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Estimating long memory in volatility∗

Clifford M. Hurvich† Eric Moulines‡ Philippe Soulier†§

Abstract

We consider semiparametric estimation of the memory parameter in a model which in-
cludes as special cases both the long-memory stochastic volatility (LMSV) and fractionally
integrated exponential GARCH (FIEGARCH) models. Under our general model the loga-
rithms of the squared returns can be decomposed into the sum of a long-memory signal and
a white noise. We consider periodogram-based estimators using a local Whittle criterion
function. We allow the optional inclusion of an additional term to account for possible cor-
relation between the signal and noise processes, as would occur in the FIEGARCH model.
We also allow for potential nonstationarity in volatility, by allowing the signal process to
have a memory parameter d∗ ≥ 1/2. We show that the local Whittle estimator is consistent
for d∗ ∈ (0, 1). We also show that the local Whittle estimator is asymptotically normal for
d∗ ∈ (0, 3/4), and essentially recovers the optimal semiparametric rate of convergence for this
problem. In particular if the spectral density of the short memory component of the signal
is sufficiently smooth, a convergence rate of n2/5−δ for d∗ ∈ (0, 3/4) can be attained, where
n is the sample size and δ > 0 is arbitrarily small. This represents a strong improvement
over the performance of existing semiparametric estimators of persistence in volatility. We
also prove that the standard Gaussian semiparametric estimator is asymptotically normal if
d∗ = 0. This yields a test for long memory in volatility.

1 Introduction

There has been considerable recent interest in the semiparametric estimation of long memory
in volatility. Perhaps the most widely used method for this purpose is the estimator (GPH)
of Geweke and Porter-Hudak (1983). The GPH estimator of persistence in volatility is based
on an ordinary linear regression of the log periodogram of a series that serves as a proxy for
volatility, such as absolute returns, squared returns, or log squared returns of a financial time
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series. The single explanatory variable in the regression is log frequency, for Fourier frequencies
in a neighborhood which degenerates towards zero frequency as the sample size n increases.
Applications of GPH in the context of volatility have been presented in Andersen and Bollerslev
(1997a,b), Ray and Tsay (2000), and Wright (2002), among others.

To derive theoretical results for semiparametric estimates of long memory in volatility, such
as GPH, it is necessary to have a model for the series which incorporates some form of stochastic
volatility. One particular such model is the long-memory stochastic volatility (LMSV) model of
Harvey (1998) and Breidt, Crato and de Lima (1998). The LMSV model for a weakly stationary
series of returns {rt} takes the form rt = exp(Yt/2)et where {et} is a series of i.i.d. shocks with
zero mean, and {Yt} is a weakly stationary linear long-memory process, independent of {et},
with memory parameter d∗ ∈ (0, 1/2). Under the LMSV model, the logarithms of the squared
returns, {Xt} = {log r2t }, may be expressed as

Xt = µ+ Yt + ηt, (1.1)

where µ = E[log e2t ] and {ηt} = {log e2t − E[log e2t ]} is an i.i.d. process with variance σ2
η , inde-

pendent of {Yt}.
Another model for long memory in volatility is the fractionally integrated exponential GARCH

(FIEGARCH) model of Bollerslev and Mikkelsen (1996). This model builds on the exponential
GARCH (EGARCH) model of Nelson (1991). Bollerslev and Mikkelsen (1999) study FIE-
GARCH forecasts of volatility, while Baillie, Cecen and Han (2000) study high frequency data
using FIEGARCH. The weakly stationary FIEGARCH model takes the form rt = σtet, where
the {et} are i.i.d. with zero mean and a symmetric distribution, and

log σ2
t = ω +

∞
∑

j=1

ajg(et−j) (1.2)

with g(x) = θx+ γ(|x|−E|et|), ω > 0, θ ∈ R, γ ∈ R, and real constants aj such that the process
log σ2

t has long memory with memory parameter d∗ ∈ (0, 1/2). If θ is nonzero, the model allows
for a so-called leverage effect, whereby the sign of the current return may have some bearing on
the future volatility. As was the case for the LMSV model, here we can once again express the
log squared returns as in (1.1) with µ = E[log e2t ]+ω, ηt = log e2t −E[log e2t ], and Yt = log σ2

t −ω.
Here, however, the processes {Yt} and {ηt} are not mutually independent.

In view of our goal of semiparametric estimation of d∗, we allow more generality in our
specification of the weights aj than Bollerslev and Mikkelsen (1996), who used weights corre-
sponding to a fractional ARIMA model. As far as we are aware, no theoretical justification of
any semiparametric estimator of d∗ has heretofore been presented for the FIEGARCH model.

Assuming that the volatility series {Yt} is Gaussian, Deo and Hurvich (2001) derived asymp-
totic theory for the GPH estimator based on log squared returns in the LMSV model. This
provides some justification for the use of GPH for estimating long memory in volatility. Nev-
ertheless, it can also be seen from Theorem 1 of Deo and Hurvich (2001) that the presence of
the noise term {ηt} induces a negative bias in the GPH estimator, which in turn limits the
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number m of Fourier frequencies which can be used in the estimator while still guaranteeing√
m-consistency and asymptotic normality. This upper bound, m = o[n4d∗/(4d∗+1)], becomes

increasingly stringent as d∗ approaches zero.

Another popular estimator of the memory parameter is the Gaussian semiparametric estima-
tor (GSE), introduced by Künsch (1987), and later studied by Robinson (1995b) for processes
which are linear in a Martingale difference sequence. For the LMSV model, results analogous
to those of Deo and Hurvich (2001) were obtained by Arteche (2003) for the GSE estimator,
based once again on log squared returns. The use of GSE instead of GPH allows the assumption
that {Yt} in (1.1) is Gaussian to be weakened to linearity in a Martingale difference sequence.
Arteche (2003) requires the same restriction on m as in Deo and Hurvich (2001).

Sun and Phillips (2003) proposed a nonlinear log-periodogram regression estimator d̂NLP

of d∗, using Fourier frequencies 1, . . . ,m. They partially account for the noise term {ηt} in
(1.1), through a first-order Taylor expansion about zero of the spectral density of the observa-
tions. They establish the asymptotic normality of m1/2(d̂NLP−d∗) under assumptions including
n−4d∗m4d∗+1/2 → Const. Thus, d̂NLP, with a variance of order n−4d∗/(4d∗+1/2), converges faster
than the GPH estimator, but still arbitrarily slowly if d∗ is sufficiently close to zero. Sun and
Phillips (2003) also assumed that the noise and signal are Gaussian. This rules out most LMSV
models, since log e2t is typically non-Gaussian.

Recently, Hurvich and Ray (2003) have proposed a local Whittle estimator of d∗, based on log
squared returns in the LMSV model. The local Whittle estimator, defined precisely in Section
2.1, may be viewed as a generalized version of the GSE estimator. Hurvich and Ray (2003)
included an additional term in the Whittle criterion function to account for the contribution of
the noise term {ηt} in (1.1) to the low frequency behavior of the spectral density of {Xt}. The
estimator is obtained from numerical optimization of the criterion function. It was found in
the simulation study of Hurvich and Ray (2003) that the local Whittle estimator can strongly
outperform GPH, especially in terms of bias when m is large.

We assume that the observed process {Xt} is the sum of a long-memory signal {Yt} which
is linear in a Martingale difference sequence {Zt}, and a white noise {ηt} which is potentially
contemporaneously correlated with {Zt} . Our signal plus noise model, made precise in Section
2 below, includes both the LMSV and FIEGARCH models as special cases, by allowing a
contemporaneous correlation between the shocks in the signal and noise processes.

Many empirical studies have found estimates of the memory parameter in the log-squared
returns, d∗, which are close to or even greater than 1/2, indicating possible nonstationarity of
volatility. For example, Hurvich and Ray (2003) obtained a value of the local Whittle estimator
d̂n = 0.556 for the log squared returns of a series of Deutsche Mark / US Dollar exchange rates
with n = 3485 and m = n0.8. In analyzing a similar data set with a parametric LMSV model,
Harvey (1998), who explicitly allowed for the nonstationary case in his definition of the model,
obtained an estimated memory parameter of 0.868. In view of these empirical findings, we allow
in this paper for the possibility that d∗ exceeds 1/2. Specifically, we assume here that d∗ ∈ (0, 1).

In the context of our general signal plus noise model, allowing all of the generalizations
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described above, we will show that under suitable conditions our local Whittle estimator d̂n

based on the firstm Fourier frequencies is consistent. Then, we will establish the
√
m-consistency

and asymptotic normality of d̂n for d∗ ∈ (0, 3/4).

As long as the spectral density of the volatility (signal) process is sufficiently regular, our
asymptotic results are free of upper restrictions on m arising from the presence of the noise
term. In particular, if the spectral density of the short memory component of the signal is
twice differentiable, then we obtain asymptotic normality of

√
m(d̂n − d∗) if m = [nζ ] with

0 < ζ < 4/5. This represents a strong improvement over the GPH and GSE estimators of
persistence in volatility and over the NLP regression estimator of Sun and Phillips (2003).

Since we use the Whittle likelihood function we are able to avoid the assumption that the
signal is Gaussian. This assumption was required by Deo and Hurvich (2001), but many prac-
titioners working with stochastic volatility models find the assumption to be overly restrictive.

The remainder of this paper is organized as follows. In Section 2.1, we define the local
Whittle estimator d̂n. Section 3 presents results demonstrating the consistency of the local
Whittle estimator of both d∗ and of the auxiliary parameter θ∗. Section 4 gives a central limit
theorem for d̂n. The estimates of the parameters (d∗, θ∗) converge at different rates, and in the
case of the estimates of θ∗ the rates depend on d∗. Fortunately, however, the limiting covariance
matrix of a suitably normalized vector of parameter estimates does not depend on θ∗. We present
an expression, in terms of d∗, for the variance of the asymptotic distribution of

√
m(d̂n − d∗).

In Section 5, we prove that the standard GSE, without any of the additional terms considered
in our local Whittle estimator, is asymptotically normal if d∗ = 0. This yields a test for long
memory in volatility. In Section 6 we report the results of a simulation study on the properties
of the local Whittle estimator.

2 Definitions and notations

We generalize the model (1.1) to a potentially nonstationary signal plus noise model, in which
the observed process is either

Xt =

{

µ+ Yt + ηt, (stationary case)

µ+
∑t

s=1 Ys + ηt, (nonstationary case),
(2.1)

{Yt} is a weakly stationary zero mean process and {ηt} is a zero mean white noise with variance
σ2

η . Our main concern in this paper is the memory parameter of {Xt}, denoted by d∗. The
stationary case corresponds to d∗ ∈ (0, 1/2) and the nonstationary case corresponds to d∗ ∈
[1/2, 1).

In the stationary case, we lose no generality in assuming that {Yt} has zero mean, since
the estimators considered in this paper are all functions of the periodogram at nonzero Fourier
frequencies. In the nonstationary case, the assumption that {Yt} has mean zero ensures that
{Xt} is free of linear trends. This does entail some loss of generality, but our estimator, which
makes no use of differencing or tapering, is not invariant to such trends, and would presumably be
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adversely affected by them. In any case, deterministic trends in volatility are perhaps somewhat
artificial from an economic standpoint.

We now present precise assumptions on the signal process {Yt}. We assume first that the
weakly stationary process {Yt} admits an infinite order moving average representation with
respect to a zero mean, unit variance white noise (i.e. an uncorrelated second order stationary
sequence) {Zt}:

Yt =
∑

j∈Z

ajZt−j , (2.2)

with
∑

j∈Z
a2

j <∞. In order to guarantee that the returns are a Martingale difference sequence,
one could assume that aj = 0 (j ≤ 0). This assumption would imply that {rt} is adapted to the
natural filtration {Ft} of {et, Zt}, Y is predictable with respect to this filtration and

E[rt | Ft−1] = exp(Yt/2)E[et] = 0.

We do not make such an assumption here, in order to consider the problem in its fullest gener-
ality. Thus, we do not require the returns to be a Martingale difference sequence. Additional
assumptions on {Zt} will be specified as needed.

We define a(x) =
∑

j∈Z
aje

ijx and assume that it can be expressed as

a(x) = (1 − eix)−dY a∗(x), x ∈ [−π, π] \ {0},

where dY ∈ [−1/2, 1/2), a∗ is a function that is continuous at 0, and a∗(0) 6= 0. The quantity
dY is the memory parameter of the time series {Yt}. The stationary case corresponds to dY ∈
(0, 1/2), and the nonstationary case corresponds to dY ∈ [−1/2, 0). The case dY = 0, which
corresponds to short memory in volatility, will be addressed separately in Section 5.

The spectral density of {Yt} is given by fY (x) = |a(x)|2/(2π), and can be expressed as

fY (x) = |1 − eix|−2dY f∗Y (x), (2.3)

with f∗Y (x) = |a∗(x)|2/(2π).

The concept of pseudo spectral density has been defined for nonstationary processes. See,
e.g., Solo (1992), Hurvich and Ray (1995), Velasco (1999). To generalize this concept so that
it applies to our signal plus noise process {Yt}, we first state additional assumptions on the
second-order dependence structure of the bivariate sequence {Zt, ηt}. Specifically, we assume
that:

∀t ∈ Z, E[ηtZt] = ρη ση and ∀s 6= t, E[ηsZt] = 0. (2.4)

The parameter ρη accounts for the possible contemporaneous correlation between Zt and ηt,
assumed constant. One such example is the FIEGARCH model with standard Normal multi-
plying shocks, for which ηt = log(e2t ) − E[log(e2t )], Zt = θet + γ(|et| −

√

2/π), and {et} is i.i.d.
N (0, 1), and (2.4) is in force. Since we assume E[Z2

t ] = 1, θ and γ are linked by the relation
θ2 + γ2(1 − 2/π) = 1. In that case, ρη = γcov(|e0|, log(e20))/ση , where σ2

η = π2/2.
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In general, the spectral density or pseudo spectral density of the process {Xt} defined in
(2.1) is then

fX(x) =

{

fY (x) +
2ρηση

2π Re(a(x)) +
σ2

η

2π , (stationary case),

|1 − eix|−2fY (x) +
2ρηση

2π Re((1 − eix)−1a(x)) +
σ2

η

2π , (nonstationary case).
(2.5)

In both cases, under additional smoothness assumption on the behavior of a∗ about 0 (that will
be made precise in the next section), fX admits the following expansion at 0:

fX(x) ∼ x−2d∗f∗Y (0) + Re
(

(1 − eix)−d∗
) 2 ρηση

√

f∗Y (0)√
2π

+
σ2

η

2π
, (2.6)

with

d∗ =

{

dY ∈ (0, 1/2), (stationary case),
dY + 1 ∈ [1/2, 1), (nonstationary case),

(2.7)

where the symbol ∼ indicates that the ratio of the left hand side to the right hand side of the
above formula tends to 1 as x → 0+. Thus, in the stationary case, {Xt} has the same memory
parameter as {Yt}, namely dY , while in the nonstationary case {Xt} has the same memory
parameter as the partial sum of {Yt}, namely dY + 1.

Remark 2.1. In the stationary case where the returns are rt = eYt/2et, and Yt =
∑∞

j=1 ajZt−j ,

Surgailis and Viano (2002) have proved that under the additional assumptions that E[eu|Z1|] <∞
for all u > 0 and that {Zt} and {et} are i.i.d. sequences, the memory parameter of the series
{|rt|u} is the same as the memory parameter of {Yt}. Thus, for both the LMSV and FIEGARCH
models, under the above mentioned restrictions, the squared returns and the log-squared returns
have the same memory parameter. In the nonstationary case, the relationship between these
two memory parameters remains an open question.

2.1 The Local Whittle Estimator

Consider a covariance stationary process {Xt} with spectral density

fX(x) = |1 − eix|−2d∗f∗X(x),

where d∗ ∈ (−1/2, 1/2) and f∗X is a positive function which is smooth in a neighborhood of
the origin. The GSE estimator of d∗ consists in locally fitting a parametric model for f∗X
by minimizing the Whittle contrast function. The parametric model used in GSE replaces
f∗X by a constant. This method yields a consistent and asymptotically normal estimator of
d∗ ∈ (−1/2, 1/2), under mild assumptions both on f∗X and the process {Xt}. These results
were later extended to the nonstationary case d∗ ∈ [1/2, 1) by Velasco (1999) who proved the
consistency for d∗ in this range and asymptotic normality for d∗ ∈ [1/2, 3/4).

In some situations however, the local-to-zero parameterization of f∗X(x) by a constant may be
inefficient. An example is the situation of a long-memory process observed in an additive noise.
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In order to improve the efficiency, one can try to fit a more complex local parametric model
for f∗X . In the local Whittle estimator, defined below in a general setting, f∗X(x) is replaced by
G(1 + h(d, θ, x)), where G is a positive constant and h is a function tailored to the problem at
hand. The additional parameter θ can be seen as a nuisance parameter which is included to
allow some flexibility in the modelling of f∗X about 0.

The discrete Fourier transform and the periodogram ordinates of any process {Vt} evaluated
at the Fourier frequencies xj = 2jπ/n, j = 1, . . . , n, are respectively denoted by

dV,j = (2πn)−1/2
n
∑

t=1

Vte
−itxj , and IV,j = |dV,j |2.

The local Whittle contrast function, based on the observations X1, . . . ,Xn, is defined as

Ŵm(d,G, θ) =

m
∑

k=1

{

log
(

Gx−2d
k (1 + h(d, θ, xk)

)

+
IX,k

Gx−2d
k (1 + h(d, θ, xk))

}

(2.8)

where m < n/2 is a bandwidth parameter (the dependence on n is implicit). Concentrating G
out of Ŵm yields the following profile likelihood

Ĵm(d, θ) = log

(

1

m

m
∑

k=1

x2d
k IX,k

1 + h(d, θ, xk)

)

+m−1
m
∑

k=1

log{x−2d
k (1 + h(d, θ, xk))}

= log

(

1

m

m
∑

k=1

k2dIX,k

1 + h(d, θ, xk)

)

+m−1
m
∑

k=1

log{k−2d(1 + h(d, θ, xk))}. (2.9)

The local Whittle estimator is any minimand of the empirical contrast function Ĵm over the
admissible set Dn × Θn (which may depend on the sample size n):

(d̂n, θ̂n) = arg min
(d,θ)∈Dn×Θn

Ĵm(d, θ). (2.10)

Note that (d̂n, θ̂n) depends on h, Dn and Θn.

We now specify three different parameterizations that we will use for estimation of the
memory parameter in the model (2.1).

(P0)
h(d, x) ≡ 0, Dn = [−1/2, 1]. (2.11)

Here, there is no parameter θ and the definition of Θn is thus irrelevant. This parameter-
ization is used for the GSE estimator.

(P1)
h(d, θ, x) = θx2d, Dn = [ǫn, 1], Θn = [0, ǫ−2

n ], (2.12)

7



where {ǫn} is a sequence that tends to zero as n tends to infinity at a rate that will
be specified in the sequel. This parameterization is used for the local Whittle estimator
in the LMSV model when ρη is known to be zero, as in Hurvich and Ray (2003). Our
parameterization conforms with this model: indeed, the expansion (2.6) of the spectral (or
pseudo spectral) density fX at 0 when ρη = 0 can be expressed as fX(x) ∼ x−2d∗f∗Y (0)(1+
h(d∗, θ∗, x), with h as in (2.12) and

θ∗ =
σ2

η

2πf∗Y (0)
. (2.13)

Note that if d∗ ∈ (0, 1), the definition of Dn and Θn implies that for all sufficiently large
n, we will have d∗ ∈ Dn and θ∗ ∈ Θn.

(P2)

h(d, θ, x) = θ1x
2dRe

(

(1 − eix)−d
)

+ θ2x
2d,

Dn = [ǫn, 1], Θn = [−2ǫ−1
n , 2ǫ−1

n ] × [0, ǫ−2
n ],

(2.14)

where {ǫn} is as described above. This parameterization is used for the local Whittle
estimator when ρη is not required to be zero, as in the FIEGARCH model and the LMSV
model with contemporaneous correlation between {Zt} and {ηt}. Here again, the expansion
(2.6) can be expressed as fX(x) ∼ x−2d∗f∗Y (0)(1 + h(d∗, θ∗, x)), with h as in (2.14) and

θ∗ = (θ∗1, θ
∗
2) with θ∗1 =

2ρηση
√

2πf∗Y (0)
and θ∗2 =

σ2
η

2πf∗Y (0)
. (2.15)

We denote the local Whittle estimators associated with the parameterizations (P0), (P1) and

(P2) by (d̂
(i)
n , θ̂

(i)
n ), i = 0, 1, 2, respectively. Note that d̂

(0)
n is simply the GSE estimator, based on

a parameterization which does not involve the noise term. In some of our discussions, as should
be clear from the context, we reserve the term ”local Whittle estimator” to refer only to the
parameterizations (P1) and (P2) but not (P0).

Remark 2.2. The presence of an ǫn sequence tending to zero in parametrizations (P1) and (P2)
allows the admissible parameter space to depend on n and to become larger as n increases.
This in turn will allow us to state and prove our main theoretical results without making
arbitrary restrictions on the true parameters, as is done in much of the current literature (see,
e.g., Robinson 1995b). Nevertheless, if we took ǫn to be fixed and positive, then our main
results would continue to hold as long as the true parameters lie in the corresponding admissible
parameter space.

Remark 2.3. We explain here the (perhaps) surprising form of the parameterization (P2). For
x ∈ (0, π] and d ∈ (0, 1), it is well known that |1 − eix|−2d = x−2d(1 + O(x2)), but it should be
noted that

Re
{

(1 − eix)−d
}

= {2 sin(x/2)}−d cos{d(x/2 + π/2)} = x−d cos(πd/2) {1 +O(x)},
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where the term O(x) cannot be improved. Replacing Re
{

(1 − eix)−d
}

with x−d in (P1) would
not only change the value of the parameter θ1, but also create a bias term that would result in

a slower rate of convergence for d̂
(2)
n (moreover depending on d∗) than the rate we will be able

to establish below.

Remark 2.4. The correction term h(d, θ, x) in parameterizations (P1) and (P2) is the key el-
ement which allows us to attain a better rate of convergence for the local Whittle estimator,
in comparison to the ordinary GSE and GPH estimators. Indeed, the use of h(d, θ) frees the
optimal rate of convergence of the local Whittle estimator from an undesirable dependence on
d∗, a problem faced by the ordinary GPH estimator considered in Deo and Hurvich (2001).

3 Consistency of the local Whittle estimator

In order to prove consistency of the local Whittle estimator d̂n, we consider the following as-
sumptions.

(H1) {Zt} is a zero mean unit variance white noise such that

1

n

n
∑

t=1

(Z2
t − 1)

P−→ 0 (3.1)

and for any (s, t, u, v) ∈ N
4 such that s < t and u < v, E[|ZuZvZsZt|] <∞ and

E[ZuZvZsZt] =

{

1 if u = s and t = v
0 otherwise.

(3.2)

Remark 3.1. This assumption is the weakest one under which we were able to construct our
proof of consistency, and is satisfied under a variety of conditions. For instance, it is implied by
assumption A3 of Robinson (1995b) which states that {Zt} is a martingale difference sequence
satisfying E[Z2

t |σ(Zs, s < t)] = 1 a.s. (which implies (3.2)) and strongly uniformly integrable
(which implies (3.1)). Note that (3.1) holds when {Z2

t } is ergodic. Finally, note that (3.2) rules
out the case s = t since it assumes that s < t and u < v, and therefore (3.2) does not imply
that E[Z4

t ] = 1 (which would be impossible except for a Rademacher random variable).

For reference, we recall the assumption on {ηt}.
(H2) {ηt} is a zero mean white noise with variance σ2

η such that for each s 6= t, E[ηsZt] = 0
and for each t, E[ηtZt] = ρηση.

Note that ρη is the correlation between Zt and ηt, which is assumed to be constant.

(H3) {Yt} admits the linear representation (2.2) and the function a(x) =
∑

j∈Z
aje

ijx can

be expressed for x ∈ [−π, π] \ {0} as a(x) = (1 − eix)−dY a∗(x), where dY ∈ (−1/2, 1/2), a∗ is
integrable over [−π, π], a∗(−x) = a∗(x) for all x ∈ [−π, π] and there exist ϑ ∈ (0, π], β ∈ (0, 2]

9



and µ > 0 such that a∗ is differentiable at 0 if β > 1 and for all x ∈ [−ϑ, ϑ],

|a∗(x) − a∗(0)| ≤ µ|a∗(0)||x|β , β ∈ (0, 1] (3.3)

|a∗(x) − a∗(0) − xa∗′(0)| ≤ µ|a∗(0)||x|β , β ∈ (1, 2]. (3.4)

Remark 3.2. The function (1 − eix)−d is defined for d ∈ (−1/2, 1/2) \ {0} and x ∈ [−π, π] \ {0}
by

(1 − eix)−d =

∞
∑

j=0

Γ(d+ j)

Γ(d) j!
eijx.

This series is absolutely convergent if d < 0 and converges in the mean square if d > 0. For
d = 0, we set (1− eix)0 ≡ 1. Since by assumption a∗(−x) = a∗(x), thus |a∗|2 is an even function.
If moreover a∗ is differentiable at 0, then a∗′(0) = −a∗′(0) and for all β ∈ (0, 2], there exists a
constant C such that for all x ∈ [−ϑ, ϑ], it holds that

∣

∣|a∗(x)|2 − |a∗(0)|2
∣

∣ ≤ C|x|β. (3.5)

Remark 3.3. In the related literature (Robinson (1995b), Velasco (1999), Andrews and Sun
(2001)), it is usually assumed moreover that the function a is differentiable in a neighborhood of
zero, except at zero, with |xa′(x)|/|a(x)| bounded on this neighborhood. Hence our assumptions
are weaker than those of the above references.

Theorem 3.1. Assume (H1), (H2) and (H3) and d∗ ∈ [0, 1). Let m be a non-decreasing
sequence such that

lim
n→∞

(

m−1 +m/n
)

= 0, (3.6)

and set ǫn = (log(n/m))−1/2. Then, the local Whittle estimators d̂
(i)
n , i = 0, 1, 2 are consistent.

Remark 3.4. Arteche (2003), Theorem 1, proved the consistency d̂
(0)
n (the GSE) for a long-

memory process observed in independent noise (with no contemporaneous correlation) in the
stationary case i.e. for d∗ ∈ (0, 1/2). Theorem 3.1 extends this result to the nonstationary case
d∗ ∈ (1/2, 1) and to the case where the noise {ηt} is (possibly) contemporaneously correlated

with {Yt}, thus covering the FIEGARCH model. Furthermore, Theorem 3.1 implies that d̂
(1)
n is

consistent even if ρη is nonzero.

Remark 3.5. The local Whittle estimator d̂
(i)
n , i = 1, 2 is consistent if d∗ = 0, but by construction

its rate of convergence is at most ǫn. The necessity of introducing the sequence ǫn comes from
certain technicalities in the proof of Theorem 1. We do not know if it is possible to define
Dn = [0, 1] under (P1) and (P2). In any case, if d∗ = 0, the parameter θ∗ need not be identifiable.

Thus, if a small value of d̂
(i)
n is obtained, it should be better to test for d∗ = 0 by using the

standard GSE. We will establish the validity of this procedure in section 5.
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Theorem 3.1 provides no information about the behavior of θ̂
(i)
n , i = 1, 2. This is because,

as n → ∞, the objective function becomes flat as a function of θ. Thus a special technique is

needed to prove the consistency of θ̂
(i)
n , i = 1, 2 which requires strengthened assumptions. This

technique was first used in a similar context by Sun and Phillips (2003). We now introduce
these assumptions.

(H4) {Zt} is a martingale difference sequence such that for all t, E[Z4
t ] = µ4 < ∞ and

E[Z2
t | σ(Zs, s < t)] = 1 a.s.

Remark 3.6. (H4) implies (H1). More precisely, it implies that {Z2
t − 1} is a square integrable

martingale difference sequence and that n−1
∑n

t=1(Z
2
t − 1) = OP (n−1/2).

(H5) {ηt} is a zero mean white noise with variance σ2
η such that supt∈N E[η4

t ] < ∞, a.s. and
for all (s, t, u, v) ∈ N

4 such that s < t and u < v,

E[ηuηvηsηt] =

{

σ4
η if u = s and t = v

0 otherwise.
(3.7)

cum(Zt1 , Zt2 , ηt3 , ηt4) =

{

κ if t1 = t2 = t3 = t4,
0 otherwise

(3.8)

Theorem 3.2. Assume (H2), (H3), (H4) and (H5) and d∗ ∈ (0, 1). Let m be a non-decreasing
sequence of integers such that

lim
n→∞

(

m−4d∗−1+δn4d∗ + n−2βm2β+1 log2(m)
)

= 0 (3.9)

for some arbitrarily small δ > 0 and set ǫn = (log(n/m))−1/2. Then d̂
(i)
n − d∗ = OP ((m/n)2d∗)

and θ̂
(i)
n − θ∗ = oP (1), i = 1, 2.

Remark 3.7. The first term in (3.9) imposes a lower bound on the allowable value of m, requiring
that m tend to ∞ faster than n4d∗/(4d∗+1). This condition can be fulfilled only when β > 2d∗.
Note that β > 2d∗ always holds if β = 2, which is the most commonly accepted value for β. It
is interesting that Deo and Hurvich (2001), assuming β = 2, found that for m1/2(d̂GPH − d∗) to
be asymptotically normal with mean zero, where d̂GPH is the GPH estimator, the bandwidth m
must tend to ∞ at a rate slower than n4d∗/(4d∗+1). When β ≤ 2d∗, then it is no longer possible
to prove that θ̂n is a consistent estimator of θ∗, and the proposed local Whittle estimator will
not perform better than the standard GSE.

4 Asymptotic normality of the local Whittle estimator

We focus here on d̂
(i)
n and θ̂

(i)
n , i = 1, 2. Corresponding results for the GSE estimator will be

presented in Section 5. The main result of this section is Theorem 4.3, which is a central limit
theorem for the vector of estimated parameters. Before presenting this main result, we outline
the main steps in the proof, which are not completely standard due to the asymptotic flatness
of the objective function.
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For ease of notation here, in the discussion below, we omit the superscript in d̂
(i)
n . Contrary

to standard statistical theory of minimum contrast estimators, the rates of convergence of d̂n−d∗
and of θ̂n − θ∗ are different, where d∗ is defined in (2.7) and θ∗ is defined in (2.13) in the LMSV
case and (2.15) in the FIEGARCH case. To account for the difference in these rates, we prove
that D∗

n(d̂n − d∗, θ̂n − θ∗) is asymptotically normal with zero mean, where D∗
n is a deterministic

diagonal matrix whose diagonal entries tend to ∞ at different rates, as defined below. Our
proof starts with a second order Taylor expansion of the contrast function. The gradient of the
contrast function evaluated at the estimates vanishes, since they are consistent and converge to
an interior point of the parameter set.

Denote Hn(d, θ) =
∫ 1
0 ∇2Ĵm(d∗ + s(d − d∗), θ∗ + s(θ − θ∗))ds. With this notation, a first

order Taylor expansion yields

0 = mD∗
n
−1∇Ĵm(d̂n, θ̂n) =

mD∗
n
−1∇Ĵm(d∗, θ∗) +mD∗

n
−1Hn(d̂n, θ̂n)D∗

n
−1D∗

n

(

(d̂n, θ̂n) − (d∗, θ∗)
)

. (4.1)

The next step is to prove that mD∗
n
−1∇Ĵm(d∗, θ∗) converges in distribution to a non-degenerate

Gaussian random variable with zero mean and mD∗
n
−1Hn(d̂n, θ̂n)D∗

n
−1 converges in probability

to a non-singular matrix. This is stated in the following two propositions.

Proposition 4.1. Assume (H2), (H3), (H4) and (H5). If d∗ ∈ (0, 3/4), β > 2d∗ and m is a
non-decreasing sequence of integers such that (3.9) holds, then mD∗

n
−1∇Ĵm(d∗, θ∗) converges to

the Gaussian distribution with zero mean and variance Γ∗ with
(i) D∗

n = m1/2Diag
(

1, x2d∗
m

)

and

Γ∗ =

(

4 − 4d∗

(1+2d∗)2

− 4d∗

(1+2d∗)2
4d∗2

(1+2d∗)2(1+4d∗)

)

under (P1), assuming ρη is known to be 0;
(ii) D∗

n = m1/2Diag
(

1, xd∗
m / cos(πd∗/2), x2d∗

m

)

and

Γ∗ =







4 − 2d∗

(1+d∗)2 − 4d∗

(1+2d∗)2

− 2d∗

(1+d∗)2
2d∗2

(1+d∗)2(1+2d∗)
2d∗2

(1+d∗)(1+2d∗)(1+3d∗)

− 4d∗

(1+2d∗)2
2d∗2

(1+d∗)(1+2d∗)(1+3d∗)
4d∗2

(1+2d∗)2(1+4d∗)







under (P2).

Proposition 4.2. Assume (H2), (H3) and (H4). If d∗ ∈ (0, 3/4), β > 2d∗ and m is a
non-decreasing sequence of integers that satisfies (3.9), then mD∗

n
−1Hn(d, θ)D∗

n
−1 converges in

probability to Γ∗, uniformly with respect to (d, θ) ∈ {d : |d− d∗| ≤ log−5(m)} ×Θ, with D∗
n and

Γ∗ defined as in Proposition 4.1.

Remark 4.1. An important feature is that Γ∗ does not depend on the parameter θ∗. This was
already noticed by Andrews and Sun (2001) in the context of local polynomial approximation.
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Since the matrix Γ∗ is invertible, the matrix D∗
n
−1Hn(d̂n, θ̂n)D∗

n
−1 is invertible, with probability

tending to one. Hence (4.1) yields:

D∗
n

(

(d̂n, θ̂n) − (d∗, θ∗)
)

= −
{

mD∗
n
−1Hn(d̂n, θ̂n)D∗

n
−1
}−1

mD∗
n
−1∇Ĵm(d∗, θ∗).

This and Propositions 4.1 and 4.2 yield our main result. Recall that our estimators are defined
in section 2.1 with ǫn = (log(n/m))−1/2.

Theorem 4.3. Assume (H2), (H3), (H4), (H5), d∗ ∈ (0, 3/4), β > 2d∗ and let m be a non-
decreasing sequence of integers that satisfies (3.9). Then, under (P1), assuming ρη is known to

be zero, D∗
n

(

(d̂
(1)
n , θ̂

(1)
n ) − (d∗, θ∗)

)

is asymptotically Gaussian with zero mean and covariance

matrix

Γ∗−1 =
(1 + 2d∗)2

16d∗2

(

1 1+4d∗

d∗

1+4d∗

d∗
(1+2d∗)2(1+4d∗)

d∗2

)

.

Under (P2), D∗
n

(

(d̂
(2)
n , θ̂

(2)
n ) − (d∗, θ∗)

)

is asymptotically Gaussian with zero mean and covari-

ance matrix

Γ
−1

=
1

16d∗4







−1 0 0

0
2(1+d

∗)
d∗

0

0 0 1+2d
∗

2d∗







×





(1 + d∗)2(1 + 2d∗)2 −2(1 + d∗)(1 + 2d∗)2(1 + 3d∗) (1 + d∗)(1 + 2d∗)(1 + 3d∗)(1 + 4d∗)

−2(1 + d∗)(1 + 2d∗)2(1 + 3d∗) 4(1 + d∗)2(1 + 2d∗)(1 + 3d∗)2 −2(1 + d∗)(1 + 2d∗)2(1 + 3d∗)(1 + 4d∗)

(1 + d∗)(1 + 2d∗)(1 + 3d∗)(1 + 4d∗) −2(1 + d∗)(1 + 2d∗)2(1 + 3d∗)(1 + 4d∗) (1 + 2d∗)2(1 + 3d∗)2(1 + 4d∗)





×







−1 0 0

0
2(1+d

∗)
d∗

0

0 0 1+2d
∗

2d∗






.

Corollary 4.4. Under the assumptions of Theorem 4.3, m1/2(d̂
(1)
n −d∗) is asymptotically Gaus-

sian with zero mean and variance
(1 + d∗)2

16d∗2

if ρη is known to be 0; and m1/2(d̂
(2)
n − d∗) is asymptotically Gaussian with zero mean and

variance
(1 + d∗)2(1 + 2d∗)2

16d∗4 .

Remark 4.2. It is seen that the local Whittle estimator d̂
(i)
n , i = 1, 2 is able to attain the same

rate of convergence under the signal plus noise model (1.1) as that attained by the standard

GSE d
(0)
n in the case of no noise, as long as β > 2d∗.

Remark 4.3. The asymptotic variance of d̂
(i)
n increases when d∗ is small, but this loss is com-

pensated by the gain in the rate of convergence with respect to the standard GSE (and GPH).
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5 Asymptotic normality of the standard GSE

Theorem 3.1 states that the GSE is consistent if d∗ ∈ (0, 1). We now state that it is asymp-
totically normal if d∗ ∈ (0, 3/4) but with a rate of convergence slower than the local Whittle
estimator considered above.

Theorem 5.1. Under the assumptions of Theorem 4.3, if d∗ ∈ (0, 3/4) and m satisfies

lim
n→∞

(

m−1 +m2γ∗+1n−2γ∗
)

= 0, (5.1)

with γ∗ = d∗ if ρη 6= 0 and γ∗ = 2d∗ if ρη = 0; then m1/2(d̂
(0)
n − d∗) is asymptotically normal

with variance 1/4.

Remark 5.1. If ρη is zero, then (5.1) requires that m = o(n4d∗/(4d∗+1)), so the upper bound on
m to ensure

√
m-consistency of GSE is essentially the same as that required for GPH by Deo

and Hurvich (2001). If, however, ρη 6= 0, then the upper bound on m for GSE becomes more
stringent, m = o(n2d∗/(2d∗+1)), since the nonzero value of ρη increases the asymptotic bias of the
GSE. Similar restrictions would presumably apply in this situation for GPH.

When d∗ = 0, the theory of Robinson (1995b) cannot be directly applied to prove consistency

and asymptotic normality of d̂
(0)
n , since the process Xt = Yt + ηt is not necessarily linear with

respect to a martingale difference sequence. Nevertheless, if we strengthen the assumptions on

the noise {ηt}, we can prove the consistency and asymptotic normality of d̂
(0)
n when dY = d∗ = 0.

Theorem 5.2. Assume that d∗ = dY = 0, (H2), (H3), (H4), (H5) and that η is a martingale
difference sequence that satisfies

cum(Zu, Zv , Zs, ηt) = γ if s = t = u = v and 0 otherwise. (5.2)

If m is a non-decreasing sequence of integers that satisfies limn→∞(m−1+n−2βm2β+1 log2(m)) =

0, then m1/2d̂
(0)
n is asymptotically Gaussian with zero mean and variance 1/4.

These results yield a test for long memory in volatility based on the standard GSE estimator,

since Theorem 5.2 gives the asymptotic distribution of m1/2d̂
(0)
n under the null hypothesis d∗ = 0

and Theorem 5.1 shows that m1/2d̂
(0)
n → ∞ if d∗ > 0. Another test for long memory in volatility,

based on the ordinary GPH estimator, was justified by Hurvich and Soulier (2002). Since the
ratio of the asymptotic variances of the GPH and GSE estimators is π2/6, the test based on the
GSE estimator should have higher local power than the one based on GPH.

6 Simulations

We present here some simulation results on the performance of the proposed local Whittle
estimator, denoted here by LW . A comprehensive simulation study on the LW estimator was
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performed by Hurvich and Ray (2003), who included a proposal for constructing accurate finite-
sample standard errors for LW . The concise set of results we present here was generated in the
preparation of Hurvich and Ray (2003), but not reported there due to lack of space.

For each of three sample sizes (n = 1000, n = 5000, n = 10000), and for each of two values
(nsr = 5, nsr = 10) of the noise to signal ratio nsr = σ2

η/(2πf
∗
Y (0)), 1000 realizations were

generated from an LMSV model with standard Gaussian shocks e, and signal process {Yt} given
by the ARFIMA(1, d∗, 0) model (1 − B)d

∗
(1 − φB)Yt = Zt, where φ = 0.8 and d∗ = 0.4. The

innovations Zt were iid Gaussian with mean zero, and variance chosen such that the specified
value of nsr was obtained. Since the et are standard Gaussian, we have σ2

η = π2/2. The profile
likelihood (2.9) with parameterization (2.12) was minimized, for d ∈ [.01, .75] and θ ∈ [e−8, e20].
Note that the admissible parameter space here does not depend on n, so the ǫn sequence is fixed.
See Remark 2.2.

Table 1 reports the bias, standard error (SE) and root mean squared error (RMSE) for
LW, as well as the GPH estimator of Geweke and Porter Hudak (1983), and the bias reduced
local polynomial log periodogram regression estimator of Andrews and Guggenberger (2003),
denoted by AG. It was shown in Andrews and Guggenberger (2003) that the AG estimator has
improved bias properties compared to GPH for Gaussian processes if the spectral density of
the observations is sufficiently smooth. We used the simplest version of AG, in which a single
additional term x2

j is included in the log periodogram regression. All three estimates of the
memory parameter were constructed from the simulated log squared return series, {Xt}t. For
each realization and each estimator, three different bandwidths were considered (m = [n0.6],
m = [n0.7], m = [n0.8]).

Both GPH and AG suffer from negative bias, which worsens significantly as m or nsr is
increased, presumably due to the noise term η that neither of these estimators was designed to
explicitly account for. On the other hand, the bias of LW is stable with respect to nsr, and
increases only modestly in m, due to the autoregressive component in the model. In most cases,
LW is the best estimator in terms of RMSE, though LW has a higher standard error than GPH
and AG. Overall, these results are consistent with existing theory.
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APPENDIX: Proofs

The estimators introduced in section 2.1 are minimum contrast estimators. Empirical pro-
cesses are the main tools in the study of such estimators. Since the Whittle contrast is based on
the spectral density of a second order stationary time series, the empirical process involved is
often referred to as the empirical spectral process. See for instance Dahlhaus and Polonik (2002)
or Soulier (2002). In the first section of this appendix, we state two Propositions which provide
the tools to derive the asymptotic properties of minimum contrast estimators: a uniform weak
law of large numbers and a central limit theorem for the spectral empirical process. Their proof
is very technical and is postponed to Appendix F. Using these tools, we prove our main results
in the following sections. Appendix B and C deal with the main statistical issues of this paper,
namely the consistency of the estimators of d∗ and θ∗. The proof of the consistency of d̂n, in Ap-
pendix B, is essentially the same as the original proof of Robinson (1995b), but is more concise
here thanks to the use of Proposition A.1. The proof of the consistency of θ̂n, in Appendix C
is rather involved. We have tried to make it clear, though concise. It is the longest and more
difficult part of this proof. Appendices D and E contain the proof of the asymptotic normality
results, which are quite standard and made very short by again referring to Propositions A.1
and A.2.

A Results for the empirical spectral process

Define

fX,k = x−2d∗

k f∗Y (0){1 + h(d∗, θ∗, xk)} (A.1)

where the function h is defined either in (P0), (P1) or (P2), and for a positive integer m and
c = (c1, . . . , cm) ∈ Rm,

Zm(c) =

m
∑

k=1

ck{f−1
X,kIX,k − 1}. (A.2)

For ǫ ∈ (0, 1] and K > 0, let Cm(ǫ,K) be the subset of vectors c ∈ R
m such that

for all k ∈ {1, . . . ,m− 1}, |ck − ck+1| ≤ Km−ǫkǫ−2, |cm| ≤ Km−1. (A.3)

Proposition A.1 (Uniform weak law of large numbers).

1. Assume (H1), (H2) and (H3). Let m be a non-decreasing sequence of integers such that
limn→∞{mn−1 + m−1} = 0. Then, for any ǫ ∈ (0, 1), any constant K < ∞ and any
d∗ ∈ (0, 1),

sup
c∈Cm(ǫ,K)

Zm(c) = oP (1).
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2. Assume moreover that (H4), (H5) and one of the following assumptions hold.

(2.i) h is given by (P1), ρη = 0, d∗ ∈ (0, 3/4) and m satisfies

lim
n→∞

(

m−1 +m2β+1 log2(n)n−2β
)

= 0; (A.4)

(2.ii) h is given by (P2), d∗ ∈ (0, 3/4) and m satisfies (A.4);

(2.iii) h ≡ 0, d∗ ∈ (0, 3/4) and m satisfies

lim
n→∞

(

m−1 +m2γ∗+1n−2γ∗
)

= 0, (A.5)

with γ∗ = d∗ if ρη 6= 0 and γ∗ = 2d∗ if ρη = 0;

(2.iv) d∗ = 0, h ≡ 2ρηση/
√

f∗Y (0)/(2π) + σ2
η/(2πfY (0)), η satisfies the assumptions of

Theorem 5.2 and m satisfies (A.4).

Then for all ǫ ∈ (0, 1] there exists a constant C such that, for all K > 0

E

[

sup
c∈Cm(ǫ,K)

|Zm(c)|
]

≤ CKm−(1/2∧ǫ) logδ(m), (A.6)

with δ = 1 if ǫ = 1/2 and δ = 0 otherwise.

Proposition A.2. Assume (H2), (H3), (H4) and (H5). Let m be a non-decreasing sequence
of integers and let (cm,k)1≤k≤m be a triangular array of real numbers that satisfy

m
∑

k=1

cm,k = 0 and

m
∑

k=1

c2m,k = 1 (A.7)

lim
n→∞

{

m
∑

k=1

|cm,k − cm,k+1| + |cm,n|
}2

log(n) = 0. (A.8)

Assume either (2.i), (2.ii), (2.iii) or (2.iv) of Proposition A.1. Then
∑m

k=1 cm,kf
−1
X,kIX,k is

asymptotically standard Gaussian.

B Proof of Theorem 3.1 and of the consistency part of Theo-

rem 5.2

In this section, we prove Theorem 3.1 and the consistency part of Theorem 5.2. This proof only
uses the first part of Proposition A.1, and is valid for each of the four cases considered. The
only difference between them is the remainder term Rm(d, θ) (defined below) which is identically
zero in the case of the standard GSE, and which converges uniformly to zero over Dn × Θn in
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the case of the local Whittle estimator. Therefore, we omit the superscript in the notation of
the estimators. Define

D1,n = (−∞, d∗ − 1/2 + ǫ) ∩ Dn, (B.1)

D2,n = [d∗ − 1/2 + ǫ,+∞) ∩ Dn (B.2)

where ǫ < 1/4 is a positive real number to be set later and Dn is defined in (2.11), (2.12) or (2.14).
As originally done in Robinson (1995b), we separately prove that limn→∞ P(d̂n ∈ D1,n) = 0 and

that (d̂n − d∗)1D2,n
(d̂n) tends to zero in probability. Note that D1,n is empty if it is assumed

that d∗ ∈ (0, 1/2) and ǫ is chosen small enough. We first prove that (d̂n − d∗)1D2,n
(d̂n) tends to

zero in probability. Denote

αk(d, θ) =
1 + h(d∗, θ∗, xk)

1 + h(d, θ, xk)
,

γm,k(d, θ) =
k2d−2d∗αk(d, θ)

∑m
j=1 j

2d−2d∗αj(d, θ)
, γm(d, θ) = (γm,k(d, θ))1≤k≤m,

Jm(d, θ) = log

(

1

m

m
∑

k=1

x2d−2d∗

k αk(d, θ)

)

+
1

m

m
∑

k=1

log
(

x−2d
k {1 + h(d, θ, xk)}

)

.

With this notation and the notation introduced in Appendix A, we get:

Ĵm(d, θ) = log(1 + Zm(γm(d, θ))) + Jm(d, θ) + log(f∗Y (0)). (B.3)

Due to the strict concavity of the log function, for any positive integer m and positive real
numbers a1, . . . , am, it holds that

log

(

1

m

m
∑

k=1

ak

)

≥ 1

m

m
∑

k=1

log(ak).

Thus, (d∗, θ∗) minimizes Jm. Moreover, by definition, (d̂n, θ̂n) minimizes Ĵm. Hence on the event
{d̂n ∈ D2,n},

0 ≤ Jm(d̂n, θ̂n) − Jm(d∗, θ∗)

= Jm(d̂n, θ̂n) − Ĵm(d̂n, θ̂n) + Ĵm(d̂n, θ̂n) − Ĵm(d∗, θ∗) + Ĵm(d∗, θ∗) − Jm(d∗, θ∗)

≤ log{1 + Zm(γm(d∗, θ∗))} − log{1 + Zm(γm(d̂n, θ̂n))} (B.4)

≤ 2 sup
(d,θ)∈D2,n×Θn

| log{1 + Zm(γm(d, θ))}|. (B.5)

Define

Km(s) = log

(

1

m

m
∑

k=1

k2s

)

− 2s

m

m
∑

k=1

log(k).
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The function Km is twice differentiable on (−1,∞), K ′
m(0) = 0 and s 7→ K ′′

m(s) is bounded
away from zero on compact subsets of (−1,∞). Thus, there exists a constant c > 0 such that
for all m ≥ 2 and d ∈ D2,n,

Km(d− d∗) ≥ c(d− d∗)2. (B.6)

Hence, defining Rm(d, θ) = Jm(d, θ) − Jm(d∗, θ∗) −Km(d− d∗), we obtain:

0 ≤ (d̂n − d∗)21D2,n
(d̂n) ≤ c−1Km(d̂n − d∗) ≤ c−1Jm(d̂n, θ̂n) − c−1Jm(d∗, θ∗) − c−1Rm(d̂n, θ̂n)

≤ 2c−1 sup
(d,θ)∈D2,n×Θn

| log{1 + Zm(γm(d, θ))}| − c−1Rm(d̂n, θ̂n). (B.7)

To bound Rm, note that it can be expressed as

Rm(d, θ) = log

(

1 +

∑m
k=1 k

2d−2d∗(αk(d, θ) − 1)
∑m

j=1 j
2d−2d∗

)

− 1

m

m
∑

k=1

log (1 + (αk(d, θ) − 1)) .

Under (P0), h(d, θ, x) ≡ 0 which implies αk(d, θ) ≡ 1; thus, Rm ≡ 0. Under (P1) or (P2), there
exist constants c, C such that

sup
k∈{1,...,m}

sup
(d,θ)∈Dn×Θn

|αk(d, θ) − 1| ≤ C log2(n/m) e−
√

c log(n/m).

Hence we obtain

sup
(d,θ)∈Dn×Θn

|Rm(d, θ)| ≤ C sup
(d,θ)∈Dn×Θn

sup
k=1,...,m

|αk(d, θ) − 1|

≤ C log2(n/m) e−
√

c log(n/m) = o(1). (B.8)

Note that this last bound is valid even when d∗ = 0, but that we cannot bound conveniently
Rm(d, θ) if d is not bonded away from zero by ǫn, because the convergence of Rm(d, θ) to zero
is not uniform on [0, 1] × Θn, even if Θn were bounded. To conclude, we now show that there
exists a constant K such that, for all (d, θ) ∈ D2,n×Θn, the sequence γm(d, θ) ∈ Cm(2ǫ,K). The
argument is the same as implicitly used in the proof of Theorem 1 in Robinson (1995b). Since
we will reuse this argument later, we give a more detailed proof than needed at present. Note
first that there exists a constant C such that, for all (d, θ) ∈ D2,n × Θn,

m
∑

k=1

k2d−2d∗αk(d, θ) ≥ Cm2d−2d∗+1 (B.9)

∣

∣

∣k2d−2d∗αk(d, θ) − (k + 1)2d−2d∗αk+1(d, θ)
∣

∣

∣

≤
∣

∣

∣k2d−2d∗ − (k + 1)2d−2d∗
∣

∣

∣αk(d, θ) + (k + 1)2d−2d∗ |αk(d, θ) − αk+1(d, θ)|

≤ Ck2d−2d∗−1
{

|d− d∗| + xγ∗

m log(n/m)
}

, (B.10)
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with γ∗ = 2d∗ under (P1) if ρη = 0 and γ∗ = d∗ under (P2). Gathering (B.9) and (B.10) yields

sup
(d,θ)∈D2,n×Θn

|γm,k+1(d, θ) − γm,k(d, θ)| ≤ Ck2ǫ−2m−2ǫ.

It is also easily seen that γm,m(d, θ) ≥ Cm−1, uniformly over (d, θ) ∈ D2,n × Θn. Thus there
exists a constant K such that, for all (d, θ) ∈ D2,n × Θn, the sequence γm(d, θ) is in the class

Cm(2ǫ,K), and applying Proposition A.1, we obtain that (d̂n − d∗)1D2,n
(d̂n) = oP (1).

We now prove that limn→∞ P(d̂n ∈ D1,n) = 0. Define pm = (m!)1/m. For d ∈ D1,n, if 1 ≤ j ≤ pm,
then (j/pm)2d−2d∗ ≥ (j/pm)−1+2ǫ and if pm < j ≤ m, then (j/pm)2d−2d∗ ≥ (j/pm)2ǫn−2d∗ .
Define then am,j = m−1(j/pm)−1+2ǫ if 1 ≤ j ≤ pm, am,j = m−1(j/pm)2ǫ−2d∗ otherwise and
am = (am,j)1≤j≤m. As shown in Robinson (1995b, Eq. 3.22), if ǫ < 1/(4e), then for large

enough n,
∑m

j=1 am,j ≥ 2. Define Ej = f−1
X,jIX,j and ζn = e−

√
log(n/m). We obtain:

Ĵm(d, θ) − Ĵm(d∗, θ∗)

= log
{ 1

m

m
∑

j=1

( j

pm

)2d−2d∗

αj(d, θ)Ej

}

− log
{ 1

m

m
∑

j=1

Ej

}

−m−1
m
∑

k=1

log(αk(d, θ))

≥ log
{

m
∑

j=1

am,jEj

}

− log
{ 1

m

m
∑

j=1

Ej

}

+ log(1 − Cζn) − log(1 + Cζn)

≥ log
{

2 + Zm(am)
}

− log
{

1 + Zm(um)
}

+ 2 log(1 − Cζn),

where we have defined um = (m−1, . . . ,m−1) ∈ R
m. Hence

P(d̂n ∈ D1,n) ≤ P

(

inf
(d,θ)∈D1,n×Θn

Ĵm(d, θ) − Ĵm(d∗, θ∗) ≤ 0

)

≤ P

(

log
{

2 + Zm(am)
}

− log
{

1 + Zm(um)
}

+ 2 log(1 − ζn)) ≤ 0
)

.

The sequences am and um belong to Cm(2ǫ,K) for some constant K, hence, applying Proposition
A.1, we obtain that limn→∞ P(d̂n ∈ D1,n) = 0, which concludes the proof.

C Proof of Theorem 3.2

Throughout this section, the assumptions of Theorem 3.2 are in force. Recall that we only
consider parameterizations (P1) and (P2). For notational clarity, we omit the superscript in
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d̂
(i)
n . For α, β ≥ 0, define

ρm(α, β) =
1

m

m
∑

k=1

xα
kx

β
k − 1

m

m
∑

k=1

xα
k × 1

m

m
∑

k=1

xβ
k ,

ρ′m(α, β) =
1

m

m
∑

k=1

xα
k Re

{

(1 − eixk)β
}

− 1

m

m
∑

k=1

xα
k × 1

m

m
∑

k=1

Re
{

(1 − eixk)β
}

,

ρ′′m(α, β) =
1

m

m
∑

k=1

Re
{

(1 − eixk)α
}

Re
{

(1 − eixk)β
}

− 1

m

m
∑

k=1

Re
{

(1 − eixk)α
}

× 1

m

m
∑

k=1

Re
{

(1 − eixk)β
}

,

with the convention that if α = 0, xα
k is replaced by log(k). These coefficients can be viewed as

empirical covariances, so that for any 0 ≤ α1 < · · · < αk+q, the symmetric matrix M with entries
Mi,j = ρm(αi, αj) if 1 ≤ i, j ≤ k, Mi,j = Mj,i = ρ′m(αi, αj) if 1 ≤ i ≤ k and k + 1 ≤ j ≤ k + q
and Mi,j = ρ′′m(αi, αj) if k + 1 ≤ i, j ≤ k + q, is positive definite.

Lemma C.1. Let m be a non-decreasing sequence such that limn→∞m = ∞. Then, for α > 0,
we have the following limits:

lim
n→∞

x−α−β
m ρm(α, β) = lim

n→∞
x−α−β

m ρ′m(α, β)/ cos(πβ/2)

= lim
n→∞

x−α−β
m ρ′′m(α, β)/{cos(πα/2) cos(πβ/2)} =

αβ

(1 + α)(1 + β)(1 + α+ β)
.

Before proceeding, note now that under Assumption 3.2, the sequences log(n), log(m) and
log(n/m) are of the same order of magnitude, in the sense that the ratio of any two of them is
bounded. Therefore, whenever one of these sequences is involved, we will freely use the most
convenient way to denote it. The first step in the proof of Theorem 3.1 is to prove a logarithmic
rate of convergence for d̂n.

Lemma C.2.

d̂n − d∗ = OP

(

log−5(n)
)

.

Proof. Theorem 3.1 implies that limn→∞ P(d̂n ∈ D1,n) = 0, where D1,n is defined in (B.1). We

only need to prove that, for any constant A > 0, limn→∞ P

{

|d̂n − d∗|1{d̂n∈D2,n}
≤ A log−5(n)

}

=

1, where D2,n is defined in (B.2).

Applying (B.7), (B.8) and Proposition A.1, we obtain:

0 ≤ (d̂n − d∗)21{d̂n∈D2,n}
≤ C sup

(d,θ)∈D2,n×Θn

| log{1 + Zm(γm(d, θ))}| + Ce−c
√

log(n/m)

= OP (m−(1/2∧ǫ) log(m)) + Ce−
√

log(n/m).
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If m satisfies (3.9), then we obtain that (d̂n−d∗)21{d̂n∈D2,n}
= OP (e−

√
log(n/m)) = oP (log−s(n)),

for any positive integer s.

At this point, for the sake of clarity, we treat the parameterizations (P1) and (P2) separately.
We will give a detailed proof in the former case and a sketchier one in the latter case.

Proof of Theorem 3.1 under P(1)

Define Lm(d, θ) = Jm(d, θ) − Jm(d∗, θ∗) and

D′
n = {d ∈ Dn : |d− d∗| ≤ log−5(n)}. (C.1)

Lemma C.3. Let vm be a deterministic sequence such that limm→∞ log5(m)vm = 0. If d̂n−d∗ =
oP (vm), then, under (P1) with ρη = 0,

Lm(d̂n, θ̂n) = OP (m−1/2 log(n){vm + x2d∗
m })). (C.2)

Proof. Define Dn(vm) = {d ∈ Dn : |d− d∗| ≤ vm}. Note that the assumption on vm implies that
Dn(vm) ⊂ D′

n. Applying (B.4), we have

0 ≤ Lm(d̂n, θ̂n) ≤ log{1 + Zm(γm(d∗, θ∗))} − log{1 + Zm(γm(d̂n, θ̂n))}.
Since we already know by the proof of Theorem 3.1 that sup(d,θ)∈D′

n×Θ Zm(γm(dn, θ))} = oP (1),
it suffices to prove that

sup
(d,θ)∈Dn(vm)×Θn

|Zm(γm(d∗, θ∗)) −Zm(γm(d, θ))| = OP (m−1/2 log(n){vm + x2d∗
m }).

Since Zm is linear in its argument, this is equivalent to

sup
(d,θ)∈Dn(vm)×Θn

|Zm{γm(d∗, θ∗) − γm(d, θ)}|

= OP (m−1/2 log(n){vm + x2d∗

m }). (C.3)

By Proposition A.1, (A.6), we only have to check that if (d, θ) ∈ Dn(vm)×Θn, then the sequence
γm(d, θ) − γm(d∗, θ∗) belongs to the class C(1, vm log(m) + log2(n/m)x2

m). To check this, note
first that γm,k(d

∗, θ∗) ≡ 1/m. Since D(vm) ⊂ D′
n, by (B.9) and (B.10), there exists a constant

C such that,

sup
(d,θ)∈D(vm)×Θn

sup
k=1,...,m−1

|γm,k(d, θ) − γm,k+1(d, θ)| ≤ Ck−1m−1
{

vm + x2d∗
m log(n/m)

}

.

There only remains to bound γm,m(d, θ) − 1/m. It is easily checked that

sup
(d,θ)∈Dn(vm)×Θn

|γm,m(d, θ) − 1/m| ≤ Cm−1 log(n)
{

vm + x2d∗
m

}

.

Thus, for all (d, θ) ∈ D(vm) × Θn, γm(d, θ) ∈ Cm(1, log(n){vm + x2d∗
m }).
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Lemma C.4. Under parameterization (P1), if ρη = 0, there exists a constant C such that for
all (d, θ) ∈ D′

n × Θn,

∣

∣

∣

∣

Jm(d, θ) − Jm(d∗, θ∗) − 1

2
(2d − 2d∗, θ − θ∗)H∗

m(2d − 2d∗, θ − θ∗)′
∣

∣

∣

∣

≤ C log3(n)
(

x6d∗
m + |d− d∗|3

)

, (C.4)

where the positive definite matrix H∗
m is defined by

H∗
m =

(

ρm(0, 0) ρm(0, 2d∗)
ρm(0, 2d∗) ρm(2d∗, 2d∗)

)

.

Proof. For brevity, we introduce more notation. Denote ∆ = 2d− 2d∗ and

νm = m−1
m
∑

k=1

log(k), ν(2)
m = m−1

m
∑

k=1

log2(k), (C.5)

Am(d, θ) =
1

m

m
∑

k=1

(αk(d, θ) − 1), Bm(d, θ) =
1

m

m
∑

k=1

(k∆αk(d, θ) − 1),

Cm(d, θ) =
1

m

m
∑

k=1

(αk(d, θ) − 1)2, Dm(d, θ) =
1

m

m
∑

k=1

log(k)(αk(d, θ) − 1).

Since
sup

k∈{1,...,m}
sup

(d,θ)∈D′
n×Θn

|αk(d, θ) − 1| = O(log(n/m)x2d∗
m )

we have sup(d,θ)∈D′
n×Θn

Am(d, θ) = O(log2(n/m) x2d∗
m ) and

sup
(d,θ)∈D′

n×Θn

∣

∣

∣

∣

∣

1

m

m
∑

k=1

log(αk(d, θ)) −Am(d, θ) +
1

2
Cm(d, θ)

∣

∣

∣

∣

∣

= O(log3(n/m) x6d∗

m ).

In addition, there exists a constant C such that, for ∆ ∈ D′
n, we have

max
k∈{1,...,m}

∣

∣

∣

∣

k∆ − 1 − ∆ log(k) − 1

2
∆2 log2(k)

∣

∣

∣

∣

≤ C∆3 log3(m).

Using the previous bounds and the inequality, for all a, b > 0, a2b ≤ (2a3 +b3)/3, we also obtain:

∣

∣

∣

∣

∣

1

m

m
∑

k=1

(k∆ − 1)(αk(d, θ) − 1) −Dm(d, θ)

∣

∣

∣

∣

∣

≤ C∆2 log2(m) log(n/m)x2d∗
m ≤ C log3(n)

(

∆3 + x6d∗
m

)

.
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Writing now

Bm(d, θ) =
1

m

m
∑

k=1

(k∆ − 1) +
1

m

m
∑

k=1

(αk(d, θ) − 1) +
1

m

m
∑

k=1

(k∆ − 1)(αk(d, θ) − 1)

we obtain that there exists a constant C such that, for all (d, θ) ∈ D′
n × Θn,

∣

∣

∣

∣

Bm(d, θ) − ∆νm − 1

2
ν(2)

m ∆2 −Am(d, θ) − ∆Dm(d, θ)

∣

∣

∣

∣

≤ C log3(n)
(

∆3 + x6d∗

m

)

,

∣

∣B2
m(d, θ) − ∆2ν2

m − 2∆νmAm(d, θ) −A2
m(d, θ)

∣

∣ ≤ C log3(n)(∆3 + x6d∗
m ).

Thus, there exists a constant C such that, for all (d, θ) ∈ D′
n × Θn,

∣

∣

∣

∣

log{1 +Bm(d, θ)} −Bm(d, θ) +
1

2
B2

m(d, θ)

∣

∣

∣

∣

≤ C log3(n)(∆3 + x6d∗

m ).

Since Lm(d, θ) = log{1 +Bm(d, θ)}− νm∆− 1
m

∑m
k=1 log{αk(d, θ)} and ν

(2)
m − ν2

m = ρm(0, 0), we
obtain, for all (d, θ) ∈ D′

n × Θn:

∣

∣

∣
Lm(d, θ) − 1

2
ρm(0, 0)∆2 − ∆(Dm(d, θ) − νmAm(d, θ))

− 1

2
{Cm(d, θ) −A2

m(d, θ)}
∣

∣

∣ ≤ C log3(n)(∆3 + x6d∗
m ).

The proof is concluded by applying the following bounds, which are uniform over D′
n × Θn:

∣

∣Cm(d, θ) −A2
m(d, θ) − ρm(2d∗, 2d∗)(θ − θ∗)2

∣

∣ ≤ C log3(n){∆3 + x6d∗

m },
|Dm(d, θ) − νmAm(d, θ) − ρm(0, 2d∗)(θ∗ − θ)| ≤ C log3(n){∆3 + x6d∗

m }.

Proof of Theorem 3.2 under (P1). For brevity, denote τ2
m = ρm(0, 0) and δm = τm/ρm(0, 2d∗).

Applying Lemmas C.2 and C.4, we obtain that

Lm(d̂n, θ̂n) =
1

2
{2τm(d̂n − d∗) + δm(θ̂m − θ∗)}2 +OP (log4(n/m)x4d∗

m ). (C.6)

By Lemmas C.2 and C.3, we know that Lm(d̂n, θ̂n) = OP (m−1/2). Assumption (3.9) implies
that m−1/2 = o(x2d∗

m ). Thus

lim
n→∞

x−2d∗

m {2τm(d̂n − d∗) + δm(θ̂m − θ∗)}2 = 0.

Hence 2τm(d̂n−d∗)+δm(θ̂m−θ∗) = oP (xd∗
m ). By Lemma C.1 limm→∞ τ2

m = 1 and δm = O(x2d∗
m ),

thus we obtain that d̂n − d∗ = oP (xd∗
m ).
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Applying again Lemma C.3, we now obtain that Lm(d̂n, θ̂n) = OP (m−1/2 log(n)xd∗
m ) = oP (x3d∗

m )
under (3.9).

Thus, by (C.6) and (3.9), we obtain that limn→∞ x−3d∗
m {2τm(d̂n − d∗) + δm(θ̂m − θ∗)}2 = 0,

hence d̂n − d∗ = oP (x
3d∗/2
m ). This in its turn implies, by Lemma C.3, that Lm(d̂n, θ̂n) =

OP (m−1/2 log(n)x
3d∗/2
m ).

Iterating this procedure, we obtain that for all k ≥ 1, d̂n−d∗ = oP (x
2d∗(1−2−k)
m ) and Lm(d̂n, θ̂n) =

OP (m−1/2 log(n)x
2d∗(1−2−k)
m ).

Under assumption (3.9), there exists an integer k∗ such that m−1/2 log(n)x
−2d∗(1+2−k∗ )
m = o(1).

For this k∗, Lemma C.3 implies that Lm(d̂n, θ̂n) = OP (x
2d∗(1−2−k∗ )
m log(n)m−1/2) = oP (x4d∗

m ).
Define κ2

m = τ2
m − δ2m. By Cauchy-Schwarz inequality, κm > 2 > 0 for m ≥ 2. Thus, applying

Lemma C.4 we finally obtain:

{2τm(d̂n − d∗) + δm(θ̂m − θ∗)}2 + κ2
m(θ̂n − θ)2 = oP (x4d∗

m ).

And we can conclude that d̂n − d∗ = oP (x2d∗
m ) and θ̂n − θ∗ = oP (1).

Proof of Theorem 3.2 under (P2)

The scheme of the proof is the same as previously, but there is one more step because of the
extra parameter involved, and because of bias terms of order x∗m which appear now.

Lemma C.5. Let vm and wm be deterministic sequences such that limm→∞ log5(m)vm = 0 and
limm→∞wm = 0. If d̂n − d∗ = oP (vm) and θ̂1,n − θ∗1 = OP (wm), then, under (P2),

Lm(d̂n, θ̂n) = OP (m−1/2 log(n){vm + wmx
d∗
m + x2d∗

m })). (C.7)

Proof. The proof is the same as the proof of Lemma C.3, with a more precise bound for αk(d, θ)−
αk+1(d, θ) that is a refinement of (B.10). More precisely, it holds that:

|αk(d, θ) − αk+1(d, θ)| ≤ Ck−1{|d − d∗| + |θ1 − θ∗1|xd∗

k + x2d∗

k }.

Lemma C.6. Under (P2), there exists a constant C such that for all (d, θ) ∈ D′
n × Θn,

∣

∣

∣

∣

Jm(d, θ) − Jm(d∗, θ∗) − 1

2
(2(d − d∗), θ1 − θ∗1)H̃

∗
m(2(d− d∗), θ1 − θ∗1)

′

∣

∣

∣

∣

≤ C log3(n){|d − d∗|3 + x3d∗
m } (C.8)

where the positive definite matrix H̃∗
m is defined by

H̃∗
m =

(

ρm(0, 0) ρ′m(0, d∗)
ρm(0, d∗) ρ′′m(d∗, d∗)

)

.
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Define D′′
n = {d ∈ Dn : |d − d∗| ≤ x

3d∗/2
m } and Θ′

n = {θ ∈ Θn | |θ − θ∗| ≤ x
d∗/2
m }. Then, under

(P2),

sup
(d,θ)∈D′′

n×Θ′
n

|Jm(d, θ) − Jm(d∗, θ∗)

−1

2
(2(d − d∗), θ1 − θ∗1, θ2 − θ∗2)K

∗
m(2(d − d∗), θ1 − θ∗1, θ2 − θ∗2)

′

∣

∣

∣

∣

= o(x4d∗
m ), (C.9)

where the positive definite matrix K∗
m is defined by

K∗
m =





ρm(0, 0) ρ′m(0, d∗) ρm(0, 2d∗)
ρ′m(0, d∗) ρ′′m(d∗, d∗) ρ′m(d∗, 2d∗)
ρm(0, 2d∗) ρ′m(d∗, 2d∗) ρm(2d∗, 2d∗)



 .

Proof. Define φ∗k = Re
{

(1 − eixk)−d∗
}

. Then, uniformly with respect to (d, θ) ∈ D′
n × Θn,

αk(d, θ) − 1 =
{

θ∗1 − θ1 +O
(

[|d− d∗| + xd∗

k ] log(n)
)}

φ∗k + (θ∗2 − θ2)x
2d∗

k +O(x3d∗

k ). (C.10)

To a first approximation, we obtain (C.8), which can be expressed in the following more conve-
nient form:

Lm(d, θ) =
1

2
{τm(d− d∗) + δ′m(θ1 − θ∗1)}2 +

1

2
κ̃2

m(θ1 − θ∗1)
2

+O
(

{|d− d∗|3 + x3d∗

m } log3(n)
)

, (C.11)

uniformly with respect to (d, θ) ∈ D′
n × Θn, and where we have defined δ′m = ρ′m(0, d∗)/τm and

κ′m
2 = ρ′′m(d∗, d∗) − δ′m

2. Using (C.10) again, we can improve on the previous expansion to
obtain (C.9), which can also be conveniently expressed as

Lm(d, θ) =
1

2
{τm(d− d∗) + δ′m(θ1 − θ∗1) + ζm(θ2 − θ∗2)}2

+
1

2
{µm(θ1 − θ∗1) + ψm(θ2 − θ∗2)}2 +

1

2
χ2

m(θ2 − θ∗2)
2 + o

(

x4d∗

m

)

, (C.12)

uniformly with respect to (d, θ) ∈ D′′
n × Θ′

n, where µm is of order xd∗
m , and ζm, ψm and χm are

of order x2d∗
m (and an exact expression of these coefficients would not be helpful).

Proof of Theorem 3.2 under (P2). As previously, the first step is to note that Lemmas C.2
and C.5 imply that Lm(d̂n, θ̂n) = OP (m−1/2) = oP (x−2d∗

m ) under (3.9). This, Lemma C.1
and (C.11) imply that d̂n − d∗ = oP (xd∗

m ) and θ̂1,n − θ∗1 = oP (1). This implies that the last

term in (C.11) is actually oP (x3d∗
m log3(n)). This and Lemma C.5 imply that Lm(d̂n, θ̂n) =

OP (m−1/2 log(n)xd∗
m ) = oP (x3d∗

m ) under (3.9). Hence, by considering again (C.11), we obtain

that d̂n − d∗ = oP (x
3d∗/2
m ) and θ̂1,n − θ∗1 = oP (x

d∗/2
m ). Knowing this, we can now use (C.12) and

proceed iteratively as previously to conclude the proof of Theorem 3.2 under (P2).
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D Proof of Propositions 4.1 and 4.2

We outline the proof of these propositions under (P2), the proof under (P1) being exactly the
same with one less parameter.

Proof of Proposition 4.1. Define

Sm(d, θ) =
1

m

m
∑

k=1

αk(d, θ)k
2d−2d∗Ek, Um(d, θ) = mSm(d, θ)∇Ĵm(d, θ),

δ0,k(d, θ) = 2 log(k) − 2m−1
m
∑

j=1

log(j) − ∂dh(d, θ, xk)

1 + h(d, θ, xk)
+m−1

m
∑

j=1

∂dh(d, θ, xj)

1 + h(d, θ, xj)
,

δi,k(d, θ) =
∂θi
h(d, θ, xk)

1 + h(d, θ, xk)
−m−1

m
∑

ℓ=1

∂θi
h(d, θ, xℓ)

1 + h(d, θ, xℓ)
, i = 1, 2,

Nk(d, θ) = (δ0,k, δ1,k, δ2,k),

N∗
k = Nk(d

∗, θ∗), S∗
m = Sm(d∗, θ∗), U∗

m = Um(d∗, θ∗).

With these notations, mD∗
n
−1∇Ĵm(d∗, θ∗) = (S∗

m)−1D∗
n
−1U∗

m and U∗
m =

∑m
k=1N

∗
kEk. We will

prove that S∗
m tends to 1 in probability and that D∗

n
−1U∗

m is asymptotically Gaussian with
covariance matrix Γ∗.

The proof of the asymptotic normality of D−1
n U∗

m is classically based on the so-called Wold
device. We must prove that for any x ∈ R

3, xTD∗
n
−1U∗

m converges in distribution to a Gaussian
random variable with mean zero and variance xT Γ∗x. Define

t2n(x) =
m
∑

k=1

(xTD∗
n
−1N∗

k )2, cn,k(x) = t−1
n (x)xTD∗

n
−1N∗

k , and Tn =
m
∑

k=1

cn,k(x)Ek.

Using this notation, we have xTD∗
n
−1U∗

m = tn(x)Tn and it suffices to prove that Tn is asymptot-
ically Gaussian with zero mean and unit variance and that limn→∞ tn(x)2 = xT Γ∗x. This last
property is obtained by elementary calculus (approximating sums by integrals) and its proof is
omitted. To prove the asymptotic normality of Tn, observe that

max
1≤k≤m

|cn,k(x)| = O(log(m)m−1/2) and |cn,k(x) − cn,k+1(x)| = O(k−1m−1/2).

Hence (F.17) and (A.8) hold and we can apply Proposition A.2 to prove that Tn is asymptotically
standard Gaussian.

We conclude the proof by checking that S∗
m tends to 1 in probability. In view of the proof

of Proposition 4.2, we will actually prove that Sm(d, θ) converges to 1 in probability uniformly
with respect to (d, θ) ∈ D′

n ×Θn where D′
n is defined in (C.1). Using the notations of section 3,

we can write

Sm(d, θ) =
1

m

m
∑

j=1

αj(d, θ)j
2d−2d∗ {1 + Zm(γm(d, θ))}.
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By proposition A.1, Zm(γm(d, θ)) converges in probability to 0 uniformly with respect to (d, θ) ∈
D′

n×Θn. Moreover, on this set, it is easily seen that 1
m

∑m
j=1 αj(d, θ)j

2d−2d∗ converges uniformly
to 1, and this concludes the proof.

Proof of Proposition 4.2. We must prove that mD∗
n
−1∇2Ĵm(d, θ)D∗

n
−1 converges to Γ∗ uni-

formly with respect to (d, θ) ∈ D′
n × Θn. Using the notations introduced above, we have

m∇Ĵm(d, θ) = S−1
m

m
∑

k=1

Nk(d, θ)αk(d, θ)k
2d−2d∗Ek.

Hence

m∇2Ĵm(d, θ) = S−1
m (d, θ)

m
∑

k=1

Nk(d, θ){∇(αk(d, θ)k2d−2d∗)}T Ek

+ S−1
m (d, θ)

m
∑

k=1

∇Nk(d, θ)αk(d, θ)k
2d−2d∗Ek

− S−2
m (d, θ)

m
∑

k=1

Nk(d, θ)αk(d, θ)k
2d−2d∗Ek(∇Sm(d, θ))T

=: S−1
m (d, θ)M1,n(d, θ) + S−1

m (d, θ)M2,n(d, θ) + S−2
m (d, θ)M3,n(d, θ).

Since we already know that S−1
m (d, θ) converges uniformly to 1, we only need to prove that

D∗
n
−1M1,nD

∗
n
−1 converges in probability to Γ∗ uniformly with respect to (d, θ) ∈ D′

n × Θn and
that D∗

n
−1M2,nD

∗
n
−1 and D∗

n
−1M3,nD

∗
n
−1 converge to 0. We will prove only the first fact, the

other being routine applications of the same techniques.

Denote M1,n(d, θ) = (M
(i,j)
1,n (d, θ))0≤i,j≤2. For i = 0, 1, 2, let D∗

i,n be the i-th diagonal element
of the matrix D∗

n. For j = 1, 2, we have:

∂θj
αk(d, θ) = − ∂θj

h(d, θ, xk)

1 + h(d, θ, xk)
αk(d, θ).

Hence for i = 0, . . . , u and j = 1, . . . , u, we have

M
(i,j)
1,n (d, θ) = −

m
∑

k=1

δi,k(d, θ)
∂θj
h(d, θ, xk)

1 + h(d, θ, xk)
αk(d, θ)k

2d−2d∗Ek.

Since
∑m

k=1 δi,k = 0, we obtain:

D−1
i,nD

−1
j,nM

(i,j)
1,n (d, θ) = −D−1

i,nD
−1
j,n

m
∑

k=1

δi,k(d, θ)δj,k(d, θ) (D.1)

−D−1
i,nD

−1
j,n

m
∑

k=1

δi,k(d, θ)
∂θj
h(d, θ, xk)

1 + h(d, θ, xk)

(

k2d−2d∗αk(d, θ) − 1
)

(D.2)

−D−1
i,nD

−1
j,n

m
∑

k=1

δi,k(d, θ)
∂θj
h(d, θ, xk)

1 + h(d, θ, xk)
(d, θ)k2d−2d∗αk(d, θ)(Ek − 1). (D.3)
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It is easily seen that the term on the right hand side of (D.1) converges to the (i, j) entry of
the asymptotic covariance matrix Γ∗. Since d ∈ D′

n and |D−1
i,nδi,k| ≤ C log(n)m−1/2, we easily

obtain that the term (D.2) is O(log2−s(n)). The term (D.3) can be expressed as −Zm(cm(d, θ))
with

cm,k(d, θ) = D−1
i,nD

−1
j,nδi,k(d, θ)

∂θj
h(d, θ, xk)

1 + h(d, θ, xk)
(d, θ)k2d−2d∗αk(d, θ).

It can be checked that for all (d, θ) ∈ D′
n × Θn, y|cm,k(d, θ) − cm,k+1(d, θ)| ≤ C log2(m)m−1k−1

and |cm,k(d, θ)| ≤ Cm−1. Thus, for all (d, θ) ∈ D′
n × Θn, the sequence cm(d, θ) belongs to the

class Cm(1,K) for some constant K and we can conclude by applying Proposition A.1 that
sup(d,θ)∈D′

n×Θn
Zm(cm(d, θ)) = oP (1).

We now consider the derivatives with respect to d: ∂d(αk(d, θ)k
2d−2d∗) = µkαk(d, θ)k

2d−2d∗

with µk = 2 log(k) − ∂dh(d,θ,xk)
1+h(d,θ,xk) . Hence,

D−1
i,nD

−1
0,nM

(i,0)
1,n (d, θ) = D−1

i,nD
−1
0,n

m
∑

k=1

δi,k(d, θ)δ0,k(d, θ) (D.4)

+D−1
i,nD

−1
0,n

m
∑

k=1

δi,k(d, θ)µk

(

k2d−2d∗αk(d, θ) − 1
)

+D−1
i,nD

−1
0,n

m
∑

k=1

δi,k(d, θ)µkαk(d, θ)k
2d−2d∗αk(d, θ)(Ek − 1).

As previously, the first term on the right hand side of (D.4) converges to the (0, i) entry of Γ∗

and the other terms tend to 0, uniformly with respect to (d, θ) ∈ D′
n × Θn.

E Proof of Theorems 5.1 and 5.2

We already know that the standard GSE in consistent if d∗ ∈ [0, 1). In order to prove the central
limit theorem, we must first strengthen this result by proving a rate of convergence, as originally

shown by Robinson (1995b). Hereafter, we omit the superscript in d̂
(0)
n . Under the assumptions

of Theorems 5.1 and 5.2, we can apply the second part of Proposition A.1, (2.iii) or (2.iv). Thus,
noting that in the case under consideration here the remainder term Rm,n is identically zero,
(B.7) becomes:

0 ≤ (d̂n − d∗)21D2,n
(d̂n) ≤ 2c−1 sup

(d,θ)∈D2,n×Θ
| log{1 + Zm(γm(d, θ))}| = OP (m−1/2).

Thus, d̂n − d∗ = OP (m−1/4). We now briefly recall the way to prove the central limit theorem,
since it is very standard and only uses a Taylor expansion and Propositions A.1 and A.2. Since
d̂n is consistent, with probability tending to one, it satisfies

0 =
∂Ĵm(d̂n)

∂d
=

2
∑m

k=1 k
2d̂n log(k)IX,k

∑m
k=1 k

2d̂nIX,k

− 2νm,
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where νm is defined in (C.5). This implies, by a Taylor expansion

0 =
m
∑

k=1

k2d∗(log(k) − νm)IX,k + 2(d̂n − d∗)
m
∑

k=1

k2d̃n log(k)(log(k) − νm)IX,k,

where d̃n lies between d̂n and d∗. Define cm = (cm,k)1≤k≤m, with cm,k = {log(k) − νm}/τm,
τ2
m = m−1

∑m
k=1{log(k) − νm}2 and

Tm = τ−1
m

m
∑

k=1

k2d̃n−2d∗ log(k) cm,k
IX,k

fX,k
.

Then τm(d̂n − d∗) = −1
2T

−1
m Zm(cm). It is easily seen that the sequence of weights cm satisfies

assumptions (A.7) and (A.8), so that Zm(cm) converges weakly to the standard Gaussian dis-
tribution. Because of the m−1/4 consistency of d̂n, applying Proposition A.1, we obtain that
Tm converges in probability to 1. Finally, limm→∞m−1τ2

m = 1, which concludes the proof of
Theorems 5.1 and 5.2.

F Proof of Propositions A.1 and A.2

We start with a simple lemma which we often use to prove that certain sums are o(1). In the
sequel c, C denote numerical constants whose values may change upon each appearance.

Lemma F.1. Let (tk)k≥1 be a square summable sequence. Let (cm,k)1≤k≤m be a triangular array
such that

m
∑

k=1

c2m,k = 1 and lim
m→∞

max
k∈{1,...,m}

|cm,k| = 0. (F.1)

Then,

lim
m→∞

m
∑

k=1

cm,ktk = 0.

Proof. Split the sum at some ℓ ≤ m to be fixed later and apply the Cauchy-Schwarz inequality
to the sum extending over k ≥ ℓ:

m
∑

k=1

|cm,k||tk| ≤ ℓmax
k

|tk| max
1≤k≤ℓ

|cm,k| +





∑

k≥ℓ

t2k





1/2

.

These last two terms are simultaneously o(1) as soon as the sequence ℓ = ℓ(m) tends to infinity
in such a way that lim (ℓmax1≤k≤m |cm,k|) = 0. This is possible under (F.1).
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We now state without proof some results about the approximation of the DFT ordinates of
the linear process {Yt}, renormalised by a proxy for the spectral density, by the DFT ordinates
of the white noise {Zt}. These results are more or less straightforward adaptations of existing
proofs for similar results. See, for instance Robinson (1995b), Velasco (1999b), Hurvich and
Chen (2000).

Lemma F.2. Assume (H1), (H2) and (H3). Define ak =
√

2πf∗Y (0)(1 − eixk)−dY . There
exists a constant C such that for all k, j ≤ ϑn/π,

E
[

|dY,k/ak − dZ,k|2
]

≤ C{log(k)k−1 + (k/n)β}. (F.2)

Assume moreover (H4) and (H5). Let m be a sequence of integers that satisfies (A.4) and let
(cm,k)1≤k≤m is a triangular array of real numbers such that

lim
m→∞

(

m
∑

k=1

c2m,k

)−1/2

max
1≤k≤m

|cm,k| = 0, (F.3)

Then

E

[∣

∣

∣

∣

∣

m
∑

k=1

cm,k

(

IY,k

fY,k
− 1

)

∣

∣

∣

∣

∣

]

= o





{

m
∑

k=1

c2m,k

}1/2


 , (F.4)

E

[∣

∣

∣

∣

∣

m
∑

k=1

cm,k{d̄η,kdY,k/ak − ρηση/(2π)}
∣

∣

∣

∣

∣

]

= o





{

m
∑

k=1

c2m,k

}1/2


 . (F.5)

We now deal with the terms involving the white noise sequence {ηt}. Recall that we have
defined fX,k = x−2d∗

k {1 + h(d∗, θ∗, xk)}, with h as in (P0), (P1) or (P2).

Lemma F.3. Assume (H1), (H2) and (H3) and d∗ ∈ (0, 1). Define fY,k = x−2dY

k f∗Y (0). Then
there exist constants C1 and C2 such that

E

[∣

∣

∣

∣

IX,k

fX,k
− IY,k

fY,k

∣

∣

∣

∣

]

≤ C1k
dY + C2(k/n)d

∗

, (F.6)

with C1 = 0 in the stationary case.

Proof of (F.6), stationary case. d∗ = dY ∈ (0, 1/2). Write:

IX,k

fX,k
− IY,k

fY,k
=
IY,k

fX,k
− IY,k

fY,k
+

2Re
(

dY,kd̄η,k

)

fX,k
+
Iη,k

fX,k

=
fY,k − fX,k

fX,k

IY,k

fY,k
+

2
√

fY,k

fX,k
Re

(

dY,k
√

fYk

d̄η,k

)

+
Iη,k

fX,k
.

Since E[IY,k/fY,k] is uniformly bounded and |fX,k/fY,k −1| ≤ Cxd∗

k in the stationary case, under
the three parameterizations, we obtain (F.6) in the stationary case.
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Proof of (F.6), nonstationary case. In the nonstationary case, extra terms appear. Recall that
Ut =

∑t
s=1 Ys. Then

dU,k =
1√
2πn

n
∑

t=1

t
∑

s=1

Yse
itxk =

1√
2πn

n
∑

s=1

Ys

n
∑

t=s

eitxk =
dY,k

1 − eixk
− eixk

∑n
s=1 Ys√

2πn(1 − eixk)
,

IU,k =
IY,k

|1 − eixk |2 − 2Re(eixkdY,k)
∑n

s=1 Ys√
2πn|1 − eixk |2

+
(
∑n

s=1 Ys)
2

2πn|1 − eixk |2 ,

IX,k = IU,k + 2Re(dU,kd̄η,k) + Iη,k

=
IY,k

|1 − eixk |2 − 2Re(eixkdY,k)
∑n

s=1 Ys√
2πn|1 − eixk |2

+
(
∑n

s=1 Ys)
2

2πn|1 − eixk |2

+ 2Re

(

dY,k

1 − eixk
d̄η,k

)

− 2Re

(

eixk
∑n

s=1 Ys√
2πn(1 − eixk)

d̄η,k

)

+ Iη,k.

Hence,

IX,k

fX,k
− IY,k

fY,k
=
IY,k

fY,k

(

fY,k

|1 − eixk |2fX,k
− 1

)

− 2Re(eixkdY,k)
∑n

s=1 Ys√
2πn|1 − eixk |2fX,k

+
(
∑n

s=1 Ys)
2

2πn|1 − eixk |2fX,k

+ Re

(

2dY,k

(1 − eixk)fX,k
d̄η,k

)

− Re

(

2eixk
∑n

s=1 Ys√
2πn(1 − eixk)fX,k

d̄η,k

)

+
Iη,k

fX,k
. (F.7)

Straightforward variance computations yield (cf. Taqqu (2003), Proposition 4.1), for dY ∈
(−1/2, 0), that

E





(

n
∑

s=1

Ys

)2


 ≤ Cn2dY +1. (F.8)

Also, in the nonstationary case, fX,k = x−2
k fY,k(1 +O(xd∗

k )) under the three parameterizations,
thus

E

[∣

∣

∣

∣

IX,k

fX,k
− IY,k

fY,k

∣

∣

∣

∣

]

≤ C
(

(k/n)1+dY + kdY + k2dY + (k/n)1+dY

+ndY (k/n)1+2dY + (k/n)2+2dY

)

≤ C
(

kdY + (k/n)1+dY

)

.

This proves (F.6) in the nonstationary case.

Lemma F.4. Under the assumptions of part 2 of Proposition A.1,

lim
n→∞

E

[∣

∣

∣

∣

∣

m
∑

k=1

cm,k

{

IX,k

fX,k
− IY,k

fY,k

}

∣

∣

∣

∣

∣

]

= 0. (F.9)

32



Proof of (F.9) in the case d∗ ∈ (0, 1/2).

IX,k

fX,k
− IY,k

fY,k
=
fY,k − fX,k

fX,k

(

IY,k

fY,k
− 1

)

+
2

fX,k
Re

(

ak

{

dY,k

ak
d̄η,k − ρηση

})

(F.10)

+
Iη,k − σ2

η/(2π)

fX,k
+
fY,k + 2Re(ak)ρηση/(2π) + σ2

η − fX,k

fX,k
. (F.11)

Note that either fX,k − fY,k = 0 under (P0) or fX,k − fY,k = O(xd∗

k ) under (P1) or (P2). Hence
the terms in (F.10) and the first term in (F.11) are bounded by applying Lemma F.2 and (F.4)
with IZ,k instead of IY,k/fY,k. Consider now the last term in (F.11). Under (P1) with ρη = 0 or
(P2), it is actually zero. Under (P0), it is of order xd∗

m if ρη 6= 0 and x2d∗
m if ρη = 0. To conclude

the proof, note that, by the Cauchy Schwarz inequality,
∑m

k=1 cm,kx
γ
k = O(mγ+1/2n−γ).

Proof of (F.9) in the case d∗ ∈ [1/2, 3/4). Starting from (F.7), we write:

IX,k

fX,k
− IY,k

fY,k

=
( fY,k

|1 − eixk |2fX,k
− 1
)( IY,k

fY,k
− 1
)

+ Re







2ak

(

dY,k

ak
d̄η,k − ρηση

2π

)

(1 − eixk)fX,k







+
Iη,k − σ2

η

2π

fX,k
(F.12)

− 2Re(eixkdY,k)
∑n

s=1 Ys√
2πn|1 − eixk |2fX,k

+

(

∑n
s=1 Ys

)2

2πn|1 − eixk |2fX,k
− Re

( 2eixk
∑n

s=1 Ys√
2πn(1 − eixk)fX,k

d̄η,k

)

(F.13)

+
|1 − eixk |−2fY,k + 2ρησηRe

(

ak(1 − eixk)−1
)

/(2π) + σ2
η/(2π) − fX,k

fX,k
. (F.14)

Under all three parameterizations, |1− eixk |−2fY,k/fX,k − 1 = O(xd∗

k ) at worst. Hence the terms
in (F.12) are dealt with using Lemma F.2 as in the stationary case. We only consider the terms
appearing in (F.13) and (F.14).

Consider the first term in (F.13), say Rn. Define c̃m,k = ndY cm,ke
ixkak/(2π|1 − eixk |2fX,k),

Rn,1 =
∑m

k=1 c̃m,k

(√
2πdY,k/ak −

√
2πdZ,k

)

and Rn,2 =
∑m

k=1 c̃m,k

√
2πdZ,k. Then

Rn = n−1/2−dY

n
∑

s=1

Ys (Rn,1 +Rn,2) .

Applying (F.8) and the Hölder inequality, we obtain

E[|Rn|] ≤ C
(

E
1/2[R2

n,1] + E
1/2[R2

n,2]
)

.

Since Z satisfies assumption (H4) and |c̃m,k| ≤ C |cm,k|kdY , then by Lemma F.1, we obtain:

E[R2
n,2] ≤ C

m
∑

k=1

c2m,kk
2dY = o(1).
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Applying (F.2) and the Cauchy-Schwarz inequality, we have:

E[R2
n,1] ≤ C

(

m
∑

k=1

|cm,k|k2dY

)1/2( m
∑

k=1

|cm,k|
{

k−1 + (k/n)β
}

)1/2

Since d∗ ∈ [1/2, 3/4), thus dY ∈ [−1/2,−1/4) and the series k2dY is square summable. Hence,
by Lemma F.1,

∑m
k=1 |cm,k|k2dY = o(1) and

∑m
k=1 |cm,k|k−1 = o(1). Moreover, under either

(A.4) or (A.5),
∑m

k=1 |cm,k|(k/n)β = O(mβ+1/2n−β) = o(1) . Thus, E[R2
n,1] = o(1).

The other terms in (F.13) can be dealt with straightforwardly. Applying the bound (F.8), we
get

m
∑

k=1

|cm,k|E
[

(
∑n

s=1 Ys)
2

2πn|1 − eixk |2fX,k

]

≤ C

m
∑

k=1

|cm,k|k2dY = o(1)

by Lemma F.1. Since η satisfies (H4), applying (F.8) and the Hölder inequality, we bound the
last term:

E





∣

∣

∣

∣

∣

m
∑

k=1

cm,kRe

(

2eixk
∑n

s=1 Ys√
2πn(1 − eixk)fX,k

d̄η,k

)∣

∣

∣

∣

∣

2




≤ Cn2dY E





∣

∣

∣

∣

∣

m
∑

k=1

cm,ke
ixk

(1 − eixk)fX,k
d̄η,k

∣

∣

∣

∣

∣

2


 ≤ Cn2dY (m/n)2+4dY = o(1).

Finally, consider the term in (F.14). Since
∣

∣x2
k|1 − eixk |−2 − 1

∣

∣ ≤ Cx2
k, it is under (P0) of order

xd∗

k if ρη 6= 0 and of order x2d∗

k if ρη = 0; and under (P1) with ρη = 0 or (P2) of order x2
k. Thus

we obtain
∑m

k=1 cm,krn,k = o(1) under condition (A.5) or (A.4) respectively.

We gather some of the previous results in the following corollary.

Corollary F.5. Assume (H1), (H2) and (H3) and d∗ ∈ (0, 1). Then

E





∣

∣

∣

∣

∣

∣

k
∑

j=1

( IX,j

fX,j
− 2πIZ,j

)

∣

∣

∣

∣

∣

∣



 ≤ C log(k)
{

log(k)1{d∗<1/2} + kd∗1{d∗≥1/2} + (k/n)β∧d∗ k
}

. (F.15)

Assume moreover (H4) (H5) and either (2.i), (2.ii) or (2.iii) of Proposition A.1, then, for all
k ≤ m,

E





∣

∣

∣

∣

∣

∣

k
∑

j=1

(f−1
X,jIX,j − 1)

∣

∣

∣

∣

∣

∣



 ≤ Ck1/2 (F.16)

We now consider the case d∗ = 0.
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Lemma F.6. Under the assumptions of Theorem 5.2, denote

ξk =

√

2πf∗Y (0)Zk + ηk
√

2πf∗X(0)
.

with f∗X(0) = f∗Y (0)+2
√

f∗Y (0)/(2π)ρηση+σ2
η/(2π). Let m be a sequence of integers that satisfies

(A.4) and let (cm,k)1≤k≤m be a triangular array of real numbers such that

m
∑

k=1

c2m,k = 1, (F.17)

lim
m→∞

max
1≤k≤m

|cm,k| = 0. (F.18)

Then, for all k ≤ m,

E





∣

∣

∣

∣

∣

∣

k
∑

j=1

{IX,j/f
∗
X(0) − 1}

∣

∣

∣

∣

∣

∣



 ≤ Ck1/2, (F.19)

lim
n→∞

E

[∣

∣

∣

∣

∣

m
∑

k=1

cm,k {IX,k/f
∗
X(0) − 2πIξ,k}

∣

∣

∣

∣

∣

]

= 0. (F.20)

Proof. Note first that ξ satisfies (H2), with cov(Zk, ξk) = 1 + ρηση/(2πf
∗
Y (0)) and (5.2) implies

that (3.8) holds with

cum(Zu, Zv, ξs, ξt) = cum(Z0, Z0, Z0, Z0) + 2γ/
√

2πf∗Y (0) + κ/(2πf∗Y (0)),

if s = t = u = v and 0 otherwise. Write now:

IX,k − 2πf∗X(0)Iξ,k = |dY,k + dη,k|2 − 2πf∗X(0)Iξ,k

=

∣

∣

∣

∣

dY,k −
√

2πf∗Y (0)dZ,k +
√

2πf∗X(0)dξ,k

∣

∣

∣

∣

2

− 2πf∗X(0)Iξ,k

=

∣

∣

∣

∣

dY,k −
√

2πf∗Y (0)dZ,k

∣

∣

∣

∣

2

+ 2
√

2πf∗X(0)Re

(

d̄ξ,k

{

dY,k −
√

2πf∗Y (0)dZ,k

})

. (F.21)

The assumptions on {ηt} ensure that {ξt} has the same properties and the same relation to {Zt}
as {ηt}, with possibly different values of the constants. Thus, the same arguments as above can
be applied.

We conclude the appendix by proving Propositions A.1 and A.2.

Proof of Proposition A.1. The idea of the proof is adapted from Robinson (1995b). It is based
on summation by parts. Define rk = IX,k/fX,k − 2πIZ,k and sk = n−1

∑

1≤s 6=t≤n ei(t−s)xkZsZt.
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Then for any c ∈ R
m,

Zm(c) =

m
∑

k=1

ck
1

n

n
∑

t=1

(Z2
t − 1) +

m
∑

k=1

ck(rk + sk) := Z1,m(c) + Z2,m(c).

By (A.3), for all ǫ ∈ (0, 1), there exists C such that supm supc∈C(ǫ,K)

∑m
k=1 |ck| ≤ CK. Thus

supc∈Cm(ǫ,K) |Z1,m(c)| = oP (1) under (H1).

By (3.2), there exists a constant C such that for all k = 1, . . . ,m, E
[

(
∑k

j=1 sj)
2
]

≤ Ck. Thus,
by summation by parts, (F.15) and the definition of the class Cm(ǫ,K), we obtain

E

[

sup
c∈Cm(ǫ,K)

|Z2,m(c)|
]

≤ Km−ǫ
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kǫ−2
E
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∣
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∣

k
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j=1

(rj + sj)

∣

∣

∣

∣

∣

∣



+Km−1
E





∣

∣

∣
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∣

∣

m
∑

j=1

(rj + sj)

∣

∣

∣

∣

∣

∣





≤ CKm−ǫ
m−1
∑

k=1

kǫ−2 log(k)
{

kd∗∨ 1
2 + (k/n)β∧d∗ k

}

+ CK log(m)
{

m(d∗∨ 1
2
)−1 + (m/n)β∧d∗

}

≤ CK log(m)
{

m−ǫ∧(1−d∗∨ 1
2
) logδ(m) + (m/n)β∧d∗

}

= o(1),

where δ = 1 if ǫ+(d∗ ∨ 1
2) = 1 and zero otherwise. This proves the first part of Proposition A.1.

Under the assumptions of part 2 of Proposition A.1, we have E

[∣

∣

∣

∑k
j=1(f

−1
X,jIX,j − 1)

∣

∣

∣

]

≤ C
√
k,

by Corollary F.5 in the case d∗ > 0 or by Lemma F.6 in the case d∗ = 0. Thus, applying
summation by parts as above now yields, in both cases,

E

[

sup
c∈Cm(ǫ,K)

|Zm(c)|
]

≤ Km−ǫ
m−1
∑

k=1

kǫ−2
E


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∣
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∣
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m
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j=1

(IX,j

fX,j
− 1
)

∣
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∣

∣





≤ CKm−ǫ
m−1
∑

k=1

kǫ−3/2 + CKm−1/2 ≤ CKmǫ∧1/2 logδ(m),

where δ = 1 if ǫ = 1/2 and zero otherwise.

Proof of Proposition A.2. Since (A.8) implies (F.18), we can apply Lemmas F.2 and F.6, and
we obtain that

∑m
k=1 cm,k{f−1

X,kIX,k − 2πIζ,k} = oP (1), with ζ = Z or ζ = ξ. The proof of
the asymptotic normality of

∑m
k=1 cm,kIζ,k can be done along the lines of the proof of Theorem

2 in Robinson (1995b). The proof there is done for the special case cm,k = m−1/2{log(k) −
m−1

∑m
j=1 log(j)}, but only uses (H4) and condition (A.8).
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Table 1: Bias, standard error (SE), and root-mean-squared error (RMSE) for semi-parametric
estimators of d∗ in the LMSV-ARFIMA(1,0.40,0) model with φ = 0.8

n = 1000

m = [n.6] m = [n.7] m = [n.8]
GPH AG LW GPH AG LW GPH AG LW

Bias -0.114 -0.071 0.023 -0.173 -0.076 0.036 -0.234 -0.115 0.079
nsr = 5 SE 0.097 0.210 0.177 0.066 0.135 0.166 0.051 0.091 0.148

RMSE 0.149 0.222 0.179 0.185 0.155 0.170 0.240 0.147 0.168
Bias -0.195 -0.135 -0.003 -0.241 -0.158 0.009 -0.289 -0.194 0.046

nsr = 10 SE 0.093 0.200 0.221 0.065 0.132 0.206 0.050 0.092 0.190
RMSE 0.216 0.241 0.221 0.249 0.206 0.206 0.293 0.214 0.195

n = 5000

m = [n.6] m = [n.7] m = [n.8]
GPH AG LW GPH AG LW GPH AG LW

Bias -0.079 -0.049 -0.007 -0.122 -0.064 -0.004 -0.197 -0.087 0.049
nsr = 5 SE 0.053 0.107 0.098 0.037 0.068 0.078 0.031 0.044 0.062

RMSE 0.095 0.118 0.098 0.127 0.093 0.078 0.199 0.098 0.079
Bias -0.148 -0.085 -0.008 -0.200 -0.124 -0.011 -0.262 -0.168 0.031

nsr = 10 SE 0.054 0.108 0.128 0.036 0.067 0.103 0.032 0.043 0.079
RMSE 0.158 0.138 0.128 0.203 0.141 0.104 0.264 0.174 0.084

n = 10000

m = [n.6] m = [n.7] m = [n.8]
GPH AG LW GPH AG LW GPH AG LW

Bias -0.071 -0.044 -0.009 -0.106 -0.061 -0.017 -0.182 -0.080 0.037
nsr = 5 SE 0.042 0.082 0.076 0.027 0.052 0.059 0.025 0.032 0.044

RMSE 0.083 0.093 0.076 0.109 0.080 0.061 0.184 0.086 0.058
Bias -0.133 -0.073 -0.007 -0.184 -0.115 -0.016 -0.251 -0.158 0.022

nsr = 10 SE 0.043 0.086 0.102 0.029 0.051 0.074 0.027 0.033 0.056
RMSE 0.140 0.113 0.103 0.186 0.126 0.076 0.252 0.161 0.060
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