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Estimation of the location and exponent of the spectral

singularity of a long memory process

Javier Hidalgo∗ Philippe Soulier†

Abstract

We consider the estimation of the location of the pole and memory parameter ω0 and d of a
covariance stationary process with spectral density f(x) = |1− ei(x−ω0)|−d|1− ei(x+ω0)|−df∗(x). We
investigate optimal rates of convergence for the estimators of ω0 and d, and the consequence that the
lack of knowledge of ω0 has on the estimation of the memory parameter d. We present estimators
which achieve the optimal rates. A small Monte-Carlo study is included to illustrate the finite sample
performance of our estimators.

Key words : Long Memory, Fractionally differenced processes, Gegenbauer processes, Periodogram,
Semiparametric estimation.

1 Introduction

Given a covariance stationary process X , the search for cyclical components is of undoubted interest.
This is motivated by the observed periodic behaviour exhibited in many time series. A well known model
capable of generating such a periodic behaviour is the regression model

xt = µ + ρ1 cos(ω0t) + ρ2 sin(ω0t) + εt, (1.1)

where ρ1 and ρ2 are zero mean uncorrelated random variables with the same variance and {εt} is a
stationary sequence of random variables independent of ρ1 and ρ2. Model (1.1) has enjoyed extensive use
and different techniques have been proposed for the estimation of the frequency, amplitude and phase;
see Whittle (1952), Grenander and Rosenblatt (1957), Hannan (1971,1973) and Chen (1988). A second
model exhibiting peaks in its spectral density function is the autoregressive AR (2) process

(
I − a1B − a2B

2
)
X = ε, (1.2)

where B is the backshift operator. When the roots of the polynomial 1 − a1z − a2z
2 are not real

(which implies that a2 < 0), then the process X exhibits a periodic behaviour with frequency ω0 =
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arc cos(a1/2
√−a2). Models (1.1) and (1.2) represent two extreme situations explaining cyclical behaviour

of the data. Model (1.2) possesses a continuous spectral density function whereas model (1.1) has a
spectral distribution function with a jump at the frequency ω0. Whereas the cyclical pattern of model
(1.2) fades out with time fairly quickly (in the sense that the autocorrelation of the process decays
exponentially fast), the cyclical component of the data remains constant in model (1.1).

Between these two extreme situations, there exists a class of intermediate models capable of generating
a cyclical behaviour in the data, stronger and more persistent than ARMA models, e.g. (1.2), but unlike
model (1.1), their amplitude does not remain constant over time. Such a model has been proposed by
Andel (1986) and extended by Gray et al. (1989,1994) who coined it the GARMA model. It is defined
as

(I − eiω0B)−d/2(I − e−iω0B)−d/2X = ε, (1.3)

where ε is an ARMA process. The spectral density function of the GARMA process is given by

f(x) =
σ2

2π
|1 − ei(x−ω0)|−d|1 − ei(x+ω0)|−d|P (eiλ)/Q(eiλ)|2 (1.4)

where σ2 > 0, and P and Q are polynomials without common roots and without roots inside the unit disk.
As 1−2 cos(ω0)z + z2 is known as the Gegenbauer polynomial, GARMA processes are also referred to as
Gegenbauer processes. When ω0 = 0, model (1.3) boils down to the more familiar FARIMA(p, d, q) model,
originated by Adenstedt (1974) and examined by Granger and Joyeux (1980) and Hosking (1981). The
coefficient d is frequently referred to as the memory parameter, or the fractional differencing coefficient.
One can also sometimes find reference to the coefficient g defined as g = d if ω0 ∈ {0, π} and g = d/2 if
ω ∈ (0, π).

The spectral density has a singularity at ω0 with a power law |x−ω0|−α, where α = 2d if ω0 ∈ {0, π}
and α = d if ω0 ∈ (0, π). (Note that in both cases, α = 2g).

These models exhibit “long range dependence”, meaning that the autocovariance function γ(k) :=
cov(X0, Xk) is not absolutely summable. This makes their probabilistic properties and the asymptotic
distribution of some relevant statistics very different from those of usual “weakly dependent” processes
such as ARMA models.

Maximum likelihood and Whittle estimators for these models have been investigated and proved to
be

√
n-consistent and asymptotically normal when a parametric model is correctly specified. In the case

of Gaussian or linear processes, this was shown by Fox and Taqqu (1986), Dahlhaus (1989), Giraitis and
Surgailis (1990) in the case ω0 = 0, Hosoya (1997) in the case ω0 6= 0 known, and more recently Giraitis et
al. (2001) dealt with the case ω0 unknown. However, misspecification of the model can lead to inconsistent
estimates of the coefficient d and of the location of the pole ω0. This has drawn attention of researchers
and practioners to semi-parametric methods. This means that the process ǫ in the fractional differencing
equation (1.3) is not fully specified, but considered as an infinite dimensional nuisance parameter, while
the parameters of interest are ω0 and α. More precisely, we consider a covariance stationary linear process
X with spectral density function

f(x) = |1 − ei(x−ω0)|−d|1 − ei(x+ω0)|−df∗(x), x ∈ [−π, π] \ {±ω0}, (1.5)

where 0 < d < 1/2 if ω0 = 0 or π and 0 < d < 1 if ω0 ∈ (0, π) and f∗ is a positive and continuous
function on [−π, π]. The difference between (1.3) and (1.5) lies in the fact that in (1.5), the so-called
smooth component f∗ of the spectral density f is neither constrained to be rational, as in (1.4), nor to
be characterized by a finite dimensional parameter.
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The main objectives of this paper are twofold. The first one is to provide, under mild conditions, a
consistent semi-parametric estimator of ω0 with the best possible rate of convergence. The method we
have chosen is the method of Yajima (1996) which consists in maximizing the periodogram of the data.
Yajima (1996) proved the consistency of this estimator under the assumption of Gaussianity. Theorem
1 below relaxes this assumption of Gaussianity and slightly improves the rate of convergence obtained
by Yajima. The second objective is to investigate the consequences that the lack of knowledge of ω0

might have on the estimation of α. Theorem 2 shows that a modified version of the GPH estimator
of Geweke and Porter-Hudak (1983) (see also Robinson, 1995) has the same rate-optimality properties
proved by Giraitis et al. (1997) where ω0 was known, and it is asymptotically Gaussian with the same
asymptotic variance obtained in Robinson (1995). That is, the statistical properties of this estimator of α
are unaffected by the lack of knowledge of ω0. A short Monte-Carlo experiment confirms these theoretical
results.

2 Definition and asymptotic properties of the estimators

Let X1, · · · , Xn be n observations of the process X and let In(x) = (2πn)−1|∑n
t=1 Xte

itx|2 be the
periodogram. Define ñ = [(n − 1)/2] and let xk = 2kπ/n, −ñ ≤ k ≤ ñ be the Fourier frequencies. The
estimator of ω0 is defined as

ω̂n =
2π

n
arg max

1≤k≤ñ
In(xk). (2.1)

Theorem 1. Let X be a strict sense linear process, i.e. there exists an i.i.d. sequence (Zt)t∈Z with zero
mean and finite eighth moment and a square summable sequence (at)t∈Z such that Xt = µ+

∑
j∈Z

ajZt−j

and define a(x) =
∑

j∈Z
aje

ijx. Assume that a is differentiable on [−π, π] \ {ω0} and ∀x ∈ [0, π] \ {ω0},

K1|x − ω0|−ν ≤ |a(x)| ≤ K2|x − ω0|−ν , (2.2)

|(x − ω0)a
′(x)/a(x)| ≤ K, (2.3)

for some positive constants K, K1, K2 and ν ∈ (0, 1/2). Let vn be a non-decreasing sequence such that
limn→∞ v−2ν

n log(n) = 0. Then n
vn

(ω̂n − ω0) converges in probability to zero.

Comments on assumptions (2.2) and (2.3) Assumption (2.2) ensures that there is a pole. As-
sumption (2.3) is an adaptation of Assumption A1 of Robinson (1995) in the case of a pole outside zero;
it is needed to obtain upper bounds for the covariance of the discrete Fourier transform ordinates of X .

We now define the modified GPH estimator of the exponent of the singularity. Since model (1.5)
does not allow the singularity to be non symmetric, as in Arteche and Robinson (2000), the definition
of the estimator is symmetric around the pole. Recall that the exponent of the singularity is defined as
α = d if ω0 ∈ (0, π) and α = 2d if ω0 ∈ {0, π}. Denote g(x) = − log(|1 − eix|), ḡm = m−1

∑m
k=1 g(xk),

s2
m = 2

∑m
k=1(g(xk) − ḡm)2 and for k = −m, · · · ,−1, 1, · · · , m, γk = s−2

m (g(xk) − ḡm). The estimator α̂n

is defined as
α̂n =

∑

1≤|k|≤m

γk log{In(ω̂n + xk)}. (2.4)
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(A1) f∗ is an integrable function on [−π, π] and there exists a neighborhood V0 = [ω0 − ϑ, ω0 + ϑ] of ω0

such that for all x ∈ V0,

(a) |f∗(x) − f∗(ω0)| ≤ K f∗(ω0)|x − ω0|β ,

for some β ∈ (0, 1] and some positive constant K > 0 or, (b) f∗ is differentiable at ω0 and

|f∗(x) − f∗(ω0) − (x − ω0)f
∗′(ω0)| ≤ K|x − ω0|β,

for some β ∈ (1, 2] and some positive constant K > 0.

Theorem 2. Let X be a Gaussian process whose spectral density f can be expressed as

f(x) = |1 − ei(x−ω0)|−d|1 − ei(x+ω0)|−df∗(x), x ∈ [−π, π] \ {±ω0},

with d ∈ (0, 1) if ω0 ∈ (0, π) and d ∈ (0, 1/2) if ω0 ∈ {0, π} and f∗ is an even function that satisfies (A1)
and

∀x ∈ [0, π] \ {ω0}, |(x − ω0)f
∗′(x)/f∗(x)| ≤ K. (2.5)

Let δ be a positive real number such that δ < 2β/(2β+1) and define m = m(n) = [nδ]. Then m1/2(α̂n−α)
converges weakly to N (0, π2/12) if ω0 ∈ (0, π) and m1/2(α̂n − α) converges weakly to N (0, π2/6) if
ω0 ∈ {0, π}.

The first step in the proof of Theorem 2 is to obtain the distribution of the GPH estimator when the
location of the pole is known. Let ωn be the closest Fourier frequency to ω0, with the convention that
if xk1

and xk2
are equidistant from ω0 we take ωn as the smallest of the two. Let α̃n be the (infeasible)

GPH estimator based on the knowledge of ω0:

α̃n =
∑

1≤|k|≤m

γk log{In(ωn + xk)}. (2.6)

Proposition 1. Under the assumptions of Theorem 2, m1/2(α̃n −α) converges weakly to N (0, π2/12) if
ω0 ∈ (0, π) and N (0, π2/6) if ω0 ∈ {0, π}.

Comments

• Assumption (2.5) corresponds to Assumption A1 of Robinson (1995) and is used to obtain covariance
bounds for the discrete Fourier transform and log-periodogram ordinates of the process X (Lemmas
1 and 4 below). (A1) corresponds to A2 of Robinson (1995) and is used to control the bias of the
GPH estimator.

• An asymptotic distribution for the estimator of ω0 would obviously be of great interest, especially
if the rate of convergence n could be obtained. Unfortunately, this has not been already achieved.
Nevertheless, the rate of convergence of the present estimator is close to the parametric rate n
obtained by Giraitis et al. (2001) and its empirical performance is quite good, as shown in section
3. Hidalgo (2001) proposes an alternative estimator for which he obtains an asymptotic ditribution
with a rate of convergence close to the parametric rate n provided the process X has enough finite
moments.
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• If ω0 ∈ {0, π}, note that α̂n is approximately equal to twice the GPH estimator d̂n of d whose
asymptotic distribution under the same assumptions is N (0, π2/24), cf. Robinson (1995). Hence,
there is no efficiency loss incurred by estimating ω0. The asymptotic variance in the case ω0 ∈ {0, π}
is twofold the asymptotic variance in the case ω0 ∈ (0, π), because ǫk(ωn) = ǫ−k(ωn) in the former
case, while in the latter case, the m Fourier frequencies on the left and on the right of ω0 can be
considered “asymptotically i.i.d.”.

• The symmetrization procedure is necessary in the case ω0 ∈ (0, π), in order to obtain the same
rate of convergence as in the case ω0 ∈ {0, π}. Without the symmetrization, the maximum possible
value of δ would be (2/3)∧ (2β/(2β + 1)), (2/3 being the value corresponding to β ≥ 1), instead of
2β/(2β + 1) here. The reason is that by symmetry, the first derivative of the spectral density at ω0

is 0 when ω0 ∈ {0, π}, whereas it need not be so if ω0 ∈ (0, π). For more details see Hidalgo (2001).

• Theorem 2 is proved under the assumption of Gaussianity. Using the techniques of Velasco (2000)
and Hurvich et al. (2002), it could be proved under the weaker assumption of linearity in the strict
sense. The derivations would then be extremely involved and lenghty. We prefer to give a simple
proof under the assumption of Gaussianity.

Case of multiple singularities

Model (1.5) can be extended to allow for more than one spectral singularity or pole, that is

f(x) =

s∏

i=1

|1 − ei(x−ωi)|−di |1 − ei(x+ωi)|−dif∗(x),

where ωi 6= ωj if i 6= j, 0 < di < 1 if ωi 6= 0 and 0 < di < 1/2 if ωi = 0, and f∗ is a smooth function
(C2 over [−π, π], say). Then the poles ωi, i = 1, . . . , s and the values di, i = 1, ..., s, can be estimated
sequentially due to the local character of our estimators as we now illustrate. Suppose for expositional
purposes that ω1 6= 0, ω2 6= 0, d1 > d2 and s = 2. Then ω1 and ω2 can be estimated by

ω̂1
n =

2π

n
arg max

1≤k≤ñ
In(xk) and ω̂2

n =
2π

n
arg max

1≤k≤ñ;|xk−ω̂1
n|≥zn/n

In(xk),

respectively, where zn is a non decreasing sequence such that for any positive real numbers κ and κ′,

logκ(n) ≪ n

zn
≪ nκ′

.

An exemple of such a sequence is zn = ne−
√

log(n). Then the rate of convergence of ω̂1
n to ω1 will be

unchanged and the rate of convergence of ω̂2
n to ω2 will be n/v2,n, where v−2d2

2,n log(n) = o(1).

Let us briefly explain why such a sequence zn is needed to yield a n/v2,n consistent estimator of ω2.
First the proof of Theorem 1 can be easily adapted to prove that ω̂n is still n/v1,n consistent with v1,n

such that v−d1

1,n log(n) = o(1). Then if zn is chosen as proposed above, with probability tending to one,

|ω̂1
n − ω1| ≤ zn/2n. Hence |ω̂2

n − ω1| ≥ zn/2n and

max
|xk−ω1|≥zn/(2n),|xk−ω2|≥v2,n/n

f(xk) ≤ max((n/zn)d1 , (n/v2,n)d2) = (n/v2,n)d2 .
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As in the proof of Theorem 1, the final argument is that E[In(ω2
n)] ≍ nd2 , where ω2

n is the closest Fourier
frequency to ω2.

If d1 = d2 then obviously ω̂1
n is no longer consistent. Nevertheless, it is not difficult to see that the

pair {ω̂1
n, ω̂2

n} is a n/vn consistent estimator of the pair {ω1, ω2}, with vn = v1,n = v2,n.

The estimators of d1 and d2 will be given by (2.4) but with ω̂n being replaced by ω̂1
n and ω̂2

n respectively
and their rates of convergence will be the optimal ones. The proof of this result would be along the same
lines as the proof of Theorem 2, with added technicalities.

The previous comments are valid only if the number of poles s is known. Clearly an important issue
is to know how many poles do we have. For instance one may even doubt the actual presence of a pole.
If indeed there is no pole then the value of ω̂n is spurious, but nevertheless we claim that in that case
α̂n converges to zero, and more precisely, α̂n = OP (m−γ) for any γ ∈ (0, 1/2), under the assumptions of
Theorem 2 with α = 0 and assumption (A1) extended to the whole interval [−π, π], that is, assuming
f = f∗ is a smooth function over [−π, π].

We briefly outline the arguments. Define Sn(xℓ) =
∑

1≤|k|≤m γk log{In(xℓ + xk)/f(xl + xk)} and let
A be an arbitrary positive real number. Then:

P(mγ |α̂n| ≥ A) ≤ P(mγ |Sn(ω̂n)| ≥ A/2) + P(mγ |
∑

1≤|k|≤m

γk log{f(ω̂n + xk)| ≥ A/2).

Now, under the assumption on the sequence m, the last term is o(1) since
∑

1≤|k|≤m γk = 0 and it is

assumed here that f satisfies (A1) since α = 0. By applying Markov’s inequality, we obtain, for any
integer q:

P(mγ |Sn(ω̂n)| ≥ A/2) ≤
ñ∑

ℓ=1

P(mγ |Sn(xℓ)| ≥ A/2) ≤
ñ∑

ℓ=1

(A/2)−qmγq
E[|Sn(xℓ)|q].

It can then be shown that, under the Gaussian assumption, E[|Sn(xℓ)|q] ≤ Cm−q/2, where the constant C
depends only on f and q (using for instance Theorem 2.1 and following the lines of the proof of Theorem
3.1 in Soulier (2001)). Hence, we can conclude that

lim
A→∞

lim sup
n→∞

P(mγ |Sn(ω̂n)| ≥ A/2) = 0,

which proves our claim.

It is plausible that the rate of convergence can be improved to OP (m−1/2), (possibly up to some
logarithmic factor), but this is beyond the scope of the present paper.

An asymptotic distribution for α̂n could be obtained in some particular cases (such as Gaussian white
noise), but there are probably many different situations, thus making it impossible to have a general
result.

Minimax rates of convergence

In semiparametric estimation, rates of convergence are an important issue. Two problems are considered
here. The first one is the estimation of the location of the pole ω0, and the second one is estimation of
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the exponent of the singularity α when ω0 is unknown.

When ω0 is equal to zero and known, Giraitis et al. (1997) have proved that the best possible rate of
convergence of an estimator of α under assumption (A1) is nβ/(2β+1). Theorem 2 states that even if ω0 is
unknown, then m1/2(α̂n −α) is asymptotically normal at any rate m such that m/n2β/(2β+1) → 0. Since
an extra unknown parameter cannot possibly result in an improved rate of convergence, Theorem 2 shows
that the rate of convergence of α̂n is optimal as far as obtaining a central limit theorem is concerned.

The problem of estimating the pole is not yet satisfactorily answered. It has been conjectured that the
best possible rate of convergence, even in a parametric context is n, meaning that there exists a constant
c > 0 such that for any estimator ω̃n based on observations X1, · · · , Xn, it holds that limn→∞ P(n|ω̃n −
ω0| > c) > 0. In a parametric context, Giraitis et al. (2001) have defined an estimator ω̂n such that
ω̂n − ω0 = OP (1/n), but they have not proved that this rate of convergence is optimal. In the present
semiparametric context, a lower bound for the rate of convergence is not known, and up to our best
knowledge, there exists no estimator better (and simpler) that the one presented here.

There is an obvious problem of identifiability of ω0 if the singularity α or the fractional differencing
coefficient d is not bounded away from 0. If d is bounded away from zero, say d > d0, Theorem 1 implies
that the estimator presented here attains the rate of convergence n log−γ(n) for any γ > 1/2d0. We have
not been able to obtain a lower bound for the rate of convergence of an estimator of ω0 when d is bounded
away from zero by a fixed constant. If d can get closer an closer to zero at a given rate, we have obtain
the following result.

Theorem 3. Let s be a positive integer and let dn be a sequence of real numbers such that limn→∞(dn +
nds

n) = 0. Denote d(ω0) = 1 if ω0 ∈ (0, π) and d(ω0) = 1/2 if ω0 ∈ {0, π}. There exists a positive
constant c such that,

inf
ω̃n

inf
ω0∈[0,π]

inf
dn≤d<d(ω0)

sup
f∗

Pω0,d,f∗(ndn|ω̃n − ω0| ≥ c) > 0,

where Pω0,d,f∗ denotes the distribution of any second order stationay process with spectral density f(x) =
and supf∗ means that the supremum is evaluated over all function f∗ such that (2.5) holds.

Choosing dn = 1/n proves that ω0 cannot be consistently estimated (in the minimax sense) if d is not
bounded away from zero.

3 Monte-Carlo simulations

In order to investigate how well ŵn behaves and the relative performance of α̂n compared to the infeasible
estimator α̃n (with α̃n defined in (2.6)) in small samples, a limited Monte-Carlo study was carried out.
We report the result for the parameter g defined as α/2 and the corresponding estimators ĝn and g̃n

instead of α, to be consistent with the literature. When ω0 ∈ {0, π}, the expected variance of ĝn is the
usual π2/24m, whereas when ω0 ∈ (0, π), the expected variance of ĝn is π2/48m which matches that
obtained by Arteche and Robinson (2000).

We have simulated 5000 replications of series of length n = 256, 512 and 1024 of Gaussian processes
with spectral densities |1 − eix|−2g and |1 − ei(x−π/2)|2g|1 − ei(x+π/2)|2g with g = 0.1, 0.2, 0.3 and 0.4.
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They were generated by the method of Davies and Harte (1987) using formulae for autocovariance given
in Arteche and Robinson (2000). The results of the Monte-Carlo experiment are given in Tables 1 to 4.

Table 1 shows the performance of ŵn. As expected, the finite sample performance of ŵn becomes
better as n and/or g increases. Specifically for g = 0.1, the standard deviation of ŵn is far larger than
when g = 0.4. Moreover it appears that the precision of ŵn is not affected by the true value of w0.
Note that the positive larger bias for w0 = 0 compared to the case w0 = π/2 is due to the fact that
the estimator cannot take negative values, so that ŵn − w0 ≥ 0 for w0 = 0, which implies that it is a
nonnegative random variable.

A quick look at Tables 2 to 4, especially the Table for the Mean Square Error (M.S.E.), indicates
that as predicted by the theory, ĝn and g̃n given in (2.6) are very close, although for g small, for instance
g = 0.1, ĝn tends to have a larger bias than g̃n. On the other hand, for larger values of g, not only
the M.S.E. of ĝn and g̃n are similar but their bias and standard deviation are also very close. So, the
Monte-Carlo experiment tends to confirm the theoretical results obtained in Theorem 2, that is, that
m1/2 (ĝn − g̃n) = op(1). Note that the method employed to prove Theorem 2 is precisely to show that
the latter is the case. The empirical standard deviation of ĝn and g̃n are close to the theoretical ones,
especially for larger values of g.

Remark A more erratic behaviour of ŵn and ĝn when g is small, for instance g = 0.1 is obseved. One
possible explanation is that the spectral density is flatter for g = 0.1 than for g = 0.4. So to locate and
obtain the maximum becomes harder. This will translate into the fact that the estimator of g will be worst.
Another possible explanation is due to the randomness of In(x), which implies that the error In(x)−f(x)
becomes larger relative to In(x), or f(x), as g becomes smaller. That is, the ratio of the noise of In(x),
In(x) − f(x), to its signal given by In(x), or f(x), becomes larger, so more observations are expected to
be needed to obtain a more accurate estimate. One way to alleviate this problem, in small samples, could
be by looking at the maximum not of In(xk) but of the average 1

3 {In(xk−1) + In(xk) + In(xk+1)}. This
would have the effect to reduce the variability of the noise of In(xk), e.g. the variance of In(x) − f(x).

4 Proofs

In all the subsequent proofs, c, C, c(...) will denote numerical constants whose values depend only on
their arguments and may change upon each appearance.

As always, the key ingredient of the proof is a bound on covariance of renormalised discrete Fourier
transform ordinates. Such a bound has originally been obtained by Robinson (1995) in the case ω0 = 0,
and then generalised to the case ω0 ∈ (0, π) by Arteche and Robinson (2000) and Giraitis et al. (2001,
Lemma 4.6). Define dk(ω) = (2πnf(ω + xk))−1/2

∑n
t=1 Xte

it(ω+xk).

Lemma 1. Let X be a second order stationary process with spectral density f that satisfies (2.2) and
(2.3). Then, for 1 ≤ k ≤ j ≤ ñ,

|E[dk(ωn)dj(ωn)]| +
∣∣E[dk(ωn)d̄j(ωn)] − δk,j

∣∣ ≤ C(d, l∗) log(1 + j)k−1. (4.1)

Proof of Theorem 1. We must prove that for any ǫ > 0, limn→∞ P(nv−1
n |ω̂n − ω0| > ǫ) = 0. Recall

that ωn is the closest Fourier frequency to ω0. Since |ωn − ω0| ≤ π/n, it is enough to prove that
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limn→∞ P(nv−1
n |ω̂n − ωn| > ǫ) = 0. Define Mn = max1≤k≤ñ;xk 6=ωn

In(xk)
f(xk) and Λǫ,n = {k : 1 ≤ k ≤

ñ, |xk − ωn| > ǫvn/n}. Then, using (2.2) and the fact that f(x) = |a(x)|2E[Z2
0 ]/(2π), we have

P(nv−1
n |ω̂n − ωn| > ǫ) = P(|ω̂n − ωn| > ǫvn/n)

≤ P(In(ωn) < Mn max
k∈Λn,ǫ

f(xk))

≤ P(In(ωn) < Mnc(ω0, L)(ǫvn/n)−2ν)

≤ P(In(ωn) < 2c(ω0, L) log(n)(ǫvn/n)−2ν) + P(Mn > 2 log(n)).

Let us first prove that limn→∞ P(Mn > 2 log(n)) = 0. To that purpose, it suffices to show that Mn/ log(n)
converges in probability to 1.

Denote IZ
n (x) = 1

2πn |
∑n

k=1 Zkeikx|2 and MZ
n = 2π max1≤k≤ñ IZ

n (xk). We can assume without loss of
generality that E[Z2

0 ] = 1. By definition of Mn and MZ
n ,

∣∣∣∣
Mn

log(n)
− MZ

n

log(n)

∣∣∣∣ ≤
max1≤k≤ñ;xk 6=ωn

|In(xk)/f(xk) − 2πIZ
n (xk)|

log(n)
.

It has been proved in An, Chen and Hannan (1983) that lim supn MZ
n / log(n) ≤ 1. Davis and Mikosch

(1999) showed that the lim sup is actually a limit and that it is equal to 1. Define

Rn = max
1≤k≤ñ;xk 6=ωn

|In(xk)/f(xk) − 2πIZ
n (xk)|.

To prove that Rn/ log(n) tends to zero in probability, we need the following bound, which generalises
Lemma 1 to higher moments and can be proved in a similar way as Lemma 11 in Hurvich et al. (2002):
under the assumptions of Theorem 1, there exists a constant C such that for all n and k 6= 0 such that
0 < xk + ωn < π,

E[{In(ωn + xk)/f(ωn + xk) − 2πIZ
n (ωn + xk)}4] ≤ C log2(k)k−2.

Bounding the maximum by the sum and applying the Markov inequality we obtain that

P(Rn/ log(n) > ǫ) ≤
∑

1≤k≤ñ,xk 6=ωn

E[{In(xk)/f(xk) − 2πIZ
n (xk)}4]

ǫ4 log4(n)
= O(log−4(n)),

since the series log2(k)k−2 is summable. Thus Rn/ log(n) converges to zero in probability, which implies
that Mn/ log(n) converges to one in probability.

We must now prove that limn→∞ P(In(ωn) < 2c(ω0, L) log(n)(ǫvn/n)−2ν) = 0.

If ω0 ∈ {0, π}, then ωn = ω0 for all n. If the process X is not centered, i.e. µ 6= 0, then it is easily seen
that In(ω0) = nµ + oP (n). Hence limn→∞ P(In(ω0) < 2c(ω0, L) log(n)(ǫvn/n)−2ν) = 0, because ν < 1/2.

If now ω0 ∈ (0, π) or ω0 ∈ {0, π} and the process is centered, define χn = {E[In(ωn)]}−1In(ωn). As
proved in Lemma 2 below, there exists a constant K such that E[In(ωn)] ≥ Kn2ν . Hence

P(In(ωn) < 2C(ω0, L) log(n)(ǫvn/n)−2ν) = P(χn ≤ Cn2ν{E[In(ωn)]|}−1(ǫvn)−2ν log(n))

≤ P(χn ≤ C(ǫvn)−2ν log(n)).

By assumption limn→∞ log(n)v−ν
n = 0. Since it is proved in Lemma 2 that χn converges to a distribution

with no mass at zero, the proof of Theorem 1 is concluded.
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Lemma 2. Under the assumption of Theorem 1 and if moreover the process X is centered in the case
ω0 ∈ {0, π}, then {E[In(ωn)]}−1/2In(ωn) converges weakly to a distribution without mass at 0.

Proof. Define σ2
n = E[In(ωn)] and ζn = (2πn)−1/2

∑n
k=1 Xkeikωn . If ω0 ∈ (0, π), then, for large enough

n, ζn is centered even if the process X is not. Thus we can assume, without loss of generality, that X
is centered. Since moreover X is a linear process, the asymptotic normality of σ−1

n ζn holds as soon as
limn→∞ σn = ∞ (cf. Theorem 18.6.5 in Ibragimov and Linnik, 1971). Under assumption (2.2), we have:

σ2
n = E[In(ωn)] =

1

2πn

∫ π

−π

sin2(nx/2)

sin2(x/2)
f(x + ωn)dx

≥ K ′n−1

∫ π

2π/n

sin2(nx/2)

sin2(x/2)
(x + ωn − ω0)

−2νdx

≥ K ′′n−1

∫ π

2π/n

sin2(nx/2)

sin2(x/2)
x−2νdx ≥ K ′′′n2ν ,

which tends to infinity.

Proof of Proposition 1. For ω ∈ [0, π], denote

α̃n(ω) =
∑

1≤|k|≤m

γk log{In(ω + xk)}.

Note that with this notation, α̂n = α̃n(ω̂n) and α̃n = α̃n(ωn). Define also l∗ := log(f∗), ǫk(ω) =
log{In(ω+xk)/f(ω+xk)}+E (where E = −.577216 . . . is Euler’s constant), βk = s−1

m (g(xk)− ḡm) = smγk

and ξm(ω) =
∑

1≤|k|≤m βkǫk(ω). With these notations, we obtain that for any ω,

α̃n(ω) = d
∑

1≤|k|≤m

γk{g(xk + ω − ω0) + g(xk + ω + ω0)} +
∑

1≤|k|≤m

γkl∗(ω + xk) + s−1
m ξm(ω). (4.2)

Replacing ω with ωn in (4.2) above, we get

sm(α̃n(ωn) − α) = d 1(0,π)(ωn)
∑

1≤|k|≤m

βk {g(xk + ωn − ω0) − g(xk)}

+ d 1(0,π)(ωn)
∑

1≤|k|≤m

βkg(xk + ωn + ω0) +
∑

1≤|k|≤m

βkl∗(ωn + xk) + ξm(ωn). (4.3)

Since by definition,
∑

1≤|k|≤m βk = 0, (4.3) can be written as

sm(α̃n(ωn) − α) = d 1(0,π)(ωn)
∑

1≤|k|≤m

βk {g(xk + ωn − ω0) − g(xk)}

+ d 1(0,π)(ωn)
∑

1≤|k|≤m

βk{g(xk + ωn + ω0) − g(ωn + ω0)}

+
∑

1≤|k|≤m

βk{l∗(ωn + xk) − l∗(ωn)} + ξm(ωn)

=: b1,m(ωn) + b2,m(ωn) + Bm(l∗) + ξm(ωn).
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The terms b1,m and b2,m vanish if ω0 ∈ {0, π} and are well defined if ω0 ∈ (0, π), at least for large
enough n, since m/n → 0, which implies that xk + ωn ∈ (0, π) and xk + ωn + ω0 6= 0 (modulo 2π). The
third bias term Bm(l∗) depends upon the smoothness of l∗ at ω0. The next Lemma gives bounds for
the deterministic terms and some relevant quantities. Its proof relies on elementary computations and is
omitted.

Lemma 3. Assume that limm→∞(1/m + m/n) = 0, then

max
1≤|k|≤m

|βk| = O(log(m)m−1/2), lim
m→∞

s2
m/m = 2,

b2
1,m(ωn) ≤ C log2(m)m−1/2 and b2

2,m(ω0) ≤
Cm5

n4(ω0 ∧ (π − ω0))2
1(0,π)(ω0).

If (A1) holds, then B2
m(l∗) ≤ Cm2β+1n−2β.

For a Gaussian process, it is now a well established fact that Lemma 1 and the covariance inequality
for functions of Gaussian vectors of Arcones (1994, Lemma 1) can be used to derive bounds for the bias
and covariance of the renormalised log-periodogram ordinates. This has been shown in various places; see
for instance Robinson (1995), Giraitis et al. (1997), Hurvich et al. (1998), Moulines and Soulier (1999)
or Iouditsky et al. (2001). A central limit theorem for weighted sums of log-periodogram ordinates can
also be derived, as in Robinson (1995), Moulines and Soulier (1999) and Soulier (2001) in a more general
framework. Thus we state without proof the following Lemma.

Lemma 4. Let X be a Gaussian process whose spectral density satisfies (2.5). Then, for 1 ≤ |k| ≤ j,

|E[ǫk(ωn)]| ≤ C(d, l∗) log(k + 1)k−1, , (4.4)
∣∣∣∣E[ǫk(ωn)ǫj(ωn)] − π2

6
δk,j

∣∣∣∣ ≤ C(d, l∗) log2(j + 1)k−2. (4.5)

If limm→∞(log2(n)/m + m/n) = 0 then ξm(ωn) converges weakly to N (0, π2/3) if ω0 ∈ {0, π} and
N (0, π2/6) if ω0 ∈ (0, π).

Lemmas 3 and 4 yield Proposition 1.

Proof of Theorem 2. Write now

sm(α̂n − α) = sm(α̃n − α) + sm(α̂n − α̃n).

By Proposition 1 it is sufficient to prove that sm(α̂n − α̃n) tends to zero in probability, i.e. for all ǫ > 0,

lim
n→∞

P(sm|α̃n − α̂n| > ǫ) = 0.

For any M > 0 and 0 < γ < 1/2, we can write,

P(sm|α̂n − α̃n| > ǫ) ≤ P(sm|α̂n − α̃n| > ǫ, nm−γ |ω̂n − ωn| ≤ 2πM)

+ P(nm−γ |ω̂n − ωn| > 2πM)

≤ P( max
θ∈[−M,M ]

|Sn(θ)| > ǫ) + P(nm−γ |ω̂n − ωn| > 2πM),
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where we have defined for any θ > 0,

Sn(θ) = sm(α̃n(ωn + 2π[mγθ]/n) − α̃n).

Theorem 1 implies that for any 0 < γ < 1/2, if m = m(n) = nδ for some 0 < δ < 1, then
limn→∞ P(nm−γ |ω̂n − ωn| > M) = 0. Hence, the proof of Theorem 2 is completed by the following
Lemma.

Lemma 5. Let X be a Gaussian process whose spectral density satisfies (2.5) and (A1). If m = [nδ] for
some 0 < δ < 2β/(2β + 1), then for any 0 < γ < 1/2, the sequence Sn(θ) converges to zero in probability
uniformly with respect to θ ∈ [−M, M ], that is, for all ǫ > 0,

lim
n→∞

P( max
θ∈[−M,M ]

|Sn(θ)| > ǫ) = 0.

Proof. Denote j(θ) = [mγθ], ǫk = ǫk(ωn) and recall that by symmetry, βk = β−k for all k = 1, · · · , m.
Write now Sn(θ) as follows:

Sn(θ) =
∑

1≤|k|≤m

βk{log(In(ωn + xk+j(θ)) − log(In(ωn + xk)}

= βj(θ){log[In(ωn)] − log[In(ωn − xj(θ))]} (4.6)

+ d
∑

1≤|k|≤m,k 6=−j(θ)

βk{g(xk+j(θ) + ωn − ω0) − g(xk + ωn − ω0)} (4.7)

+ d
∑

1≤|k|≤m,k 6=−j(θ)

βk{g(xk+j(θ) + ωn + ω0) − g(xk + ωn + ω0)} (4.8)

+
∑

1≤|k|≤m,k 6=−j(θ)

βk{l∗(xk+j(θ) + ωn) − l∗(xk + ωn)} +
∑

1≤|k|≤m,k 6=−j(θ)

βk{ǫk+j(θ) − ǫk}

=: βj(θ){log[In(ωn)] − log[In(ωn − xj(θ))]} + dAn(θ) + dA′
n(θ) + Bn(θ) + Tn(θ).

Under the assumption of Gaussianity, it is easily seen that for any λ ∈ [−π, π], E[log2(In(λ))] =
O(log2(n)). Applying Lemma 3, we obtain the following bound for the term (4.6):

β2
j(θ){E[log2(In(ωn))] + E[log2(In(ωn − xj(θ)))]} = O(m−1 log4(n)),

uniformly with respect to θ.

Consider now the term in (4.7), i.e. An. For x 6= 0, g is differentiable and g′(x) = − 1
2 cot(x

2 ). Since
moreover g is even, this implies that for all x, y in [−π, π] \ {0}, |g(x) − g(y)| ≤ |x − y|/(|x| ∧ |y|). Thus
we get the bounds

|g(xk + xj + ωn − ω0) − g(xk + ωn − ω0)|

≤






j/(k − 1/2), if 1 ≤ k ≤ m,
j/((−k − j) − 1/2), if − m ≤ k ≤ −1 − j,
j/((−k − 1/2) ∧ (j + k − 1/2)), if − j + 1 ≤ k ≤ −1.

(4.9)

Using these bounds, the property
∑m

k=1 β2
k = 1, and applying the Hölder inequality, we obtain:

|An(θ)| ≤ j(θ) log2(m)m−1/2 ≤ log2(m)mγ−1/2.
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If ω0 ∈ (0, π), we must also consider A′
n, whereas if ω0 ∈ {0, π}, A′

n = An. For n large enough,
ωn + xk ∈ (0, π) and ωn + xk+j(θ) ∈ (0, π) since by assumption m/n → 0. Thus, there exists a constant
C which depends only on the function g such that

|g(ω0 + ωn + xk+j(θ)) − g(ω0 + ωn + xk)| ≤ Cxj(θ)/(ω0 ∧ (π − ω0)).

The property
∑m

k=1 β2
k = 1 implies that

∑
1≤|k|≤m |βk| ≤

√
m, hence, if ω0 ∈ (0, π), we obtain:

|A′
n(θ)| ≤ Cxj(θ)

ω0 ∧ (π − ω0)

∑

1≤|k|≤m

|βk| ≤
2πCMm1/2+γ

n(ω0 ∧ (π − ω0))
.

The term Bn presents no difficulty since the function l∗ is smooth everywhere. Since γ < 1/2, it is easily
obtained that

|Bn(θ)| ≤ Cmβ+1/2n−β .

Thus the sequences An, A′ and Bn converge to zero uniformly on compact sets. We now examine the
properties of the process Tn. To prove that Tn converges to zero in probability uniformly with respect to
θ ∈ [−M, M ], we apply Theorem 15.6 in Billingsley (1968). It suffices to check that for all θ ∈ [−M, M ],
Tn(θ) tends to zero in probability and that for all θ, θ1, θ2 ∈ [−M, M ] such that θ1 < θ < θ2,

E[|Tn(θ1) − Tn(θ)||Tn(θ2) − Tn(θ)|] ≤ C(θ1 − θ2)
2. (4.10)

We can restrict our attention to those (θ1, θ2) such that |θ1 − θ2| ≥ m−γ , since otherwise, the left hand
side of (4.10) is zero. Moreover, applying the Cauchy-Schwarz inequality, it is sufficient to check that for
all θ1, θ2 ∈ [−M, M ] such that |θ1 − θ2| ≥ m−γ , it holds that

E[|Tn(θ1) − Tn(θ2)|2] ≤ C(θ1 − θ2)
2. (4.11)

Let θ1, θ2 ∈ [−M, M ] and consider the increments of Tn(θ1, θ2) := Tn(θ1)− Tn(θ2). Assume that θ1 < θ2

and denote ji = j(θi), i = 1, 2. Without loss of generality, it can be assumed that j1 < j2, since otherwise,
Tn(θ1, θ2) = 0. We can then split Tn(θ1, θ2) in the following terms.

Tn(θ1, θ2) =

m+j1∑

k=−m+j1

k 6=0,k 6=j1

βk−j1ǫk −
m+j2∑

k=−m+j2

k 6=0,k 6=j2

βk−j2ǫk − βj1ǫj1 + βj2ǫj2

=

−m+j2−1∑

k=−m+j1

βk−j1ǫk −
m+j2∑

k=m+j1+1

βk−j2ǫk (4.12)

+

−1∑

k=−m+j2

(βk−j1 − βk−j2 )ǫk +

j1−1∑

k=1

(βk−j1 − βk−j2)ǫk (4.13)

+

j2−1∑

k=j1+1

(βk−j1 − βk−j2)ǫk +

m+j1∑

k=j2+1

(βk−j1 − βk−j2)ǫk (4.14)

− βj1ǫj1 + βj2ǫj2 − βj1−j2ǫj1 − βj2−j1ǫj2 (4.15)

We have three kind of terms to bound. The sums in (4.12) have only j2 − j1 terms. Applying Lemmas 3
and 4, we obtain:

E[(

−m+j2−1∑

k=−m+j1

βk−j1ǫk)]2 + E[(

m+j2∑

k=m+j1+1

βk−j2ǫk)]2 ≤ Cm−1 log2(m)(j2 − j1)
2 ≤ Cm2γ−1 log2(m)(θ1 − θ2)

2.
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To bound the sums in (4.13) and (4.14), we need a bound for βk−j1 − βk−j2 . Recall that by definition,
βk = sm(g(xk) − ḡm) and that |g(x) − g(y)| ≤ |x − y|/(|x| ∧ |y|). Thus, if for any integer k 6= j1, j2, it
holds that

|βk−j1 − βk−j2 | ≤ Cm−1/2|j1 − j2|/(|k − j1| ∧ |k − j2|). (4.16)

Let us evaluate for instance the second moment of the last term in (4.14), which can be expressed as

E[(

m+j1∑

k=j2+1

(βk−j1 − βk−j2)ǫk)2] =

m+j1∑

k=j2+1

(βk−j1 − βk−j2 )
2var(ǫk)

+ 2
∑

j2+1≤k<l≤m+j1

(βk−j1 − βk−j2)(βl−j1 − βl−j2)cov(ǫk, ǫl). (4.17)

For all k ∈ {j2 + 1, · · · , m + j1}, it holds that |k − j1| ∧ |k − j2| = k − j2. Using Lemmas 3, 4 and the
bound in (4.16), we obtain that the first term on the right hand side of (4.17) is bounded by

Cm−1(j2 − j1)
2

m+j1∑

k=j2+1

(k − j2)
−2 ≤ C(θ1 − θ2)

2m2γ−1,

whereas the second term on the right of (4.17) is bounded in absolute value by

Cm−1(j2 − j1)
2

∑

j2+1≤k<l≤m+j1

k−2(k − j2)
−1(l − j2)

−1 log2(l) ≤ C log3(m)(θ1 − θ2)
2m2γ−1.

The other sums in (4.13) and (4.14) are dealt with similarly. To complete the investigation of Tn, we
apply Lemmas 3 and 4 to obtain that

(β2
j1 + β2

j2 + β2
j1−j2)E[ǫ2j1 + ǫ2j2 ] ≤ C log2(m)m−1.

Altogether, since by assumption |θ2 − θ1| ≥ m−γ , we have proved that, for sufficiently small η > 0, and
for a constant depending only on ω0,

E[T 2
n(θ1, θ2)] ≤ C(ω0)m

−η(θ1 − θ2)
2.

We have proved (4.11) and using the same techniques, we can prove that E[Tn(θ)] = O(m−η) for suffi-
ciently small η. Hence, applying Billingsley (1968, Theorem 15.6) we conclude that Tn converges uniformy
to 0 in probability. This concludes the proof of Lemma 5.

Proof of Theorem 3. Let Θn = [0, π]×[dn, 2dn] and denote θ = (λ, d), f∗
θ (x) = exp

{
d

∑pn−1
j=1 αj(λ) cos(jx)

}

and fθ(x) = |1 − ei(x−λ)|−d|1 − ei(x+λ)|−df∗
θ (x), where αj(λ) = 2 cos(jλ)j−1 and pn is a non decreasing

sequence of integers such that pn = o(n), dnpn = o(1). With these notations, we can write

log(|1 − ei(x−λ)||1 − ei(x+λ)|) = −
∞∑

j=1

αj(λ) cos(jx) and fθ(x) = exp{d
∞∑

j=pn

αj(λ) cos(jx)}.

The assumption dnpn = o(1) ensures that fθ satisfies (2.5) for large enough n. Denote Eθ the ex-
pectation with respect to the distribution of a stationary Gaussian process with spectral density fθ.
Let q be a continuously differentiable probability density function on [0, π] with finite information, i.e.
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∫ π

0
q′

2
(s)/q(s)ds < ∞. Let qn be a density defined on Θn by qn(θ) = πd−1

n q(πd−1
n (d − dn))q(λ). It then

obviously holds that

inf
λ̂n

sup
d,λ,f∗

Ed,λ,f∗ [(λ̂n − λ)2] ≥ inf
λ̂n

sup
θ∈Θn

Eθ[(λ̂n − λ)2] ≥ inf
λ̂n

∫

Θn

Eθ[(λ̂n − λ)2]qn(θ)dθ.

For θ = (λ, d), denote I
(1)
n (θ) the Fisher information for the parameter λ when d is known. We can apply

the so-called Bayesian information bound (cf. Theorem 1 in Gill and Levit 1995).

inf
λ̂n

∫

Θn

Eθ[(λ̂n − λ)2]qn(θ)dθ ≥
(∫

Θn

I(1)
n (θ)qn(θ)dθ + Ĩ(q)

)−1

, (4.18)

where Ĩ(q) =
∫ π

0

(
∂

∂λq(θ)
)2 1

q(θ)dθ. We now need an asymptotic expansion of
∫
Θn

I
(1)
n (θ)qn(θ)dθ. Let Σθ

denote the covariance matrix of the Gaussian vector (X1, · · · , Xn). The Fisher information for λ is given
by

I(1)
n (θ) =

1

2
tr

{(
Σ−1

θ

∂

∂λ
Σθ

)2
}

Let Jn denotes the n×n identity matrix. For a given function h, let Tn(h) denote the Toeplitz matrix of

order n defined by Tn(h)j,k = ĥ(j − k) =
∫ π

−π
h(x)ei(j−k)xdx. Define hθ = fθ − 1. With these notations,

we get Σθ = 2πJn + Tn(hθ). Let ρn denote the spectral radius of the matrix Tn(hθ). As appears from
the proof of Lemma 2.1 of Iouditsky et al. (2001), in the case λ = 0, under the assumptions of Theorem
3, and with the choice of pn made here, ρn = o(1). The proof of this result is still valid in the present
context, since it only uses the bound |αj(λ)| ≤ 2/j. Thus ρn = o(1) uniformly with respect to λ, which
implies that

I(1)
n (θ) =

1

8π2
tr

{(
∂

∂λ
Σθ

)2
} (

1 + o(1)
)
.

Define now gθ = log(fθ) = d
∑∞

j=pn
αj(λ) cos(jx) and kθ = fθ − 1 − gθ. With these notations, it holds

that Σθ = 2πJn + Tn(gθ) + Tn(kθ) and

∂

∂λ
Σθ =

∂

∂λ
Tn(gθ) +

∂

∂λ
Tn(kθ) =: Aθ + Bθ.

It is easily seen that Aθ(j, k) = −2dπ sin(|j − k|λ)1{|j−k|≥pn}, hence

tr(A2
θ) = 4d2π2

n−1∑

j=pn

(n − j) sin2(jλ).

Integrating with respect to qn yields,
∫

Θn

tr(A2
θ)qn(θ)dθ = c(q)n2d2

n(1 + o(1)),

for some positive constant c(q) depending only on q. Again, the proof of Lemma 2.1 of Iouditsky et al.
(2001) can be adapted to prove that tr(B2

θ ) = o(tr(A2
θ)). This finally yields

∫

Θn

I(1)
n (θ)qn(θ)dθ = c(q)n2d2

n(1 + o(1)).

Putting this bound into (4.18), we conclude that

lim inf
n→∞

sup
d,λ,f∗

n2d2
nEd,λ,f∗ [(λ̂n − λ)2] ≥ lim inf

n→∞
(c(q) + o(1))−1 > 0.
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g
0.1 0.2 0.3 0.4

256 29.55 (35.47) 8.73 (17.17) 3.15 (4.25) 1.81 (2.74)

ω0 = 0 n 512 45.25 (60.78) 8.49 (17.22) 3.37 (4.95) 1.98 (2.38)

1024 44.67 (79.78) 7.07 (10.57) 3.33 (3.86) 2.16 (2.18)

256 0.671 (23.87) 0.032 (9.08) 0.015 (3.01) 0.005 (0.81)

ω0 = π
2 n 512 -0.189 (38.22) -0.081 (7.65) 0.040 (2.16) -0.004 (0.68)

1024 -0.416 (43.13) 0.020 (5.61) 0.004 (1.68) 0.007 (0.44)

Table 1. Bias and Standard Deviation (in parentheses) of nω̂n/(2π).
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g
0.1 0.2 0.3 0.4

ĝn

m=64
m=32
m=16

-0.049
-0.054
-0.062

-0.038
-0.026
-0.074

-0.026
-0.024
-0.075

-0.024
-0.024
-0.081

256

g̃n

m=64
m=32
m=16

-0.002
0.002
-0.003

-0.003
0.003
-0.005

-0.004
0.002
-0.013

-0.008
-0.009
-0.035

ĝn

m=128
m=64
m=32

-0.047
-0.056
-0.067

-0.029
-0.041
-0.066

-0.024
-0.033
-0.062

-0.023
-0.030
-0.061

ω0 = 0 n 512

g̃n

m=128
m=64
m=32

-0.003
0.000
-0.002

-0.005
0.000
-0.001

-0.006
0.001
-0.002

-0.007
-0.001
-0.012

ĝn

m=256
m=128
m=64

-0.030
-0.041
-0.055

-0.019
-0.026
-0.046

-0.019
-0.039
-0.044

-0.021
-0.037
-0.044

1024

g̃n

m=256
m=128
m=64

-0.002
0.000
0.001

-0.004
0.001
0.002

-0.005
0.002
0.004

-0.006
0.002
0.001

ĝn

m=32
m=16
m=8

-0.058
-0.070
-0.077

-0.041
-0.058
-0.083

-0.021
-0.033
-0.067

-0.013
-0.024
-0.061

256

g̃n

m=32
m=16
m=8

-0.001
-0.001
-0.004

-0.003
0.000
-0.009

-0.003
-0.002
-0.021

-0.008
-0.015
-0.045

ĝn

m=64
m=32
m=16

-0.049
-0.060
-0.073

-0.022
-0.033
-0.052

-0.011
-0.013
-0.027

-0.005
-0.004
-0.018

ω0 = π
2 n 512

g̃n

m=64
m=32
m=16

-0.001
0.001
0.001

-0.002
0.002
0.003

-0.003
0.004
0.002

-0.003
0.000
-0.011

ĝn

m=128
m=64
m=32

-0.029
-0.041
-0.057

-0.013
-0.017
-0.029

-0.009
-0.005
-0.008

-0.006
-0.003
-0.001

1024

g̃n

m=128
m=64
m=32

-0.002
0.001
0.002

-0.003
0.000
0.003

-0.005
0.003
0.006

-0.005
0.004
0.003

Table 1: Bias of the long-memory parameter estimators
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g
0.1 0.2 0.3 0.4

ĝn

m=64
m=32
m=16

0.091
0.121
0.170

0.102
0.141
0.190

0.093
0.135
0.186

0.084
0.119
0.169

256

g̃n

m=64
m=32
m=16

0.087
0.132
0.202

0.087
0.131
0.195

0.087
0.126
0.179

0.080
0.109
0.154

ĝn

m=128
m=64
m=32

0.068
0.086
0.114

0.068
0.096
0.133

0.060
0.089
0.130

0.058
0.082
0.118

ω0 = 0 n 512

g̃n

m=128
m=64
m=32

0.058
0.086
0.130

0.058
0.086
0.130

0.058
0.086
0.124

0.057
0.078
0.108

ĝn

m=256
m=128
m=64

0.051
0.066
0.085

0.042
0.062
0.090

0.040
0.058
0.085

0.040
0.056
0.081

1024

g̃n

m=256
m=128
m=64

0.040
0.058
0.086

0.040
0.058
0.086

0.040
0.058
0.086

0.040
0.056
0.077

ĝn

m=32
m=16
m=8

0.107
0.152
0.233

0.110
0.162
0.236

0.102
0.151
0.223

0.089
0.124
0.188

256

g̃n

m=32
m=16
m=8

0.095
0.148
0.231

0.095
0.146
0.224

0.095
0.138
0.206

0.086
0.118
0.177

ĝn

m=64
m=32
m=16

0.078
0.106
0.153

0.070
0.105
0.159

0.064
0.097
0.147

0.060
0.083
0.118

ω0 = π
2 n 512

g̃n

m=64
m=32
m=16

0.062
0.093
0.144

0.062
0.093
0.143

0.062
0.092
0.135

0.060
0.082
0.114

ĝn

m=128
m=64
m=32

0.054
0.074
0.102

0.044
0.066
0.100

0.042
0.062
0.093

0.041
0.059
0.081

1024

g̃n

m=128
m=64
m=32

0.041
0.060
0.090

0.041
0.060
0.090

0.041
0.061
0.090

0.041
0.058
0.081

Table 2: Standard Deviation of the long-memory parameter estimators
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g
0.1 0.2 0.3 0.4

ĝn

m=64
m=32
m=16

0.011
0.018
0.033

0.012
0.022
0.042

0.009
0.020
0.040

0.008
0.016
0.035

256

g̃n

m=64
m=32
m=16

0.008
0.018
0.041

0.008
0.017
0.038

0.008
0.016
0.032

0.007
0.012
0.025

ĝn

m=128
m=64
m=32

0.007
0.010
0.017

0.005
0.011
0.022

0.004
0.009
0.021

0.004
0.008
0.018

ω0 = 0 n 512

g̃n

m=128
m=64
m=32

0.003
0.007
0.017

0.003
0.007
0.017

0.003
0.007
0.015

0.003
0.006
0.012

ĝn

m=256
m=128
m=64

0.003
0.006
0.010

0.002
0.005
0.010

0.002
0.004
0.009

0.002
0.004
0.008

1024

g̃n

m=256
m=128
m=64

0.002
0.003
0.007

0.002
0.003
0.007

0.002
0.003
0.007

0.002
0.003
0.006

ĝn

m=32
m=16
m=8

0.015
0.028
0.060

0.014
0.030
0.063

0.011
0.024
0.054

0.008
0.016
0.039

256

g̃n

m=32
m=16
m=8

0.009
0.022
0.054

0.009
0.021
0.050

0.009
0.019
0.043

0.007
0.014
0.034

ĝn

m=64
m=32
m=16

0.008
0.015
0.029

0.005
0.012
0.028

0.004
0.010
0.022

0.004
0.007
0.014

ω0 = π
2 n 512

g̃n

m=64
m=32
m=16

0.004
0.009
0.021

0.004
0.009
0.020

0.004
0.009
0.018

0.004
0.007
0.013

ĝn

m=128
m=64
m=32

0.004
0.007
0.014

0.002
0.005
0.011

0.002
0.004
0.009

0.002
0.003
0.007

1024

g̃n

m=128
m=64
m=32

0.002
0.004
0.008

0.002
0.004
0.008

0.002
0.004
0.008

0.002
0.003
0.006

Table 3: Mean Square Error of the long-memory parameter estimators
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