sσ(0) = 0. As a result, there exists a S ∈ C0,1(0, 1)

such that, after extracting a subsequence,




Sσ −−−→
σ→0

S, S(0) = 0, and

min
1≤i≤I

ψ′
i ≤

∂S

∂x
≤ max

1≤i≤I
ψ′

i in [0, 1].
(15)

Next we obtain bounds on the Rσ
i ’s, which are independent of σ, and imply their convergence as

σ → 0. This is the topic of the next Lemma which we prove after the end of the ongoing proof.
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Lemma 2.5 For each i = 1, ..., I there exists a positive constant Ci = Ci(ψ
′
i, σνii, σψ

′′
i )) such that

|Rσ
i | + |∂R

σ
i

∂x
| ≤ Ci in [0, 1],

Moreover, for all i = 1, ..., I,
Rσ

i −−−→
σ→0

R = S, in C([0, 1]).

We obtain next the Hamilton-Jacobi satisfied by the limit R = S. The claim is that the limit is a
viscosity solution (see, for instance, [3, 9]) of

∣∣∣∣
∂R

∂x

∣∣∣∣
2

+ max
1≤i≤I

[−ψ′
i

∂R

∂x
] = 0 in (0, 1). (16)

We do not state the boundary condition because we do not use them. It can, however, be proved
that R satisfies

∂R

∂x
≤ max

1≤i≤I
ψ′

i at x = 0 and
∂R

∂x
≥ min

1≤i≤I
ψ′

i at x = 1.

We begin with the subsolution property. Letting σ → 0 in the inequality

−σ∂
2Rσ

i

∂x2
+

∣∣∣∣
∂Rσ

i

∂x

∣∣∣∣
2

− ψ′
i

∂Rσ
i

∂x
≤ σν̃ii,

gives, for all i = 1, ..., I, ∣∣∣∣
∂R

∂x

∣∣∣∣
2

− ψ′
i

∂R

∂x
≤ 0.

To prove that R is a supersolution of (16) we observe that function Rσ = min
1≤i≤I

Rσ
i satisfies the

inequality

−σ∂
2Rσ

∂x2
+

∣∣∣∣
∂Rσ

∂x

∣∣∣∣
2

+ max
1≤i≤I

[−ψ′
i(x)

∂Rσ

∂x
] + σ

I∑

i,j=1

νij ≥ σmin
i

(ν̃ii).

Letting again σ → 0, we find that R = S = lim
σ→0

Rσ satisfies

∣∣∣∣
∂R

∂x

∣∣∣∣
2

+ max
1≤i≤I

[−ψ′
i(x)

∂R

∂x
] ≥ 0.

We obtain now the formula for R. To this end, observe first that, since lim
σ→0

Rσ = R = S, letting

σ → 0 in (14) yields

min
1≤i≤I

ψ′
i ≤

∂R

∂x
≤ max

1≤i≤I
ψ′

i. (17)

Next we show that, in the viscosity sense,

∂R

∂x
≥ 0. (18)
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Indeed for a test function Φ, let x0 ∈ (0, 1) be the maximum of R − Φ, i.e., (R − Φ)(x0) =
max

0≤x≤1
(R− Φ)(x) and assume that

Φ′(x0) < 0.

Applying the viscosity subsolution criterion to (17), then implies that

Φ′(x0) − max
i
ψ′

i(x0) ≥ 0.

This, however, contradicts the inequality

max
1≤i≤I

ψ′
i(x0) > 0

that follows from the assumption (8).

Combining (17) and (18) we get

min
1≤i≤I

(ψ′
i)+ ≤ ∂R

∂x
≤ max

1≤i≤I
ψ′

i. (19)

Finally, given a test function Φ, let x0 ∈ (0, 1) be such that (R − Φ)(x0) = max
0≤x≤1

(R − Φ) and

assume that

Φ′(x0) > 0.

Again by the viscosity criterion we must have

Φ′(x0) − min
1≤i≤I

ψ′
i(x0) ≤ 0,

and, hence, in the viscosity sense,

∂R

∂x
≤ ( min

1≤i≤I
ψ′

i)+ if
∂R

∂x
> 0. (20)

This concludes the proof of the formula in the claim.

We return now to the

Proof of Lemma 3.1 For the Lipschitz estimate, observe that, at any extremum point x0 of
∂Rσ

i

∂x ,

we have
∂2Rσ

i

∂x2 = 0. Evaluating the equation at x0, we get

∣∣∣∣
∂Rσ

i

∂x

∣∣∣∣
2

≤ ψ′
i

∂Rσ
i

∂x
+ σν̃ii.

As a consequence, at x0 we have

∣∣∣∣
∂Rσ

i

∂x

∣∣∣∣ ≤ max
0≤x≤1

ψ′
i +

√
σν̃ii.

To identify the limit of min1≤j≤I R
σ
j notice that the inequality

nσ
i ≤

∑

1≤j≤I

nσ
j ≤ Imax

j
nσ

j

7



gives
−σ ln I + min

1≤j≤I
Rσ

j ≤ Sσ ≤ Rσ
i ,

and thus
Sσ ≤ min

1≤i≤I
Rσ

i .

Consequently, we have the uniform convergence

min
1≤i≤I

Rσ
i −−−→

σ→0
S.

To prove the claim about the limit of the Rσ
i we observe that summing over i the equations of (12)

yields

σ
I∑

i,j=1

νij(
(Rσ

j −Rσ
i )+

σ
)2 ≤ 2σ

I∑

i,j=1

νije
(Rσ

i −Rσ
j )/σ ≤ 2(σ

∑

1≤i≤I

ν̃ii + 2σ
∂2

∑
iR

σ
i

∂x2
+

∑

1≤i≤I

ψ′
i

∂Rσ
i

∂x
).

Integrating in x and using the gradient estimates, we find that

I∑

i,j=1

∫ 1

0
(Rσ

j −Rσ
i )2 =

1

2

I∑

i,j=1

∫ 1

0
(Rσ

j −Rσ
i )2+ ≤ Cσ.

Together with the uniform gradient estimate on Rσ
i and the uniform bound on min1≤j≤I R

σ
j , we

deduce that
Rσ

i −−−→
σ→0

R = S ∈ C0,1(0, 1).

We continue with the
Proof of Corollary 2.2 The normalization (4) amounts to adding a constant to the Ri. The
exponential behavior of nσ

i , with an increasing Rσ
i (from Theorem 2.1), yields that the nσ

i ’s converge,
as σ → 0, to 0 uniformly on intervals [ε, 1] with ε > 0. Moreover, R(0) = 0. The result follows with
ρi ≥ 0. If ρi = 0 for some i = 1, ..., I, then, letting σ → 0 in (1), gives, in the sense of distributions,
that

0 =
∑

j 6=i

νijnj.

But then all the ρj must vanish, which is impossible with the normalization of unit mass.
We present now a brief sketch of the proof of Theorem 2.3. Since it follows along the lines of the

proof of Theorem 2.1, here we only point out the differences.
We have:

Proof of Theorem 2.3 The Lipschitz estimates, the passage in the limit and the identification of
the limiting Hamilton-Jacobi equation in the Theorem 2.1 did not depend on the assumption (9),
hence, they hold true also on the case at hand. The final arguments of the proof of Theorem 2.3 also
identify the limit on the set (∪Kl)

c. On the set ∪Kl we already know from (17) that R′ is less than
the claimed value, and thus it is negative. We conclude the equality by using the Hamilton-Jacobi
equation. Indeed in this situation we know that

max
1≤i≤I

[−ψ′
i

∂R

∂x
] = −∂R

∂x
max
1≤i≤I

ψ′
i.

8



We conclude the section with the proof Corollary 2.4, which is simply a variant of the one for
Corollary 2.2. We have:
Proof of Corollary 2.4 The assumption on ∪J asserts that R is increasing on ∪J . Then it may
decrease but, for x > 0, R(x) > R(0). With the unit mass normalization, this means that R(0) = 0
as before and the convergence result holds as before.

3 Large transition coefficients

Figure 2: Motor effect exhibited by the parabolic system (21) with large transition coefficients. The

figure depicts the phase functions Rσ
1 , Rσ

2 . As announced in Theorem 3.1, we have Rσ
1 ≈ Rσ

2 and can

decrease slightly. Here we have used σ = 5 10−3.

In this section we consider transition coefficients normalized by 1/σ. For the sake of simplicity we
take I = 2. This allows for explicit formulae. The equations for larger systems, i.e., I > 3, are more
abstract. The system (1) is replaced by





−σ ∂2

∂x2n
σ
1 − ∂

∂x(∇ψ1 n
σ
1 ) + 1

σν1n
σ
1 = 1

σν2n
σ
2 in (0, 1),

−σ ∂2

∂x2n
σ
2 − ∂

∂x(∇ψ2 n
σ
2 ) + 1

σν2n
σ
2 = 1

σν1n
σ
1 in (0, 1),

σ ∂
∂xn

σ
i + ∇ψi n

σ
i = 0 in {0, 1} for i = 1, 2.

(21)

As before we assume that

nσ
i > 0 in [0, 1] for i = 1, 2. (22)

The result is:

Theorem 3.1 Assume (3), (6), (7), (8) and (9) and consider the solution (nσ
1 , n

σ
2 ) to (21) normalized

by nσ
1 (0) + nσ

2 (0) = 1. Then, as σ → 0 and i = 1, 2,

Rσ
i = −σ lnnσ

i −−−→
σ→0

R in C(0, 1), R(0) = 0, and

R′ ≥





min
1≤i≤I

ψ′
i on ∪ Jl,

−
√
k on (∪Jl)

c.

The corollary below follows from Theorem 3.1 in a way similar to the analogous corollaries in the
previous section. Hence, we leave the details to the reader.

Corollary 3.2 In addition to the assumptions of Theorem 3.1, suppose that 0 ∈ J1, the potentials are
small enough so that

√
k |K| <

∫

sup J
min

1≤i≤2
ψ′

i(y)dy,

9



and (nσ
1 , n

σ
2 ) is normalized by (4). There exist ρ1, ρ2 > 0 such that ρ1 + ρ2 = 1 and, as σ → 0 and for

i = 1, 2,
nσ

i −−−→
σ→0

ρiδ0.

We present next a sketch of the proof of Theorem 3.1 as most of the details follow as in the previous
theorems.
Proof of Theorem 3.1 The total flux and Lipschitz estimates follow as before. The main new point
is the limiting Hamilton-Jacobi equation which is more complex. We formulate this as a separate
lemma below. Its proof is based on the use of perturbed test functions. We refer to [4] for the rigorous
argument in a more general setting.

Lemma 3.3 The uniform in [0, 1] limit R, as σ → 0, of the Rσ
i satisfies the Hamilton-Jacobi equation

H
(∂R
∂x

, x
)

= 0, in (0, 1) (23)

with

H(p, x) =
1

2
[β1 + β2 +

√
(β1 + β2)2 − 4(β1β2 − ν1ν2], (24)

where, for i = 1, 2,
βi = p2 − ψ′

i p− νi.

The formula for R′ follows from the above Lemma by analyzing the solutions to the Hamilton-
Jacobi equation as before. On the set ∪Jl the answer follows from the bounds (14). On the set (∪J)c

the argument is more elaborate. Using that R′ is a subsolution, we get

β1β2 − ν1ν2 ≥ 0 and β1 + β2 ≤ 0.

Therefore both β1 and β2 are nonpositive and thus

(R′)2 − ψ′
iR

′ − νi ≤ 0.

On the other hand we know that on (∪Jl)
c one of the potentials – for definiteness say ψ1 – satisfies

ψ′
1 > 0, hence, always in (∪Jl)

c,

R′ ≥ 1

2
[ψ′

1(x) −
√

(ψ′
1)

2 + 4ν1] ≥
√
ν1.

The inequalities for R′ are now proved.

4 Vanishing transition coefficients

We focus here to the case where the transition coefficients (νij)1≤i,j≤I may vanish at either some points
or, in fact, on large sets. In this situation, we assume that





for each j = 1, ..., I, ψ′
j < 0 on a finite collection of intervals (Kα

j )1≤α≤Aj
and

for all j = 1, ..., I and α = 1, ..., Aj , there exists i ∈ {= 1, ..., I} such that

ψ′
i ≥ 0 on Kα

j , and, in a left neighborhood of the right endpoint of Kα
j , νij > 0.

(25)
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To go for weaker assumptions would face the completely decoupled case (when ν vanishes) and the
motor effect does not occur.

We have:

Theorem 4.1 Assume (7),(8),(9), (25) and normalize the solution (nσ
i )1≤i≤I to (21) by (10). For

i = 1, ..., I, let Rσ
i = − lnnσ

i . Then, as σ → 0,

either Rσ
i −−−→

σ→0
Ri in C(0, 1), or Rσ

i −−−→
σ→0

∞ uniformly in [0, 1].

Moreover, the function R = min
1≤i≤I

Ri satisfies

R(0) = 0, R′ ≥ 0 and R′ = min
1≤i≤I

ψ′
i on ∪ Jl.

We also have:

Corollary 4.2 In addition to the assumptions of Theorem 4.1, suppose that 0 ∈ J1. For i = 1, , , I,
there exist ρi ≥ 0 such that

∑
1≤i≤I ρi = 1, and, as σ → 0,

nσ
i −−−→

σ→0
ρiδ0.

The direct conclusion of Theorem 4.1 is simply that

∑

1≤i≤I

nσ
i −−−→

σ→0
δ0

.

The corollary follows from the fact that, for all i = 1, ..., I, nσ
i ≥ 0. We do not know whether in

this context each ρi is positive. To get this, we need to assume something more like, for example,
νij(0) > 0 for all i, j = 1, ..., I.

We conclude with a brief sketch of the

Proof of Theorem 4.1. The total flux and Lipschitz estimates follow as before. A careful look
at the proof of the convergence part of Theorem 2.1 shows that either the Rσ

i ’s blow up or they are
uniformly bounded and, hence, converge uniformly in (0, 1) to a subsolution of

|R′
i|2 − ψ′

iR
′
i ≤ 0.

It then follows that

R′
i ≥ 0 on (∪αK

α
i )c and R′

i ≤ ψ′
i(x) on ∪α K

α
i .

The final step is to prove that

R(x) = min
i∈L(x)

Ri(x) in L(x) = {i, ψ′
i(x) ≥ 0}.

This follows as before. We leave the details to the reader.
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