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ABSTRACT

This study focuses on improving the retrieval of rain from measured microwave brightness temperatures
and the capability of the retrieved field to represent the mesoscale structure of a small intense hurricane.
For this study, a database is constructed from collocated Tropical Rainfall Measuring Mission (TRMM)
precipitation radar (PR) and the TRMM Microwave Imager (TMI) data resulting in about 50 000 brightness
temperature vectors associated with their corresponding rain-rate profiles. The database is then divided in
two: a retrieval database of about 35 000 rain profiles and a test database of about 25 000 rain profiles.
Although in principle this approach is used to build a database over both land and ocean, the results
presented here are only given for ocean surfaces, for which the conditions for the retrieval are optimal. An
algorithm is built using the retrieval database. This algorithm is then used on the test database, and results
show that the error can be constrained to reasonable levels for most of the observed rain ranges. The
relative error is nonetheless sensitive to the rain rate, with maximum errors at the low and high ends of the
rain intensities (�60% and �30%, respectively) and a minimum error between 1 and 7 mm h�1. The
retrieval method is optimized to exhibit a low total bias for climatological purposes and thus shows a high
standard deviation on point-to-point comparisons. The algorithm is applied to the case of Hurricane Bret
(1999). The retrieved rain field is analyzed in terms of structure and intensity and is then compared with the
TRMM PR original rain field. The results show that the mesoscale structures are indeed well reproduced
even if the retrieved rain misses the highest peaks of precipitation. Nevertheless, the mesoscale asymmetries
are well reproduced and the maximum rain is found in the correct quadrant. Once again, the total bias is
low, which allows for future calculation of the heat sources/sinks associated with precipitation production
and evaporation.

1. Introduction

The Tropical Rainfall Measuring Mission (TRMM)
offers a unique instrumental design with a 220-km-wide
common swath for the TRMM Microwave Imager
(TMI) and the precipitation radar (PR). On the one
hand, the TMI measures nine brightness temperatures
(TB) at five different frequencies: 10.65, 19.35, 21.3,
37.0, and 85.5 GHz (hereinafter referred to as 10, 19, 21,
37, and 85 GHz). The measurements are made at both
horizontal (H) and vertical (V) polarizations for all but

the 21-GHz channel, which is the only vertical channel.
On the other hand, the TRMM PR operates at 13.8
GHz and provides vertical profiles of reflectivity (Z,
dBZ) that can be converted into rain-rate profiles (R,
mm h�1). Viltard et al. (2000) performed a series of TB

simulations from TRMM PR–derived profiles and com-
pared these simulated brightness temperatures with
those observed. The first study demonstrated good con-
sistency between the TRMM PR and the TMI obser-
vations. This allowed them also to test the quality of the
radiative transfer simulation and its sensitivity to rain-
drop size distribution. The study showed that the drop
size distribution (DSD) has an impact on the simulated
brightness temperatures that is comparable in magni-
tude to effects of the melting layer and subgrid-scale
effects.
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The melting layer is addressed in some studies using
forward radiative transfer in the presence of melting
particles to quantify the impact of neglecting these par-
ticles in the stratiform regions (Bauer et al. 2000, Olson
et al. 2001). These studies showed the complexity of a
proper description of the melting phase due both to the
lack of knowledge on the melting processes themselves
as well as poorly known ice-phase microphysics. The
second issue was addressed by Harris and Foufoula-
Georgiou (2001). They showed that a radiative transfer
calculation performed at 3-km resolution, like most
cloud-resolving model simulations, could lead to impor-
tant biases resulting from the improper representation
of subgrid contribution.

Nevertheless, from Viltard et al. (2000), it appeared
possible to achieve good consistency between TRMM
PR–observed rain parameters (rain rate or water con-
tent) and the corresponding observed brightness tem-
peratures. Consistency between TMI and TRMM PR
measurements is a very important issue allowing for
new approaches in building and validating rain retrieval
algorithms. Because the retrieval problem is ill posed,
most retrieval methods rely on an a priori database that
reduces the space of possible solutions to only those
that are physically plausible. The retrieval algorithm
itself either looks for the most probable rain rate inside
the database from the measured brightness tempera-
ture vector, or it works as an interpolation function
from the space of measured brightness temperatures to
the space of possible surface rain rates. The first type of
approach is used in Bayesian algorithms such as the
Goddard profiling algorithm (GPROF) (Kummerow et
al. 1996; Olson et al. 1996), or its operational version
known as the 2A12 algorithm (Kummerow et al. 2000,
2001). It is also used in the PR-adjusted TMI estimation
of rainfall (PATER) algorithm (Bauer 2001a,b) and the
algorithm described in Panegrossi et al. (1998), now
known as the Bayesian algorithm for microwave pre-
cipitation (BAMPR). The second type of technique is
an application of artificial neural network techniques as
in the work of Moreau et al. (2002).

The original idea in this paper is to use the data from
the TRMM instrument package to build a database
from collocated observation of surface rain rate and
brightness temperatures. The TRMM PR measures the
reflectivity profiles while the TMI measures the emerg-
ing brightness temperatures nearly simultaneously for
the same region of atmosphere. The reflectivity profile
is converted into rain rate and averaged spatially to
match the location and spatial resolution of the 37-GHz
pixels. This allows us to build an arbitrarily large data-
base for which all the channels can be used in the re-
trieval process. This primary database is then split in

two subdatabases. The first one is the retrieval data-
base, used for the retrieval itself. The second one is the
test database used for the assessment of the algorithm
performance.

The algorithm presented here can provide a rain es-
timate above both land and ocean because the principle
used to build the databases is not dependent on the
type of surface. Nevertheless, the land surfaces offer a
much more complex situation where only 85-GHz
brightness temperatures can be used, leading to the de-
velopment of a very specific retrieval scheme. For the
sake of simplicity we will only present and discuss the
performances of the algorithm in the “simple” case of
ocean surfaces.

Section 2 is dedicated to the TRMM PR and TMI
data processing. It details the steps necessary to per-
form the collocation and scaling of the TRMM PR data
into the TMI field of view to go from TRMM PR–mea-
sured reflectivity to surface rain rate. Section 3 details
the database built from the collocated data and the
principles of the associated Bayesian-based algorithm.
This section also gives an estimate of the algorithm
performance. Section 4 presents the results obtained
for Hurricane Bret observed in 1999. Section 5 presents
the conclusion and perspectives of this work.

2. TMI–PR data processing

a. Collocation of TRMM PR and TMI data

The TRMM PR is a cross-track scanning radar (�17°
off nadir), projecting an almost- regular grid at the
earth’s surface with a pixel roughly every 4.5 km in both
the cross- and along-track directions. The TMI is a coni-
cal scanning instrument with a constant incident angle
at the surface (52.8° for the beam centers), but the pixel
size depends dramatically on the frequency. The dis-
tance between two pixel centers in the same scan is 9.1
km at the low frequencies while the distance between
two scans is about 13.9 km. Both instruments are ex-
tensively described in Kummerow et al. (1998). The
matchup is performed in latitude–longitude space
rather than pixel scan positions in order to account for
subtle variations in the relative pixel positions associ-
ated with the satellite attitude.

Only the 29 TRMM PR pixels from the center of the
swath are kept, minimizing the risks of erroneous rain
rates resulting from poorly corrected surface echoes
and the bias resulting from the shadow zone at the
edges. The resulting swath where TMI and TRMM PR
data are collocated is reduced to about 125 km. The
chosen final resolution for the algorithm is similar to
the GPROF or 2A12 algorithms (Kummerow et al.
(1996, 2001) which is about 12.5 km. Within such a
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circle, there are about 10 TRMM PR pixels. The rain
rate associated with these 10 TRMM PR pixels is sim-
ply averaged, and this represents the rain rate at the
37-GHz pixel resolution. The conversion of TRMM
PR–measured reflectivity into surface rain rate requires
a detailed explanation and is described in the next sec-
tion.

b. Conversion of TRMM PR reflectivity to surface
rain rate

Conversion of the reflectivity factor (Z) measured by
the TRMM PR to rain rate (R), taking into account the
attenuation (k), is a key issue for our approach. Be-
cause the relationship between R, k, and Z are power
laws and depend on the drop size distribution charac-
teristics, a small change in the coefficients might have
an important impact on the results. The standard 2A25
algorithm (version 5) provides a high-quality rain esti-
mate (Iguchi et al. 2000). In this study, we decided nev-
ertheless to use an alternate estimate for the TRMM
PR rain rate based on Ferreira et al. (2001) and to use
the normalized approach for the DSD as proposed by
Testud et al. (2001). Such a combination of approaches
was already used in Viltard et al. (2000) and proved to
be very convenient and robust.

Using the normalized DSD, the number of drops of a
given diameter D of any Gamma-type of distribution is
given by

N�D� � N*0��D, �� exp���3.67 � ��
D

D0
�, �1�

with

��D, �� �
��4�

3.674

�3.67 � ��4��

��4 � �� � D

D0
��

, �2�

where � is the shape coefficient of the distribution. The
parameter � is set to 3 in the present study to be con-
sistent with the DSD hypothesis used in the 2A25 stan-
dard algorithm (Iguchi et al. 2000). Here, D0 is the
median drop diameter defined as D0 � (3.67 � �)/�.
Note that N0* identifies with the classical Marshall–
Palmer exponential-type distribution intercept N0 for
� � 0.

Using N0* allows us to write the power laws that link
R, Z, and k as

k � �N*0
�1���Z�, �3�

R � aN*0
�1�b�Zb, and �4�

R � cN*0
�1�d�kd, �5�

with d � b/	 and a � c
d. The a, b, c, d, 
, and 	
coefficients are set according to the chosen drop size

distribution. Numerical values for a, b, c, N*0 , and d are
given in Table 1. The given coefficients are based on
data collected around the globe and during the Tropical
Ocean and Global Atmosphere Coupled Ocean–Atmo-
sphere Response Experiment (TOGA COARE) as
presented in Kozu et al. (1999) and Ferreira et al.
(2001). Because of the normalized approach, a, c, and 

are independent from �, and b, d, and 	 are only
weakly dependent on �.

A study was conducted by Ferreira et al. (2001) on
the sensitivity of the set of power-law equations [Eqs.
(3)–(5)] to the uncertainties of 
, a, and c and on the
radar calibration. They showed that given a well-
calibrated radar, the more stable relationship would be
Eq. (5), provided that local variations of N*0 in Eq. (3)
could be accounted for through the use of the relation
� � �N*0

(1�	) � f . The f coefficient is generated by the
surface reference technique as proposed by Meneghini
and Nakamura (1990) and is used in the 2A25 algo-
rithm (Kozu et al. 1999, Iguchi et al. 2000). This as-
sumption is valid for rain situations in which attenua-
tion is strong enough for the surface reference tech-
nique to apply. Combining the above elements and the
set of Eqs. (3)–(5), Ferreira et al. (2001) showed that
the best estimate for R would then be

R � �f
dcN*0

�1�d�kd, �6�

provided that f is indeed close in average to unity. If d
and c in Eq. (6) are set in the algorithm only once
(depending on the radar bin altitude and the type of
precipitation), f varies and is computed for each of the
radar pixels. The set of coefficients of Table 1 are used
accordingly for convective and stratiform situations as
given by the rain type provided in the TRMM standard
products.

The TRMM PR data exhibit a region with no useful
reflectivities below 1.5 km on the edges of the swath
because of ground clutter. Below this level, the rain is
assumed to increase linearly to the surface. The surface
rain is set at 1.1 times the 2-km rainfall. This procedure
reasonably replicates rainfall profiles in the operational
TRMM algorithm. One notices that the set of relations
in Eqs. (3)–(6) are self-consistent and the difference
between the “best” R estimator in Eq. (6) and the R
from straight use of Eq. (5) only depends on how close

TABLE 1. Values of power-law coefficients of Eqs. (5), (4), and
(3); N*0 : 106 m�4.

aN*0
(1�b) b N*0 c d

Convective 0.040 24 0.6434 15.66 26.5440 0.8342
Stratiform 0.022 82 0.6727 7.42 23.3358 0.8490
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to unity the parameters d and f are in Eq. (6). In an
ideal situation, the power-law relationship set in the
2A25 algorithm would be valid everywhere around the
globe and f would be equal to unity at all times. In the
2A25 algorithm, two main DSDs are used: one for con-
vective cells and one for stratiform regions.

The convective and stratiform (C/S) classification is
given as a standard product in 2A25. The classification
(actually issued in the 2A23 algorithm) is presented in
Awaka (1998) and uses both a horizontal texture indi-
cator (Steiner et al. 1995) and a brightband detection
criterion. The definition might therefore slightly differ
from what is currently accepted as “convective” and
“stratiform” rain, based on dynamic criterion.

c. Processing of the TMI channels

The spatial resolution of the TMI channels varies
from 7 km � 5 km at 85 GHz to 37 km � 63 km at 10
GHz. This raises a problem in terms of field-of-view
characteristics: the average rain rates within an 85-GHz
pixel and the corresponding 10-GHz pixel can be com-
pletely uncorrelated. Also, it was observed that the 85-
GHz channel is substantially nosier than the lower
channels, either because of the geometry of the instru-
ment having a lower beam efficiency at 85 GHz (Kum-
merow et al. 1998) or because of this channel’s sensi-
tivity to the highly irregular ice field. Thus, we arbi-
trarily decided to substitute each 85-GHz pixel with the
distance-weighted average of its 15 closest neighbors.
This smoothing of the 85-GHz horizontal field naturally
reduces the spatial resolution of this channel, bringing
it closer to the resolution of the 37-GHz channels.

At the other end of the resolution problem is the
coarse spatial resolution of the low-frequency channels.
Various authors performed a series of studies on de-
convolution techniques to enhance the spatial resolu-
tion of lower channels (Farrar and Smith 1992, Bauer
and Bennartz 1998). The present study does not use
such techniques in order to work with original TMI
data as much as possible.

3. Retrieval method description

a. Database characteristics

The database of this first version of the algorithm is
made of rainy pixels (as detected by the TRMM PR)
observed around the globe during randomly selected
periods in February and August 1998, and January and
August of 1999 and 2000. The types of rain systems
used in the database were neither filtered nor selected,
but a few cases of tropical cyclone situations were
added. Most of the systems represented in the database

are oceanic mesoscale convective systems (MCSs) and
midlatitude (30°–40°) oceanic frontal bands. The data-
base contains about 50 000 points distributed over 200
different orbits. Within this database, about 36 000
points are randomly extracted to become the retrieval
database, while the remaining points are kept for test-
ing purpose. A histogram of surface rain rates included
in the retrieval database is presented Fig. 1. The histo-
gram shape does not evolve when additional profiles
are included. The representativeness of the 35 000 pro-
files is therefore deemed adequate.

Rain rates below 1 mm h�1 represent 44.9% of the
points and account for 8.8% of the total rain in the
database. Rates between 1 and 10 mm h�1 represent
51.8% of the data and account for 68.2% of the total
rain. Rain rates above 10 mm h�1 represent 3.3% of the
occurrences and account for 23% of the total rain. Rain
rates with only one occurrence are recorded above 52,
up to the maximum observed rain rate of 78 mm h�1.
Although the minimum detectable rain rate by the
TRMM PR is fixed by the TRMM PR sensitivity (about
17 dBZ, or 0.5 mm h�1), rain rates below this threshold
are present in the database because of the spatial av-
eraging from the TRMM PR resolution to 37-GHz TMI
resolution.

b. Retrieval algorithm principles

The retrieval algorithm is based on Bayes’s theorem.
This type of technique is extensively described in Kum-
merow et al. (1996, 2001) and Olson et al. (1996). Fur-
thermore, to minimize the influence of the surface vari-

FIG. 1. Histogram of rain rates in the database.
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ability we followed the suggestion of Petty (1994) using
the scattering indices Sj, where j stands for 37 and 85
GHz, and the emissivity indices Pi, where i stands for
10, 19, 37, and 85 GHz. These variables are defined as

Pi �
�Ti

�Ti
Clr , �7�

where �Ti is the brightness temperatures difference TiV

� TiH, and Ti
Clr is the corresponding TB of the nearest

precipitation-free pixel. The scattering index Sj is de-
fined by

Sj � PjTjV
Clr � �1 � Pj�Tc � TjV, �8�

where Tc � 273 K.
Substituting the vector of measured brightness tem-

peratures TObs by the corresponding vector of indices
XObs (X standing for the two Sjs and the four Pis), the
expected value for rain rate R may be expressed as

E�R� �
1
A ��� · · ·�RDbase exp��0.5�XObs � XDbase�RDbase��T�O � M��1�XObs � XDbase�RDbase���

� Pa�RDbase� dR, �9�

where XDbase(RDbase) is the vector of P and S indices in
the database associated with the surface rain rate RDbase;
[ ]T stands for the transpose of a vector, O is the obser-
vation error covariance matrix, and M is the error co-
variance matrix associated with other sources of errors.

In Eq. (9) the a priori probability that RDbase is the true
rain rate Pa(RDbase) is substituted by the number of its
occurrences in the database. A normalization factor A
is defined as

A � ��� · · ·� exp��0.5�XObs � XDbase�RDbase��T�O � M��1�XObs � XDbase�RDbase��� dR. �10�

This expression is reduced using the Monte Carlo
method in which the integral in Eq. (9) is evaluated
over a large number of realizations of the retrieval pa-
rameters. It is also assumed that O and M are diagonal,
that is, the errors are uncorrelated. Hence,

R � �
k∈Dbase

Rk

A
exp��

l�1,6
� 0.5

1

�l
2 �Xl,Obs � Xl,k�2�,

�11�

where l varies from 1 to 6 to account for the two Sjs and
the four Pis.

In the present case in which there are no model-
related errors, the M matrix vanishes and the �l

2s are
the diagonal elements of the O matrix, assuming that
the observation errors between two channels are un-
correlated. Kummerow et al. (1998) give the values of
the calibration and sensitivity for the different instru-
ments that can be used as a basis to assign values for the
�ls. L’Écuyer and Stephens (2002, hereinafter LE02)

provide estimates for this variance/covariance matrix
based on objective error calculations. In our case, it was
possible to calculate these elements directly from the
data. Values are reproduced in Table 2. These errors
were found to depend slightly on rain rates. A simple
polynomial interpolation was therefore used to avoid
discontinuity between the different rain regimes. These
polynomials are plotted against the rain rates in Fig. 2.
Because of the lack of occurrence of the highest rain
rates, the polynomial coefficients became spurious for
rain rates above 25–30 mm h�1, leading us to threshold
the � for rain above 25 mm h�1 to the value at 25 mm
h�1.

The �(R) for P10 and P19 are found to be decreasing
functions of R, while the P37 and P85 appear to be best
fit with a parabolic shape. The P10 and P19 seem to
contain the most information, while P37 and P85 contain
the least. This is not unexpected because the latter two
channels are dominated by scattering effects most of

TABLE 2. Empirical variances–covariance error matrix elements as a polynomial function of rain rate R: � � a0 � a1R � a2R2.

P10 P19 P37 P85 S37 (K) S85 (K)

a0 0.075 00 0.180 00 0.230 00 0.200 00 2.000 10.000
a1 �0.001 50 �0.004 00 �0.010 90 �0.010 00 0.300 0.500
a2 — — 0.000 40 �0.000 50 — —
L’Écuyer and Stephens (2002) 0.059 0.049 0.039 0.08–0.16 4.6–14.0 12.6–20.8
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the time. The two scattering indices Sj increase slowly
with rain rate. On the lowest end of the rain range, their
correlation with rain is quite good, but diminishes as the
rain intensity increases. It seems that the scattering sig-
nature is not well correlated with surface rain. While
this makes sense, it is also contrary to what is usually
accepted as a good signature for intense rain. Horizon-
tal transport of ice crystals and the instrument geom-
etry (52° incidence angle) might contribute to this ef-
fect. The level of the S37 remains close to the P10 and
P19 at the higher end of the rain intensity, which is
probably because of the chosen spatial resolution of
reference at 37 GHz.

The values of P10 and S37 estimated from the data
(Table 2 and Fig. 2) are close to the coefficients sug-
gested by LE02. The uncertainty in the remaining indi-
ces, particularly those for P37 and P85, are substantially
higher. The estimated and calculated S85 are nearly
equal for rain rates around 1 mm h�1.

c. Quality of retrieval

The test database is used to infer the quality of the
retrieval error and the total bias. Figure 3 shows the
total scatterplot of the retrieved rain versus the initial
(expected) rain. The match is globally good but shows
considerable scatter at the pixel level. The algorithm
tends to underestimate the higher rain rates and slightly
overestimate the lower end of the scale. Table 3 shows
the quality of the retrieval as a function of the surface
rain rate. The low-bias nature of the developed algo-
rithm is clearly visible in these results. For each surface

rain interval, the mean retrieved rain and the bias with
respect to the so-called TRMM PR reference rain is
given. For comparison purposes, the last column shows
the results obtained using the coefficients from LE02.

The underestimate of high rainfall rates can be as-
cribed to the saturation regime leading to ambiguous
solutions where the same TB vector can represent very
different rain rates. These rain rates, having the same
probability, are averaged, which leads to an intermedi-
ate value not representing the true rain situation.

TABLE 3. Global performances of the retrieval algorithm (unit:
mm h�1, except for the number of pixels).

Rain
interval

No. of
pixels Reference Retrieved Bias LE02 bias

0–1 13 551 0.377 0.570 0.194 0.129
1–2 3761 1.419 1.545 0.127 0.169
2–3 1746 2.454 2.347 �0.107 0.068
3–4 982 3.450 3.049 �0.401 �0.114
4–5 632 4.465 3.951 �0.514 �0.148
5–6 452 5.481 4.729 –0.752 �0.358
6–7 295 6.464 5.428 �1.036 �0.657
7–8 205 7.471 6.064 �1.407 �1.078
8–9 140 8.425 6.383 �2.043 �1.807
9–11 149 9.847 7.103 �2.744 �2.673

11–14 142 12.347 8.843 �3.50 �3.557
14–21 139 16.836 12.301 �4.53 �5.576
21–50 52 29.005 21.280 �7.724 �11.41
Total bias R: �4.32 � 10�2 �3.58 � 10�2

FIG. 2. Variation of the �i as a function of the rain rate. Notice
that the values for S37 and P85 are scaled by a factor of 100.

FIG. 3. Two-dimensional histogram of retrieved rain vs TRMM
PR–computed rain. The contours represent the number of points
in the considered rain interval. The unlabeled solid contour is the
1-point contour; other contours are labeled. The dotted line is the
x � y line. The total number of points in the test database is
22 246.
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The evolution of the relative error of the algorithm
with respect to the reference TRMM PR rain is also
shown in Fig. 4. The high uncertainties associated with
the low rain rates is because of the sensitivity of TB to
external effects like sea surface temperature, cloud
presence, the water vapor profile, or the temperature
profile. The relative error drops when the TB signal
reaches its maximum correlation with rain between 1.5
and 7 mm h�1. Within this range of rain intensity, the
relative error remains below 15%. It then begins to
increase again to reach an average of 30% underesti-
mate for 20 mm h�1 and above. The same graph also
shows the evolution of the relative error when using the
coefficients from LE02. When compared with the first
set of coefficients, the relative error for LE02 is smaller
for rain rates less than 10 mm h�1, is nearly the same
rain rates between 10 and 13 mm h�1, and then be-
comes greater for rain rates higher than 13 mm h�1.

4. Case study: Bret 1999

a. TRMM PR–related variables

The algorithm is applied to the case of a small intense
hurricane to illustrate the structure of the resulting rain
field. Hurricanes offer both a series of well-defined
characteristic structures and a large range of rain inten-
sities and rain types to help verify the quality of an
algorithm. Hurricane Bret was a small intense hurri-
cane that formed on 18 August and dissipated on 25
August 1999 (Lawrence et al. 2001). On 21 August, a

very good overpass of TRMM (orbit 9967) took place
while the system was still out of the influence of the
Texas shore. The hurricane was experiencing an impor-
tant strengthening event at this time. Both the TRMM
PR and TMI data were available during this overpass of
the hurricane.

Figure 5 shows the horizontal cross section of the
TRMM PR–measured effective reflectivity as given by
the 2A25 product. The eye of the storm is clearly vis-
ible, free of precipitation, and surrounded by an eye-
wall that contains the maximum activity with signatures
of reflectivities above 45 dBZ located in the western-
to-northwestern quadrant. The actual maximum reflec-
tivity of the scene is 54.2 dBZ. A series of rainbands can
be observed in the western and southern sectors that
seem to surround the intense eyewall. Their reflectivi-
ties are between 35 and 45 dBZ. Cells and bands of
reflectivities above 35 dBZ are scattered over the whole
system, embedded in the 25-dBZ contour. This last re-
flectivity contour shows two spiraling bands in the
northwestern and southeastern quadrants, the former
being just on the edge of the swath. On the eastern
quadrant, a cell of 35–45 dBZ is embedded in a thin line
of 25–35-dBZ reflectivities. This is probably a spiraling
band only partially within the field of view. The 15-dBZ
contour shows the TRMM PR detection threshold, and
as such the boundaries of the rain region, as seen by the
radar. Scattered rain is detected on the northwestern
part of the domain, next to the shore, with maximum
reflectivities of the order of 30 dBZ.

The C/S classification of the TRMM PR pixels is

FIG. 4. Evolution of the relative error as a function of rain-rate
intensity for the database, based on the set of heuristic coefficients
from Table 2 (solid line) and those from LE02 (dotted line).

FIG. 5. Horizontal cross section of TRMM PR reflectivity at
2.5-km altitude. Shades of gray stand for 15, 25, 35, and 45 dBZ,
respectively, from lighter to darker.
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shown in Fig. 6. As mentioned in section 2b, this clas-
sification is based both on the vertical and horizontal
structure of the reflectivity field. The vertical texture
indicator relies on the presence of a brightband sig-
nature, indicating a stratiform region. The horizontal
texture indicator relies on the heterogeneity of the re-
flectivity field in the convective zones. The C/S pat-
tern exhibits a broad convective region in the western
part of the eyewall, nearly surrounding the eye. Apart
from this large region, the rest of the convection is
spread among convective cells predominantly on the
northeastern quadrant of the system. This configura-
tion is classic for hurricanes, where most of the precipi-
tation is stratiform except in the eyewall and spiraling
bands.

Figure 7 shows the horizontal cross section of the rain
rate as calculated using Eq. (6) and the C/S classifica-
tion needed to assign the proper coefficients provided
in Table 1. The rain field shows a structure similar to
the reflectivity field, but with a somewhat different em-
phasis because of both the logarithmic scale of the re-
flectivity decibels (dBZ) and the use of a power law to
convert reflectivity decibels to millimeters per hour.
The 30 mm h�1 contour corresponds to the active re-
gion of the eyewall, plus three cells in the southeastern
band close to the eyewall. All of these regions corre-
spond to convective pixels in the C/S classification. The
maximum measured rain rate is 97.3 mm h�1, which at
4.4-km resolution is questionable, yet plausible in a
very intense hurricane environment. The sea surface
might be extremely rough and it is possible that the

surface reference technique (Meneghini et al. 2000, Igu-
chi et al. 2000) is not properly correcting the attenua-
tion in such conditions. Light rain rates between 0 and
5 mm h�1 extend over most parts of the system. These
light rain rates correspond mostly to stratiform precipi-
tation as shown on the C/S classification. Some more
intense rain (5 mm h�1 contour and cells of 10 mm h�1

contour) is present in stratiform regions in the south-
western part of the outer band.

FIG. 6. Horizontal cross section of TRMM PR–based convec-
tive/stratiform classification; light gray: unclassified or nonraining,
intermediate gray: stratiform, and dark gray: convective.

FIG. 7. Horizontal cross section of TRMM PR 2.5-km rain rate
using Eq. (6). Increasing shades of gray stand for 0, 5, 10, 30, and
50 mm h�1, respectively.

FIG. 8. Horizontal cross section of TRMM PR rain rate at 37-
GHz resolution. Increasing shades of gray stand for 0, 5, 10, and
30 mm h�1, respectively.
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Figure 8 shows the rain estimated from the TRMM
PR computed at the resolution of the 37-GHz channel
(�12 km � 12 km). The loss of structure definition is
obvious and the dynamic range is also affected because
the maximum is now close to 50 mm h�1. The main
features are kept, with the maximum rain region lo-
cated in the western quadrant of the eyewall, which
corresponds very clearly to the region identified as be-
ing convective in Fig. 6. The weaker-rain region in the
eastern part of the eyewall is still very visible but the
small spiraling rainband on the southwest is averaged
within the rest of the eyewall.

b. TMI brightness temperatures

The brightness temperatures also show the same
asymmetric structure for the system. The 10-GHz hori-
zontal (Fig. 9) shows (over the ocean) a maximum emis-
sion on the northwestern quadrant and a moderate
asymmetry of the 190-K contour with a more round-
shaped western part. The poor resolution of this chan-
nel does not help to resolve the thin structures of Bret:
neither the eyewall nor the eye can be seen in Fig. 9 and
the hurricane itself appears only as a warm rounded
shape on the cold oceanic background. The 85-GHz
horizontal TB (Fig. 10) shows more detailed structures,
with strong scattering inside the eyewall and lighter
scattering in the surroundings. This scattering is prob-
ably because of dense ice particles lifted in the updrafts.
One can notice that the large region of intense scatter-

ing in the southwestern part of the eyewall is shifted
with respect to the maximum rain detected by the ra-
dar. This is an effect of the strong azimuthal advection
of ice particles by the tangential wind. Light ice par-
ticles like snow particles are transported to the region
surrounding the eyewall.

One can also notice in Fig. 10 that the warmest TBs
(260-K contour and above) are found surrounding the
rainy region and inside the eye. This increase of emis-
sion when compared with the far western and northern
edges of the domain is probably because of the increase
of water vapor near the regions of updrafts. Embedded
in the 260-K contour one can also observe the three
cold cores in the northeastern quadrant corresponding
to active convective cells.

The other temperatures are not represented because
the content does not change much—as the frequency
increases, the spatial resolution increases and the satu-
ration regime extends over larger areas.

c. TMI-retrieved rain and comparison

Figure 11 presents the TMI-retrieved surface rain
rate that can be compared directly with Fig. 8, keeping
in mind the limited swath of the TRMM PR. The re-
trieved rain shows good agreement with the TRMM
PR–computed rain. The maximum rain intensity is 34
mm h�1 (48 mm h�1 for averaged TRMM PR), located
very close to the detected TRMM PR maximum. The
retrieved 20 mm h�1 contour has an extension close to
the 30 mm h�1 contour of the TRMM PR. The re-
trieved 30 mm h�1 contour corresponds somewhat to

FIG. 9. The 10-GHz horizontal (10H) channel over Hurricane
Bret. Increasing shades of gray stand for 100, 130, 160, and 190 K,
respectively. The white triangles are the best estimate of trajec-
tory.

FIG. 10. Same as Fig. 9, but for 85-GHz horizontal (85H) chan-
nel. Increasing shades of gray stand for 170, 200, 230, 260, and 290
K, respectively.
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the 35 mm h�1 contour of the TRMM PR (not dis-
played). Extension of the 10 and 5 mm h�1 contours are
similar for both the TRMM PR and the retrieved field.
The rain/no-rain limit defined by the 0.1 mm h�1 con-
tour line is in excellent agreement, even for most of the
regions near the coastline.

The eye itself is very slightly shifted to the west and
shows some light rain rate that is an obvious artifact. In
the case of Bret, the eye is well marked but rather small
and thus is poorly resolved by most channels except for
those at 37 and 85 GHz. This residual rain in the eye is
because of the lower-resolution channels showing some
emission signal originating from the eyewall region.

In terms of rain structures, the retrieved and TRMM
PR rain are in good agreement, even if there are some
local differences. Figure 12 presents the pixel-to-pixel
comparison between TMI- and TRMM PR–averaged
surface rain. The displayed error bars correspond to 1 �
(standard deviation of the matching profiles in the da-
tabase). The agreement is once again quite good, but
the local errors can be important. These come from the
personal choice of emphasizing a low total bias that
increases the bias standard deviation and gives more
structure to the retrieved horizontal field. From 5 to 20
mm h�1, there is a clear overestimation of the rain (e.g.,
10 mm h�1 retrieved for 7 mm h�1 expected). Above 20
mm h�1, there is a slight tendency for underestimation.
This is consistent with Table 4, which shows the bias
between the TRMM PR and the retrieved rain rates as
a function of rain class. The total bias is less than 10%,
while it is close to �26% for the high end of the rain
intensity and is close to 326% at the low end. This might

be the effect of the very specific surface conditions that
affect the low-rain-rate estimate even when using the
emissivity and scattering indices. The minimum bias is
reached for rain regimes around 5–6 mm h�1 when all
channels contain the maximum information.

Figure 13 shows the same results as Fig. 12, except for
the set of coefficients given by LE02. Both figures ex-
hibit very similar trends and features. The same differ-
ences that were observed on the test database can be
observed here, particularly for the highest rain rates. In
Hurricane Bret, the total bias from LE02 is a little
smaller. On a horizontal cross section (not presented),
the difference is hardly noticeable. The results for the
specific case of Bret, a small intense hurricane, remain

TABLE 4. Same as Table 3, but for the case of Hurricane Bret.

Rain range
No. of
pixels Retrieved Expected Bias

30.0–15.0 11 16.918 22.774 �5.856
15.0–10.0 10 11.949 12.837 �0.888
10.0–8.0 5 8.531 9.146 �0.615
8.0–6.0 32 8.182 6.768 1.414
6.0–5.0 20 5.759 5.537 0.223
5.0–4.0 22 5.750 4.461 1.288
4.0–3.0 24 4.751 3.437 1.314
3.0–2.0 40 3.311 2.483 0.828
2.0–1.0 44 2.420 1.460 0.960
1.0–0.5 42 1.413 0.743 0.670
0.5–0.0 108 0.689 0.162 0.528
Total surface R Total bias

0.205
Std dev

4.082

FIG. 11. Same as Fig. 8, but for the rain rate as retrieved by the
algorithm from the TMI brightness temperatures.

FIG. 12. Comparison of the TMI-retrieved rain rate (retrieved
rain) and the TRMM PR–based rain rate (reference surface rain).
Error bars are provided for the 1� a priori database error.
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quite close from the results obtained for the test data-
base and presented in Table 3. It is interesting to note
that in their comparison between the rain estimated
with an airborne radar on the National Oceanic and
Atmospheric Administration (NOAA) P3 and those
from TRMM PR, Ferreira et al. (2001) found an over-
estimate of the TRMM PR rain on the order of 14.2 mm
h�1 for the heavy convective rain and an overestimate
of about 0.2 mm h�1 for the stratiform rain. This would
bring the current algorithms into close agreement with
the results of the P3 rain estimate, especially for the
higher rain rates. Because the algorithm is predicated
upon the TRMM PR–generated database, the interpre-
tation of the above results is not straightforward.

5. Conclusions and perspectives

The present study focuses on the problem of data-
base representativeness for a TMI-based rain retrieval
algorithm. Using an approach derived from GPROF,
we implemented a database made of collocated TMI
brightness temperatures and TRMM PR surface rain
estimates to construct a comprehensive database. This
database was split in two and we kept one of the pieces
for the retrieval process and the other one for reference
and error estimates.

The collocated data are processed so that the coher-
ence between the radar and the radiometer are pre-
served in terms of geometry, resolution, and hypoth-
esized drop size distribution characteristics. The radar
data are processed so that their final resolution is down-
graded to the 37-GHz channel of the TMI. A variety of

randomly selected rain situations is used, covering all
ranges of oceanic latitude and longitude from a 2-
month period: February and May 1998. Some other
cases (hurricanes from August 1998 or 2000) are added
to complete the representativeness.

The 85-GHz pixels are averaged to downgrade their
resolution to the 37-GHz channel. The brightness tem-
peratures are converted into emissivity and scattering
indices to reduce the undesired sensitivity to secondary
variables such as surface emissivity and water vapor
profiles, especially for the lowest rain rates. The error
variance relevant for the Bayesian/Monte Carlo type of
retrieval is then estimated from the database itself and
reduces to the observation errors for both instruments
and some secondary errors because of collocation.

The test part of the database is used to assess the
performances of the algorithm and to optimize the size
of the a priori database used by the retrieval. A size of
about 35 000 profiles appears to be the best compro-
mise between representativeness and convenience. Big-
ger databases do not seem to improve the quality of the
results, which remains very dependent on the error
variance used. The total bias remains low but there are
compensating effects between the slightly overesti-
mated low rain rates and the underestimated high ones.
The error varies from �60% for 0.1 mm h�1 to �30%
for 20 mm h�1 with a minimum around 2 mm h�1. The
standard deviation of the error increases almost linearly
with the rain rate because we chose to have the lowest
possible total bias even if very intense rain rates might
be underestimated.

We also tested the sensitivity of the algorithm to the
weights assigned to the individual emission and scatter-
ing indices used in the Bayes approach. Hence, a set of
heuristic values was compared with the theoretical val-
ues based on objective calculation. There are some dif-
ferences on the point-to-point basis, but the global bi-
ases appear to be close. Heuristic values seem to per-
form better for higher rain rates while the objective
ones are better for low and intermediate rain rates.

The case of Hurricane Bret (1999) is then used to test
the retrieval on a hurricane situation with very intense
rainfall. Hurricane Bret has been extensively studied
with coincident airborne radar data that can eventually
be used for independent validation at a later stage. It
was also a small intense hurricane with a marked asym-
metry in its structure when observed by TRMM on 21
August. The retrieval algorithm was shown to repro-
duce a coherent rain field with a well-marked asymme-
try. The maximum rain intensity was retrieved close to
the right location if not exactly on the same pixel as the
TRMM PR. The heavy rains are underestimated as ex-
pected, but the total bias is low even in this specific

FIG. 13. Same as Fig. 12, but for the � coefficients given in
LE02.
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hurricane situation (some hurricane situations are in-
cluded in the retrieval database). This bodes well for
future applications involving the calculation of derived
products such as energy budgets.
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