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Abstract— This paper addresses the analysis and design of approach is to apprehend the global behaviour of a system
a sliding mode observer on the basis of a Takagi-Sugeno (T- by a set of local models (linear or affine), each local model
S) model subject both to unknown inputs and uncertainties.  -paracterizing the behaviour of the system in a particular

The main contribution of the paper is the development of a f fi The | | del th ted
robust observer with respect to the uncertainties as well as 20N€ O operation. 1he local models are then aggregate

the synthesis of sufficient stability conditions of this obarver. Dy means of an interpolation mechanism. This approach
The stabilization of the observer is performed by the search has been extensively considered (see among others [11],
of suitable Lyapunov matrices. It is shown how to determine  [12], [13], [14] and references therein).
the gains of the local observers, these gains being solut®n — gjnce the study of stability of the T-S models [15], [16],
of a set of linear matrix inequalities (LMI). The validity -
of the proposed methodology is illustrated by an academic [17], [18], the resgarchers accentuated their work on the
example. T-S observer design [13], [19], [20], [21]. Tanakhal.
[13], Ma et al. [19] and Yoneyamaet al. [22] studied
. INTRODUCTION observer design for T-S fuzzy control systems, and they
State estimation of linear time-invariant dynamical sys-proved that a state feedback controller and an observer
tem driven by both known and unknown inputs has beemlways yields a stabilizing output feedback controller
the subject of many research works [1], [2], [3]. Indeed,provided that the stabilizing property of the control and
in practice, there are many situations where some of thasymptotic convergence of the observer are guaranteed by
inputs to the system are inaccessible. The recourse to thge Lyapunov method.
use of an unknown input observer is then necessary in In recent papers, Parét al. [23] have presented the
order to be able to estimate the state of the considered Sydesign of a robust adaptive fuzzy observer for uncer-
tem. This state estimate can be useful either for designingiin nonlinear dynamic systems. The Lyapunov synthesis
a control law and/or for supervision task. Indeed, in theapproach is used to guarantee a uniformly ultimately
context of instrument fault detection and isolation, mosthounded property of the state observation error, as well
actuator failures can be generally modelled as unknowas of all other signals in the closed-loop system. Teng
inputs to the system [2]. al. [24] have studied the robust fuzzy control problem for
In parallel, sliding mode observers (SMO) have re-fuzzy model system in the presence of parametric uncer-
ceived large attention since it offers robustness progerti tainties and unavailable state variables. A state observer
with regard uncertainties [4], [5], [6]. Using an additive was designed and sufficient conditions derived for robust
nonlinear discontinuous term, SMO constraints the trajecstabilization in the sense of Lyapunov asymptotic stabil-
tory of the estimation error to remain on a specific surfacety. They are formulated using linear matrix inequalities
after finite time such that error is completely insensitive(LMIs).
to the disturbances. This interesting property has been Recently, the notion of the sliding mode was introduced
utilized either for state estimation [7], [8], [9] and fault into the fuzzy observer synthesis. In [25] a sliding mode
detection and isolation [10]. observer for Takagi-Sugeno models with matched and
All that relates to the linear models was largely devel-unmatched uncertainties is designed. Bergstead. [20]
oped in the literature. However, this assumption of lin-designed a sliding mode observer for a Takagi-Sugeno
earity is checked only in a limited vicinity of a particular model in the difficult case when the weighting function
operating point. The T-S model approach can apprehengepend on the estimated state. Chahgl. [26] present
the nonlinear behaviour of a system, while keeping thehe design of a new type of fuzzy controller for complex
simplicity of the linear models. single-input single-output systems. That paper presents a
Indeed, the real physical systems are often nonlineasystematic design procedure of fuzzy model-based con-

As it is delicate to synthesize an observer for an unspearollers with guaranteed stability and improved tracking
ified nonlinear system, it is preferable to represent thigerformances.

system with a T-S model. The idea of the T-S model



In this paper, the problem of the state estimationinputs and/or measured variables to define the operating
of an uncertain Takagi-Sugeno model subjected to theegimes.
influence of the unknown inputs is addressed. The main The matricesA A;(¢) are unknown time-varying matri-
contribution of this paper is the development of a robustes with appropriate dimensions, which represent para-
sliding mode observer with the presence of unknowrmetric uncertainties in the plant model. This kind of
inputs and parametric uncertainties. New convergencencertainties is known as unmatched uncertainties. The
conditions of the sliding mode observer are establishednknown inputi(t) is also assumed to be bounded.
while being based on the work presented in [27]. By

: : - [AA; ()] < 6 (2a)
using a quadratic Lyapunov function, the convergence B
conditions are expressed in the form of a set of linear la@)ll < p (2b)
matrix inequalities (LMI) [28]. Wheny; (£(t)) = 1, which impliesy; (£(t)) = 0, Vj # i,

The paper is organized as follows. In Section Il, themodel i is active. In fact, the value of the functions
general structure of the considered uncertain Takagin,(¢(t)) are not Boolean and the state of the multiple
Sugeno model is presented. In Section Ill, the proposeghodel can be viewed as a weighted sum of the “local
structure of a sliding mode observer is described andtates”. Notice however that, as this explanation helps to
the main results are presented. The derived conditiongnderstand the structure of the considered model, it is
ensuring the global asymptotic convergence of thenot really exact as only one state vector exists: those of
estimation error are given as a set of LMI terms. Thethe multiple model, and local states don't really exist.
last section gives a numerical example to illustrate thevhen membership functiong;(£(t)) are not Boolean
effectiveness of the proposed approach. ones, several local models are active at each time and

the coefficientsy;(£(t)) ¢ € Iy} quantify the relative
Notation: Throughout the paper, the following useful contribution of each local model to the global model.
notation is usedX” denotes the transpose of the matrix The choice of the numbe¥/ of local models describing
X, X > 0 means thatX is a symmetric positive the multiple model may be intuitively done by taking
definite matrix,In; = {1,2,...,M} and ||.|| represents into account a certain number of operating regimes.
the Euclidean norm for vectors and the spectral norm foMatrices 4;, B;, R; andC; can be obtained by using the

matrices. direct linearization of an a priori nonlinear model around
operating points, or alternatively by using an identifioati
[I. TAKAGI-SUGENO MODEL REPRESENTATION procedure [30], [31], [32]. From a practical point of view,

Many physical systems are very complex in practicematr'ceSAi' B;, R; and C; describe the system’s local

so that rigorous mathematical model can be very diI’“ficuItbeh"’wIour around théth regime.
to obtain, if not impossible. However, their nonlinear I1l. SLIDING MODE OBSERVER

behaviour can always be captured in a limited vicinity of This section is dedicated to the state estimation of
particular operating points by linear models. So the globajhe model (1). The proposed sliding mode unknown
model describing such systems in all of its functioninginput fuzzy observer (SMUIFO) is based on a nonlinear
range can be expressed on the basis of such linear locgympination of local unknown input observers involving
models. It is however necessary to ensure the connexiogliding terms allowing to compensate the uncertainties and
of these models. This modelling technique is known ashe unknown inputs. The proposed sliding mode observer
multiple model approach [29]. In this context, Takagi andof the Takagi-Sugeno model has the following form:
Sugeno have proposed a model to describe complex sys- "
tems [11]. Here, the following uncertain dynamic model 5= Z“i (AZ-:Z’ 4 Biu+ Gi(y— C#) + v + ai)
representing a complex nonlinear system with unknown

. - . i=1
inputs is considered:

M
§= wCit
i=1

M
i =3 mi((Ai+ AAw + Biu+ R 3)
i=1 (1) The aim of the design is to determine gain matrices
_ Z O G; and variablesy;(t) € R™ and «;(t) € R"™, that
y — piti guarantee the asymptotic convergencei¢f) towards

x(t). Let us note that;(t) and«;(t) can be considered
with S i(£(t) = 1 and0 < ;(£(t)) < 1,Vi € I,  as variables which compensate respectively the errors due
where z(t) € R™ is the state vectory(t) € R™ the 1O the unknown inputs and the model uncertainties. Their
input vector,i(t) € RY, ¢ < n, contains the unknown specific structures will be described further.
inputs andy(t) € RP the measured outputs. Matric_es A. Stability conditions
A; € R™™ and B; € R™™ denote the state matrix
and the input matrix associated with tfth local model.
Matrices R; € R™*? are the distribution matrices of
unknown inputs. At last£(t) is the so-called decision
vector which may depend on some subset of the known e=x—12 (4)

In order to establish the conditions for the asymptotic
convergence of the observer (3), let us define the state
and output estimation errors:



r=y—9y= w;Cie (5)

'Mi

=1

The dynamic of the state estimation error can be

evaluated using the equations (1) and (3):

M M
= Z Z/Li (Zlije + AA;x+ Riu—v; — Oéi) (6)
i=1 j=1
with:
Aij = Az — GZC] (7)

Theorem 1: the state of the observer (3) converges
globally asymptotically to the state of the Takagi-Sugeno
model (1), if there exists a symmetric positive definite

matrix P € R™*", matricesW; € R"*P and positive
scalarsf;, B2 and s checking the following conditions

forall 4,5 € I
ATP + PA, — C]-TWZ-T — P

—Bud

W,Cj +~1
<0

(8)

P

with v = 8207 + fs.

The gainsG; and the termsy;(t) and «;(t) of the
observer (3) are given by the following equations:

|PR? o 5
2ﬁ31 27T IZMJ‘CJ‘TT
If r#£0
=61 (1+ )6 12%6* r
l/l':O
If r= 0{ a; =0
9)
with: 54_ Bl
G; = P~iWw.. (10)

The proof of the asymptotic convergence of this ob-

server (3) rests on the following lemma 1.

Lemma 1: for any matricesX andY with appropriate
dimensions, the following property holds for any positive
scalar:

XYy +YT'X < XTX + 37 'YTYy

Proof: in order to demonstrate the asymptotic conver-
gence of the observer (3), let us consider the following

Lyapunov quadratic function:

V=elPe (12)

Using equations (4) and (6), the derivativ&(e(t))
along the trajectory of the system is given by:

M M
V= Z Z i fhj ( ATP + PA;j)e + xT AAT Pe+

1=1 j=1
T PAA;z — 20T Pe + 2¢T PRy — 2eTP1/1-)
(12)

Lemma 1 allows to write:

M M
vy Z,WJ( (ALP + PAy)e+ B e P2+

i=1 j=1
leTAAZ-TAAix — QaiTPe +2¢"PR;u — 2€TPl/i)

(13)

Using the expression of the state estimation error (4),
the inequality (13) becomes:

M M
V<30 wing (T(ALP + PAy + 67 PPe + 2T PRyt

i1=1j5=1
5162(2 + )T (& + €) — 20T Pe — QeTPyi>

M

V< Z S wing ( T(ALP + PA;j + 7' P?)e + 2¢T PR+
i=1j=1

,3152(:2T§:+e e)+6152(:v ete 1’)72&?P6726TP1/2')

Using again lemma (1), this last expression can be
rewritten as follows:

M M

V<SS sy (T (AL P + PAy + BT P2 + BTt
i=1j=1
B1(1+ )622T 0 — 20T Pe + 2¢T PRy — 27 Py
with B2 = B1(1 +54*1).

Two cases can therefore be distinguished according to
the value of the output residual:

Case 1:r # 0.
In this case, it is easy to notice from relation (9) that:

ATA
QaTPe =011+ ﬁ4)62—rT Z“JC P lPe

j=1

20T Pe = (1 (1 + B4)82 —2rT

T
—iCy
rTy

2a] Pe = B1(1 + B4)o2iT & (14)
2¢" PRy = e" PR;u + " R] Pe
2¢" PR, < fBse’e + B3 Y| PRl
2¢" PRy < fBaele + p* B3| PR (15)

M
epp1 Z ,ujCjTr

Jj=1

_1 IPR;|?
2t = oy 1P

2¢" Py = p* 35| PR |12 (16)

From (14), (15) and (16) one can easily deduce:
M M

V< Z Z pipje’ Uje

i=1 j=1

with: Us; = ALP + PA;j + B P? + 32621 + Bl

17)



Case 2:r(t) = 0. with:

In the general case, the erreft) is not orthogonal T = T —Th+Ts
to the term M 1, (€ () C;, therefore the nullity of AT ia
r(t) implies that ofe(t). In this case, from the equations o= 5 P+ P =5
(11) and (12), one can easily notice that the Lyapunov T = CIWI+wW,C;+CIW] +W;C;
function and its derivative are null. In the particular case T35 = Qiy+QF

where, for some, the errore(t) is orthogonal to the term
Zf\il wi (€ (t)) C;, we cannot conclude about the negativ-
ity of the derivative of the Lyapunov function. However, 114 gainsG; and the termsy;(t) and a,(t) of the

clearly, this situation is necessary “instantaneous” an@psaryer (3) are already given by the equations (9) and
cannot last a long time ag(t) evolves. Therefore, that (10).

case has no impact on the proposed analysis.

The analysis of these two cases has shown that thesof: the proof of this theorem is performed following
derivative of the considered Lyapunov function is Sys-ihe same steps as in theorem 1 and exploiting the result
tematically negative if the following inequalities hold: developed in [18].

(A; — GiC;)TP + P(A; — GiC)+ B P2+ It should be noted th_at the in'_[r_oduction of matri@g
¢ L g (e 1 leads to relaxed stability conditions. These matrices are
32671 + 31 < 0 not necessary positive definite. It is then possible to relax
the constraints using the cross terms4(j). Let us note

Notice that these latter are nonlinearfhandG;. To  that these matrices are not also necessary symmetrical
linearize them and to obtain the constraints (8), one caand this fact constitutes additional degrees of freedom, in
proceed to the following change of variable: comparison with what was done in [33].

v = 207 + s

W; = PG, (18) V. SIMULATION EXAMPLE

Consider the model (20), made up of two local models

After that, the use of the Schur complement [28] leads,§ jnyolving two outputs and three states. The output

to the obtention of linear matrix inequalities i andW; vector of the model() is a nonlinear combination of
that can be easily solved by the means of LMI methods,o siates.

If equation (8) holds, the RHS of inequality (17)
is clearly negative and the asymptotic convergence of
the observer (3) is guaranteed. In conclusion, the state

T = 22: ,Ui((Az‘ + AA;)x + Biu+ Ri@)

estimation error converges asymptotically towards zero, izl (20)
if the conditions (9) and the inequalities (8) are checked. y = Zuicifl?
=1
B. Relaxed stability conditions Here, the membership functions depend on the input of

ghe system. The numerical values of the matridesB;,

In order to reduce the conservatism of the inequalitie
C; and R; are as follows:

(8), the result proposed in [18] is exploited.

Theorem 2: the state estimation error between the model I I S IR B A
(1) and the sliding mode observer (3) converges globally ! 2 1 —6 2= 05 05 —4

asymptotically towards zero, if there exists symmetric
positive definite matriced” and @;;, matrices@;; and 1 0.5 1 1
positive scalars?,, 3; and 5 satisfying the following  B1 = [ ] Ba = [ ] R1 = [ ] Ry = [ 0.5 ]
inequalities for alli, j € T;: 2

[ ATP+PA; —CITWT —WiC; + Qi +~4I P <0

I P —B11

[ T+~ P 0 The model uncertainties are such that:
P g |

Qi Q2 - Qim

{2 Q22

whereA; (; ) denotes théj, k)th element of4; andf =
: : ] : 0.2. The functionn(t) is a piece-wise constant function
T o ) which magnitude is uniformly distributed on the interval
Qi Qnmm - o . .
[0 1]. Its time evolution is depicted on Fig. 1.
The considered sliding mode fuzzy observer that esti-
(19) mates the state vector of the uncertain model is described

>0




to synthesize a sliding mode observer for the model (20).
This fact illustrates the real contribution of the relaxed
stability conditions.

The system (20) was simulated using the known and
unknown inputs depicted in Fig. 2 and 3. Fig. 4 shows the
form of the membership functions (u(t)) and s (u(t)).

Fig. 5 presents the comparison between one of the
state of the model and its estimate from the sliding mode
observer. The two layouts are superimposed except in the

o] 5 10

15

20 vicinity of the origin (due to the choice of the initial
conditions of the multiple observer).

Fig. 1. The piece-wise constant functiopt)

by:

=
I

HMMHML\J

( +Bu()+Gi(y—3))+l/i+Oéi)
w; Ci &

@)
Il

(21)

It is important to note that the implementation of
this sliding mode observer induces a practical problem:
when the estimation error(¢) tends towards zero, the
magnitude o¥;(t) ande; () may increase without bound.
This problem is overcame as follows:

2 1 ||1 R H —1 T
E C
63 oy T 122

ik 1Zu]0r

It il > €

= By (1 + Bs) 67

I/i:()
If |T||<€{ - —0

The termsy;(t) and «;(t) are fixed to zero when the
output estimation error is such that(t)|| < e, wherez is
a threshold chosen by the user. In this case, the estimation
error cannot converge to zero asymptotically but to a small
neighborhood of zero depending on the choice.ofFor
this exampleg is chosen equal ta0~3.

The resolution of inequalities (19), using classical LMI
solver, leads to the following matricés;, P, QQ11, Q12

3

2.5

o

1.5r

1L

0.5

1.8

1.6F

1.4+

1.2r

0.8

0.6

0.4

0.2

]

10 15

Fig. 2. Known inputu(t)
5[ 1‘0 15
Fig. 3.  Unnown inputi(t)

K, (u(®)

Hy(u(®)

and Qgg:

0.55  2.18 2.62 1.04
Gp =] 1.58 —-0.67 Go=| —1.34 1.29
0.18 —0.93 2.22 —-2.19
1 0 O 1.66 —0.13 —-0.44 =l
P= 0 1 0 Qll = —0.13 1.44 —0.12 o 0.5 1 15 2 25 3
0 0 1 —0.44 —0.12 2.16

1.87 —0.27 0.18
Qa2 = | —027 166 0.12
0.18 0.12 1.39
1.16 0.14 0.22
Qia=| 034 017 066
—0.33 0.87 —0.69

Fig. 4. Membership functions

V. CONCLUSION

In this paper, based on a Takagi-Sugeno uncertain
model representation, the design of a sliding mode ob-
server using the principle of interpolation of several loca

Remark: Let us note that fop = 0.2, the conditions (8) observers has been proposed in the case where some
of theorem 1 (and the developed conditions in [27]) failinputs of the system are unknown. The stability of the
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