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Abstract We present a direct forcing method better suited for the use of compact finite
difference schemes in Direct Numerical Simulation. The new forcing creates
inside the body an artificial flow preserving the no-slip condition at the surface
but reducing the step-like change of the velocity derivatives across the immersed
boundary. This modification is shown to improve results both qualitatively and
quantitatively for conventional and complex flow geometries.

1. CONTEXT OF THE STUDY

Despite the continual progress of computers, direct and large eddy simula-
tion of turbulent flows in complex geometries remains a difficult task. For each
flow configuration, a compromise must be specifically determined in order to
correctly describe the physics of the flow for a reasonable computational cost
(speed, memory requirement, code complexity). The choice of the computa-
tional grid is well known to be crucial for the determination of this compro-
mise. In order to take accurately small details of the geometry into account,
the most popular method is to generate a sophisticated grid following the body
geometry, despite the fact that such grids are frequently strongly distorted, re-
sulting in a degradation of the numerical accuracy associated with a significant
increase of the global computational cost.



An alternative method to avoid the drawbacks of the body fitted approach
consists in extending capabilities of codes based on simplified grids via the
use of the ‘immersed boundary method’. The basic idea of this technique is
to mimic the effect of a solid surface on the fluid through a forcing applied in
the body region. This operation is performed by additional terms introduced in
Navier-Stokes equations. Various formulations are proposed in the literature
with various names like ‘virtual boundary method’, ‘fictitious domain method’
or ‘penalization method’.

Short review of immersed boundary methods. Here, we use the generic
term ‘immersed boundary method’ introduced by [9] where this idea was em-
ployed to consider the full interaction between elastic solids and the fluid. For
more simplified situations where the motion of solid surfaces is a known of
the problem, three types of forcing can be distinguished: (i) feedback forc-
ing [4], (i1) algebraic forcing [2], (iii) direct forcing [13, 3]. The feedback
forcing is based on an artificial term that can ‘freeze’ efficiently the fluid in
the body region through a damping oscillation process. The algebraic forc-
ing is a simplified form of the feedback one where the time integral term is
suppressed. With this simplification, it is possible to establish a physical anal-
ogy where the forcing can model realistically a porous medium, the limit case
of a zero porosity corresponding to the modelling of a solid obstaclé . Un-
fortunately, feedback and algebraic forcings have a common drawback related
to their numerical stability properties. Schematically, both methods lead to a
severe additional restriction on the time step to maintain very low residual ve-
locities in locations where no-slip conditions are expected. In order to avoid
this limitation (often very expensive in terms of computational cost), the use
of the direct forcing technique is very attractive. In this third method, which
introduces no additional numerical stability restriction, the boundary condition
is ensured in a quite straightforward way by prescribing directly the velocity
in forcing region at each step of the time integration. Finally, note that it can
be easily shown [7] that feedback and algebraic methods can behave asymp-
totically (for a ‘vanishing porosity’) like a forcing method when their common
modelling term is time integrated with a forward (implicit) Euler scheme.

Goals of the present study. In this paper, we are interested in the strategy
where the direct forcing is combined with centred finite difference schemes
of high accuracy. Such a combination is a priori problematic due to the dis-

I'This physical analogy can be exploited advantageously in order to interpret the meaning of the residual
flow inside the modelled body (establishment of a d’Arcy law where velocity and pressure gradient are
proportional) and to make easier the computation of the associated drag and lift [11]. Another advantage
of this second forcing is related to its algebraic nature that offers the possibility to study theoretically its
asymptotic convergence towards the case of a purely solid wall [1, 5].
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continuities of the velocity derivatives created by the forcing. More precisely,
the sudden application of the forcing inside the virtual boundary guarantees
only the C? continuity of the solution whatever the spatial resolution is. The
numerical code used for this study solves the incompressible Navier-Stokes
equations discretized on a Cartesian collocated grid with the aid of 6" order
compact schemes. Despite their very favourable accuracy properties, these fi-
nite difference schemes are a priori not well suited for the numerical treatment
of a discontinuity, even if the jump condition concerns only the first derivative.
This problem is related to the quasi-spectral behaviour of compact schemes
that leads to spurious oscillations in a similar way as spectral methods in pres-
ence of discontinuities (Gibbs phenomenon). In preliminary calculations based
on the same numerical code as here, [7] reported that the creation of spurious
oscillations in the neighbourhood of the obstacle was increased when a direct
forcing was used instead of a feedback one. Since this problem was not men-
tioned in previous studies based on second order accurate codes [13, 3, 10], it
was concluded by [7] that the spurious oscillations were a consequence of the
spectral-like nature of the spatial discretization.

In this work, we propose a direct forcing method better suited for compact
schemes. Basically, the idea is to create inside the body a flow preserving the
no-slip condition at the surface but reducing the step-like change of the first
derivative of velocities across the immersed boundary. This modification is
shown to improve results both qualitatively and quantitatively.

2. FORMALISM

Schematically, the direct method consists in the application of the velocity
condition u(x,t) = ug(x,t) in the forcing region. The target velocity field
ug(x,t) is a priori a known of the problem, at least at the locations where
boundary conditions are expected. The discrete integration of the incompress-
ible Navier-Stokes equations with a A2 Adams-Bashforth scheme gives
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where 1 = p/p + u.u/2 is the modified pressure (p and p are the pressure
and the constant density respectively) while w is the vorticity field. The direct
forcing term takes simply the expression
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with € = 1 in the body region and ¢ = 0 everywhere else. Note that for sim-
plicity, we consider only a motionless body surface (no time dependence of the
mask function ¢). In this case, the simplest method to ensure no-slip conditions
is to use a zero target velocity field, namely ug = 0. As already discussed in
the preceding section, this simplified forcing generates discontinuities on the
first derivative of velocities that are problematic when spectral or spectral-like
schemes are used. In order to avoid this difficulty, the approach proposed in
this study consists in estimating a target velocity field uy that allows the no-slip
condition at the boundary while reducing the presence of discontinuities.

In order to do this, a first possibility is to estimate uy as the reverse to the
flow immediately outside the body. For instance, for a circular cylinder of
diameter D, a quite natural choice for the target velocity is w(r,0,z,t) =
—u(D —r,0,z,t) where (r,0, z) are cylindrical coordinates associated to the
circular body geometry. This type of forcing has already been tested by pre-
vious authors [13, 3] but only for the prescription of the inner velocities at
the closest grid points to the body surface. In the present context of compact
schemes, such a selective action would not be efficient enough due to the non-
local character of the derivative estimation. Then, we define a target velocity
in the full body domain as

uo(r,H,z,t) = —f(r)u(D —T,Q,Z,t) (4)
where the modulation function
f(r) = sin(2nr?/D?) )

is adjusted to ensure the regularity of inner velocities and to avoid the singu-
larity at 7 = 0. Naturally, other choices of f(r) are possible provided that the
three following conditions are verified (i) f(1/2) = 1: accurate reverse con-
dition near the body surface, (ii) f(0) = 0: singularity cancellation and (iii)
0 < f(r) < 1 with moderate first and second derivatives for 0 < r < 1/2. For
instance, f(r) = 1[1 — cos(2mr/D)] is another suitable modulation function.
Here, we choose the expression (5) because it cancels slightly more rapidly the
target velocity when r — 0, but it should be recognized that this choice is a
partly arbitrary.

Another point is that it is possible to apply the reverse condition only to the
tangential component of the velocity, the normal component being simply can-
celled. Such a forcing leads to concentric streamlines inside the cylinder. Note
this cancellation of the normal velocity inside the body does not create ad-
ditional discontinuities due to the incompressibility condition at the boundary
that guaranties a zero normal derivative for this velocity component. In prelim-
inary calculations (not presented here), we observed that both treatments of the
internal normal velocity (reverse condition or cancellation) lead to equivalent
results. In the data presented in the following, the normal inner velocity was
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maintained to zero except for the case of the tapered cylinder where the reverse
condition was directly applied at the vectorial level. In complex geometry, the
reverse condition is easier to implement because no projection of the velocity
vectors is necessary in order to distinguish normal and tangential components.
Naturally, the estimation of the target velocity using (4) on a Cartesian grid
needs to perform interpolations. Here, we only use a multilinear interpolation
to prescribe the internal flow from the knowledge of the external one. Despite
the second order accuracy of such a procedure (which is significantly lower
than to the formal accuracy of the numerical code itself), it will be shown in
the following that important benefits can be obtained from the use of 6" order
compact schemes.

An important point is that the target velocity field is not a priori diver-
gence free. For this reason, the verification of the incompressible condition
V.u"*! = 0 must be discarded inside the body by allowing a mass source/sink
in region where ¢ = 1. Following the approaches proposed by [13, 6], a first
possibility is to impose V.u"*! = ¢ V.ug""!. Here, we use a slightly mod-
ified condition V.u"t! = V. (5u0"+1) that was found to reduce more effi-
ciently oscillations in the vicinity of the obstacle.

In the framework of the fractional step method, several adjustments are nec-
essary in order to eliminate the various couplings introduced by the forcing
method. In this context, a three step advancement yields

uf —u” 3 1
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with the associated forcing term
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where the target velocity ug™ ! is estimated by
u0n+1(r707z7t) = —f(r)u*(D - T797Z7t) (10}

In first analysis, it can be expected that the splitting error introduced by the use
of £* in (6) and u* in (10) instead of f”*1 and u”*! respectively is only A#?
without any consequence on the final order of the time advancement.

The last step is to derive a Poisson equation compatible with the condi-
tion V.u"t! = V. (EuO”‘H). Here, we propose to use the approximation
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Figure I. Comparison between two direct forcing methods with and without internal flow at
Re = 40. The computational domain (L, L.) = (20D, 12D) is discretized on n, X n, =
361 x 217 grid points and the numerical code is based on Az® compact schemes.

V. (sup™™) = V. (su**) that leads to the pressure equation

V. [(1 - eg)u™]
A (i

where the conventional Poisson equation is recovered for € = 0 whereas inside
the body, the condition ¢ = 1 yields the Laplace equation. Note that other
variations on the method are possible, especially concerning the correction step
(8) that can be conditioned by ¢ as in [13] where the pressure cells are explicitly
masked (in this case, a two step splitting is only necessary). In this work, the
correction by pressure gradients is performed everywhere in the computational
domain via a fractional method in three steps.

V.Virtl =

3. RESULTS

Steady 2D wake at Re = 40. The benefit of the use of a non-zero target
velocity is shown in figure 1 where a constant flow around a 2D cylinder is
considered. Two cases are compared depending on the target velocity treatment
that can be zero (no internal flow) or given by (4) for the tangential component.
The comparison between both forcing methods shows clearly the improvement
offered by the use of a reverse flow inside the body. First, the examination
of the longitudinal velocity profiles (1c view) obtained in each case shows
clearly the more realistic near-body behaviour of the velocity when the first
derivative discontinuity is avoided. The improvement of the near-body data
is confirmed by the examination of vorticity isocontours (1b view). Note in
particular the reduction of spurious vorticity when a reverse flow is imposed
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Table 1. Comparison of statistical results obtained from various combinations between the
forcing method and the numerical code accuracy. All DNS are performed using a computational
domain (L., Ly, L.) = (20D, 2x D, 12D) discretized on n, X ny X n, = 361 x 48 x 216 grid
points. Data of DNS II' are from [7]. The streamwise location of the cylinder is z.,; = 5D.

DNS 1 11 1 v r
Forcing method direct direct direct direct feedback
Internal flow yes no yes no no

Scheme accuracy Az®  Az® Az Az? Az
Strouhal number  0.206 0.196 0.211 0213 0.20
Lr,,/D 138 155 122 127 164
Max[Re.])/U? 026 020 032 031  0.19

inside the cylinder. Quantitatively, by comparison to previous [14] or highly
resolved results, we observe that the characteristic length scales of the flow are
predicted more accurately when using the new forcing with the present spatial
resolution. For instance, we verified that this new method allows a satisfactory
prediction of the length of the wake bubble that is L, = 2.30D (£0.03D), in
good agreement with [14] who found L,, = 2.27D. In contrast, the use of a
zero target velocity field leads to an overestimation of 10%, i.e., L, = 2.50D
(£0.03D). Finally, note that we have verified that both forcing methods allow
the convergence towards the correct length of the wake bubble while reducing
considerably the spurious vorticity in the neighbourhood of the cylinder.

Unsteady 3D wake at Re = 300. In this section, we compare four DNS
combining three different forcing methods with two numerical codes based
on Az? or Az® (compact) centred finite difference schemes (see table 1 and
its caption for more details about the simulation parameters). Concerning the
length scale selection, similar trends as for Re = 40 are recovered for this un-
steady case at higher Reynolds number. The formation length Lr__ (deduced
from the streamwise location where the Reynolds stress R, reaches its max-
imum) is better predicted using the forcing (4) whereas the use of @y = 0
leads to a typical 10% overestimation, in agreement with previous observa-
tions of [7] based on DNS using the feedback forcing method. Compared to
reference values, an improvement of the Strouhal number prediction is also
obtained. However, the comparison between DNS III and IV shows that these
improvements are not obtained when Az? schemes are used, this insensitivity
to the forcing method (with or without internal flow) being consistent with the
previous observations of [3]. Present conclusions can be confirmed by the ex-
amination of (u,) and R, profiles presented in figure 2 for each case. The
improvement offered by the use of Az® compact schemes is clearly shown,
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Figure 2.  Profiles of longitudinal velocity statistics at different streamwise locations (z —
ZTeyr)/D = 1.2,1.5,2.0,2.5,3.0. — : DNSL;------ : DNSII; ____ DNSIII; . _.: DNS
IV; +: reference data obtained by spectral DNS based on a cylindrical grid [8].

Figure 3. Tsosurfaces of vorticity modulus w = 1.5U./D. Left: DNS I, right: DNS III.

especially when the forcing with internal flow is applied (DNS I). Conversely,
the overestimation of the longitudinal velocity fluctuations obtained for both
DNS IIT and IV emphasizes the interest of the use of highly accurate schemes,
even if the formal accuracy is significantly lower due to the forcing method
itself. Note that this present overestimation is in agreement with the results
of [10] who used also a numerical code based on Az? schemes. Physically,
at marginal resolution, the combination of Az? schemes with a direct forcing
method seems to inhibit the 3D motions near the cylinder. This phenomenon
can be shown not only by statistical results but also through instantaneous vi-
sualizations. For instance, figure 3 presents a comparison between isosurfaces
of vorticity modulus obtained from DNS I and III. The artificial inhibition of
3D motions in DNS III is clearly confirmed, especially through the lack of
longitudinal vortices (stretched between the Karman structures) compared to
results from DNS I.

Unsteady 3D wakes in complex geometry. In this section, two specific
wake configurations are compared (see the caption of figure 4 for details about
simulation parameters). The case A corresponds to a flow of constant ve-
locity U = U, over a tapered cylinder with a diameter D(y) ranging from
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Figure 4.  Comparison of instantaneous vorticity visualizations. The computational domain
(Lo, Ly, L.) = (22D,.,48D,,12D.) is discretized on n, X ny x n. = 397 x 385 x 216 grid
points with L; = 40D, and z.,; = 7D. Data of Case B are from [12] who used a feedback
forcing method.

Dy = D./2to D; = 3D./2. The case B consists in a shear flow (Uz <
Ul(y) < Uy with Uy = U,./2 and Uy = 3U,./2) over a cylinder of constant di-
ameter D = D,. For each case, D(y) or U(y) vary linearly from y = —1; /2
toy = L;/ /2 (see figure 4) and the common Reynolds number Re, = U.D. /v
is 200. Hence, both flow configurations cover an equivalent range of local
Reynolds number Re = UD /v with 100 < Re < 300. Moreover, in both
cases, a local adjustment of the vortex shedding frequency f on the local di-
ameter D(y) or velocity U(y) can be expected by limiting (in first analysis)
the deviation of the local Strouhal number St = fD/U from its value for a
conventional wake. Note that such a local selection leads to high frequencies
in the low Re region for case A and the opposite situation for case B. Naturally,
this selection cannot be purely local due to the preservation of the coherence
of the flow motion in y-direction. The vortical organization obtained for each
case is presented in figure 4. Despite the similarities between these two flow
configurations, the local mechanisms of vortex shedding lead to the formation
of well marked cells in case A whereas in case B, the main effects are linked to
the selection of oblique structures (note however that a cellular pattern of vor-
tex shedding can also be identified for case B by means of a frequency analysis
[12]). The occurrence of dislocations (phase breaking, tearing of vortices) can
be observed in both cases, but these phenomena are found to be more frequent
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for case A. A quantitative comparison between these two flows (frequency
analysis, mean and fluctuating motions) is currently in progress.
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