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A SIMPLE EXTENSION OF STOLLMANN'S LEMMA TO CORRELATED POTENTIALS

. This extension allows (just as the original Stollmann's lemma does) to obtain Wegner-type estimates even in some problems of spectral analysis of random operators where the Wegner's lemma is inapplicable (e.g. for multiparticle Hamiltonians).

To the best of author's knowledge, such an extension seems to be original. However, the author will appreciate any reference to articles or preprints where similar results are proved.

Introduction

The regularity problem for the limiting distribution of eigen-values of infinite dimensional self-adjoint operators appears in many problems of mathematical physics. Specifically, consider a lattice Schrödinger operator (LSO, for short) H : ℓ 2 (Z d ) → ℓ 2 (Z d ) given by (Hψ)(x) = y: |y-x|=1 ψ(y) + V (x)ψ(x); x, y ∈ Z d .

For each finite subset Λ ⊂ Z d , let E Λ j , j = 1, . . . , |Λ|, be eigen-values of H with Dirichlet b.c. in Λ. Consider the family of finite sets ΛL = [-L, L] d ∩ Z d and define the following quantity (which does not necessarily exist for an arbitrary LSO):

k(E) = lim L→∞ 1 (2L + 1) d card j : E Λ L j ≤ E .
If the above limit exists, k(E) is called the limiting distribution function (LDF) of e.v. of H. One can easily construct various examples of the function V : Z d → R (called potential of the operator H) for which the LDF does not exist. One can prove the existence of LDF for periodic potentials V , but even in this, relatively simple situation existence of k(E) is not a trivial fact.

However, one can prove existence of k(E) in a large class of ergodic random potentials. Namely, consider an ergodic dynamical system (Ω, F, P, {T x , x ∈ Z d }) with discrete time Z d and a mesurable function (sometimes called a hull) v : Ω → R. Then we can introduce a family of sample potentials V (x, ω) = v(T x ω), x ∈ Z d , labeled by ω ∈ Ω. Under the assumption of ergodicity of {T x }, the quantity

k(E, ω) = lim L→∞ 1 (2L + 1) d card j : E Λ L j (ω) ≤ E
is well-defined P-a.s. Moreover, k(E, ω) is P-a.s. independent of ω, so its value taken for a.e. ω is natural to take as k(E). In such a context, k(E) is usually called integrated density of states (IDS, for short). It admits an equivalent definition:

k(E) = E (f, Π ( -∞, E](H(ω)f ) ,
where f ∈ ℓ 2 (Z d ) is any vector of unit norm, and Π ( -∞, E](H(ω) is the spectral projection of H(ω) on (-∞, E]. The reader can find a detailed discussion of the existence problem of IDS in excellent monographs by Carmona and Lacroix [START_REF] Carmona | Spectral Theory of Random Schrödinger Operators[END_REF] and by Pastur and Figotin [START_REF] Pastur | Spectra of Random and Almost Periodic Operators[END_REF]. It is not difficult to see that k(E) can be considered as the distribution function of a normalized measure, i.e. probability measure, on R. If this measure dK(E), called measure of states, is absolutely continuous with respect to Lebesgue measure dE, its density (or Radon-Nikodim derivative) dK(E)/dE is called the density of states (DoS). In physical literature, it is customary to neglect the problem of existence of such density, for if dK(E)/dE is not a function, then "it is simply a generalized function". However, the real problem is not terminological. The actual, explicit estimates of the probabilities of the form

P ∃ eigen-value E Λ L j ∈ (a, a + ǫ)
for LSO HΛ L in a finite cube ΛL of size L, for small ǫ, often depend essentially upon the existence and the regularity properties of the DoS dk(E)/dE.

Apparently, the first fairly general result relative to existence and boundedness of the DoS is due to Wegner [START_REF] Wegner | Bounds on the density of states in disordered systems[END_REF]. Traditionally referred to as Wegner's lemma, it certainly deserves to be called theorem.

Theorem 1 (Wegner) Assume that {V (x, ω), x ∈ Z d } are i.i.d. r.v. with bounded density pV (u) of their common probability distribution: pV ∞ = C < ∞. Then the DoS dk(E)/dE exists and is bounded by the same constant C.

The proof can be found, for example, in the monograph [START_REF] Carmona | Spectral Theory of Random Schrödinger Operators[END_REF]. This estimate and some of its generalizations have been used in the multi-scale analysis (MSA) developed in the works by Fröhlich and Spencer [START_REF] Fröhlich | Absence of diffusion in the Anderson tight binding model for large disorder or low energy[END_REF], Fröhlich, Spencer, Martinelli ans Scoppola [START_REF] Fröhlich | A constructive proof of localization in Anderson tight binding model[END_REF], von Dreifus and Klein [START_REF] Dreifus | A new proof of localization in the Anderson tight binding model[END_REF], [START_REF] Dreifus | Localization for Schrödinger operators with correlated potentials[END_REF], Aizenman and Molchanov [START_REF] Aizenman | Localization at large disorder and at extreme energies: An elementary derivation[END_REF], and in a number of more recent works where the so-called Anderson Localization phenomenon has been observed. Namely, it has been proven that all e.f. of random lattice Schrödinger operators decay exponentially at infinity with probability one (for P-a.e. sample of random potential V (ω)). Von Dreifus and Klein [START_REF] Dreifus | Localization for Schrödinger operators with correlated potentials[END_REF] proved an analog of Wegner estimate and used it in their proof of localization for Gaussian and some other correlated (but non-deterministic) potentials. The author of these lines recently proved, in a joint work with Yu. Suhov [START_REF] Chulaevsky | Anderson localisation for interacting multi-particle quantum system on[END_REF], an analog of Wegner estimate for a system of two or more interacting quantum particles on the lattice under the assumption of analyticity of the probability density pV (u), using a rigorous path integral formula by Molchanov (see a detailed discussion of this formula in the monograph [START_REF] Carmona | Spectral Theory of Random Schrödinger Operators[END_REF]). In order to relax the analyticity assumption in a multi-particle context, V.C. and Yu. Suhov later used ( [START_REF] Chulaevsky | Anderson localisation for interacting multi-particle quantum system on Z. II. More general potentials[END_REF]) a more general and flexible result guaranteeing existence and boundedness of the DoS: the Stollmann's lemma, which we discuss below.

In the present work, we propose a fairly simple and natural extension of Stollmann's lemma to correlated, but still non-deterministic random fields generating random potentials. To the best of author's knowledge, such an extension seems to be original, although very simple. However, the author will appreciate any reference to published papers or preprints where the same or similar result was mentioned and proved. Our main motivation here is to lay out a way to interesting applications to localization problems for multi-particle systems.

Stollmann's lemma for product measures

Recall the Stollmann's lemma and its proof for independent r.v. Let m ≥ 1 be a positive integer, and J an abstract finite set with |J|(= cardJ) = m. Consider the Euclidean space R J ∼ = R m with standard basis (e1, . . . , em), and its positive quadrant

R J + = q ∈ R J : qj ≥ 0, j = 1, 2, . . . , m .
For any measure µ on R, we will denote by µ m the product measure µ × • • • × µ on R J . Furthermore, for any probability measure µ and for any ǫ > 0, define the following quantity:

s(µ, ǫ) = sup a∈R a+ǫ a dµ(t)
and assume that s(µ, ǫ) is finite. Furthermore, let µ m-1 be the marginal probability distribution induced by µ m on q ′ = (q2, . . . , qm).

Definition 1 Let J be a finite set with |J| = m. Consider a function Φ : R J → R on R J which we will identify with R m . Function Φ is called J-monotonic if it satisfies the following conditions:

(1) for any r ∈ R m + and any q ∈ R m ,

Φ(q + r) ≥ Φ(q); (1) 
(2) moreover, for e = e1 + • • • + em ∈ R m , for any q ∈ R m and for any t > 0

Φ(q + t • e) -Φ(q) ≥ t. (2) 
It is convenient to introduce the notion of J-monotonic operators considered as quadratic forms. In the following definition, we use the same notations as above.

Definition 2 Let H be a Hilbert space. A family of self-adjoint operators B : H × R J → H is called J-monotonic if, for any vector f ∈ H with f = 1, the function Φ f : R J → R defined by

Φ f (q) = (B(q)f, f ) is monotonic.
In other words, the quadratic form Q B(q) (f ) := (B(q)f, f ) as function of q ∈ R J is non-decreasing in any qj , j = 1, . . . , |J|, and

(B(q + t • e)f, f ) -(B(q)f, f ) ≥ t • f 2 .
Remark 1 By virtue of the variational principle for self-adjoint operators, if an operator family H(q) in a finite-dimensional Hilbert space H is J-monotonic, then each eigen-value

E B(q) k of B(q) is a J-monotonic function.
Remark 2 If H(q), q ∈ R J , is a J-monotonic operator family in Hilbert space H, and H0 : H → H is an arbitrary self-adjoint operator, then the family H0 + H(q) is also Jmonotonic.

This explains why the notion of monotonicity is relevant to spectral theory of random operators. Note also, that this property can be easily extended to physically interesting examples where H has infinite dimension, but H(q) have, e.g., compact resolvent, as in the case of Schrödinger operators in a finite cube with Dirichlet b.c. and with bounded potential, so the respective spectrum is pure point, and even discrete.

Theorem 2 (Stollmann, [START_REF] Stollmann | Wegner estimates and localization for continuous Anderson models with some singular distributions[END_REF]) Let J be a finite index set, |J| = m, µ be a probability measure on R, and µ m be the product measure on R J with marginal measures µ. If the function Φ : R J → R is J-monotonic, then for any open interval I ⊂ R we have

µ m { q : Φ(q) ∈ I } ≤ m • s(µ, |I|). Proof. Let I = (a, b), b -a = ǫ > 0,

and consider the set

A = { q : Φ(q) ≤ a }.
Furthermore, define recursively sets A ǫ j , j = 0, . . . , m, by setting

A ǫ 0 = A, A ǫ j = A ǫ j-1 + [0, ǫ]ej := q + tej : q ∈ A ǫ j-1 , t ∈ [0, ǫ] .
Obviously, the sequence of sets A ǫ j , j = 1, 2, ..., is increasing with j. The monotonicity property implies { q : Φ(q) < b } ⊂ A ǫ m . Indeed, if Φ(q) < b, then for the vector q ′ := qǫ • e we have by (2):

Φ(q ′ ) ≤ Φ(q ′ + ǫ • e) -ǫ = Φ(q) -ǫ ≤ b -ǫ ≤ a, meaning that q ′ ∈ { Φ ≤ a } = A and, therefore, q = q ′ + ǫ • e ∈ A ǫ m .
Now, we conclude that

{ q : Φ(q) ∈ I } = { q : Φ(q) ∈ (a, b) } = { q : Φ(q) < b } \ { q : Φ(q) ≤ a } ⊂ A ǫ m \ A. Furthermore, µ m { q : Φ(q) ∈ I } ≤ µ m (A ǫ m \ A) = µ m m j=1 A ǫ j \ A ǫ j-1 ≤ m j=1 µ m A ǫ j \ A ǫ j-1 . For q ′ ∈ R m-1 , set I1(q ′ ) = q1 ∈ R : (q1, q ′ ) ∈ A ǫ 1 \ A . By definition of set A ǫ 1 ,
this is an interval of length not bigger than ǫ. Then we have

µ m (A ǫ 1 \ A) = dµ m-1 (q ′ ) I 1 dµ(q1) ≤ s(µ, ǫ). (3) 
Similarly, we obtain for j = 2, . . . , m

µ m (A ǫ j \ A ǫ j-1 ) ≤ s(µ, ǫ), yielding µ m { q : Φ(q) ∈ I } ≤ m j=1 µ m (A ǫ j \ A ǫ j-1 ) ≤ m • c(µ, ǫ).
Now, taking into account the above Remark 1, Stollmann's theorem yields immediately the following estimate. 3 Extension to multi-particle systems

Results of this section have been obtained by the author and Y. Suhov [START_REF] Chulaevsky | Anderson localisation for interacting multi-particle quantum system on[END_REF].

Let N > 1 and d ≥ 1 be two positive integers and consider a random LSO H = H(ω) which can be used, in the framework of tight-binding approximation, the as the Hamiltonian of a system of N quantum particles in Z d with random external potential V and interaction potential U . Specifically, let x1, . . . , xN ∈ Z d be positions of quantum particles in the lattice Z d , and x = (x1, . . . , xN ). Let {V (x; ω), x ∈ Z d } be a random field on Z d describing the external potential acting on all particles, and U : (x1, . . . , xN ) → R be the interaction energy of the particles. In physics, U is usually to be symmetric function of its N arguments x1, . . . , xN ∈ Z d . We will assume in this section that the system in question obeys either Fermi or Bose quantum statistics, so it is convenient to assume U to be symmetric. Note, however, that the results of this section can be extended, with natural modifications, to more general interactions U . Further, in [START_REF] Chulaevsky | Anderson localisation for interacting multi-particle quantum system on[END_REF] U is assumed to be finite-range interaction:

supp U ⊂ {x : max(|xj -x k | ≤ r)}, r < ∞.
Such an assumption is required in the proof of Anderson localization for multi-particle systems, however, it is irrelevant to the Wegner-Stollmann estimate we are going to discuss below.

Now, let H be as follows:

(H(ω)f )(x) = N j=1 ∆ (j) + V (xj; ω) + U (x),
where ∆ (j) is the lattice Laplacian acting on the j-th particle, i.e.

∆ (j) = 1 1 ⊗ . . . ⊗ ∆ j ⊗ . . . ⊗ 1 N
acting in Hilbert space ℓ 2 (Z Nd ). For any finite "box"

Λ = Λ (1) × . . . × Λ (N) ⊂ Z Nd
one can consider the restriction, HΛ(ω), of H(ω) on Λ with Dirichlet b.c. It is easy to see that the potential

W (x) = N j=1 V (xj; ω) + U (x)
is no longer an i.i.d. random field on Z Nd , even if V is i.i.d. Therefore, neither Wegner's nor Stollmann's estimate does not apply directly. But, in fact, Stollmann's lemma does apply to multi-particle systems, virtually in the same way as to single-particle ones. Then

P { dist(Σ(HΛ(ω), E) ≤ ǫ } ≤ |Λ| • M (Λ) • s(ǫ), with M (Λ) = N j=1 card Λ (j) .
Proof. Fix Λ and consider the union of all lattice points in Z d which belong to the singleparticle projections Λ (j) , j = 1, . . . , N :

X (Λ) = N j=1 Λ (j) ⊂ Z d .
Now we can apply Stollmann's lemma to HΛ by taking the index set J = X (Λ) and auxiliary probability space R J . Indeed, the random potential V (x; ω)

:= V (x1; ω) + • • • + V (xN ; ω)
can be re-written as follows:

V (x1; ω) + • • • + V (xN ; ω) = y∈X (Λ) c(x, y)V (y; ω)
with integer coefficients c(x, y) such that c(x, y) ≥ 0,

y∈X (Λ) c(x, y) = N. ( 4 
)
For example, if N = 2, one can have either

V (x1, ω) + V (x2; ω) with x1 = x2, in which case we have c(x, y) = 1, if y = x1 or y = x2 0, otherwise or V (x1; ω) + V (x1; ω) = 2V (x1; ω) for "diagonal" points (x1, x2), where c(x, y) = 2, if y = x1 0, otherwise
In any case, as shows (4), random potential at x ∈ Λ is a linear function of one or more coordinates in the auxiliary space R J growing at rate ≥ N t ≥ t along the principal diagonal

{q1 = q2 = • • • = q |J | = t ∈ R}.
Hence, the operators of multiplication by V (x; ω) form a J-monotonic family, and, by virtue of Remark 2, the same holds for H = H0 + U + V (ω), just as in the single-particle case (and even "better", for N > 1 !). By Theorem 2, this implies immediately the estimate

P { dist(Σ(HΛ(ω), E) ≤ ǫ } ≤ |Λ| 2 s(µ, ǫ).
It is not difficult to see that the same argument, with obvious notational modifications, applies to Fermi and Bose lattice quantum systems, i.e. to restrictions of H to the subspaces of symmetric (Bose case) or anti-symmetric (Fermi case) functions of N arguments x1, . . . , xN on (Z d ) N .

Extension to correlated random variables

Now let µ m be a measure on R m with marginal distributions of order m -1,

µ m-1 j (q ′ =j ) = µ m-1 j
(q1, . . . , qj-1, qj+1, . . . , qm), j = 1, . . . , m, and conditional distributions µ 1 j (qj | q ′ =j ) on qj given all q k , k = j. For every ǫ > 0, define the following quantity:

C1(µ m , ǫ) = max j sup a∈R dµ m-1 (q ′ =j ) a+ǫ a dµ(q1|q ′ =j )
and assume that C1(µ, ǫ) is finite:

max j sup a∈R dµ m-1 (q ′ =j ) a+ǫ a dµ(q1|q ′ =j ) < ∞. (5) 
Remark 3 As a simple sufficient condition of finiteness of C1(µ, ǫ), one can use, e.g., a uniform continuity (but not necessarily absolute continuity !) of the single-point conditional distributions,

max j sup q ′ =j sup a∈R a+ǫ a dµ(qj|q ′ =j ) ≤ C2(µ m , ǫ) < ∞
or even the existence and uniform boundedness of the density p(qj |q ′ =j ) of these conditional distributions: sup

q j ∈R p(qj|q ′ =j ) ≤ C3(µ m , ǫ).
Remark 4 In applications to localization problems, the aforementioned continuity moduli C1(µ m , ǫ), C2(µ m , ǫ), C3(µ m , ǫ) need to decay not too slowly as ǫ → 0. A power decay of order O(ǫ β ) with β > 0 is certainly sufficient, but it can be essentially relaxed. For example, it suffices to have an upper bound of the form

C1 µ m , e -L β ≤ Const • L -B ,
uniformly for all sufficiently large L > 0 with some (arbitrarily small) β > 0 and with B > 0 which should sufficiently big, depending on the specific spectral problem.

Using notations of the previous section, one can formulate the following generalization of Stollmann's lemma.

Lemma 1 Let Φ : R J → R, R J ∼ = R m , be a J-monotonic function and µ m a probability measure on R m ∼ = R J with C1(µ m , ǫ) < ∞. Then for any interval I ⊂ R of length |I| = ǫ > 0, we have

µ m { q : Φ(q) ∈ I } ≤ m • C1(µ, ǫ).
Proof. We proceed as in the proof of Stollmann's lemma and introduce in R m the sets A = { q : Φ(q) ≤ a } and A ǫ j , j = 0, . . . , m. Here, again, we have

{ q : Φ(q) ∈ I } =⊂ A ǫ m \ A and µ m { q : Φ(q) ∈ I } ≤ m j=1 µ m A ǫ j \ A ǫ j-1 .

Application to Gibbs fields with continuous spin

Apart from Gaussian fields, there exist several classes of random lattice fields for which the hypothesis of Lemma 1 can be easily verified. For example, conditional distributions of Gibbs fields are given explicitly in terms of their respective interaction potentials. Specifically, consider a lattice Gibbs field s(x, ω) with bounded continuous spin,

s : Ω × Z d → S = [a, b] ⊂ R
generated by a short-range, bounded, two-body interaction potential u(•, •). The spin space is assumed to be equipped with the Lebesgue measure ds. In other words, consider the formal Hamiltonian

H(s) = x∈Z d h(x) + x∈Z d |y-x|≤R u |x-y| (s(x), u(y)),
where h : S → R is the self-energy of a given spin. The interaction potentials u |x-y| (s(x), s(y)) vanish for |x -y| > R and are uniformly bounded:

max l≤R sup s,t∈S |u l (s, t)| < ∞.
Then for any lattice point x and any configuration s ′ = s ′ =x of spins outside {x}, the singlesite conditional distribution of s(x) given the external configuration s ′ admits a bounded density

p(sx | s ′ =x ) = e -βU (sx|s ′ ) Ξ(β, s ′ ) = e -βU (sx|s ′ ) S e -βU (t|s ′ ) dt with U (sx|s ′ ) := y: |y-x|≤R u |x-y| (sx, s ′ y )
satisfying the upper bound

|U (sx|s ′ )| ≤ (2R + 1) d sup s,t∈S |u l (s, t)| < ∞.
A similar property is valid for sufficiently rapidly decaying long-range interaction potentials, for example, under the condition sup s,t∈S

|u |y| (s, t)| ≤ Const |y| d+1+δ , δ > 0. ( 7 
)
as well as for more general, but still uniformly summable many-body interactions. Here is one possible Wegner-Stollmann-type result concerning such random potentials.

Theorem 6 Let Λ ⊂ Z d be a finite subset of the lattice, Λ ′ ⊂ Z d \ Λ any subset disjoint with Λ (Λ ′ may be empty), and let s(x, ω) be a Gibbs field in Λ with continuous spins s ∈ S = [a, b] generated by a two-body interaction potential u l (s, t) satisfying condition [START_REF] Craig | Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices[END_REF], with any b.c. on Z d \ Λ. Consider a LSO HΛ with random potential V (x, ω) = s(x, ω). Then for any interval I ⊂ R of length ǫ > 0, we have

P Σ(HΛ) ∩ I = ∅ | V (y, •), y ∈ Λ ′ ≤ C(V ) |Λ| 2 ǫ, C(V ) < ∞.
In the case of unbounded spins and/or interaction potentials, the uniform boundedness of conditional single-spin distributions does not necessarily hold, since the energy of interaction of a given spin s(0) with the external configuration s ′ may be arbitrarily large (depending on a particular form of interaction) and even infinite, if s ′ (y) → ∞ too fast. In such situations, our general condition (5) may still apply, provided that rapidly growing configurations s ′ have sufficiently small probability, so that the outer integral in the r.h.s. of (5) converges.

Conclusion

Wegner-Stollmann-type estimate of the density of states in finite volumes is a key ingredient of the MSA of spectra of random Schrödinger (and some other) operators. The proposed simple extension of Stollmann's lemma shows that a very general assumption on correlated random fields generating potential rules out an abnormal accumulation of eigen-values in finite volumes. This extension applies also to multi-particle systems [START_REF] Chulaevsky | Anderson localisation for interacting multi-particle quantum system on Z. II. More general potentials[END_REF].

Theorem 3

 3 Let HΛ be an LSO with random potential V (x; ω) in a finite box Λ ⊂ Z d with Dirichlet b.c., and Σ(HΛ) its spectrum, i.e. the collection of its eigen-values E (Λ) j , j = 1, . . . , |Λ|. Assume that r.v. V (x; •) are i.i.d. with marginal distribution function FV satisfying s(ǫ) = sup a∈R (FV (a + ǫ) -FV (a)) < ∞. Then P { dist(Σ(HΛ(ω), E) ≤ ǫ } ≤ |Λ| 2 s(ǫ).

Theorem 4

 4 Assume that r.v. V (x; •) are i.i.d. with marginal distribution function FV satisfying s(ǫ) = sup a∈R (FV (a + ǫ) -FV (a)) < ∞.

For q ′ =1 ∈ R m-1 , we set

Furthermore, we come to the following upper bound which generalizes (3):

Similarly, we obtain for j = 2, . . . , m

5 Application to Gaussian random fields

, be a regular stationary Gaussian field of zero mean on the lattice Z d . The regularity implies that the field V (•, ω) is non-deterministic, i.e. the conditional probability distribution of V (0, •) given {V (y), y = 0} is Gaussian with strictly positive variance. In other terms, the r.v. V (0, •), considered as a vector in the Hilbert space H V,Z d generated by linear combinations of all V (x, •), x ∈ Z d , with the scalar product

does not belong to the subspace H V,Z d \{0} :

Therefore, the conditional variance of V (0, •) given any non-zero number of values of V outside x = 0 is bounded from below by σ2 0 . Respectively, the conditional probability density of V (0, •), for any such nontrivial condition is uniformly bounded by (2πσ 2 0 ) -1/2 < ∞. Now a direct application of Lemma 1 leads to the following statement.

Theorem 5 Let Λ ⊂ Z d be a finite subset of the lattice, and Λ ′ ⊂ Z d \ Λ any subset disjoint with Λ (Λ ′ may be empty). Consider a family of LSO HΛ(ω) with Gaussian random potential V (ω) in Λ, with Dirichlet b.c. on ∂Λ. Then for any interval I ⊂ R of length ǫ > 0, we have

where the constant C(V ) < ∞ whenever the Gaussian field V is non-deterministic.