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ABSTRACT: This paper deals with sensors which compute and report linguistic assessments of
numerical acquired values. Such sensors, called symbolic sensors, are particularly adapted when
working with control systems which use artificial intelligence techniques. After having reconsid-
ered some elements of the measurement theory, this paper sets the foundations of the symbolic sen-
sors by introducing the meaning of a lexical value and the description of a numeric measurement
as two mappings that link the set of the subsets of the numerical domain with the set of the subsets
of the lexical domain. It is then shown how the fuzzy subset theory provides a smart way for the
treatment of symbol graduality, for measurement imprecisions and measurement validation, and
for taking into account the measurement context. This approach leads to introduce a specific struc-
ture into the sensors, called then fuzzy symbolic sensors. As application, two specimens of fuzzy
symbolic sensors have been successfully implemented. The former is an ultrasonic range finding
sensor, that uses a procedure of management of errors and a procedure of creation of the concepts
by semantic relationships. The latter is a colour matching sensor, that uses an interpolation meth-
od for creating the concepts by learning with a teacher.

KEYWORDS : symbolic sensors, fuzzy sensors, measurement theory, fuzzy subset theory, intelli-
gent measurement, range finding sensor, colour matching sensor.

1. Introduction

Nowadays, system control by usual techniques of control theory is well-known insofar as one

knows a mathematical model of the process. Sometimes, the model is difficult and quite longer to

acquire, and then, results in complex calculations for the control law synthesis. In most complicat-

ed cases, no viable mathematical models are available, so, alternative methods based on artificial

intelligence technics have been developed (expert control [Aström, 86], intelligent control [Meys-

tel, 87], fuzzy control (among many others) [Pedrycz, 89],...). They consist in collecting all the in-

formation available on the process and on the way to control it, and then to formalize it with a

representational language in order to handle it with a program of adequate structure. This informa-

tion is generally obtained by the observation of an operator, and provides qualitative explanations

upon the behaviour of the process, contrary to numerical information, that provides a fine quanti-
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tative representation. Instead of considering the two approaches as competitive, it seems more ad-

vantageous to associate the numeric and linguistic representations of a same reality, in order to

benefit from the advantages of the two types of models.This assertion is particularly true for inte-

grated automatization of big systems by usual technics, in which, fault detection, supervision and

starting problems are difficult to handle, with only a mathematical model of the process. In these

cases, it seems interesting to use the information the operators have on their systems. Besides, a

linguistic approach facilitates man-machine integration between a system and a user, that will un-

derstand the orders applied by control components. An efficient collaboration between numeric

and linguistic processing implies a coherence between the two types of information. This aspect

concerns first the acquisition of relevant information. This role is attributed to sensors, that have

for objective to provide measurements, that allow the decision system to link action and perception. 

In our approach, a sensor must be able to perform a linguistic description of acquired signals. It

requires the collaboration between two types of information: signal analysis information (essen-

tially analog and numeric), and user’s information (essentially qualitative and heuristic). This con-

nection has been realized by means of a new type of sensor, called symbolic sensor [Foulloy, 90],

[Benoit, 91a and 91b]. Such sensors are based on a numeric-linguistic conversion, that can be im-

plemented in many ways. This paper focuses on numeric-linguistic conversion based on a fuzzy

subset approach [Zadeh, 65 and 83]. Therefore, this kind of sensors are called fuzzy symbolic sen-

sors, or simply fuzzy sensors [Foulloy, 88 and 92]. Moreover, one can imagine to implement the

numeric-symbolic conversion by means of neural networks, that leads to neural symbolic sensors,

or by any other techniques including analog ones.

In a first section, we will reconsider the measurement theory, and describe a general formalism

evolved by Finkelstein, that sets theoretical foundations of symbolic (numeric and linguistic) rep-

resentation. We will develop common and different aspects between numeric and linguistic infor-

mation. Then, we will propose a mechanism for numeric-linguistic conversion, based on a

representation of words by fuzzy subsets of the numerical domain. The structure of linguistic sym-

bolization will be studied as well as adaptation to the global task. Finally, a procedure of manage-

ment of numeric errors based on a statistical probabilistic description and on associated fuzzy

operators will be presented. Then, we will apply the proposed formalism to two concrete examples,

an ultrasonic range finding sensor and a colour matching sensor. The first implementation concerns

a proximity measurement with numeric acquisition of distance between sensor and obstacle. For

this monodimensional measurement, we will be particularly interested in the creation of concepts

by semantic relations and in the management of errors. The second one deals with object colour

classification. Measurement is a tridimensional one, and a software sensor will be described. It

works with the three - red, green and blue - components of a camera. For the colour perception, we

will be particularly interested in a learning with teacher procedure based on standard colours, and

in the matching of new objects. As a conclusion, the contribution of this research will be pointed

out, as well as the new ways opened by symbolic representation of perceived information.
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2. Measurement concept and symbolic representation

2.1. Introduction

Before studying in detail the concept of symbolic sensors, it is interesting to discuss the role of

the sensor. Its object is to discriminate from the lot of received information a particular physical

quantity. Generally, the description of a property or an attribute of an object of the real world is

made by the assignment of a numerical value. The relations between numerical values assigned to

different elements correspond to empirical relations between the elements to which they are as-

signed, which allows us to work with a mathematical description of objects. The numerical repre-

sentation is precise and compact. It provides a way of establishing scientific laws to explain

complex phenomena. 

Nevertheless, in several cases, using a numerical description is not relevant. For example, the

designation of merit of alternatives as judged by an evaluator. Standards of merit may be designated

by A, B, C, D, E. Designation by the same letter means equivalent merit, designation by a letter

earlier in the alphabetic series means a greater merit. Another example is the representation of col-

our perception. A number of colours are selected as standard and their given designations are gen-

erally referred to with words in a natural language (red, green, blue,...). Any colour which matches

a standard colour is then assigned the same designation as the standard. The examples given are

not in any way exhaustive, nor have they been rigorously analysed. They show that there are a large

number of practical cases in which the attributes and characteristics of objects of the real world are

represented not by numbers but by a conventional mark system or by words.

As we will show in the next section, these diverse representations present differences, but share

a most essential property, namely, the representing mark refers to the entity represented, relations

between the marks correspond to relations between represented entities, and the marks can be used

to achieve responses corresponding to the entities they represent. This aspect has been formalized

by Finkelstein, who has proposed an extension of the theory of measurement to include such rep-

resentations [Finkelstein, 75]. An outline of his works will now be given in the following para-

graph.

2.2. Formal presentation

The essence of all measurement and of the non-numerical representations of entities discussed

in the preceding paragraph is that they are symbolic representations. A symbol can be defined as

the representation of an object or event which has a defined relation to some entity, for the purpose

of eliciting a response appropriate to that entity in its absence. The general term for the study of

symbols, their uses and relations to the object they represent is known as semiotics. Four aspects

of semiotics are generally distinguished.
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• Semantics: the study of the meaning of symbols, i.e. their relation to the objects

they represent.

• Syntactics: the study of syntax, i.e. the rules of admissible combinations of

symbols.

• Pragmatics: the study of the use of the symbols in the whole system in which

they are employed from the point of view of the goal of the whole system.

• Sigmatics: the study of the relation between the shape of symbols and the enti-

ties they represent as for instance in pictorial symbols.

The present paragraph will be concerned with the first three points. Finkelstein defines a sym-

bolism by considering [Finkelstein, 80]:

C= < Q, S, M, RQ, RS, F>

• Q refers to the set of elements of the real world, and RQ refers to the set of

relations between them.

• S refers to the set of symbols, and RS refers to the set of relations between

them.

• M is a relation from Q to S, and constitutes the representational aspect of the

symbolism.

• F is a relation from RQ to RS, and constitutes the relational aspect of the sym-

bolism. Generally F is a one-to-one mapping with domain RQ and range RS . 

C is a symbolism iff for each k-ry relation RQ ⊂Q k where RQ ∈RQ (k=2,...,n), there is a cor-

responding relation RS ⊂S k where RS ∈RS (k=2,...,n), such that F: RQ →RS and such that M
is a homomorphic mapping under these relations, i.e. iff:

for q1,...,qk ∈Q , s1,...,sk ∈S, k=2,...,n

RQ(q1,...,qk) ⇔ RS(s1,....sk) where RS=F(RQ) and s1=M(q1),...,sk=M(qk). (1)

Let us consider for example the designation of the merit of students as judged by a professor.Q
is the set of students. S is the set of symbols {A,B,C,D,E}.



Fuzzy symbolic sensors

5

Figure 1 : Example of a symbolism.

M associates to any student a letter that represents his academic level. Designation by the same

letter (=S) means equivalent merit (~Q), designation by a letter earlier in the alphabetic series (>S)

means a greater merit (>Q).

The two important representational and relational facets of the symbolism are described by the

properties of M and F. A symbolism is evaluated by the following properties.

• Precision: the correspondence of several elements Q to the same symbol is

called ambiguity. The absence of ambiguity is termed precision. It is linked to the

injectivity of M.

• Redundancy: the correspondence of more than one symbol to the same element

of Q is termed symbolic redundancy. There is no redundancy if M is a mapping.

• Completeness: If all elements of Q have a corresponding symbol in S, i.e. the

domain of M is the whole of Q, C is a complete symbolism.

• Relational structure: the value of a symbolism for a relational system increases

with the richness of the structure of the relational system and depends on the

pragmatic value of the relations in the system.

• Compactness: The ease of processing of a symbol depends upon its compact-

ness, i.e. its small size or duration, so that it requires less time for handling and

less space for storage.

• Immunity from error: The form of symbol should be as far as possible immune

from error in processing.

e1
e2
e3

M SQ

e4
e5
e6

A
B
C
D
E

RQ RS
~Q
>Q

=S

>S

F
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It is generally desirable for a symbolism C to be precise, complete and not redundant, i.e. M
should be a one-to-one mapping. For the relational structures, some of them are described in the

following paragraph.

2.3. Fundamental measurement structures

Different authors generally consider three types of scales [Berka, 83][Finkelstein, 84][Watan-

abe, 91]. 

• The simplest one performs only an equivalence relation on Q (i.e. ~Q) and S
(i.e. =S). This type of scale is termed a nominal scale.

 q1 ∼Q q2 ⇔ M(q1) =S M(q2). (2)

 One example is colour matching.

• The second type considers an order relation. It is termed an ordinal scale. 

 q1 ≥Q q2 ⇔ M(q1) ≥S M(q2). (3)

One example is the ranking of merit of alternative judged by an evaluator.

• The linear scale is the most popular type in physics. An equivalence relation and

a concatenation (or addition) operation are associated to both sets Q and S.

q1 ∼Q q2 ⇔ M(q1) =S M(q2). (4)

q1 oQ q2 ∼Q q3 ⇔ M(q1) +S M(q2) =S M(q3). (5)

One example is the measurement of the length of an object.

Other classifications are available. Details could be found in [Berka, 83].

Moreover, the relation M, that links the empirical domain Q and the symbolic one S is not

unique. Any transformation f of M into M’ = f(M), that maintains the validity of the representa-

tion (i.e. the scale type) is called an admissible transformation. For a nominal measurement, the

admissible transformations are any one-to-one mapping. For an ordinal measurement, they are any

monotonic increasing mapping. For a linear measurement, the admissible transformations satisfy

M’ = αM + β with α > 0. These transformations are linked to the meaningfulness of the state-

ments deduced from the measurements. For example, the statement that q1 is twice as long as q2 is

meaningful, when q1 and q2 are measured on a linear scale, even though it is not if q1 and q2 are

measured on a ordinal scale.
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2.4. Discussion

Generally, physical quantities are evaluated in a numerical way, i.e. S is the set of real numbers.

The numeric symbolism presents many advantages. It is precise, not redundant, complete, and pro-

vides a lot of arithmetic relations. Methods are available to take into account the imprecision of

information (error calculus, probability theory). Moreover, numeric measurement are based on an

objective operational procedure. Nevertheless, numeric measurement is not always available, be-

cause of problems of acquisition or storage of information, because of the multi-dimensional na-

ture of the analysed property, or because it concerns attributes describing human behaviour. In such

cases, one is led to make a qualitative description of the observed phenomenon with words of the

natural language. Natural language could be seen as a qualitative symbolization. In fact, it is a nom-

inal measurement providing an equivalence relation between the words. At first sight, linguistic

symbolization seems less interesting than numerical symbolization. It is less precise, redundant

and is subjective in the sense that it can not be experimentally verified in an objective procedure

(i.e. independent from the observer). But the linguistic qualitative description is compact (it reduc-

es the problem of the storage of information), easy understandood by human beings (it allows rea-

soning), and has a richness that the numeric measurement has not, i.e. background knowledge upon

the global goal or purpose (i.e. a great pragmatic value). 

3. Foundations of symbolic sensors

3.1. Introduction

We have seen in the preceding section that objects of the real world could be described in dif-

ferent manner. Two symbolizations have been considered: 

• the numeric measurement (generally obtained by an electronic processing) that

provides an objective quantitative description of the objects,

• the linguistic measurement (generally obtained by interrogation of users) that

provides a subjective qualitative description of objects.

Therefore, the numeric and linguistic symbolizations are more complementary than competi-

tive, and we will now present a general component, called symbolic sensor, that handles the two

representations.The aim of a symbolic sensor is to perform a linguistic symbolization of a phenom-

enon from a numeric measurement. Therefore, the symbolic sensor acquires a numeric measure-

ment, and then makes the numeric-linguistic conversion itself taking into account the subjectivity

of the problem, i.e. the measurement context (global task, interlocutor,...).



Fuzzy symbolic sensors

8

Figure 2 : Object of symbolic sensor.

Now, we have three types of symbolism:

• C1= < Q, N, M1, RQ , RN , F1>. It is the usual numerical symbolism,

that links the real world and the numeric world. M1 depends on the environment

through the physical influence variables, e.g. in the measure of distance by time

of flight of a wave, the measured distance is linked to the speed of wave propa-

gation, which depends on the temperature.

• C= < N, L, M, RN , RL , F>. It is the linguistic symbolism, that links

the numeric world and the linguistic one. M depends on the measurement con-

text through the specified application and the operator. For example, in a temper-

ature measurement problem, the measure 15oC can be interpreted as cold in a

swimming pool context and as very hot for a refrigerator. Moreover, for an eski-

mo 15oC is a cool temperature for a bath, while it is quite cold for an african.

• C’ = < Q, L’, M’, RQ , RL’ , F’>. It is the human symbolism, that links

directly the real world and the linguistic one. M’ takes into account the global

environment context. The efficiency of M’ is often realized by the simultaneous

use of all the senses and of the knowledge of the considered task.

Denote ∆ the composition of two symbolism.

C2 = C1 ∆ C iif M2 = M1 o M and F2 = F1 o F, (6)

where o is the usual composition between two relations.

As shown in figure 2, the symbolic sensor makes the qualitative description in two stages: nu-

Real world

Numeric world linguistic world

M1, F1

Q, RQ

N, RN L, RL

M’, F’

Natural linguistic world

L’ , R’L

Symbolic Sensor

Human Perception

Pseudo-natural

M,F
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meric measurement and numeric-linguistic conversion. It has to provides nearer as possible the

same description that performs directly a human. Therefore, in order to implement the symbolic

sensor, the symbolism C must be chosen such that C’ =  C1 ∆ C. In this sense, the symbolic sen-

sor is an attempt to artificially reproduce the human perception of measurement.

3.2. Meaning, description and their fuzzy extensions

The symbolism C1 is the classical problem of assigning numbers to items of a class of attributes

or characteristics of objects of the real world in such a way as to describe them. To express this

formally, numeric measurement consists in an operation that establishes a mapping M1 from a set

of entities into a set of numbers. This task is devoted to the sensor in its usual sense and will not be

described in further details.

Now, the problem is to define formally the relations M and F that are used in the symbolism

C. M is a relation between the set of numeric measurements N and the set of lexical values L
(see fig.3). 

Figure 3 : Relation between N and L.

In the general case, M is a many-to-many relation which is known to be difficult to handle.

Therefore, instead of the relation M, we propose to define two mappings called the meaning and

the description, detailed in the following paragraphs, which consider P(N) and P(L) [Benoit,

91b].

3.2.1. Meaning of a lexical value

The meaning of a lexical value will be defined as an injective mapping from the lexical universe

L to the set of the subsets of the numerical domain N.

τ: L → P(N)

∀a ∈ L,  τ(a) = {x ∈ N | x M a} (7)

Injectivity ensures that two identical lexical values have the same meaning. The association of

a lexical value and its meaning is called a linguistic concept.

b

c

v
w
x
y
z

MN L

t
d

a
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3.2.2. Description of a numeric measurement

The association, for each measurement, of lexical values that characterize it, is called a descrip-

tion.

ι: N → P(L)
∀x ∈ N,  ι(x) = {a ∈ L | x M a} (8)

It will be noted that a measurement may be interpreted by several lexical values.

3.2.3. Links between meaning and description

The relations M, τ and ι are three distinct representations of the same information on the man-

ner the measurements are perceived. Each modification on one of these three relations leads to a

modification of the others. Indeed, if a lexical value a belongs to the description of a numeric value

x, it will be equivalent to say that x belongs to the meaning of a.

a ∈ ι(x) ⇔ x M a ⇔ x ∈ τ(a) (9)

With the aim to illustrate our definition, let us consider the following example. Let L be the lex-

ical universe {small, medium, high} with the following meaning:

τ(small) = [0;1.70m]

τ(medium) = [1.65m;1.80m]

τ(high) = [1.75m;2.50m]

The description of the numeric measurement x=1.78m is ι(1.78m) = {medium, high}.

3.2.4. From crisp concepts to fuzzy concepts

The meaning of a lexical value by a subset of the numerical space, generally an interval, presents

two disadvantages. First, the transition from a concept to an other one is abrupt, and leads to a dis-

continuity in the acquired symbolic information, that may produce brutal variations in the control-

led system. Second, the elements that constitute the meaning of a lexical value, do not characterize

it in the same way. They describe more or less the considered linguistic concept. It means that one

has a graduality in the membership of a lexical value. This phenomenon can be taken into account

by extending the crisp relation M into a fuzzy one. The latter is defined by its membership grade

µ on the cartesian product L × N. This approach leads to define a fuzzy meaning of a lexical

value by a mapping from L to the set of the fuzzy subsets of the numerical domain F(N) [Zadeh,

71].

τ: L → F(N)

∀ a ∈ L, ∀x ∈ N,    µ τ(a)(x) = µM(a , x). (10)
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In the same manner, the fuzzy description of a numerical value x is now a mapping from N to

the set of the fuzzy subsets of the lexical domain F(L) [Zadeh, 71].

ι: N → F(L)

∀ a ∈ L, ∀x ∈ N,   µ ι(x)(a) = µM(a , x). (11)

The link between the fuzzy description and the fuzzy meaning is formalized by the following

relationship:

 ∀ a ∈ L, ∀x ∈ N, µ ι(x)(a) = µ τ(a)(x). (12)

Figure 4 shows one possible extension of the example given in section 3.2.3.

Figure 4 : Link between meaning and description.

It should be noted that the description provides a set of graduated lexical values. This informa-

tion is quite complex for some applications. Indeed, in particular cases, it may be reduced to the

lexical value whose membership grade is maximum.

3.2.5. Discussion

Generally, the description of a measure is not a singleton of P(L). This aspect may be negative

in particular for problems where it is required to transpose operations from the numerical space to

the linguistic one. To remedy to this limitation, Luzeaux proposes to define the description by the

inverse of the meaning (called the abstraction), that is a mapping from the boolean completion of

L (by union, intersection and complementation) to the set of the subsets of the numerical domain.

The completion provides an inclusion order structure and leads to associate to each subset of the

numerical space the smallest lexical value that characterizes it [Luzeaux, 91]. However, the numer-

ical description of a real object is not always a singleton of N and can also be an interval or a dis-

tribution. Therefore, for a measurement problem, we do not require the description to be a

singleton.

An other point of interest is the structure of the lexical universe. If one defines only the equiva-

lence (or equality) and inclusion of linguistic concepts, Watanabe shows that two lexical sets

1

0

µ τ(a) µ ι(1.78m)

small medium high

1

0

small medium high

1.65 1.70 1.75 1.80 m
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(L1,L2), whose completions lead to the same partition of the numerical domain, could be consid-

ered equivalent in the sense of nominal measurement [Watanabe, 91]. If one chooses a particular

lexical set, it is for taking into account an other relation on the linguistic domain, that presents a

specific structure. Generally, this relation is an order one. 

 As mentioned by [Zingales, 91], the final objective of any measurement process is to acquire

information, that enables to take decision upon a system. Generally, in expert system, the decision

is expressed in a sequence of pre-defined classes implying mutual exclusion. But, a feature of most

physical systems is the analog nature of the quantities involved, therefore this activity can be seen

conceptually as a mapping from a continuum of values into a finite set of intervals. One point of

interest of the fuzzy subset approach is that it allows to take into account the continuous nature of

the handled variables, inside the symbolic representation that is itself discrete [Dubois, 90]. There-

fore, choosing the most significant lexical value immediately after the sensor, by taking the concept

whose membership grade is maximum, is similar to throwing the baby with the bath water. It is not

very interesting, except for the fact that we do not have to define explicitly the threshold between

the concepts. This leads to a second point of interest of the fuzzy subset theory, i.e. its capabilities

to process and to propagate measurement imprecisions and so to validate the information given

back. Then, the latter is defuzzified only when necessary. With regard to the problems of the vali-

dation of the fuzzy representation and the meaningfulness of the structure of the lexical set, i.e. the

comparison between the empirical relation between fuzzy concepts and the formal relation be-

tween membership functions, raised by [Watanabe, 91], we can say that the substantiation of the

form of the membership functions and the relations between them, is their adequation to the human

behaviour by a learning with teacher procedure which will be detailed in the following section.

4. Creation of linguistic concepts

4.1. Introduction

To infer meaningful statement from linguistic information, it is important to define the relations

on L and on F(L) too. Similarly to the crisp approach, we will introduce two fundamental meas-

urement structures:

• a nominal fuzzy scale, that performs an equivalence relation,

• an ordinal fuzzy scale, that performs an equivalence and an order relations.

The term fuzzy indicates that the relations associated to the scale concern fuzzy numbers instead

of ordinary numbers. On the other hand, the equivalence and order relations are classic ones, and

not fuzzy ones.
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4.2. Nominal and ordinal fuzzy scale

In order to have a nominal scale on the lexical universe, we must define an equivalence relation

on it, that corresponds to the one defined on the numerical one. We propose to take:

a,b ∈ L a=b ⇔ µτ(a)(x)= µτ(b)(x) ∀x ∈N ⇔ µι(x)(a)= µι(x)(b) ∀x ∈N . (13)

For the description of numerical measurements, one obtains in the general case a fuzzy subset

of L. The equality between two fuzzy subsets of L is then defined by:

ι(x)=ι(y) ⇔ ∀a ∈L µι(x)(a)= µι(y)(a). (14)

This relationship implies: x=y ⇒ ι(x) =F(L) ι(y). (15)

The fact that we have not an equivalence between the two parts of the relationship expresses that

the nominal numerical scale is more precise than the nominal fuzzy scale.

We must now define an order relation on the lexical universe. We propose to utilize four opera-

tors introduced by [Dubois, 88]:

µ[τ(a), +∞)(x) = sup{µτ(a)(y) | y ≤ x }, (16)

µ]τ(a), +∞)(x) = inf{1 - µτ(a)(y) | x ≤ y}, (17)

µ(-∞, τ(a)[(x) = 1 - µ[τ(a), +∞)(x), (18)

µ(-∞, τ(a)](x) = 1 - µ]τ(a), +∞)(x). (19)

Let us illustrate these operators by an example.

Figure 5 : Operators for comparison of fuzzy numbers.

So we define a ≤L b ⇔ µτ(a)(x)  ≤  µ(-∞, τ(b)](x) ∀x ∈ N. (20)

Having now an order relation on the lexical value and an order relation on the numerical meas-

urement, it seems interesting to compare these two measurements, when only their description is

known. We propose to define a distance on F(L) by the following relationship:

(21)

τ(a) ]τ(a), +∞) τ(a) [τ(a), +∞)(-∞, τ(a) [ (-∞,  τ(a)]
1

0

1

0

µ µ 

d ι x( ) ι y( ),( ) sup
a L∈

µι x( ) a( )

a L∈

∑ µι y( ) a( )

a L∈

∑–( )=
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4.3. Creating the concepts

As explained earlier, the objective of the symbolic sensors is to provide a linguistic description

of the numeric measurements. It leads to define the relations between the numeric measurements

and the lexical values. To do this, we propose to define first the meanings of the lexical values. In

the crisp approach, it generally leads to making a partition of the numerical domain. Therefore, we

propose to extend in the fuzzy case this way of constructing the meaning by defining a fuzzy par-

tition, i.e. satisfying the following conditions [Bezdek, 81]:

inf (maxa∈L µτ(a)(x))> 0 ∀x ∈N (which expresses that L covers N) (22)

          ∀a,b ∈ L supx (min(µτ(a)(x), µτ(b)(x))) < 1 (which expresses that the linguistic concepts 
are differentiated), (23)

∀x ∈ N  Σa ∈L µτ(a)(x)=1 (that expresses the orthogonality of the concepts). (24)

A system that satisfies these conditions is called a Fuzzy Information System (F.I.S.) [Tanaka,

79].

Obviously, it is a tedious task to specify each meaning of each lexical value. So we are looking

for techniques that simplify the creation of concepts. Two methods have been investigated. The first

one uses the knowledge of semantic relationships between symbols. The second one needs the

knowledge of the meaning of lexical values on particular measurements and then interpolates the

meaning for other points.

4.3.1. Generation of the concepts by semantic relationships

The fuzzy symbolic sensor works with several lexical values which are related by means of their

semantics. Let us take the example of a temperature measurement. A semantic relationship links

the lexical values hot and very_hot due to the order relation on the lexical space corresponding to

the order relation on the numerical domain: hot ≤ very_hot. These links between all the concepts

should be managed by the sensor itself. We first define, by its meaning, a particular concept, called

a generic concept, corresponding to a part of the numerical domain, that is important for the con-

sidered task. Defining new concepts leads to giving other lexical values and their meaning. Modi-

fiers, usually called linguistic hedges [Novak, 89], can be introduced to perform automatically such

an operation. E. Benoit has defined the following operators (more_than, less_than, below,

above), within the frame of the pretopology theory [Benoit, 91a], to create an ordinal fuzzy scale.

mild: generic concept

hot = more_than(mild)

very_hot = above(hot)

cold = less_than(mild)

very_cold = below(cold)
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Figure 6 : Example of an ordinal scale.

The preceding example can be run with other generic functions (e.g. triangle, gaussian) assum-

ing they are known by the sensor (i.e. they belong to the data base). Only the parameters of the

generic concept have to changed to reconfigure automatically the fuzzy ordinal scale.

4.3.2. Generation of the concepts by interpolation

This method requires the knowledge of the meaning of lexical values for particular elements of

the numerical domain. These particular elements are called characteristic measurements vi, V re-

fers to the set of all the vi’s. For each vi, one creates a fuzzy part F(vi) having a membership grade

equal to 1 for vi, to 0 for the other characteristic measurements vj ≠ vi. For an element v ∈[vi,vj],

we propose to make a linear interpolation in the following manner [Benoit, 93]:

µF(vi)
(v) = d(vj,v)/d(vi,vj) (25)

µF(vj)(v) = d(vi,v)/d(vi,vj) (26)

These relationships satisfy: µF(vi)
(vi)=1, µF(vi)

(vj)=0, µF(vj)(vi)=0, µF(vj)(vj)=1. (27)

d refers to a distance relation between two points. In order to create a fuzzy partition, the dis-

tance must satisfy:

µF(vi)
(v) + µF(vj)

(v) = 1 ⇔ d(vi,v) + d(vj,v) = d(vi,vj) (28)

One can take for example d(v,w)=| v - w|. Then, a meaning of a lexical value is determined by

aggregating all fuzzy parts F(vi) corresponding to characteristic measurements describing the same

concept a: µτ(a) =  ∪ {F(vi) / µτ(a) (vi)=1 }, with µΑ∪B(x) = min(µΑ(x)+µB(x),1). Hence, the

membership function is a piecewise linear function.

1

0

mild hot very_hotcoldvery_cold

To

very_cold ≤ cold ≤ mild ≤ hot ≤ very_hot

µ 
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Figure 7 : Interpolation method.

If further information on the shape of the membership function is available, one can use a more

general definition:

∀ v ∈ [vi, vj]

µF(vi)
(v) = f( d( vj, v) / d( vi, vj) ) (29)

µF(vj)
(v) = f( d( vi, v) / d( vi, vj) ) (30)

f is an increasing function on [0,1] and satisfies:

f(0) = 0 , f(1) = 1, f(1-a) = 1 - f(a). (31)

Figure 8 : Results with f(x) = 3x2-2x3.

Note that a new lexical value could be generated by defining the associated characteristic meas-

urements. This principle can be extended to a multi-dimensional measurement. An example is de-

scribed in section 6.2.

4.4. Adaptation to the measurement context

In the previous sections, it has been shown how to build automatically one relationship between

the numerical and the lexical domains. It seems obvious that the definition of meanings is the dif-

ficult point. A symbolic sensor that is concerned with a temperature measurement problem can in-

terpret the measure “temperature = 15oC” as a cool temperature. According to the context, the

v1 v2 v3 v4 v5 v6

τV(a) τV(b) τV(c) τV(d)

F(v1) F(v2) F(v3) F(v4) F(v5) F(v6)

N
τ(a) τ(b) τ(c) τ(d)

V

µ

µ

N

τV(a) τV(b) τV(c) τV(d)µ

N
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description could be false: in a swimming pool context, the temperature is cold; for a refrigerator,

it is very hot. Furthermore, the description can differ with the speaker. This last point is very im-

portant during the information acquisition time when an expert system is to be implemented.

Therefore, there is a need to configure the sensor according to the context (measurement task,

speaker). Formally, taking into account the measurement context is nothing more than adapting the

description (and then indirectly the meaning) of the numerical measurement. Two approaches have

been developed, a first one based on a functional processing (that makes a global adaptation of the

meanings) [Mauris, 92], and a second one based on a qualitative learning with a teacher (that makes

a local adaptation of the meaning) [Benoit, 91c].

4.4.1. Functional approach

Assume the generic concept and the new generated ones are defined on the numerical domain

N called the ideal universe. Let N’ be the measurement domain and h be a function, called the

adaptation function, from N’ to N.

Figure 9 : Adapting the sensor to the environment.

 The description of a measurement for crisp set is now:

 L1 = ι(h(x)) if x ∈τ(L1) (32)

To run this approach, the adaptation function should be sent to the symbolic sensor. However,

all adaptation functions should have specific properties that preserve the coherence of configura-

tion informations. Especially, the generic concept definition point should not be changed by the ad-

aptation function, furthermore the description should remain linear around this point. Let mc be the

generic concept definition point, the two previous properties lead to:

h(mc) = mc and h’(mc) = 1 (33)

Effects of the adaptation function on the measurement domain are called semantic properties

(compressing or expanding the definition domain, expanding after a particular measurement...).

The choice of a “good” adaptation function (i.e. having particular semantic properties and the pre-

vious mathematical properties) is not so easy. One solution is to choose an adaptation function hav-

ing the desired semantics, then apply a transformation to get the mathematical properties. Let g be

L N
τL1

ι ••

N’

x
•

h
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a function with the desired semantics at point xp, then the adaptation function can be defined as

follows (it is assumed that g’(xp) ≠ 0):

h(x) = a.g(x- mc + xp) + b with a = 1 / g’(xp) and b = mc - g(xp) / g’(xp) (34)

From these considerations, let us give four examples of functions g with interesting semantic

properties:

• expand_before_expand_after g(x) = argsh(k.x)

• compress_before_compress_after g(x) = sh(k.x) 

• compress_before_expand_after g(x) = sh(k.x) if x ≥ 0 g(x)=argsh(k.x) else

• expand_before_compress_after g(x) =argsh(k.x) if x ≥ 0 g(x) = sh(k.x) else

These functions have been chosen due to their asymptotic properties and their behavior around

the origin (here xp = 0). Figure 10 shows resulting adaptation functions h for the generic concept

definition point in 5 m, and presents the membership functions for a symbolic sensor dealing with

seven concepts defined from a gaussian generic one, distance_is_correct, whose definition point

is in 5 m: the adaptation function is obtained from the g compress_before_expand_after function. 

Figure 10 : Example of adaptation.

4.4.2. Qualitative learning with a teacher

The principle is illustrated in the following figure. It is based on the qualitative comparison be-

x

without the adaptation

x

with the adaptation

x

h(x)
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tween the description of the sensor (sc) and the description of the professor (sp) for the same nu-

merical input x. 

Figure 11 : Principle of learning with a teacher.

The qualitative comparison e takes its value in the set of signs S = {-, 0, +} usual in qualitative

analysis. In the present instance, we restain ιsp(x) to a singleton, i.e. an element of L , so the result

is obtained from the order relation on L. 

e = + if ιsp(x) ≥L ιsc(x)

e = - if ιsc(x) ≥L ιsp(x)

e = 0 if ιsp(x) =L ιsc(x)

 The qualitative comparison is used to change the meaning of each lexical value, and of course

the sensor’s descriptions. The idea is to change the meaning in order to obtain a qualitative feed-

back of the sensor’s description according to the professor’s description. The qualitative feedback

can be easily obtained with the following control strategy.

if e = + then u = increase

if e = - then u = decrease

if e = 0 then u = maintain

The semantics of the control actions on u are respectively to increase, decrease or maintain the

sensor’s description. Now, in order to complete the approach, the function increase, decrease, and

maintain have to be defined. The function maintain is obvious since no action is performed. E. Be-

noit has defined two functions increase and decrease, that modify two neighbouring concepts [Be-

noit, 91a and 93]. In fact, these operators, based on the pretopology theory, induce a local

modification of the partition. An illustration of the action of this sort of operators is shown hereaf-

Physical phenomenon
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Decision
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u

Description
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ter.

Figure 12 : :Action of increase on the concept sf.

For the temperature T0, before the action of the teacher the description is ι(T0)={cold(0.6);

mild(0.4)}, after the qualitative learning we obtain ι(T0)={cold(0.4); mild(0.6)}.

5. Handling measurement imprecisions

In the previous section, we have considered the conversion of a precise numerical measurement

into a lexical value. In reality, the measurement process is not ideal, and the numerical values given

back by the sensor are imprecise. The aim of this paragraph is to take into account the metrological

performances of the sensor in the numeric-linguistic conversion. To do this, we will first consider

a classification of the different errors.

5.1. Different types of errors

We consider three types of errors:

• systematic errors, created by erroneous referent values, by the electronic sig-

nal processing or by particular conditions of operation.

• regular errors, that produce a measure close to the true value. They come from

the noise of circuits and from slight uncontrolled variations of referent parame-

ters.

• aberrant errors, leading to a measured value which has nothing in common

with the observed situation. They are due to important faults in electronics, to

brutal variations of operation or to a specific configuration of the sensor.

The problem is how to recognize these types of errors. It requires information about the sensor

operation, whose performances must be known.

cold mild

T 0

T 0

To

mildcold

before adaptation

after adaptation

µ τ(s)

µ τ(s)
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5.2. Characterization of the sensor performances

We propose a functional approach that is linked to the usual description of the performances and

is coherent with the fuzzy subset theory [Mauris, 92]. Therefore, three functions called device

functions are defined to characterize the imprecision of the sensor:

• the precision function, that is the probability distribution of the experimental

measurements, and reflects the estimation performances of the sensor for regular

operating.

• the detection function and the validity function, that describe respectively the

detection performances of the sensor and the validity of the measure. They can

be interpreted as an a priori and as an a posteriori probability of regular measure-

ments.

These functions could be obtained by theoretical calculus or by experimental analysis. Note that

the detection function requires knowledge of the sensor’s performances, that depend on the oper-

ating configuration. The validity function requires internal or external additional data (i.e. informa-

tion redundancy), providing information upon the observed situation, in order to do a coherence

test of the measured value, that leads to a validity rating of the measurement.

5.3. Management of errors

The problem is how to take into account the numerical measurement errors in the numeric-lin-

guistic conversion. Our choice is to associate to a lexical value a membership function that inte-

grates elements of a different nature. The first type of elements are information external to sensor,

linked to the designated purpose for linguistic representation. The second type are imprecision

measurements, that have to be performed in a way coherent within the frame of fuzzy theory. In

the present instance, we propose to process the imprecision measurements in accordance with the

type of errors.

5.3.1. Management of systematic errors

We mean to process this type of errors with a function qs, that corrects the numerical value. In

the case of correction of systematic errors by a standard, qs may simply be a subtraction by a con-

stant or a multiplication by a scale factor. In the most complex cases, qs may be a parametric func-

tion depending on external physical quantities (temperature, pressure,...) or may be given by a

correction table.

5.3.2. Management of regular errors

In the crisp approach, the border between two concepts is quite abrupt. Therefore, because of

the statistical variations of the numerical value, the lexical value obtained in return varies a lot. The
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considered procedure may taken into account the precision of the sensor in the construction of the

fuzzy partition by smoothing transition between concepts. This operation is similar to a frequential

filtering. Therefore, we propose to convolute meanings of concepts by the precision function,

which constitutes the impulse response of the symbolic sensor. Let us illustrate this procedure by

an example. Let us consider a distance sensor, that has the following precision function:

 (35)

The concept far is defined by the crisp interval 40cm-60cm. If we have a precision of 2cm

around the 50cm measurement, we obtain for the modified concept a fuzzy one.

Figure 13 : accuracy of sensor σ=2cm.

In the preceding case, the sensor was quite efficient and the change is light. Let us observe now

more extreme cases, in order to understand the effect of the convolution by the precision function

on the basic concept.

Figure 14 : accuracy of sensor σ=10cm and σ=30 cm.
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In the last case, the fuzzy concept has not a modal value, i.e. the value 1 is not reached. The low

membership grade expresses the low credibility of the lexical value, which is in accordance with

the precision of the sensor. This information is also an incitement to redefine the basic concept.

5.3.3. Management of aberrant errors

Aberrant measurements correspond to values, that share nothing with the observed reality. We

will distinguish two cases. The a priori aberrant values, determined by the non-membership to a

nominal operating area. These measures must lead to a small membership grade of concepts, ac-

cording to their small confidence value. This result is quite similar to a temporal filtering. There-

fore, we mean to multiply the meaning of concepts by the detection function, that constitutes

information about the normal operating area of the sensor. Let us illustrate this operation by the

following example.

Figure 15 : Action of the detection function.

The second case is the a posteriori aberrant measurements, that are values belonging to the nom-

inal operating area of the sensor, but that share nothing with the observed reality. To detect these

faults, information about the acquired values, that will be characterized by a validity function, is

required. The validity is obtained by cross-checking with other internal or external information

upon the measurement processing. Finally the meaning of the modified concepts is deduced by

multiplication of the basic concepts by the validity function.

5.4. Implementation

The following figure presents the different functions of a fuzzy symbolic sensor. The analog part

makes the usual sensing. The numeric part acquires a numerical measurement of the considered
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physical quantity with possible correction and compensation of the measures. The association of

these two parts leads to sensors usually called smart sensors. The fuzzy symbolic part generates the

meanings of the concepts by taking into account the measurement imprecisions and the measure-

ment context. The device functions (precision, detection, validity) depend on the configuration of

the sensor and act with specific operators (convolution, multiplication) in the numeric-linguistic

conversion. In output, the fuzzy sensor provides numeric measurements and their validity, and a

linguistic description of the considered situation. Therefore, it constitutes a general component us-

able for many types of systems. It will be noted that the proposed mechanism gives back a small

membership grade when the partition is too fine or covers an area that is different from the range

of the sensor. So the membership grade is shown as a global validity index of the concept fusing

linguistic uncertainty and numeric measurement imprecisions.

Figure 16 : General structure of a fuzzy symbolic sensor.
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6. Applications

This section describes two implementations of fuzzy symbolic sensors. The first one concerns

an ultrasonic range finding sensor. After detailing the measurement principle, we focus our atten-

tion on the management of numeric errors in the numeric-linguistic conversion by means of the

device functions (see section 5.3.). The used method for creating the concepts is based on the def-

inition of the meaning of a modified generic concept (that integrates the accuracy of the sensor)

and the use of linguistic operators described in section 4.3.1. In output, the fuzzy sensor gives back

the numeric measurement and its validity, and the linguistic description of the considered dis-

tance.The second implementation of a fuzzy symbolic sensor is a colour matching sensor which

tries to copy human eyes. In this perspective, the software sensor referred to here works with the

three usual components of colour (red, green, blue). So the numeric measurements are three-di-

mensional, and we extend the interpolation procedure used in the mono-dimensional case (see sec-

tion 4.3.2.) for creating the meanings of the concepts, whose modal values are given by a learning

with teacher procedure described before (see section 4.4.2.). In output, the fuzzy sensor displays

the linguistic description of the colour of the considered object.

6.1. Ultrasonic range finding sensor

6.1.1. Measurement principle

Two small ultrasonic transducers which have a frequency resonance of about 40kHz have been

used. The emitter is linearly modulated in frequency with a frequency sweep rate of α=∆F/Tr. As

sound travels through air between the receiver at a speed of v=340m/s, the receiving transducer col-

lects a frequency modulated signal delayed by a time t0=2d/v (d: distance to the obstacle). The two

signals (emission and reception) are made to beat together in a non linear device (i.e. a multiplier)

and the beat note is found to contain two distinct tones fa and fb.

Figure 17 : Principle of a linearly modulated range finding sensor.
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We have the following relationships:

(36)

(37)

6.1.2. Sensor processing

In order to obtain the distance d, the frequency fa must be numerically acquired. We propose a

solution based on a complementary use of analog processing and digital processing implemented

on a single processor board.

Figure 18 : Sensor processing.

The emission consists in generating a triangular signal by integration of a rectangular signal pro-

vided by a timer of the board. The received signal is first amplified and then multiplied with the

emitted one. Therefore, the multiplier output provides a beat note with two distinct tones: fe+fr and

fe-fr. After going through a low-pass filter, a sinusoïdal signal at frequency fa=fe-fr is obtained.

Then a TTL output OS is generated in order to perform a period acquisition.

Figure 19 : Principle of numeric distance acquisition.
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As frequency measurements are not so easy, a microprocessor based period measurement has

been implemented. Assuming that Tt is the sum of all the measured values (in reference clock

ticks), fref is the reference frequency and N the number of samples, the distance can be computed as:

(38)

K is a symbolic constant defined at the assembly level, so that only one multiplication and one

division are necessary to compute the distance. 

6.1.3. Representation of the sensor performances

The experimental results obtained with the following configuration (∆F=16kHz, Tr=15ms,

t’0=3ms) for an obstacle perpendicular to the ultrasonic beam lead to the following approximated

device functions.

Figure 20 : Device functions of the ultrasonic sensor.

With regard to the validity function, its formulation requires more attention. We look for a func-

tion, that has for domain the numeric space and for range the unit interval [0,1]. A value close to 1

means a good validity for the considered measurement, then a value close to 0 corresponds to a not

very reliable measurement. The expression of the validity functions necessarily originates in some

sort of redundancy. For the implemented ultrasonic sensor, we have a second value linked to the

distance, that is the number of cycles of the tone fa:

(39)

To define the validity, we propose to compute the theoretical number Nth corresponding to the

calculated distance d obtained by the measurement average faverage of fa, and the number Nexp cor-

responding to cycles which frequency is closed from faverage (for example, equal to faverage with

10% of error).Then, the validity function isobtained by:
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fv=Nexp/Nth. (40)

When the obstacle-sensor configuration is coherent with the model, i.e. obstacle perpendicular

to the ultrasonic beam and sensor configuration parameters (∆F, Tr, t’0) adjusted to the distance to

the obstacle, then Nexp=Nth and fv = 1. When the obstacle is inclined or the parameters not adapted

to the situation, or,..., then Nexp << N th and fv = 0. For instance, the robustness of this function has

not been analysed. Examples of measurements obtained by the sensor are shown hereafter.

Figure 21 : distance and validity of measurements for a plane obstacle perpendicular to the beam.

Note that the distance measurements are quite smooth and have a good validity.

Figure 22 : distance and validity of measurements for a plane obstacle inclined at 30o.

The distance measurements vary a lot and the validity is low. It is due to the reflection, that is

not principally focused on the sensor.

6.1.4. Processing linguistic information
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In order to perform the actions of configuration, acquisition and processing of the information

in a simple manner, E.Benoit has developed a rule based procedural language, called PLICS (pro-

totype of integrated language for symbolic sensors) [Benoit, 93]. Therefore, users work in a lan-

guage close to natural language, as shown in the following example. The method used for creating

the concept is based on the definition of a modified generic concept (that integrates the accuracy of

the sensor) and the use of the linguistic operators (more_than, less_than, above, below) (see section

4.3.1.).

Figure 23 : Example of creation of concepts.

The obtained structure for the symbolic informations is an ordinal fuzzy one (see section 4.2.).

The detection function is equal to 1 in the interval [0.05m;1.4m], so that it does not affect the mem-

bership grades in this range. The validity can not be displayed because it is obtained a posteriori.

The next figure shows respectively the numeric value, the validity and the lexical value (that cor-

responds to the higher membership function grade) registered for a robot sweep over a plane sup-

porting an obstacle.
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Figure 24 : Table of results for a robot sweep.

6.2. Colour matching sensor

6.2.1. Human and artificial perception of colour

The sensing of colour has been known scientifically, only since Newton’s experiment on prisms.

His works and those of his successors have demonstrated that information linked to colour sensing

is described by the spectral energy distribution between 400nm and 700nm. This interval is called

the visible spectrum. Human beings perceive electromagnetic light beams by four types of photo-

chemical transducers: three cones for day vision and one rod for night vision. The photometric sen-

sors give back information in relation to the received energy:

(41)

with λ the wavelength, r the spectral sensitivity of the sensor and s the spectral energy distribu-

tion of the received wave. The sensation of colour is generated by the different spectral sensitivities

of the cones. The “blue” cones detect short wavelength, whereas the “green” and “red” cones detect

respectively medium and long wavelengths.

Figure 25 : Relative absorption of human cones
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Mathematically, colour information is represented by a three-dimensional vector, and the asso-

ciated measurement universe is called the colour space. The artificial sensing (for example the vid-

eo camera) is based on three photometric transducers that recreate the effects of red, green and blue

cones. The responses of the detectors are normalized between 0 and 1, and then the colour space

is simply a unit cube (R,G,B). Formally, every point of the cube marks a different colour sensation.

In practice, the lexical values of colour (red, blue, green,...) correspond to a partition of the cube in

many parts. At this stage of our presentation, it will be noted that the partition of the cube is not an

objective procedure, but a subjective one, that depends on users and considered applications. More-

over, other representations, separating characteristics of colour like brightness, saturation and tint

can be considered. Nevertheless, associated transformations introduce an important knowledge on

the mechanism of the human perception of colour. Therefore, we will use the simple cubic repre-

sentation (RGB) and a learning procedure for colour concept formation.

6.2.2. Processing linguistic information

The idea is to extend to the three-dimensional case the interpolation method developed for cre-

ating a mono-dimensional partition from characteristic measurements (see section 4.3.2.). One be-

gins by partitioning the cube in tetrahedrons using Delaunay’s triangulation method. For

partitioning the whole measurement universe, the vertices of tetrahedron must be characteristic

points. Then, the smallest partition contains eight elements, and the vertices of the cube are char-

acteristic measurements. The lexical set and the associated meanings are defined in the following

manner, and lead to a nominal fuzzy scale (section 4.2.).

Figure 26 : Triangulations of the cubic colour space.

Two triangulations are available as shown on the figure 26. It comes from the number of char-

acteristic points, that is not big enough to guarantee the unicity of the partition. In our work, we

will choose the first one. Then, we first associate to every characteristic point vc, a fuzzy subset

F(vc) defined by its membership function on each tetrahedron. For tetrahedrons which does not

contain vc, µF(vc)(v)=0 for all v belonging to the considered tetrahedron. If vc is a vertex of the con-

sidered tetrahedron µF(vc)(v)=1, and µF(vc)(vo)=0 for the other vertices of the tetrahedron. For oth-
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er points of the tetrahedron, we make a multi-linear interpolation from vertices:

µF(vc)(v)=µF(vc)(x,y,z)=ax+by+cz+d, (42)

 a,b,c,d are determined by the system of four equations given by the four vertices of the tetra-

hedron. The fuzzy subset F(vc), so defined by parts on each tetrahedron, is called a fuzzy point. The

meaning of a lexical value is then deduced from the union of fuzzy points associated to the set Va

of characteristic measurements describing the considered lexical value:

µτ(a)(v) = Σvc∈Va (µF(vc)(v)). (43)

As mentioned before, the proposed method does not take into account all the information on the

human perception of colour. Missing information will be introduced by learning with an operator.

He will indicate new colour lexical values and their associated characteristic measurements. For

building Delaunay’s triangulation, a specific algorithm has been used to create the new partition

used by the fuzzy sensor [George, 89].

6.3. Implementation and experimentations

The implemented sensor is a software one, that assesses the colour of an image using the three

components RGB given by a camera. In this case, the software is the instrument. Associated to a

shape recognition system, it can give a meaning to objects such a blue pen or a yellow cube.

6.3.1. Principle and description

The sensor use the three-dimensional interpolation method described before. First, the operator

defines the lexical set (for example: black, red, green, blue, cyan, magenta, yellow, white) and the

associated characteristic points vi (ri, gi, bi), chosen on the image by the cursor. Then, the software

determines the description of the colour of every point.The sensor presents a communication tool,

which allows to perform the learning procedure and the management of the results. The acquisition

of the three components RGB is provided by a camera, and the analysed point is determined by the

position of the cursor on the image.

Figure 27 : Monitoring board of the colour sensor.
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• Fichiers (file): this menu can load a colour image, or the configuration contain-

ing the set of characteristic points and their associated descriptions.

• Image: this menu selects the different modes of image vizualisation,i.e. dis-

plays in gradations of grey or in pseudo-colours of the original image or of the

interpreted image. If one displays the description of a point for a particular lexi-

cal value, black means that the lexical value does not belong to the description,

white means that the lexical value belongs totally to the description of the con-

sidered measurement. If one displays the description for all lexical values, the

colour of the pixel is that of the greater membership grade concept.

• RVB (RGB), couleur (colour), Val (%): in this part of the communication box

are included numeric values in the range 0-255 of the three components (red,

green, blue) and a lexical value (that corresponds to the greater membership

grade) and its associated membership grade in percentage.

• Detail: displays all the lexical values and their associated membership grade.

• Modifie (modify): Manages the monitoring procedure. The user selects adapted

lexical values for specified points. The software automatically builds the nominal

fuzzy scale.

6.3.2. Application

For example, we analyse the following colour image I, represented in gradations of grey for re-

production purposes. It shows a scene composed of four rectangular objects respectively yellow,

red, green, blue (down to up): a blue pen (left), a red pen, a grey ring and a white square, in which

is written a blue line is drawn and the word “cubes” is written in red. The learning procedure has

been performed on six points situated on the background picture, on the ring, and on the four rec-

tangles. The lexical set used here is {black, grey, blue, red, green, yellow, magenta, cyan, white}.

The characteristic colours and their associated lexical values can be seen as follows.

Symbols Blue Green Grey Black Red Yellow

R 33 30 88 28 163 217

G 56 76 84 27 57 166

B 118 45 70 30 83 98

Note that the learning points are quite far from the initial characteristic points (i.e. the vertices

of the cube RGB), which means that the starting nominal scale is not adequate to the image. More-

over, before monitoring, black is the most meaningful lexical value for the first four points.

After monitoring, the colour of the pens and of the writing are correctly interpreted. The next

figure shows the original image I and the “red” image Ired. Pixels, whose description contains
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completely the lexical value red are shown in black, those whose description does not belong to red

are shown in white. The intermediate levels are shown in gradations of grey.

.

Figure 28 : Images I and IRed

7. Conclusion

The final aim of any measurement process remains the acquisition of evidence that enables to

understand and possibly formulate decisions upon some matter. Therefore, numerical data about

the measured quantities are ultimately turned into a qualitative response to the requirements that

started the measurement process. This decision is generally made by a natural intelligent entity (i.e.

an operator) or by an artificial intelligent entity (i.e. an expert system). It is in general expressed in

a binary form (good or bad, equal or not equal,...) or in a sequence of pre-defined lexical values

(such as for example: mild, hot, very_hot, cold, very_cold). Our approach is to implement these

intelligent capabilities directly in a new type of sensors called symbolic sensors. The latter does

not only perform the sensing, i.e. the numerical acquisition of a physical quantity with possible cor-

rection and compensation of the measures (usually called smart sensing). It also performs the per-

ception, i.e. the definition of meaning of sensed signals by the assignment of symbols (e.g. pre-

defined lexical values).

This paper sets the theoretical foundations of the symbolic sensors, as an extension of the meas-

urement theory, by establishing in a formal way the relationships between the numerical and lexical

domains, by means of two mappings called description and meaning. In practice, a symbolic sensor

involves two stages: the usual numeric measurement and the numeric linguistic conversion. It en-

tails the definition of the meaning of the lexical values by the user, and the description of the nu-

meric measurements by the formal link between the meaning and the description.The latter

consider the set of the subsets of the numerical space and the set of the subsets of the lexical space.

The fuzzy set theory proposes an interesting frame for the treatment of symbol graduality, meas-

urement imprecisions and validation, and it allows to take into account the measurement context.

This approach leads to a specific structure for the sensors, called then fuzzy symbolic sensors. For
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instance, both an ultrasonic range finding sensor and a colour matching sensor have been success-

fully implemented. The former uses a procedure of management of errors and a procedure of cre-

ation of the concepts by semantic relationships. The latter uses an interpolation method for creating

the concepts by learning with a teacher.

As a conclusion, the proposed structure for the fuzzy symbolic sensors allows conventional

sensing, description, adaptation to the measurement context and treatment of errors. Hence, we can

consider cases where measurement systems involve a lot of sensors. In such situations, we are

faced with new problems: the concept level assessment and organization, the choice of the appro-

priate constituent devices and the optimal configuration of the sensors, the validation of data from

the point of view of the global system. For all these aspects, the new ways opened by symbolic rep-

resentations seem promising, and they are being developed in our laboratory.
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