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Estimating long memory in volatility*

Clifford M. Hurvichf Eric Moulines* Philippe Soulier'®

Abstract

We consider semiparametric estimation of the memory parameter in a model which in-
cludes as special cases both the long-memory stochastic volatility (LMSV) and fractionally
integrated exponential GARCH (FIEGARCH) models. Under our general model the loga-
rithms of the squared returns can be decomposed into the sum of a long-memory signal and
a white noise. We consider periodogram-based estimators using a local Whittle criterion
function. We allow the optional inclusion of an additional term to account for possible cor-
relation between the signal and noise processes, as would occur in the FIEGARCH model.
We also allow for potential nonstationarity in volatility, by allowing the signal process to
have a memory parameter d* > 1/2. We show that the local Whittle estimator is consistent
for d* € (0,1). We also show that the local Whittle estimator is asymptotically normal for
d* € (0,3/4), and essentially recovers the optimal semiparametric rate of convergence for this
problem. In particular if the spectral density of the short memory component of the signal
is sufficiently smooth, a convergence rate of n?/>=% for d* (0,3/4) can be attained, where
n is the sample size and § > 0 is arbitrarily small. This represents a strong improvement
over the performance of existing semiparametric estimators of persistence in volatility. We
also prove that the standard Gaussian semiparametric estimator is asymptotically normal if
d* = 0. This yields a test for long memory in volatility.

1 Introduction

There has been considerable recent interest in the semiparametric estimation of long memory
in volatility. Perhaps the most widely used method for this purpose is the estimator (GPH)
of Geweke and Porter-Hudak (1983). The GPH estimator of persistence in volatility is based
on an ordinary linear regression of the log periodogram of a series that serves as a proxy for
volatility, such as absolute returns, squared returns, or log squared returns of a financial time
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series. The single explanatory variable in the regression is log frequency, for Fourier frequencies
in a neighborhood which degenerates towards zero frequency as the sample size n increases.
Applications of GPH in the context of volatility have been presented in Andersen and Bollerslev
(1997a,b), Ray and Tsay (2000), and Wright (2002), among others.

To derive theoretical results for semiparametric estimates of long memory in volatility, such
as GPH, it is necessary to have a model for the series which incorporates some form of stochastic
volatility. One particular such model is the long-memory stochastic volatility (LMSV) model of
Harvey (1998) and Breidt, Crato and de Lima (1998). The LMSV model for a weakly stationary
series of returns {r;} takes the form r, = exp(Y;/2)e; where {e;} is a series of i.i.d. shocks with
zero mean, and {Y;} is a weakly stationary linear long-memory process, independent of {e;},
with memory parameter d* € (0,1/2). Under the LMSV model, the logarithms of the squared
returns, {X;} = {logr?}, may be expressed as

X =p+ Y+, (1.1)

where = Eflogef] and {n;} = {logef — E[loge7]} is an i.i.d. process with variance o7, inde-
pendent of {Y;}.

Another model for long memory in volatility is the fractionally integrated exponential GARCH
(FIEGARCH) model of Bollerslev and Mikkelsen (1996). This model builds on the exponential
GARCH (EGARCH) model of Nelson (1991). Bollerslev and Mikkelsen (1999) study FIE-
GARCH forecasts of volatility, while Baillie, Cecen and Han (2000) study high frequency data
using FIEGARCH. The weakly stationary FIEGARCH model takes the form r; = ores, where
the {e;} are i.i.d. with zero mean and a symmetric distribution, and

[e.9]
logo? = w + Z a;g(e—;) (1.2)
j=1

with g(z) = 0z +(|z| —Ele]), w > 0, § € R, v € R, and real constants a; such that the process
log o7 has long memory with memory parameter d* € (0,1/2). If § is nonzero, the model allows
for a so-called leverage effect, whereby the sign of the current return may have some bearing on
the future volatility. As was the case for the LMSV model, here we can once again express the
log squared returns as in ([L1]) with u = E[loge?] +w, n; = log e? —E[log e?], and Y; = log 07 — w.
Here, however, the processes {Y;} and {n;} are not mutually independent.

In view of our goal of semiparametric estimation of d*, we allow more generality in our
specification of the weights a; than Bollerslev and Mikkelsen (1996), who used weights corre-
sponding to a fractional ARIMA model. As far as we are aware, no theoretical justification of
any semiparametric estimator of d* has heretofore been presented for the FIEGARCH model.

Assuming that the volatility series {Y;} is Gaussian, Deo and Hurvich (2001) derived asymp-
totic theory for the GPH estimator based on log squared returns in the LMSV model. This
provides some justification for the use of GPH for estimating long memory in volatility. Nev-
ertheless, it can also be seen from Theorem 1 of Deo and Hurvich (2001) that the presence of
the noise term {n;} induces a negative bias in the GPH estimator, which in turn limits the



number m of Fourier frequencies which can be used in the estimator while still guaranteeing
v/m-consistency and asymptotic normality. This upper bound, m = 0[n4d*/ (4d*+1)], becomes
increasingly stringent as d* approaches zero.

Another popular estimator of the memory parameter is the Gaussian semiparametric estima-
tor (GSE), introduced by Kiinsch (1987), and later studied by Robinson (1995b) for processes
which are linear in a Martingale difference sequence. For the LMSV model, results analogous
to those of Deo and Hurvich (2001) were obtained by Arteche (2003) for the GSE estimator,
based once again on log squared returns. The use of GSE instead of GPH allows the assumption
that {Y;} in (1)) is Gaussian to be weakened to linearity in a Martingale difference sequence.
Arteche (2003) requires the same restriction on m as in Deo and Hurvich (2001).

Sun and Phillips (2003) proposed a nonlinear log-periodogram regression estimator dnLp
of d*, using Fourier frequencies 1,...,m. They partially account for the noise term {n;} in
(L), through a first-order Taylor expansion about zero of the spectral density of the observa-
tions. They establish the asymptotic normality of m!/2 (chLp —d*) under assumptions including
n~4d mAd"+1/2 _, Const. Thus, CZNLP, with a variance of order n~44"/(4d"+1/2) converges faster
than the GPH estimator, but still arbitrarily slowly if d* is sufficiently close to zero. Sun and
Phillips (2003) also assumed that the noise and signal are Gaussian. This rules out most LMSV
models, since log €? is typically non-Gaussian.

Recently, Hurvich and Ray (2003) have proposed a local Whittle estimator of d*, based on log
squared returns in the LMSV model. The local Whittle estimator, defined precisely in Section
R.1], may be viewed as a generalized version of the GSE estimator. Hurvich and Ray (2003)
included an additional term in the Whittle criterion function to account for the contribution of
the noise term {n;} in ([.T) to the low frequency behavior of the spectral density of {X;}. The
estimator is obtained from numerical optimization of the criterion function. It was found in
the simulation study of Hurvich and Ray (2003) that the local Whittle estimator can strongly
outperform GPH, especially in terms of bias when m is large.

We assume that the observed process {X;} is the sum of a long-memory signal {Y;} which
is linear in a Martingale difference sequence {Z;}, and a white noise {rn;} which is potentially
contemporaneously correlated with {Z;} . Our signal plus noise model, made precise in Section
A below, includes both the LMSV and FIEGARCH models as special cases, by allowing a

contemporaneous correlation between the shocks in the signal and noise processes.

Many empirical studies have found estimates of the memory parameter in the log-squared
returns, d*, which are close to or even greater than 1/2, indicating possible nonstationarity of
volatility. For example, Hurvich and Ray (2003) obtained a value of the local Whittle estimator
d,, = 0.556 for the log squared returns of a series of Deutsche Mark / US Dollar exchange rates
with n = 3485 and m = n®®. In analyzing a similar data set with a parametric LMSV model,
Harvey (1998), who explicitly allowed for the nonstationary case in his definition of the model,
obtained an estimated memory parameter of 0.868. In view of these empirical findings, we allow
in this paper for the possibility that d* exceeds 1/2. Specifically, we assume here that d* € (0, 1).

In the context of our general signal plus noise model, allowing all of the generalizations



described above, we will show that under suitable conditions our local Whittle estimator dp
based on the first m Fourier frequencies is consistent. Then, we will establish the \/m-consistency
and asymptotic normality of d,, for d* € (0,3/4).

As long as the spectral density of the volatility (signal) process is sufficiently regular, our
asymptotic results are free of upper restrictions on m arising from the presence of the noise
term. In particular, if the spectral density of the short memory component of the signal is
twice differentiable, then we obtain asymptotic normality of /m(d, — d*) if m = [n¢] with
0 < ¢ < 4/5. This represents a strong improvement over the GPH and GSE estimators of
persistence in volatility and over the NLP regression estimator of Sun and Phillips (2003).

Since we use the Whittle likelihood function we are able to avoid the assumption that the
signal is Gaussian. This assumption was required by Deo and Hurvich (2001), but many prac-
titioners working with stochastic volatility models find the assumption to be overly restrictive.

The remainder of this paper is organized as follows. In Section P.J, we define the local
Whittle estimator d,. Section B presents results demonstrating the consistency of the local
Whittle estimator of both d* and of the auxiliary parameter 0*. Section [] gives a central limit
theorem for d,,. The estimates of the parameters (d*, 6*) converge at different rates, and in the
case of the estimates of 8* the rates depend on d*. Fortunately, however, the limiting covariance
matrix of a suitably normalized vector of parameter estimates does not depend on 6*. We present
an expression, in terms of d*, for the variance of the asymptotic distribution of \/m(dAn —dr).
In Section [, we prove that the standard GSE, without any of the additional terms considered
in our local Whittle estimator, is asymptotically normal if d* = 0. This yields a test for long
memory in volatility. In Section | we report the results of a simulation study on the properties
of the local Whittle estimator.

2 Definitions and notations

We generalize the model ([[.])) to a potentially nonstationary signal plus noise model, in which
the observed process is either

v .
= { w4 Y+, (stationary case) (2.1)

4+ Ve +m, (nonstationary case),

{Y:} is a weakly stationary zero mean process and {n;} is a zero mean white noise with variance

0727. Our main concern in this paper is the memory parameter of {X;}, denoted by d*. The

stationary case corresponds to d* € (0,1/2) and the nonstationary case corresponds to d* €
[1/2,1).

In the stationary case, we lose no generality in assuming that {Y;} has zero mean, since
the estimators considered in this paper are all functions of the periodogram at nonzero Fourier
frequencies. In the nonstationary case, the assumption that {Y;} has mean zero ensures that
{X:} is free of linear trends. This does entail some loss of generality, but our estimator, which
makes no use of differencing or tapering, is not invariant to such trends, and would presumably be



adversely affected by them. In any case, deterministic trends in volatility are perhaps somewhat
artificial from an economic standpoint.

We now present precise assumptions on the signal process {Y;}. We assume first that the
weakly stationary process {Y;} admits an infinite order moving average representation with
respect to a zero mean, unit variance white noise (i.e. an uncorrelated second order stationary
sequence) {Z;}:

Y=Y ajZ, (2.2)

JET

with > jen a? < 0. In order to guarantee that the returns are a Martingale difference sequence,
one could assume that a; = 0 (j < 0). This assumption would imply that {r;} is adapted to the
natural filtration {F;} of {e;, Z;}, Y is predictable with respect to this filtration and

Elre | Fi1] = exp(Yi/2)Eles] = 0.

We do not make such an assumption here, in order to consider the problem in its fullest gener-
ality. Thus, we do not require the returns to be a Martingale difference sequence. Additional
assumptions on {Z;} will be specified as needed.

We define a(x) = >

jez @je’” and assume that it can be expressed as

a(x) = (1—e*)"Ma*(x), € [-mn]\{0},

where dy € [—1/2,1/2), a* is a function that is continuous at 0, and a*(0) # 0. The quantity
dy is the memory parameter of the time series {Y;}. The stationary case corresponds to dy €
(0,1/2), and the nonstationary case corresponds to dy € [—1/2,0). The case dy = 0, which
corresponds to short memory in volatility, will be addressed separately in Section .

The spectral density of {Y;} is given by fy(z) = |a(x)|?/(27), and can be expressed as
fy(x) =1 — |72 fi(2), (2:3)

with fi(z) = |a*(z)|?/(27).

The concept of pseudo spectral density has been defined for nonstationary processes. See,
e.g., Solo (1992), Hurvich and Ray (1995), Velasco (1999). To generalize this concept so that
it applies to our signal plus noise process {Y;}, we first state additional assumptions on the
second-order dependence structure of the bivariate sequence {Z;,n;}. Specifically, we assume
that:

Vt € Z, ElnZy) = py oy, and Vs #t, E[n:Z;] =0. (2.4)

The parameter p, accounts for the possible contemporaneous correlation between Z; and 7,
assumed constant. One such example is the FIEGARCH model with standard Normal multi-
plying shocks, for which n; = log(e?) — E[log(e?)], Z: = Oe; + v(|er] — /2/m), and {e;} is i.i.d.
N(0,1), and (R4) is in force. Since we assume E[Z?] = 1, # and v are linked by the relation

0% +~*(1 — 2/m) = 1. In that case, p, = ycov(leg|,log(ef)) /oy, where o = 7% /2.



In general, the spectral density or pseudo spectral density of the process {X;} defined in

(1) is then

2

0.2
(@) fr(z) + 2”;—;"Re(a(x)) + 2, (stationary case), (2.5)
x(x) = . : o .
11— e 2 fy(z) + %’%Re((l —e)la(z)) + 5%, (nonstationary case).

In both cases, under additional smoothness assumption on the behavior of a* about 0 (that will
be made precise in the next section), fx admits the following expansion at 0:

iy v\ 2o /I3 (0) | oy
~ 2d* px _ Llxy—d n-n Y -n
fx (@) ~ a7 f5(0) + Re (1 - &)™) —EDEE— oL (2.6)
with
g = dy € (0,1/2), (stationary case), 2.7)
| dy +1€[1/2,1), (nonstationary case), '

where the symbol ~ indicates that the ratio of the left hand side to the right hand side of the
above formula tends to 1 as # — 0F. Thus, in the stationary case, {X;} has the same memory
parameter as {Y;}, namely dy, while in the nonstationary case {X;} has the same memory
parameter as the partial sum of {Y;}, namely dy + 1.

Remark 2.1. In the stationary case where the returns are r, = eYt/Qet, and Y; = z;’;l a;Zs_j,
Surgailis and Viano (2002) have proved that under the additional assumptions that E[fe*%1]] < 0o
for all w > 0 and that {Z;} and {e;} are i.i.d. sequences, the memory parameter of the series
{|r¢|*} is the same as the memory parameter of {Y;}. Thus, for both the LMSV and FIEGARCH
models, under the above mentioned restrictions, the squared returns and the log-squared returns
have the same memory parameter. In the nonstationary case, the relationship between these

two memory parameters remains an open question.

2.1 The Local Whittle Estimator

Consider a covariance stationary process {X;} with spectral density

fx(@) =1 =" fx(a),

where d* € (—1/2,1/2) and f% is a positive function which is smooth in a neighborhood of
the origin. The GSE estimator of d* consists in locally fitting a parametric model for f%
by minimizing the Whittle contrast function. The parametric model used in GSE replaces
fx by a constant. This method yields a consistent and asymptotically normal estimator of
d* € (—1/2,1/2), under mild assumptions both on f% and the process {X;}. These results
were later extended to the nonstationary case d* € [1/2,1) by Velasco (1999) who proved the
consistency for d* in this range and asymptotic normality for d* € [1/2,3/4).

In some situations however, the local-to-zero parameterization of f% () by a constant may be
inefficient. An example is the situation of a long-memory process observed in an additive noise.



In order to improve the efficiency, one can try to fit a more complex local parametric model
for f%. In the local Whittle estimator, defined below in a general setting, f%(z) is replaced by
G(1+ h(d,8,x)), where G is a positive constant and h is a function tailored to the problem at
hand. The additional parameter # can be seen as a nuisance parameter which is included to
allow some flexibility in the modelling of f% about 0.

The discrete Fourier transform and the periodogram ordinates of any process {V;} evaluated
at the Fourier frequencies x; = 2j7/n, j =1,...,n, are respectively denoted by

n
dvj = (2mn) "2 " Vie ™ and Iy = |dy]*.
t=1

The local Whittle contrast function, based on the observations Xi,...,X,,, is defined as

) m I
Won(d,G,0) = log ( Gz 2%(1 + h(d, 0, + Xk 2.8
e kzl { oa (G4 (a0, Gy, (1 + h(d, 0, z1)) =

where m < n/2 is a bandwidth parameter (the dependence on n is implicit). Concentrating G
out of W, yields the following profile likelihood

m

S 1 xQdIXk i
Jn(d,0) =log | — ) —k-F -1\ —2d(1 4 h(d,0
0 =tog (£35S a0+ )

log [ 2 f: K L +mt il (k7241 + h(d,0,2,))}.  (2.9)
=log [ — —_ m ) Tr))}- .
#\m &= T4 h(d. 0, 22) 247 Uk
The local Whittle estimator is any minimand of the empirical contrast function J,, over the
admissible set D,, x ©,, (which may depend on the sample size n):

I, 0p) = i . 2.1
(dn,0n) = arg (d,@)re%fx@n‘]’”(d’e) (2.10)

Note that (czn, én) depends on h, D,, and ©,,.

We now specify three different parameterizations that we will use for estimation of the
memory parameter in the model (£.)).

(PO)
hd,z) =0, D,=[-1/2,1]. (2.11)

Here, there is no parameter 6 and the definition of ©,, is thus irrelevant. This parameter-
ization is used for the GSE estimator.

(P1)
h(d,0,z) = 02°%, D, = [en, 1], O, =10,¢,7], (2.12)



where {¢,} is a sequence that tends to zero as n tends to infinity at a rate that will
be specified in the sequel. This parameterization is used for the local Whittle estimator
in the LMSV model when p, is known to be zero, as in Hurvich and Ray (2003). Our
parameterization conforms with this model: indeed, the expansion (P.6) of the spectral (or
pseudo spectral) density fx at 0 when p, = 0 can be expressed as fx () ~ 2724 f5:(0)(1+
h(d*,0*,x), with h as in (R.12) and
2
0 = —1—. 2.13

27 f3-(0) (2.13)
Note that if d* € (0,1), the definition of D,, and ©,, implies that for all sufficiently large
n, we will have d* € D,, and 0* € ©,,.

(P2)

h(d,0,z) = 612%Re ((1 — e®)79) + O,

Dn = [Ena 1]5 @n = [—2651,26;1] X [0, ET_LQ], (214)

where {¢,} is as described above. This parameterization is used for the local Whittle
estimator when p,, is not required to be zero, as in the FIEGARCH model and the LMSV
model with contemporaneous correlation between {Z;} and {n;}. Here again, the expansion

(B-G) can be expressed as fx(z) ~ 2724 f5(0)(1 + h(d*,0*,z)), with h as in (P-14) and

20,0 o2
0* = (0},0%) with 07 = —2L1_  and 605 = —1—. 2.15

We denote the local Whittle estimators associated with the parameterizations (P[), (Pfl) and
(PR) by (cisf),éﬁf)), 1 =0,1,2, respectively. Note that JSLO) is simply the GSE estimator, based on
a parameterization which does not involve the noise term. In some of our discussions, as should

be clear from the context, we reserve the term ”local Whittle estimator” to refer only to the
parameterizations (Pfl[) and (PQ) but not (Pf]).

Remark 2.2. The presence of an €, sequence tending to zero in parametrizations (Pfl]) and (PR)
allows the admissible parameter space to depend on n and to become larger as n increases.
This in turn will allow us to state and prove our main theoretical results without making
arbitrary restrictions on the true parameters, as is done in much of the current literature (see,
e.g., Robinson 1995b). Nevertheless, if we took €, to be fixed and positive, then our main
results would continue to hold as long as the true parameters lie in the corresponding admissible
parameter space.

Remark 2.3. We explain here the (perhaps) surprising form of the parameterization (PR). For
x € (0,7] and d € (0,1), it is well known that |1 — e*|72¢ = 2724(1 4 O(z?)), but it should be
noted that

Re {(1 - eif)*d} = {2sin(z/2)} " cos{d(z/2 + 7/2)} = 2~ cos(rd/2) {1 + O(z)},



where the term O(z) cannot be improved. Replacing Re {(1 — €?)~?} with 2=¢ in (P[]) would
not only change the value of the p(ﬁrameter 01, but also create a bias term that would result in
a slower rate of convergence for dii’ (moreover depending on d*) than the rate we will be able

to establish below.

Remark 2.4. The correction term h(d,6,z) in parameterizations (Pf]) and (Pf) is the key el-
ement which allows us to attain a better rate of convergence for the local Whittle estimator,
in comparison to the ordinary GSE and GPH estimators. Indeed, the use of h(d, ) frees the
optimal rate of convergence of the local Whittle estimator from an undesirable dependence on
d*, a problem faced by the ordinary GPH estimator considered in Deo and Hurvich (2001).

3 Consistency of the local Whittle estimator

In order to prove consistency of the local Whittle estimator cfn, we consider the following as-
sumptions.

(H1) {Z;} is a zero mean unit variance white noise such that

%Zn:(zf -1y Lo (3.1)
t=1

and for any (s,t,u,v) € N* such that s < t and u < v, E[|Z,Z,ZsZ|] < co and

1 fu=sandt=w
0 otherwise.

EZ.Z,Zs2Z;) = { (3.2)
Remark 3.1. This assumption is the weakest one under which we were able to construct our
proof of consistency, and is satisfied under a variety of conditions. For instance, it is implied by
assumption A3 of Robinson (1995b) which states that {Z;} is a martingale difference sequence
satisfying E[Z?|0(Zs,s < t)] = 1 a.s. (which implies (B:3)) and strongly uniformly integrable
(which implies (B.1))). Note that (B.1]) holds when {Z?} is ergodic. Finally, note that (B.9) rules
out the case s = ¢ since it assumes that s < ¢t and v < v, and therefore (B.-J) does not imply
that E[Z}] = 1 (which would be impossible except for a Rademacher random variable).

For reference, we recall the assumption on {n;}.

H2 ¢} is a zero mean white noise with variance o2 such that for each s # ¢, E[nsZ;] = 0
n n

7
and for each t, E[n.Z;] = pyoy,.

Note that p, is the correlation between Z; and 7, which is assumed to be constant.

(H3) {Y;} admits the linear representation (R.4) and the function a(z) = > jez A€ el? can
be expressed for x € [, 7]\ {0} as a(z) = (1 — )~ a*(z), where dy € (—1/2, 1/2) a*
integrable over [—m, 7], a*(—x) = a*(x) for all z € [—7, 7] and there exist ¥ € (0,7], 5 € (0, ]



and g > 0 such that a* is differentiable at 0 if > 1 and for all z € [, 7],

ja*(2) — a*(0)] < ula*(0)l|x|?, B € (0,1] (3-3)
ja*(2) — a*(0) — za™(0)| < pla*(0)l[«l”, B € (1,2].

Remark 3.2. The function (1 — ™)~ is defined for d € (—1/2,1/2) \ {0} and = € [, x|\ {0}
by

o0

I'(d+3j)
(1—é Z e,
|
= L)
This series is absolutely convergent if d < 0 and converges in the mean square if d > 0. For
d =0, we set (1—e'*)? = 1. Since by assumption a*(—z) = a*(z), thus |a*|? is an even function.
If moreover a* is differentiable at 0, then a*/(0) = —a*/(0) and for all 3 € (0,2], there exists a
constant C' such that for all x € [, 9], it holds that

[la*(2)* — [a*(0)?| < Cla/”. (3:5)

Remark 3.3. In the related literature (Robinson (1995b), Velasco (1999), Andrews and Sun
(2001)), it is usually assumed moreover that the function a is differentiable in a neighborhood of
zero, except at zero, with |za’(x)|/|a(x)| bounded on this neighborhood. Hence our assumptions
are weaker than those of the above references.

Theorem 3.1. Assume (HfL)), (HP) and (HB) and d* € [0,1). Let m be a non-decreasing
sequence such that

lim (m~' +m/n) =0, (3.6)

n—od
and set €, = (log(n/m))~Y2. Then, the local Whittle estimators CZS), i =0,1,2 are consistent.

Remark 3.4. Arteche (2003), Theorem 1, proved the consistency CZ%E) (the GSE) for a long-
memory process observed in independent noise (with no contemporaneous correlation) in the
stationary case i.e. for d* € (0,1/2). Theorem B.J] extends this result to the nonstationary case
d* € (1/2,1) and to the case where the noise {n;} is (possibly) contemporaneously correlated
with {Y;}, thus covering the FIEGARCH model. Furthermore, Theorem B.J] implies that dgﬂ) is
consistent even if p, is nonzero.

Remark 3.5. The local Whittle estimator ci,(f), 1 = 1,2 is consistent if d* = 0, but by construction
its rate of convergence is at most €,. The necessity of introducing the sequence ¢, comes from
certain technicalities in the proof of Theorem [|. We do not know if it is possible to define
D,, = [0, 1] under (Pfl) and (PB). In any case, if d* = 0, the parameter * need not be identifiable.
Thus, if a small value of &ﬁf’ is obtained, it should be better to test for d* = 0 by using the
standard GSE. We will establish the validity of this procedure in section f.
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(%)

Theorem B.J] provides no information about the behavior of énz
as n — 0o, the objective function becomes flat as a function of §. Thus a special technique is

, © =1,2. This is because,

needed to prove the consistency of HA,(f ), 1 = 1,2 which requires strengthened assumptions. This
technique was first used in a similar context by Sun and Phillips (2003). We now introduce
these assumptions.

(H4) {Z;} is a martingale difference sequence such that for all ¢, E[Z}}] = us < oo and
E[Z2 | 0(Zs,s <t)] =1 as.
Remark 3.6. (HH) implies (H[ll). More precisely, it implies that {Z? — 1} is a square integrable
martingale difference sequence and that n=' 37 (ZZ — 1) = Op(n~%/2).

2

2 such that sup,ey E[n] < oo, a.s. and

(H5) {n:} is a zero mean white noise with variance o
for all (s,t,u,v) € N* such that s <t and u < v,

ot fu=sandt=v
E[nunvnsnt] = { 077 otherwise. (37)
- Kk ifty =1tg = t3 = ty,
Cum(Ztla Zt2 s Tlts s 77t4) - { 0 otherwise (38)

Theorem 3.2. Assume (HP), (HB), (HH) and (HB) and d* € (0,1). Let m be a non-decreasing
sequence of integers such that

lim (m74d*71+5n4d* + n~2Pm2PHL logQ(m)> =0 (3.9)
for some arbitrarily small § > 0 and set ¢, = (log(n/m))~"2. Then d¥ — ar = Op((m/n)?*")
and 09 — 0" = op(1), i = 1,2.

Remark 3.7. The first term in (B.9) imposes a lower bound on the allowable value of m, requiring
that m tend to oo faster than n*d"/(44"+1)  This condition can be fulfilled only when 3 > 2d*.
Note that 8 > 2d* always holds if 8 = 2, which is the most commonly accepted value for 3. It
is interesting that Deo and Hurvich (2001), assuming 8 = 2, found that for m'/2(dgpy — d*) to
be asymptotically normal with mean zero, where dapy is the GPH estimator, the bandwidth m
must tend to oo at a rate slower than n" /(44" +1) When 8 < 2d*, then it is no longer possible
to prove that 6, is a consistent estimator of #*, and the proposed local Whittle estimator will
not perform better than the standard GSE.

4 Asymptotic normality of the local Whittle estimator

We focus here on CZS) and éﬁf ), i = 1,2. Corresponding results for the GSE estimator will be
presented in Section . The main result of this section is Theorem (.3, which is a central limit
theorem for the vector of estimated parameters. Before presenting this main result, we outline
the main steps in the proof, which are not completely standard due to the asymptotic flatness
of the objective function.
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For ease of notation here, in the discussion below, we omit the superscript in dﬁf ), Contrary
to standard statistical theory of minimum contrast estimators, the rates of convergence of dp —d*
and of 0, — 6* are different, where d* is defined in @) and 6* is defined in (2.13) in the LMSV
case and (R.19) in the FIEGARCH case. To account for the difference in these rates, we prove
that D;‘L(cin —d*, 0, — 0*) is asymptotically normal with zero mean, where D} is a deterministic
diagonal matrix whose diagonal entries tend to oo at different rates, as defined below. Our
proof starts with a second order Taylor expansion of the contrast function. The gradient of the
contrast function evaluated at the estimates vanishes, since they are consistent and converge to
an interior point of the parameter set.

Denote H,(d,0) = fol V2Jn(d* + s(d — d*),0" + s(6 — 0*))ds. With this notation, a first

order Taylor expansion yields
0 =mD: "V (dn,0,) =
mD; (@, 07) + MDD} Ho(dn, 6037 D (s ) = (@,67)) . (4.1)
The next step is to prove that mD;‘L_1ij(d*, 0*) converges in distribution to a non-degenerate

Gaussian random variable with zero mean and mD;*IHn(dn, én)D,’;*l converges in probability
to a non-singular matrix. This is stated in the following two propositions.

Proposition 4.1. Assume (HR), (HB)), (HH|) and (HE). If d* € (0,3/4), 8 > 2d* and m is a
non-decreasing sequence of integers such that (B.9) holds, then mD;‘L_1ij(d*, 0*) converges to
the Gaussian distribution with zero mean and variance I'* with

(i) Dy = m'/?Diag (1,22¢") and

4 _( 4dd* E
* 14-2d*
"= < _ 4ar 4d*? )
(

1+2d%)2  (1+2d*)2(1+4d")

under (Hl), assuming p,, is known to be 0;
(ii) Df = m'/?Diag (1,24 / cos(md* /2),220") and

4 2d* 4d*

T (1+4d)? (1+2d*)2
* — . 2d* 2d*2 2d*2
B (1+d*)? (1+d*)?(1+2d*) (I+d*)(1+2d* ) (1+3d*)
_ 4d* 2d*? 4d*?
(1+2d5)2  (A+d*)(1+2d*)(1+3d) (1+2d")2(1+4d)

under (PR).

Proposition 4.2. Assume (HB), (HB) and (HH). If d* € (0,3/4), B > 2d* and m is a
non-decreasing sequence of integers that satisfies (B), then mD} ' H,(d,0)D: ™" converges in
probability to T, uniformly with respect to (d,0) € {d : |d —d*| <log™(m)} x ©, with D} and
I'* defined as in Proposition [[.1-

Remark 4.1. An important feature is that I does not depend on the parameter #*. This was
already noticed by Andrews and Sun (2001) in the context of local polynomial approximation.
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Since the matrix I'* is invertible, the matrix D;len(cin, én)D;;*l is invertible, with probability
tending to one. Hence ([L.1]) yields:

D: ((dn,én) — (¥, 9*)) — {mD;;*IHn(cin,én)D;;*l}*1 mD: I, (d*,07).

This and Propositions [L.1] and [.3 yield our main result. Recall that our estimators are defined
in section P-1] with ¢, = (log(n/m))~1/2.

Theorem 4.3. Assume (HEP)), (HB), (HY), (HB), d* € (0,3/4), 3 > 2d* and let m be a non-
decreasing sequence <oﬂ/integers that satisfies (B.9). Then, under (F1), assuming p, is known to
be zero, D, <(d(ﬂ) oW

matrix

) — (d*,@*)) is asymptotically Gaussian with zero mean and covariance

- <1+2d*>2< 1 e )
- ) 144d (1+2d*)2(14+4d*) | -
16d d* d*2

Under (H3), D¥ < d(E E (d* 0*)) s asymptotically Gaussian with zero mean and covari-
ance matric

) -1 0 0
.
rt=——| o 2080 0
T Li2d*

0 2d*

(1+d*)? (1+2d )2 —2(1 4 d*)(1 4 2d*)?(1 + 3d*) (14 d*)(1 4 2d*)(1 + 3d*)(1 + 4d*)
—2(1 + d*)(1 + 2d*)%(1 + 3d*) 4(1 4 d*)?(1 + 2d*)(1 4 3d*)? —2(1 + d*)(1 +2d*)%(1 4 3d*)(1 + 4d*)
(1+d )(1+2d V(14 3d*)(1 +4d*) —2(1 +d*)(1 +2d*)2(1 + 3d*)(1 + 4d*) (14 2d*)%(1 + 3d*)2(1 4 4d*)

0
2(1+d ) 0 )
142d*

2d*

Corollary 4.4. Under the assumptions of Theorem .3, ml/2 d(ﬂ) —d*) is asymptotically Gaus-

sian with zero mean and variance
(1+d)?

16d*2

if py is known to be 0; and ml/z(ci,(lﬁ) — d*) is asymptotically Gaussian with zero mean and

variance
(14 d*)2(1 + 2d*)?
16d** '

Remark 4.2. Tt is seen that the local Whittle estimator dﬁf ), 1 = 1,2 is able to attain the same
rate of convergence under the signal plus noise model ([L1]) as that attained by the standard
GSE d,(l) in the case of no noise, as long as 3 > 2d*.

Remark 4.3. The asymptotic variance of cZSf) increases when d* is small, but this loss is com-
pensated by the gain in the rate of convergence with respect to the standard GSE (and GPH).
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5 Asymptotic normality of the standard GSE

Theorem states that the GSE is consistent if d* € (0,1). We now state that it is asymp-
totically normal if d* € (0,3/4) but with a rate of convergence slower than the local Whittle
estimator considered above.

Theorem 5.1. Under the assumptions of Theorem [[.3, if d* € (0,3/4) and m satisfies

lim (m*1 + m%’*“n*%*) =0, (5.1)
n—od

with v* = d* if p, # 0 and v* = 2d* if p, = 0; then ml/Q(dA%ﬂ) — d*) is asymptotically normal
with variance 1/4.

Remark 5.1. If p, is zero, then (B.1)) requires that m = o(n*®/(4d"+1)) "so the upper bound on
m to ensure /m-consistency of GSE is essentially the same as that required for GPH by Deo
and Hurvich (2001). If, however, p, # 0, then the upper bound on m for GSE becomes more
stringent, m = o(nQd*/ (Qd*ﬂ)), since the nonzero value of p, increases the asymptotic bias of the
GSE. Similar restrictions would presumably apply in this situation for GPH.

When d* = 0, the theory of Robinson (1995b) cannot be directly applied to prove consistency
and asymptotic normality of CZSL , since the process X; = Y; + 7, is not necessarily linear with
respect to a martingale difference sequence. Nevertheless, if we strengthen the assumptions on

the noise {n; }, we can prove the consistency and asymptotic normality of dg ) when dy =d* = 0.

Theorem 5.2. Assume that d* = dy =0, (HP)), (HB), (HH), (HE) and that n is a martingale
difference sequence that satisfies

cum(Zy, Zy, Zs, ) = if s=t=wu=wv and 0 otherwise. (5.2)

If m is a non-decreasing sequence of integers that satisfies lim,, oo (m ™1 +n=20m28+1 log? (m)) =

0, then ml/Qci,(l) is asymptotically Gaussian with zero mean and variance 1/4.

These results yield a test for long memory in volatility based on the standard GSE estimator,
since Theorem 5.9 gives the asymptotic distribution of mt/ 2&510) under the null hypothesis d* = 0
and Theorem p.1] shows that mY/ 2(?%0) — 00 if d* > 0. Another test for long memory in volatility,
based on the ordinary GPH estimator, was justified by Hurvich and Soulier (2002). Since the
ratio of the asymptotic variances of the GPH and GSE estimators is 72 /6, the test based on the

GSE estimator should have higher local power than the one based on GPH.

6 Simulations

We present here some simulation results on the performance of the proposed local Whittle
estimator, denoted here by LW. A comprehensive simulation study on the LW estimator was
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performed by Hurvich and Ray (2003), who included a proposal for constructing accurate finite-
sample standard errors for LW. The concise set of results we present here was generated in the
preparation of Hurvich and Ray (2003), but not reported there due to lack of space.

For each of three sample sizes (n = 1000, n = 5000, n = 10000), and for each of two values
(nsr = 5, nsr = 10) of the noise to signal ratio nsr = 0%/(277f§3(0)), 1000 realizations were
generated from an LMSV model with standard Gaussian shocks e, and signal process {Y;} given
by the ARFIMA(1,d*,0) model (1 — B)? (1 — ¢B)Y; = Z;, where ¢ = 0.8 and d* = 0.4. The
innovations Z; were i7id Gaussian with mean zero, and variance chosen such that the specified
value of nsr was obtained. Since the e; are standard Gaussian, we have 0727 = 72 /2. The profile
likelihood (R.9) with parameterization (R.19) was minimized, for d € [.01,.75] and 6 € [e~%, e?°].
Note that the admissible parameter space here does not depend on n, so the ¢, sequence is fixed.

See Remark P.3.

Table [I] reports the bias, standard error (SE) and root mean squared error (RMSE) for
LW, as well as the GPH estimator of Geweke and Porter Hudak (1983), and the bias reduced
local polynomial log periodogram regression estimator of Andrews and Guggenberger (2003),
denoted by AG. It was shown in Andrews and Guggenberger (2003) that the AG estimator has
improved bias properties compared to GPH for Gaussian processes if the spectral density of
the observations is sufficiently smooth. We used the simplest version of AG, in which a single
additional term ﬂ:? is included in the log periodogram regression. All three estimates of the
memory parameter were constructed from the simulated log squared return series, {X;};. For

each realization and each estimator, three different bandwidths were considered (m = [n%¢],
m = (07, m = (20

Both GPH and AG suffer from negative bias, which worsens significantly as m or nsr is
increased, presumably due to the noise term 7 that neither of these estimators was designed to
explicitly account for. On the other hand, the bias of LW is stable with respect to nsr, and
increases only modestly in m, due to the autoregressive component in the model. In most cases,
LW is the best estimator in terms of RMSE, though LW has a higher standard error than GPH
and AG. Overall, these results are consistent with existing theory.
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APPENDIX: Proofs

The estimators introduced in section P.J are minimum contrast estimators. Empirical pro-
cesses are the main tools in the study of such estimators. Since the Whittle contrast is based on
the spectral density of a second order stationary time series, the empirical process involved is
often referred to as the empirical spectral process. See for instance Dahlhaus and Polonik (2002)
or Soulier (2002). In the first section of this appendix, we state two Propositions which provide
the tools to derive the asymptotic properties of minimum contrast estimators: a uniform weak
law of large numbers and a central limit theorem for the spectral empirical process. Their proof
is very technical and is postponed to Appendix [[]. Using these tools, we prove our main results
in the following sections. Appendix [J and [J deal with the main statistical issues of this paper,
namely the consistency of the estimators of d* and #*. The proof of the consistency of dp, in Ap-
pendix [, is essentially the same as the original proof of Robinson (1995b), but is more concise
here thanks to the use of Proposition [A-1]. The proof of the consistency of 0,,, in Appendix
is rather involved. We have tried to make it clear, though concise. It is the longest and more
difficult part of this proof. Appendices [J and [ contain the proof of the asymptotic normality
results, which are quite standard and made very short by again referring to Propositions [A.]]

and A2,

A Results for the empirical spectral process

Define

Fxpe = a0 5 (0){1 + h(d", 0%, 2)} (A.1)
where the function h is defined either in (Pf]), (Pf]) or (PB), and for a positive integer m and
c=(c1,...,cm) €R™,

m

Zm(e) = el fihIxn — 1} (A.2)

k=1
For € € (0,1] and K > 0, let C,, (€, K) be the subset of vectors ¢ € R™ such that
forall k € {1,...,m —1}, |ex — crp1| S Km™ k2 |ep| < Km™L (A.3)

Proposition A.1 (Uniform weak law of large numbers).

1. Assume (H), (HR) and (HB). Let m be a non-decreasing sequence of integers such that
lim, oo{mn=t +m™1} = 0. Then, for any € € (0,1), any constant K < oo and any
d* e (0,1),

sup  Zpn(c) = op(1).
CECm(E,K)
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2. Assume moreover that (HH), (HB)) and one of the following assumptions hold.

(2.i) h is given by (Pl), p, = 0, d* € (0,3/4) and m satisfies

lim (mfl + m2PTL 10g2(n)n’2ﬁ> =0; (A.4)
(2.43) h is given by (PB), d* € (0,3/4) and m satisfies (A.4);

(2.143) h =0, d* € (0,3/4) and m satisfies

lim (m_1 + mQV*Hn_QV*) =0, (A.5)

with v* = d* if p, # 0 and v* = 2d* if p, = 0;
(2.w) d* = 0, h = 2pyo,/+/ f+(0)/(27m) + 0'727/(27Tfy(0)), n satisfies the assumptions of
Theorem B3 and m satisfies (A.9).

Then for all € € (0,1] there exists a constant C' such that, for all K >0

E| sup |Zn(c)]| <CKm~ /2" 10g%(m), (A.6)

ceCm (E,K)

with 6 =1 if e =1/2 and 6 = 0 otherwise.

Proposition A.2. Assume (HE), (HE), (HH) and (HB]). Let m be a non-decreasing sequence
of integers and let (cp i )1<k<m be @ triangular array of real numbers that satisfy

m m
Zcmk =0 and Zc?nk =1 (A.7)
k=1 k=1
m 2
lim { > ek = mps1l + lemnl | log(n) = 0. (A8)

Assume either (2.i), (2.ii), (2.iii) or (2.iv) of Proposition A Then "1 cmnfxiIxk i
asymptotically standard Gaussian.

B Proof of Theorem B-1 and of the consistency part of Theo-
rem

In this section, we prove Theorem B.1] and the consistency part of Theorem f.9. This proof only
uses the first part of Proposition [A.]], and is valid for each of the four cases considered. The
only difference between them is the remainder term R,,(d, #) (defined below) which is identically
zero in the case of the standard GSE, and which converges uniformly to zero over D,, x ©,, in
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the case of the local Whittle estimator. Therefore, we omit the superscript in the notation of
the estimators. Define

(B.1)
(B.2)

Dip = (—00,d"—1/2+€)N

Dy,
Doy =[d*—1/2+¢€,+00)ND

where € < 1/4 is a positive real number to be set later and D,, is defined in (.1 Ai]), (B13) or (R-19).
As originally done in Robinson (1995b), we separately prove that lim,, .. P(d,, € D;,) = 0 and

that (d,, — d*)1p,, (d,) tends to zero in probability. Note that Dj,, is empty if it is assumed
that d* € (0,1/2) and € is chosen small enough. We first prove that (d, — d*)lDQ’n(cin) tends to
zero in probability. Denote

1+ h(d*, 0%, xy)
1+ h(d,0,z5)
de—Qd* ak(d, 9)

Ym.k(d, 0) = ST o (d, 9),’Ym(d7 0) = (Ym,k(d, 0))1<k<m,
]:

Jm(d, 0) = log ( ZxQd 20" )) + % ilog <x,;2d{1 + h(d,&,xk)}) .
k=1

With this notation and the notation introduced in Appendix [A], we get:

Qg (da 9) =

T (d, 0) = log(1 + Zi(n(d, 0))) + Jn(d, ) + log(f3-(0)). (B.3)

Due to the strict concavity of the log function, for any positive integer m and positive real
numbers aq, ..., @y, it holds that

1 & 1 &
1 - >3] )

Thus, (d*, 6*) minimizes J,,. Moreover, by definition, (d,,,8,,) minimizes .J,,. Hence on the event

{dAn S DZ,n}a

0 < Jp(dn, 0p) — T (d*, 67)
= T (dn, 0n) — Ty (dns 0p) + Jin(d, 0r) — T (dF,07) + Ty (d*, 6%) — T (d*,0%)
< log{1 + Zp (v (d*, 07))} = log{1 + Zp(vm(dn, 0,))}

<2 swp |log{l+ Zm(ym(d0)} (B5)
(d,0)€D2,, xOp

w

Define

Kon(s) = log < Z /<;28> - %ilog(lﬂ)
k=1
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The function K, is twice differentiable on (—1,00), K/,(0) = 0 and s — K] (s) is bounded
away from zero on compact subsets of (—1,00). Thus, there exists a constant ¢ > 0 such that
for all m > 2 and d € Do,

Kp(d—d*) > c(d —d*)% (B.6)

Hence, defining R,,(d,0) = J,,(d,0) — J,(d*,0%) — K, (d — d*), we obtain:

0 < (dn — d*)*1p,, (dn) < ¢ ' Kpn(dy — d) < ¢ i (dp, 0n) — ¢ i (d*,0%) — ¢ ' Rin(dn, 0,,)

N
<2c7t sup |log{l 4+ Zm(ym(d,0)} — ¢ R (dn, 6,). (BT
(d,0)€D2,, xOp

To bound R,,, note that it can be expressed as

ey k22 (g (d,6) — 1)
Z;ﬂzl j2d72d*

Under (Pfl), 2(d, 8, z) = 0 which implies ax(d, ) = 1; thus, R,,, = 0. Under (Pfll) or (Pf), there
exist constants ¢, C' such that

_ % S log (1+ (ax(d, 0) — 1)).

Ryn(d,0) = log (1 +
k=1

sup sup  Jag(d, 0) — 1] < C'log?(n/m) e~ Velosln/m),
kE{l,...,m} (dve)GDnX@n

Hence we obtain

sup |Rald,0)] <C  sup  sup |ag(d6) 1]
(d,0)€Dn xO, (d,0)€EDp xOp k=1,....,m

< Clog?(n/m) e~ Velosn/m) — (1), (B.8)

Note that this last bound is valid even when d* = 0, but that we cannot bound conveniently
R, (d,0) if d is not bonded away from zero by €,, because the convergence of R,,(d, ) to zero
is not uniform on [0, 1] x ©,,, even if ©,, were bounded. To conclude, we now show that there
exists a constant K such that, for all (d,0) € D, x O,, the sequence v, (d, 8) € Cp,(2¢, K). The
argument is the same as implicitly used in the proof of Theorem 1 in Robinson (1995b). Since
we will reuse this argument later, we give a more detailed proof than needed at present. Note
first that there exists a constant C' such that, for all (d,0) € Dy, X Oy,

> K (d, 0) > CmP (B.9)
k=1

12072 i (d,0) = (k + 122y 41(d, )
< [R2 — (h 1)22 i, 0) + (k1 [ (d,0) — i (d,6)]

< O2d-2d"-1 {|d —d*| + 2l 1og(n/m)} , (B.10)
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with v* = 2d* under if p, =0 and v* = d* under . Gathering and ([B.10) yields
v Pn Y

sup |’7m,k+1(da 9) - r)/m,k(d’ 9)| < Ck2672m726'
(d,0)€D2,, xOn

It is also easily seen that vy, ., (d,0) > Cm~!, uniformly over (d,#) € Dy, X O©y. Thus there
exists a constant K such that, for all (d,6) € Dy, x O,, the sequence ~,,(d,#) is in the class
Cm(2¢, K), and applying Proposition [A], we obtain that (d, — d*)1p, , (dy) = op(1).

We now prove that lim,, s P(czn € Dy,,) = 0. Define p,, = (m!)l/m. Ford € Dy, if1 < j < pp,
then (j/pm)* " > (j/pm) "> and if pp, < j < m, then (j/ppn)™ > > (j/ppn)* 2"
Define then ay,; = m™1(j/pm) T2 if 1 < j§ < pp, am; = m = /pm)? 2% otherwise and
am = (@m,j)1<j<m- As shown in Robinson (1995b, Eq. 3.22), if € < 1/(4e), then for large
enough n, Z;ﬂzl am,j > 2. Define &; = f)}IjIXJ and ¢, = e~ V12(?/™) W obtain:

Jin(d, 0) — Jon(d*, 6%)

{2 3 () s} - toe 2 356} - S stenta)
i=1 J=1 k=1
> log{

am } 1og{ ! Zgj} Flog(1 — C¢p) — log(1 + C)
j=1

j=1
> log{2 + Zm(am)} — log{l + Zm(um)} + 2log(1 — C¢p),

where we have defined u,,, = (m~!,...,m~!) € R™. Hence

P(d, € D1,,) <P ( inf T (d,0) = T (d*,0%) < o>
(d,0)€D1,n, xOn

<P (log{2+ Z(am) | —log{1+ Zyn(um) } +2log(1 = ¢)) <0).

The sequences ay,, and u,, belong to Cm(2¢, K) for some constant K, hence, applying Proposition
A1), we obtain that lim,, (d € Dy ) =0, which concludes the proof.

C Proof of Theorem

Throughout this section, the assumptions of Theorem B.J are in force. Recall that we only
consider parameterizations (P[]) and (P). For notational clarity, we omit the superscript in
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ci,(f). For a, 8 > 0, define

pm(aaﬁ):%2$ l _%Zx y %ng

k=1 k=1 k=1
o= LS e L5« L)

k=1
plr/n(aaﬁ) = %ZRG{(l _eiin)Q}Re{(l _ei:vk)ﬁ}

k=1

1\ ll‘k ol
_RZR{ - }X—ZRe{ )}7

b
Il
—

with the convention that if o = 0, 2 is replaced by log(k). These coefficients can be viewed as
empirical covariances, so that for any 0 < oy < --- < aj44, the symmetric matrix M with entries
M; ; = pm(ai,aj) if 1 <4,57 <k, M;; = M;; = ,oin(ai,ozj) ifl<i<kandk+1<j<k+gq
and M; ; = pll (o, o) if k+1 <1i,j < k+gq, is positive definite.

Lemma C.1. Let m be a non-decreasing sequence such that lim,,_..o m = co. Then, for a > 0,
we have the following limits:

lim 2, Ppn(a,8) = lim 2. P! (o, B)/ cos(n3/2)

n—oo n—oo

— a— aﬁ
nhrrgox Boll (a, B)/{cos(mar/2) cos(m3/2)} = T

Before proceeding, note now that under Assumption B.9, the sequences log(n), log(m) and
log(n/m) are of the same order of magnitude, in the sense that the ratio of any two of them is
bounded. Therefore, whenever one of these sequences is involved, we will freely use the most
convenient way to denote it. The first step in the proof of Theorem B.1] is to prove a logarithmic
rate of convergence for d.

Lemma C.2.

d, —d* = Op (log™*(n)) .

Proof. Theorem B.J] implies that lim, . P(dn € Din) =0, where Dy, is defined in (B.1]). We
only need to prove that, for any constant A > 0, lim,,_, o, P {|cin —d"1 < Alog™ 5(n)} =

1, where D, ,, is defined in (B-9).
Applying (B7), (B.§) and Proposition [A.1], we obtain:

0 < (d, —d*)*1

{dn €D2pn} —

tinepa,y SO sup [log{l+ Zy(yn(d,0))}] + ComeVIostr/m)
(d,0)€D2,», xOn

= Op(m~/2") Jog(m)) + Ce™V1osn/m)
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If m satisfies (B-9), then we obtain that (d, _d*)21{dneD2,n} = Op(e~VIe/m)) = op(log™*(n)),
for any positive integer s. O

At this point, for the sake of clarity, we treat the parameterizations (Pfl]) and (P]) separately.
We will give a detailed proof in the former case and a sketchier one in the latter case.

Proof of Theorem under P ([)

Define L,,(d,0) = Jpn(d,0) — Jpn(d*, 6%) and
D, ={deD,:|d—d| <log°(n)}. (C.1)

Lemma C.3. Let vy, be a deterministic sequence such that lim,, 10g5(m)vm =0. If cfn—d* =
op(vm), then, under (Fl) with p, =0,

L (dn, 0,) = Op(m™21og(n){vm + 224" })). (C.2)

Proof. Define D, (vy,) = {d € Dy, : |d—d*| < v,,}. Note that the assumption on v,, implies that
D, (vm) C D.,. Applying (B.4), we have
0< Lm(czna én) < log{1 + Zp,(ym(d",67))} — log{1 + Zm('Ym(szén))}

Since we already know by the proof of Theorem B.1 that sup( gyepr xo Zm(Ym(dn,0))} = op(1),
it suffices to prove that

sup | Zn (@' 6°) = Za(1n(d,9))] = Op(m ™"/ log(n) v, + 21 }).
(dve)EDn('Um)XGn

Since Z,, is linear in its argument, this is equivalent to

sup | Zm{Ym(d,0%) = ym(d, 0)}
(d,0)E€Dn (vm ) xOp,
= Op(m~%log(n){vm, + 227 }). (C.3)
By Proposition ], (A.§), we only have to check that if (d, ) € D,,(vy,) X Oy, then the sequence
Y (d, 0) — v (d*, 0%) belongs to the class C(1,vy, log(m) + log?(n/m)z2,). To check this, note
first that v, x(d*,0%) = 1/m. Since D(vy,) C D), by (B.9) and (B.10), there exists a constant
C such that,

sup sup | ymn(d, 0) — Ymrr1(d, 0)] < Ck™tm ™! {vm + 22 log(n/m)} .
(d,0)eD(vm)xOpn  k=1,...,m—1

There only remains to bound v, m(d, 8) — 1/m. It is easily checked that

sup |Ym,m(d,0) —1/m| < Cm™! log(n) {vm + x?f} .
(d,0)EDn (vm )X O

Thus, for all (d,0) € D(vm) X On, Ym(d,0) € Cny(1,l0g(n){vy, + 22 }).
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Lemma C.4. Under parameterization (Hi), if pn = 0, there exists a constant C' such that for
all (d,0) € D), x ©,,

Ton(d, 0) — Jon(d", 0%) — %(m —d*,0 — 0)H, (2d — 2470 — 0"

< Clog®(n) (ﬁf +)d— d*|3) . (C.4)
where the positive definite matriz H, is defined by

e — ( Pm(0,0)  pp(0,2d7)

Proof. For brevity, we introduce more notation. Denote A = 2d — 2d* and

U =m ! Zm: log(k), A Zm: log?(k), (C.5)
k=1 k=1
An(d,6) = 3 (ox(d,6) ~ 1), Brn(d,0) = 3" (K ax(d,6) ~ 1),
k=1 k=1
k=1 k=1

Since
sup sup ag(d,0) — 1] = O(log(n/m)zp")
ke{l,...,m} (d,0)€D], xO,,

we have SUDP(4,0)eD!, x O, Ay (d, 0) = O(logQ(n/m) x%ﬁl*) and

1

— — O(log?(n/m) 2%0).

sup
(d,0)eD!, x Oy,

3 log(as(d,0)) — An(d,0) + 5Cn(d,0)
k=1

In addition, there exists a constant C' such that, for A € D/, we have

1
max ‘kA —1— Alog(k) — =A? logQ(k:)‘ < CA%log?(m).

Using the previous bounds and the inequality, for all a,b > 0, a?b < (2a*+ %) /3, we also obtain:

%Z(kA — 1)(ak(d,0) — 1) - Dm(dv 6)
k=1

< CA%log?(m) log(n/m)z" < C'log®(n) (A3 + x?f) .
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Writing now
1 & 1 & 1 &
_EZ +Ezakd9—1 +EZ (o (d,0) — 1)
k=1 k=1 k=1

we obtain that there exists a constant C' such that, for all (d,0) € D), x ©,,

‘Bm(d, 0) — Avy, — % A2 A,.(d,0) — ADy(d, 9)‘ < Clogd(n) (A3 + xf;‘j) ,
|BZ(d,0) — A%v2, — 2Av, A (d, ) — AZ,(d,0)] < Clog®(n) (A% + 250).

Thus, there exists a constant C' such that, for all (d,8) € D), x ©,,

¢

log{1 + B,,,(d,0)} — By(d, ) + %Bfn(d, 9)' < Clog®(n)(A3 4 2897,

Since Ly, (d, 0) = log{1+ By,(d,0)} — v A — L3 log{ay(d, 6)} and 2 v2 = pm(0,0), we
obtain, for all (d,0) € D], x O,:

[Ln(d,6) - %pm(o, 0)A2 — A(Dy(d, 8) — v Am(d, 0))
— A (d.0) — A2,(d,0)}] < Clog¥(n)(2 + 2.
The proof is concluded by applying the following bounds, which are uniform over D, x O,,:
|Cn(d, 0) — AZ,(d,0) — pp(2d*,2d7)(0 — 6%)?| < C'log®(n){A% + 250"}
| Dy (d, 0) — Ui A (d, 0) — pin (0, 2d°) (6% — )] < C'log®(n){A3 + 259"}
O

Proof of Theorem under (F]). For brevity, denote 72, = p;,,(0,0) and &, = Tyn/pm (0, 2d*).
Applying Lemmas and [C4, we obtain that

L (dy,0,) = %{zfm(dn —d*) + 6 (0 — 0°)}% + Op(log*(n/m)z2d"). (C.6)

By Lemmas [C.9 and [C3, we know that Ly, (dn,0,) = Op(m~/2). Assumption (B9) implies
that m~1/2 = o(22¢"). Thus

n—00

Hence 27, (d,, —d*)+0m (0 —0%) = op(2%). By Lemma [CJ limy, oo 72, = 1 and 6, = O(224"),
thus we obtain that d,, — d* = op(z%).
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Applying again Lemma [C.d, we now obtain that Ly, (dy,,0,) = Op(m~'/2log(n)z% ) = op (x>
under (B.9).

Thus, by (C4) and (Bg), we obtain that lim, .o 2% {27 (dy — d*) + 6 (0 — 6%)} = 0,
hence d,, — d* = 0p(x$’7§l*/ 2). This in its turn implies, by Lemma [C.3, that Ly, (dn,0,) =
Op(m~1og(n)zi /%),

Iterating this procedure, we obtain that for all k > 1, d,—d* = OP(x%CLl*(PTk)) and Lm(cin, én) =
*x(1_o—k

Op(m™' 2 log(n)am 2 7)),

Under assumption (B.), there exists an integer k* such that m~1/2 log(n)x#d*(lwik ) = o(1).

For this k*, Lemma implies that Lm(dn,én) = Op(xf,f*(lfﬂ )log(n)m*1/2) = op(zid).
Define k2, = 72, — 62,. By Cauchy-Schwarz inequality, £, > 2 > 0 for m > 2. Thus, applying
Lemma [C.4 we finally obtain:

{27 (dp — d*) 4 6 (O — 0} + K2, (6, — 0)? = op(x29).

And we can conclude that d,, — d* = op(22¢") and 6,, — 6* = op(1). O

Proof of Theorem under (PP)

The scheme of the proof is the same as previously, but there is one more step because of the
extra parameter involved, and because of bias terms of order z,, which appear now.

Lemma C.5. Let v, and w,, be deterministic sequences such that lim,, . logS(m)vm =0 and
limy 00 Wi = 0. If dpy — d* = op(vy,) and 61, — 07 = Op(wy,), then, under (F),

~

Lm(dn,én) = Op(m_l/2 log(n){vm, + wmx% + x%‘f*})) (C.7)

Proof. The proof is the same as the proof of Lemmal|C.3, with a more precise bound for ay(d, ) —
ap41(d,0) that is a refinement of (B.I(). More precisely, it holds that:

loe(d, 0) — o1 (d, 0)| < CEH|d — d*| + |6 — 0F |28 + 220

Lemma C.6. Under (P@), there exists a constant C' such that for all (d,0) € D}, x Oy,

Ton(d, 0) — Jon(dF, 0%) — %(2(d — ), 0y — OV (2(d — d°), 01 — 07

< Clog®(n){|d — d*]? + 23"} (C.8)
where the positive definite matrix fI;‘I is defined by

T pm(0,0) plm(oad*)
= <pm<o,d*> pé@(d*,d*)>'

m
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Define D)) = {d € D), : |d — d*| < :c“:’,il*/Q} and ©), = {0 € ©,, | [0 —0*| < x%ﬁ}. Then, under

(M),

sup | Jn(d,0) — Jp(d*,0%)
(d,0)eDy x 0!,

1 *
—5(2(d = d"),00 = 01,05 — 03) K, (2(d — d7), 01 — 01,65 — 03)'] = o(ant ), (C9)

where the positive definite matriz K, is defined by

pm(0,0)  pp,(0,d%)  pi(0,2d")
K= | pn(0,d7)  pr(dsd”)  pp,(d”,2d7)
pm(0,20°) pin(d*,20°)  pon(2d", 2d°)
Proof. Define ¢} = Re {(1 — €'®*)~%"}. Then, uniformly with respect to (d,6) € D), x Oy,
ar(d,0) — 1= {a; 9+ 0 <Ud — &+ 2] log(n)) } &%+ (03 — 02)224 + 0(37).  (C.10)

To a first approximation, we obtain ([C.§), which can be expressed in the following more conve-
nient form:

1
Lin(d,0) = S{mm(d = d*) + 67, (61 — 01)}* + SFp, (61 — 07)?

DO | —

+0 ({ld—d'P + a3 Yog?(n), (C.11)

uniformly with respect to (d,0) € D), x 6, and where we have defined 0,, = p/,,(0,d*) /7, and
kL2 = pl (d*,d*) — &% Using (C.10) again, we can improve on the previous expansion to

obtain (C.9), which can also be conveniently expressed as

Lin(d,60) = 3 {rn(d = &) + 61,(61 — 65) + (6 — 65)
+ %{pm(al — 07) + (02 — 03)}% + %an(@ — 03+ o (an), (C12)

uniformly with respect to (d, ) € D!! x ©!,, where pi,, is of order % | and (,,, ¥, and Y., are

of order 224" (and an exact expression of these coefficients would not be helpful). O

Proof of Theorem [3.3 under (PB). As previously, the first step is to note that Lemmas [C.9
and [0 imply that L,,(dn,0,) = Op(m~'?) = op(z,;?¥") under (§-). This, Lemma
and (C.11) imply that d,, — d* = op(z%) and 61, — 0f = op(1). This implies that the last
term in (C11) is actually op (239" log®(n)). This and Lemma imply that Ly, (d,,0,) =
Op(m=?log(n)z%) = op(z3?") under (B:9). Hence, by considering again (C.11)), we obtain
that d,, — d* = op (> /%) and 10 — 07 = op(z8/?). Knowing this, we can now use (C13) and
proceed iteratively as previously to conclude the proof of Theorem .9 under (Pf). O
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D Proof of Propositions @1 and

We outline the proof of these propositions under (PP), the proof under (Pfl]) being exactly the
same with one less parameter.

Proof of Proposition [[.]. Define

Syn(d, 6) Zak (d,0)k*724 &, Up(d,0) = mSp(d, 0)V J,(d, 6),
k 1
e dgh(d, 0, xy) 1” dgh(d, 0, x;)
=21 —2m™ 1)1 S Oah(d,6,z;)
%0(d,0) = 2log(k) = 2m Zl R Z 1+ h(d,0,x;)
89 h(d 0 mk _1 d 0 1‘@ .

Gin(d,9) = 2 DTk =1,2
ik(d,0) = 1+ h(d, 0, 2r) Z1+hd9w) TS

Ni(d,8) = (80,15 01,k, 02,k
N = Np(d*,0%), S5 = Sp(d*,0%), U = Up(d*,0%).

With these notations, mD};~'V.J,,(d*,0%) = (S%,) 1D ~'U% and U, = S0, NiE. We will
prove that S¥ tends to 1 in probability and that D: U is asymptotically Gaussian with
covariance matrix I'*.

The proof of the asymptotic normality of D, 'U}, is classically based on the so-called Wold
device. We must prove that for any = € R3, 27D ~1U* converges in distribution to a Gaussian
random variable with mean zero and variance z”T*z. Define

m m
to(x) = ("D TIND?, enn(z) =, (2)a" DTN, and T =) cnp(@)En
k=1 k=1

Using this notation, we have ﬂ:TD;;_lU;; = t,(z)T),, and it suffices to prove that T}, is asymptot-
ically Gaussian with zero mean and unit variance and that lim,, s tn(uv)2 = 2TT*z. This last

property is obtained by elementary calculus (approximating sums by integrals) and its proof is
omitted. To prove the asymptotic normality of 7T;,, observe that

max |en(2)] = Olog(m)m™"/2) and ep(2) = en s ()] = O 'm™'1%).

Hence (F.17) and ([A.§) hold and we can apply Proposition [A.9 to prove that T}, is asymptotically
standard Gaussian.

We conclude the proof by checking that S}, tends to 1 in probability. In view of the proof
of Proposition 1., we will actually prove that S,,(d,6) converges to 1 in probability uniformly
with respect to (d,#) € D, x ©,, where D/, is defined in ([C.]). Using the notations of section fi,
we can write

Sm(d7 0) = % i aj(dv 6)j2d72d* {1 + Zm(’Ym(CL 0))}
j=1
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By proposition A1, Z,,(vm(d,8)) converges in probability to 0 uniformly with respect to (d, 0) €
D), x ©,,. Moreover, on this set, it is easily seen that % S faey (d,0)7224" converges uniformly
to 1, and this concludes the proof. O

Proof of Proposition [[.3. We must prove that mD}~ 2, (d,0)D: =1 converges to I'* uni-
formly with respect to (d,0) € D], x O,,. Using the notations introduced above, we have

mV Jp(d, 6) 12]\@ d, 0) o (d, 0)k24724" &,
k=1

Hence

mV2J,(d,0) = S} (d, H)iNk(d,H){V(ak(d, 0)k2I 22 g,
k=1

+ 57711 (d7 6) Z VNk(d7 H)Qk(d, 0)k2d_2d* gk:
k=1

m
— 8., 7(d,0) > Ni(d, 0)ag(d, )R> E,(V S, (d, )"
k=1
=: 5;.1(d, 0) My ,(d,0) + S;, ' (d, 0) Mo, (d, 0) + S, 2 (d, 0) Ms . (d, 6).
Since we already know that S;.!(d,#) converges uniformly to 1, we only need to prove that
D;flMLnD;‘fl converges in probability to I'* uniformly with respect to (d,6) € D/, x ©,, and
that D~ 'M,, D' and D} ' My, Di~! converge to 0. We will prove only the first fact, the
other being routine applications of the same techniques.

Denote M ,,(d,0) = (Ml(lnj)(d7 0))o<ij<2- Fori=0,1,2, let D}, be the i-th diagonal element
of the matrix D}. For j = 1,2, we have:
8«9jh(d7 07 .%'k)
1+ h(d, (9, .%'k)

Hence for i =0,...,u and j =1,...,u, we have

8.9]0%(6[,(9) = — Oék(d,(g).

J) < 2d—2d*
(d,0) § 0in(d, 0) 22—y (d, O)k &y
— Tk 1+h(d9xk) ax(d, ) k

Since Yyt d;x = 0, we obtain:

DD M), 0) = —D; D> IZM (d,0)5;1(d, 0) (D.1)
k=1

1D 1 h( 2d—2d -1 D9

}:&kd01+hmexw(k o (d,6) ~ 1) (D2)

Op;h(d, 0, 1)

m(d, 9)k2d_2d* ar(d,0)(& —1). (D.3)

— D D> 6 k(d, 6)
k=1
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It is easily seen that the term on the right hand side of (D.1) converges to the (i,j) entry of
the asymptotic covariance matrix I'*. Since d € D), and |D;;5i7k| < Clog(n)m=12, we easily
obtain that the term (D-2) is O(log®~*(n)). The term ([D-J) can be expressed as —Z,,(c;(d, 6))
with

Do, 1(d, 0, 1)
1+ h(d,0,xy)
It can be checked that for all (d,0) € D;, x Oy, ylcmk(d,0) — cpmit1(d, 0)] < C'log?(m)m~1k~"
and | (d,0)] < Cm~L. Thus, for all (d,0) € D), x ©,, the sequence c¢,,(d,6) belongs to the
class Cp(1, K) for some constant K and we can conclude by applying Proposition [A.] that
SUD(4,0)e D/, x0,, Zm(cm(d,0)) = op(1).

We now consider the derivatives with respect to d: dg(ax(d,0)k*3 24" = ppag(d, 0)k>4—2¢

Cm,k(d’ 9) = D;ﬁD;rlL(;z,k(d’ 9) (da H)k:Zd_Qd* ak(d’ 9)

with g = 2log(k) — %. Hence,
D DG MY (d,0) = DEDG L > 61.(d, 0)d0,1(d, 6) (D.4)
k=1

+ D DGL ST 0kl 0) ke (K7 0y (d,0) — 1)
k=1

+ DD 6k (d, 0) o (d, )R g (d, 0)(E;, — 1).

k=1
As previously, the first term on the right hand side of (D.4) converges to the (0,i) entry of T'*
and the other terms tend to 0, uniformly with respect to (d,8) € D), x ©,,. O

E Proof of Theorems 5.1 and

We already know that the standard GSE in consistent if d* € [0,1). In order to prove the central
limit theorem, we must first strengthen this result by proving a rate of convergence, as originally
shown by Robinson (1995b). Hereafter, we omit the superscript in cZ,SO). Under the assumptions
of Theorems .1 and .9, we can apply the second part of Proposition A1, (2.iii) or (2.iv). Thus,

noting that in the case under consideration here the remainder term R,,,, is identically zero,

(B-7) becomes:

0< (dp —d")?1p,, (dn) <2¢7F  sup  |log{l + Zy(ym(d,0))} = Op(m~"/?).
(d,0)€D2,, xO

Thus, d, — d* = Op(mfl/ 4). We now briefly recall the way to prove the central limit theorem,
since it is very standard and only uses a Taylor expansion and Propositions and [A.3. Since

A~

d, is consistent, with probability tending to one, it satisfies

0= 8jm(dn) _ 22?:1 chZn 10g(k)IX’k — 2v,
ad >y K2 Ix g "
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where v, is defined in ([C.§). This implies, by a Taylor expansion

m m

0="> k" (log(k) — vm)Ixk + 2(dn — d*) > _ k™ log(k)(og(k) — vim)Ix
k=1 k=1

where d,, lies between d,, and d*. Define ¢, = (Cm k) 1<k<m, With ¢y = {log(k) — v }/Tm,
2 =m 1Y {log(k) — vm}? and

m
7 * I
Trn :T;Ll g f2dn—2d log(k) cm,k—fx’k.
k=1 Xk

Then Tm(Cin —d*) = —%T,;lzm(cm). It is easily seen that the sequence of weights ¢, satisfies
assumptions (A.7]) and (A.§), so that Z,,(c,) converges weakly to the standard Gaussian dis-
tribution. Because of the m~'/* consistency of d,,, applying Proposition [A.l], we obtain that

T, converges in probability to 1. Finally, lim,, ..o m~'72% = 1, which concludes the proof of

Theorems .1 and .3

F Proof of Propositions [A.T and
We start with a simple lemma which we often use to prove that certain sums are o(1). In the
sequel ¢, C' denote numerical constants whose values may change upon each appearance.

Lemma F.1. Let (t;)i>1 be a square summable sequence. Let (¢p, i )1<k<m be a triangular array
such that

m
Zc?nk =1 and lim max |¢,k|=0. (F.1)
’ m—o0 ke{l,...,m} ’
k=1
Then,
m
mlgnoo l; Cm itk = 0.

Proof. Split the sum at some ¢ < m to be fixed later and apply the Cauchy-Schwarz inequality
to the sum extending over k > ¢:

1/2

m
D lemslltil < fmax |tel max fem sl + | Dt
k=1 k>t

These last two terms are simultaneously o(1) as soon as the sequence ¢ = £(m) tends to infinity
in such a way that lim (¢ max<g<m |¢mx|) = 0. This is possible under (F.J)). O
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We now state without proof some results about the approximation of the DFT ordinates of
the linear process {Y;}, renormalised by a proxy for the spectral density, by the DFT ordinates
of the white noise {Z;}. These results are more or less straightforward adaptations of existing
proofs for similar results. See, for instance Robinson (1995b), Velasco (1999b), Hurvich and
Chen (2000).

Lemma F.2. Assume (Hf), (HP) and (HB). Define ar, = /2 f5-(0)(1 — e®k)~4v . There
exists a constant C' such that for all k,j < 9n/m,
E [|dyx/ar — dzxl*] < C{log(k)k™" + (k/n)"}. (F.2)

Assume moreover (HH) and (HE). Let m be a sequence of integers that satisfies (A.4) and let
(Cmk)1<k<m 18 a triangular array of real numbers such that

m —-1/2
. 2 .
lim ( Cm,k) max [ep,p| =0, (F.3)
k=1 ==
Then
E Zcm,k(i’“— )]z {ka} , (F.4)
k=1 Frk k=1
m m 1/2
E [ > cmuldyrdyy/ar — Pnan/(%)}u =0 {Z ank} : (F.5)
k=1 k=1

We now deal with the terms involving the white noise sequence {7;}. Recall that we have

defined fx = x> {1+ h(d*, 0%, x)}, with h as in (P[]), (P[]) or (PR).

Lemma F.3. Assume (Hfll), (HR) and (HB)) and d* € (0,1). Define fy = x,?Qde}*,(O). Then
there exist constants Cy and Co such that

?|

with C1 = 0 in the stationary case.

Ixk  Ivi
Ixke Ty

] < C1EY + Co(k/n)T (F.6)

Proof of (F-4), stationary case. d* = dy € (0,1/2). Write:

Ixkp  Ivk _ Iye  Ivg n 2Re (dyxdy k) n Ly i
fxk  fre  fxk  fyk Ixk fxk

vk fxr vk | 2\ vk dyr -

= Re dpg | + =25
Ixk  frk Ixk <\/fyk M) Ixk

Since E[ly 1/ fyx] is uniformly bounded and |fx /fyx — 1| < Cz¢ in the stationary case, under
the three parameterizations, we obtain ([F.6) in the stationary case. g
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Proof of (F-f), nonstationary case. In the nonstationary case, extra terms appear. Recall that

Uy =3"_,Ys. Then

1 n t 1 n n dYk eixk Zn Y.
d _ Y. eitl‘k _ Y. eitl‘k _ ok o s=1 : s ’
O Vo 22 % V2 ; : tZ L—cm  \/2rn(1 — eior)

t=1 s=1
Iy = Iyg 2Re(e*dy) > gy Vs (et Ys)2
v |1 — etrx|? V2mn|l — el®k|? 2mn|1 — elvk |2’

Ix = Iy + 2Re(dypdy i) + Lk

= Iyr 2Re(erdyk) > gy Vs (> 5/:9)2
1 —eiwn|? V2|l — ek |2 2|1 — ei®x |2
dyy - itk Yoo Yy -
+ 2Re (1 —ier dn,k> — 2Re <\/%(1 = eimk)d"’k + 1y g
Hence,
Ixk vk _ Ivik ( Frn B 1)  2Re(erdy ) 30, Vs (Xt Y,)?
fxe  fre Sy \J1—e 2 fx V2mn|l —elok|2fy . 2mn[l —el®k |2 fx

2dy - 2elk Zn—l Y, - I
+Re| ——————d - R . d + 2= (F.7
¢ ((1 — emk)fx,k n,k) ¢ <\/ 2mn(1 — ew’@)f)gk r fX,k ( )

Straightforward variance computations yield (cf. Taqqu (2003), Proposition 4.1), for dy €
(—=1/2,0), that

n 2
E (Z Y) < Op?dr+t, (F.8)
s=1

Also, in the nonstationary case, fx r = x;Q fye(L+O(24")) under the three parameterizations,
thus

I I
E Hﬂ _ Yk ] < C <(k:/n)1+dy + kdy + dey + (k‘/n)H'dY
Ixnk o frk
Y (k) T (/)P ) < O (K (/) )
This proves ([F.d) in the nonstationary case. O

Lemma F.4. Under the assumptions of part 2 of Proposition [A.1,

Pt Ixke  frk

lim E
n—oo
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Proof of (F.9) in the case d* € (0,1/2).

Ixg Ivi  fyve— fxp (Im > 2 ( {dm - })
e ’ = 1)+ —Relar{ —=d, . — p,0 F.10
fxr  frk fxk frk fxk PLap ™ P ( )
9 9
Xk Ix

Note that either fy; — fyx = 0 under (P) or fx i — fyx = O(z¢") under (Pfl) or (PQ). Hence
the terms in (F.10) and the first term in (F.1]) are bounded by applying Lemma [F.2 and (F-4)
with Iz instead of Iy y/ fyx. Consider now the last term in ([F.11)). Under (Pfl) with p, =0 or
(PR), it is actually zero. Under (Pfl), it is of order a2, if p, # 0 and 224" if p, = 0. To conclude
the proof, note that, by the Cauchy Schwarz inequality, > ;" ¢y ) = O(m *1/2p=7).

O
Proof of (E.9) in the case d* € [1/2,3/4). Starting from (E.7), we write:
Ixk _ vk
Ixk  frg
d - 2
= — e . .
|1 —ele |2 fx p, frk (1 —er) fxk fxk
2
. n .
B 2Re(erdy ) >0 | Ys (23:1.}{9) _ e< 20k >0 Vs i k) (F.13)
V2mn|l —elek|2fy , 2mn|l — el |2 fx Vorn(l —eln) fx g "
11— ek |2 fyp + 2pno',7Re<ak(1 - ei”)‘l)/(%) +07/(2m) = fx
+ . (F.14)

fxk

Under all three parameterizations, |1 —e'®*| 2 fy;/fxr —1 = O(x") at worst. Hence the terms
in (F.12) are dealt with using Lemma [F.9 as in the stationary case. We only consider the terms

appearing in (F.13) and (F.14).
Consider the first term in (F.13), say R,. Define &, = n% ¢, kel ay/(2m|1 — @2 fy 1),
Rui =) 1y Cmk (\/ 2rdy . /ar — 27TdZ,k) and Rpo =Y /" CmipV2mdz ). Then

Ry =n"""" 3"V, (Rpy+ Rn2).

s=1

Applying (F-§) and the Hélder inequality, we obtain
EllRall < € (EY2[R2,) + EV2(R2 ).

Since Z satisfies assumption (HH) and |G, x| < C'|cpmx|k?Y, then by Lemma [F.I], we obtain:

E[R2,] < O3 2 k™ = o(1).
k=1
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Applying (F-2) and the Cauchy-Schwarz inequality, we have:

m 2 /m
E[R )< C (Z |cm,k|k2dy> (Z emal {K71 + <k/n>ﬁ}>
k=1 k=1

Since d* € [1/2,3/4), thus dy € [~1/2,—1/4) and the series k?¥¥ is square summable. Hence,
by Lemma [, 300, emklk?? = o(1) and Y 7" |emilk™t = o(1). Moreover, under either
B or B.3), Y5 lemrl (k/n)” = O(m *2n=F) = o(1) . Thus, E[R}. 1] = o(1).

The other terms in (F.1J) can be dealt with straightforwardly. Applying the bound (F.g), we
get

1/2

i || E [ (ZZZI-YS)Q

— 2mn|1 — el |2 fx

by Lemma [F.1]. Since 7 satisfies (HH)), applying (F.§) and the Holder inequality, we bound the
last term:

. 2
Em: cm kRe 20 Y Vo dop 1
el i vV 27rn(1 — eix’“)f)gk K

< Cn?&E

<Oy lempl KM =o(1)
k=1

E

m cmkeimk B o i
2 T ey k| | S O m/m)T = o(1).

k=1

Finally, consider the term in (F-14). Since |z7[1 — €'®*|72 — 1| < Ca?, it is under (P[]) of order
z¢" if p, # 0 and of order 227 if p, = 0; and under (Pf]) with p, = 0 or (PQ) of order z7. Thus
we obtain Y " | ¢ Tnk = o(1) under condition (A.§) or (A.4) respectively. O

We gather some of the previous results in the following corollary.

Corollary F.5. Assume (Hfll), (HP)) and (HB)) and d* € (0,1). Then

Z<f7 — 27TIZ_]) < C'log(k) {log(k)l{d*<1/2} + kd*l{d*21/2} + (k’/”)ﬁAd* k} . (F.15)

Assume moreover (HH) (HE) and either (2.1), (2.4) or (2.1ii) of Proposition [A.1, then, for all
k <m,

k
Z fxhIx;—1)|| < CEV? (F.16)
We now consider the case d* = 0.
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Lemma F.6. Under the assumptions of Theorem [5.3, denote

€ — \/QWf;(O)Zk + 77]g.

21 % (0)

with f%(0) = f3(0)+2\/f5(0)/(27) ppoy+07/(2m). Let m be a sequence of integers that satisfies

(A4) and let (cpk)1<k<m be a triangular array of real numbers such that

m
k=1 (F.17)
k=1

lim max |k = 0. (F.18)

m—00 1<k<m
Then, for all k < m,

k
E 1> {Ix;/fx(0) = 1}|| <CK'/?, (F.19)

j=1

lim E || epmr {Ixp/fx(0) zwfg,k}] =0. (F.20)
k=1

Proof. Note first that & satisfies (HR), with cov(Z, &) = 1+ pyoy, /(27 f5(0)) and (p.9) implies
that (B.§) holds with

cum(Zy, Zy, &s, &) = cum(Zy, Zo, Zo, Zo) + 27v/+/ 27 f5(0) + £/ (27 f1-(0)),
if s =t =wu=wv and 0 otherwise. Write now:

Ix g — 21 fx (0) e = |dy g + dyr|? — 275 (0) ¢ 4

dy7k — 1 /QWf;(O)dZJg + 1 /27Tf;((0)d§7k
2
dy — /27 f3(0)dz k| +24/27f%(0)Re (dg,k {dng — 27rf;;(0)dz,k}> . (F.21)

The assumptions on {n;} ensure that {;} has the same properties and the same relation to {Z;}
as {n:}, with possibly different values of the constants. Thus, the same arguments as above can
be applied. [l

2
— 271 f% (0) I¢ 1

We conclude the appendix by proving Propositions [A.]] and [A.3.

Proof of Proposition [A_]. The idea of the proof is adapted from Robinson (1995b). It is based
on summation by parts. Define ry = Ix i/ fxr — 271z and s = nt Zlgs;étgn elt=s)ze 7 7,

35



Then for any ¢ € R™,
n

m m
=Y =Y (ZF =1+ arlrk+s1) = Z1m(c) + Zam(0).

k=1 t=1 k=1

S|

By (A.J), for all € € (0,1), there exists C such that sup,, SUDcec(e,K) Yoy lex] < CK. Thus
SUPccc,, (e, k) | 21,m(c)| = op(1) under (H).

By (B.2), there exists a constant C such that for all k = 1,...,m, E[(ZJ 1 85)?] < Ck. Thus,
by summation by parts, (F.15) and the definition of the class C (e, K), we obtain

m—1 k m
E| sup |Zg7m(c)|] < Km™¢ Z k<R Z ri+si)| | + EKm~ Z i+ 5;5)
c€Cm (e, K) k=1 =1 =1
m—1
<CKm™ ¢ Z k<2 log(k) {k‘d*v% + (k/n)Prd k:} + CK log(m) {m(d*v%)fl + (m/n)md*}
k=1

< CKlog(m) {m*m(lfd*v%) log? (m) + (m/n)md*} = o(1),

where 6 = 1 if e+ (d* V l) = 1 and zero otherwise. This proves the first part of Proposition [A.]].

Under the assumptions of part 2 of Proposition [A.]], we have E HZ] 1 fX]IXj )H < CVk,

by Corollary [F.§ in the case d* > 0 or by Lemma [F.f in the case d* = 0. Thus, applying
summation by parts as above now yields, in both cases,

m—1 k | m |
E| sup |Zn(0)]| <Km™€ k2R <£ — 1) + Km™'E (ﬂ - 1)
clm(eK) 1; ; Ix. ; Ix.
m—1
< CKm™ ¢ Z k32 4 CKm™Y? < CKm Y2 1og? (m),
k=1
where § = 1 if € = 1/2 and zero otherwise. O

Proof of Proposition [A.3. Since (A.§) implies (F.1§), we can apply Lemmas and [F.4, and
we obtain that » ", cmk{f;’lkIX’k —2rle i} = op(1), with ¢ = Z or ¢ = £ The proof of
the asymptotic normality of > )" | ¢ 1l can be done along the lines of the proof of Theorem
2 in Robinson (1995b). The proof there is done for the special case ¢, = m~/?{log(k) —
m~! > j=1log(4)}, but only uses (HH) and condition (A.§). O
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Table 1: Bias, standard error (SE), and root-mean-squared error (RMSE) for semi-parametric
estimators of d* in the LMSV-ARFIMA(1,0.40,0) model with ¢ = 0.8

n = 1000

m = [nﬁ] m = [nj m = [nS}

GPH AG LW GPH AG LW GPH AG LW

Bias | -0.114  -0.071 0.023 | -0.173 -0.076  0.036 | -0.234 -0.115 0.079

nsr =295 SE | 0.097 0.210 0.177 0.066 0.135 0.166 | 0.051 0.091 0.148

RMSE | 0.149 0.222 0.179 0.185 0.155  0.170 | 0.240 0.147  0.168
Bias | -0.195 -0.135 -0.003 | -0.241 -0.158 0.009 | -0.289 -0.194 0.046

nsr = 10 SE | 0.093 0.200 0.221 0.065 0.132  0.206 | 0.050 0.092  0.190

RMSE | 0.216 0.241 0.221 0.249 0.206  0.206 | 0.293 0.214  0.195

n = 5000

m = [n%] m=[n" m = [n%]

GPH AG LW GPH AG LW GPH AG LW

Bias | -0.079 -0.049 -0.007 | -0.122 -0.064 -0.004 | -0.197 -0.087  0.049
nsr =295 SE | 0.053 0.107 0.098 0.037 0.068 0.078 0.031 0.044  0.062
RMSE | 0.095 0.118 0.098 0.127 0.093 0.078 0.199 0.098  0.079
Bias | -0.148 -0.085 -0.008 | -0.200 -0.124 -0.011 | -0.262 -0.168  0.031
nsr = 10 SE | 0.054 0.108 0.128 0.036 0.067 0.103 0.032 0.043  0.079
RMSE | 0.158 0.138 0.128 0.203 0.141 0.104 0.264 0.174  0.084

n = 10000

m = [n'] m=[n"| m = [n%]

GPH AG LW GPH AG LW GPH AG LW
Bias | -0.071 -0.044 -0.009 | -0.106 -0.061 -0.017 | -0.182 -0.080 0.037
nsr =295 SE | 0.042 0.082 0.076 0.027 0.052 0.059 0.025 0.032  0.044
RMSE | 0.083 0.093 0.076 0.109 0.080 0.061 0.184 0.086  0.058
Bias | -0.133 -0.073 -0.007 | -0.184 -0.115 -0.016 | -0.251 -0.158 0.022
nsr = 10 SE | 0.043 0.086 0.102 0.029 0.051 0.074 0.027 0.033  0.056
RMSE | 0.140 0.113 0.103 0.186 0.126 0.076 0.252 0.161  0.060
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