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Optimal quantization for the pricing of swing options

Olivier Bardou∗ Sandrine Bouthemy† and Gilles Pagès ‡

6th April 2007

Abstract

In this paper, we investigate a numerical algorithm for the pricing of swing options, relying
on the so-called optimal quantization method.

The numerical procedure is described in details and numerous simulations are provided to
assert its efficiency. In particular, we carry out a comparison with the Longstaff-Schwartz
algorithm.
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Introduction

In increasingly deregulated energy markets, swing options arise as powerful tools for modeling
supply contracts [14]. In such an agreement between a buyer and a seller, the buyer always has
to pay some amount even if the service or product is not delivered. Therefore, the buyer has to
manage his contract by constantly swinging for one state to the other, requiring delivery or not.
This is the kind of agreement that usually links an energy producer to a trader. Numerous other
examples of energy contracts can be modeled as swing options. From storages [6, 8] to electricity
supply [17, 7], this kind of financial device is now widely used. And it has to be noticed that its
field of application has recently been extended to the IT domain [12].

Nevertheless, the pricing of swings remains a real challenge. Closely related to a multiple
stopping problem [10, 9], swing options require the use of high level numerical schemes. Moreover,
the high dimensionality of the underlying price processes and the various constraints to be integrated
in the model of contracts based on physical assets such as storages or gas fired power plants increase
the difficulty of the problem.

Thus, the most recent technics of mathematical finance have been applied in this context; from
trees to Least Squares Monte Carlo based methodology [25, 16, 18], finite elements [26] and duality
approximation [20]. But none of these algorithms gives a totally satisfying solution to the valuation
and sensitivity analysis of swing contracts.

The aim of this paper is then to introduce and study a recent pricing method that seems very
well suited to the question. Optimal Vector Quantization has yet been successfully applied to the
valuation of multi-asset American Options [2, 1, 3]. It turns out that this numerical technique is
also very efficient in taking into account the physical constraints of swing contracts. For sake of
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simplicity we shall focus on gas supply contracts. After a brief presentation of such agreements
and some background on Optimal Quantization methods [22], we show that a careful examination
of the properties of the underlying price process can dramatically improve the efficiency of the
procedure, as illustrated by several numerical examples.

The paper is organized as follows: in the first section, we describe in details the technical
features of the supply contracts (with firm or penalized constraints) with an emphasis on the
features of interest in view of a numerical implementation: canonical decomposition and normal
form, backward dynamic programming of the resulting stochastic control problem, existence of
bang-bang strategies for some appropriate sets of local and global purchased volume constraints.
Section 2 is devoted to some background on optimal vector quantization. In Section 3, our algorithm
is briefly analyzed and the a priori error bound established in the companion paper [4] is stated (as
well as the resulting convergence result of the quantized premium toward the true one). In Section 4,
numerous simulations are carried out and the quantization method is extensively compared to the
well-known least squares regression algorithm “à la Longstaff-Schwartz”. An annex explains in
details how the price processes we consider in this paper can be quantized in the most efficient way.

1 Introduction to swing options

1.1 Description of the contract

A typical example of swing option is an energy (usually gas or electricity) supply contract with
optional clauses on price and volume. The owner of such a contract is allowed to purchase some
amount of energy qtk at time tk, k = 0, . . . , n − 1 until the contract maturity tn = T , usually one
year. The purchase price Kk called strike price may be constant or indexed to past values of crude
oil. Throughout the paper we will consider that the strike prices are constant and equal to K

over the term of the contract. The volume of gas qtk purchased at time ti is subject to the local
constraint

qmin ≤ qtk ≤ qmax.

The cumulative volume purchased prior to time tk(i.e. up to tk−1) is defined by Qtk =
∑k−1

ℓ=0 qtℓ . It
must satisfy the following global constraint (at maturity):

QT =
n−1∑

k=0

qtk ∈ [Qmin, Qmax].

Two approaches can be considered:

– The constraints on the global purchased volumes are firm.

– A penalty is applied if the constraints are not satisfied.

The price at time t of the forward contract delivered at time T is denoted by Ft,T , (F0,tk )0≤k≤n

being a deterministic process (the future prices at time 0) available and tradable on the market.
Let (Stk)0≤k≤n be the underlying Markov price process defined on a probability space (Ω,A,P).

Note that it can be the observation at time tk, k = 0, . . . , n of a continuous time process. Ideally
St should be the spot price process of the gas i.e. St = Ft,t. However it does not correspond to a
tradable instrument which leads to consider in practice the day-ahead contract Ft,t+1.

We consider its (augmented) natural filtration FS = (FS
tk

)0≤k≤n. The decision sequence
(qtk)0≤k≤n−1 is defined on (Ω,A,P) as well and is FS-adapted, i.e qtk is Ftk = σ(St0 , . . . , Stk)
measurable, k = 0, . . . , n. At time tk the owner of the contract gets qtk(Stk −K).
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Remark 1.1. The results of this paper can also be applied to every physical asset or contract where
the owner reward for a decision qtk is a function ψ(tk, qtk , Stk). In the case of supply contracts,
ψ(tk, qtk , Stk) = qtk(Stk −K). As for a storage, qtk represents the amount of gas the owner of the
contract decides to inject or withdraw and the profit at each date is then

ψ(tk, qtk , Stk) =






−qtk(Stk + cI) if qtk ≥ 0 (Injection)
−qtk(Stk − cW ) if qtk ≤ 0 (Withdrawal)
0 if qtk = 0 (Same level in the storage)

where cI (resp. cW ) denotes the injection (resp. withdrawal) cost [6].

1.1.1 Case with penalties

We first consider that the penalties are applied at time T if the terminal constraint is violated. For
a given consumption strategy (qtk)0≤k<n, the price is given by at time 0

P (0, S0, 0) = E

(
n−1∑

k=0

e−rtkqtk(Stk −K) + e−rTP
T
(ST , QT )|F0

)

where r is the interest rate. The function (x,Q) 7→ PT (x,Q) is the penalization: PT (x,Q) ≤ 0 and
P

T
(x,Q)| represents the sum that the buyer has to pay if global purchased volume constraints, say

Qmin and Qmax, are violated. [6] have already investigated this kind of contract.
Then for every non negative Ftk−1

measurable random variable Qtk (representing the cumulated
purchased volume up to tk−1), the price of the contract at time tk, k = 0, . . . , n − 1, is given by

P (tk, Stk , Qtk) = ess sup
(qtℓ

)k≤ℓ<n

E

(
n−1∑

ℓ=k

e−r(tℓ−tk)qtℓ(Stℓ −K) + e−r(T−tk)P
T
(ST , QT )|Stk

)
. (1)

The standard penalization function is as follows:

P
T
(x,Q) = − (Ax (Q−Qmin)− +B x (Q−Qmax)+) (2)

where A and B are large enough – often equal – positive real constants.

1.1.2 Case with firm constraints

If we consider that constraints cannot be violated, then for every non negative Ftk−1
measurable

random variable Qtk defined on (Ω,A,P), the price of the contract at time tk, k = 0, . . . , n − 1 is
given by:

P (tk, Stk , Qtk) = ess sup
(qtℓ

)k≤ℓ≤n−1∈A
Qmin,Qmax
k,Qtk

E

(
n−1∑

ℓ=k

e−r(tℓ−tk)qtℓ(Stℓ −K)|Stk

)
. (3)

where

AQmin,Qmax

k,Q =

{
(qtℓ)k≤ℓ≤n−1, qtℓ : (Ω,Ftℓ ,P) 7→ [qmin, qmax],

n−1∑

ℓ=k

qtℓ ∈ [(Qmin −Q)+ , Qmax −Q]

}
.

At time 0, we have:

P (0, S0, 0) = sup
(qtk

)0≤k≤n−1∈A
Qmin,Qmax
0,0

E

(
n−1∑

k=0

e−rtkqtk(Stk −K)

)
.
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Note that this corresponds to the limit case of the contract with penalized constraints when A =
B = +∞. Furthermore, one shows that when the penalties A,B → +∞ in (2), the “penalized”
price converge to the “firm” price. This has been confirmed by extensive numerical implementations
of both methods. In practice when A, B ≈ 10 000 both methods become indistinguishable for usual
values of the volume constraints.

1.2 Canonical decomposition and normalized contract

In this section we obtain a decomposition of the payoff of our swing contract (with firm constraints)
into two parts, one having a closed form expression. It turns out that this simple decomposition
leads to an impressive increase of the precision of the price computation. It plays the role of a vari-
ance reducer. Moreover, its straightforward financial interpretation leads to a better understanding
of the swing contract.

In fact, we can distinguish a swap part and a normalized swing part:

P (0, S0) = E

(
n−1∑

k=0

qmine
−rtk(Stk −K)

)

︸ ︷︷ ︸
Swap

(4)

+ (qmax − qmin) sup

(qtk
)∈A

Q̃min,Q̃max
[0,1]

(0,0)

E

(
n−1∑

k=0

e−rtkqtk(Stk −K)

)

︸ ︷︷ ︸
Normalized Contract

where

AQ̃min,Q̃max

[0,1] (k,Q) = {(qtℓ)k≤ℓ≤n−1, qtℓ : (Ω,Ftℓ ,P) 7→ [0, 1],

n−1∑

ℓ=k

qtℓ ∈ [
(
Q̃min −Q

)

+
, Q̃max −Q]}

and

Q̃min =
(Qmin − nqmin)+
qmax − qmin

, Q̃max =
(Qmax − nqmin)+
qmax − qmin

. (5)

The price models investigated in the following sections define the spot price as a process centered
around the forward curve, and so E(St) = F0,t is known for every t∈ [0, T ]. Thus, the swap part
has a closed form given by

Swap0 = qmin

n−1∑

i=0

e−rtk(F0,tk −K).

The adaptation to contracts with penalized constraints is straightforward and amounts to mod-
ifying the penalization function in an appropriate way.

1.3 Dynamic programming equation

In [6], it is shown that, in the penalized problem, optimal consumption is the solution of a dynamic
programming equation.

Proposition 1.1. Assume that for some positive constants p and C, the following inequality holds
for any x > 0, and Q∈ [n qmin, n qmax]:

|P
T
(x,Q)| ≤ C(1 + xp).
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Then, there exists an optimal Markovian consumption q∗(tk, Stk , Qtk) given by the maximum argu-
ment in the following dynamic programming equation:





P (tk, Stk , Qtk) = max

q∈[qmin,qmax]

{
q(Stk −K) + e−r(tk+1−tk)

E(P (tk+1, Stk+1
, Qtk + q)|Stk)

}
,

P (T, ST , QT ) = PT (ST , QT ).
(6)

Usually, the function P
T
(x,Q) is given by (2). Then, the case with firm constraints corresponds

to the limit case where P
T
(x,Q) = (−∞)1{x/∈[Qmin,Qmax]}.

When considering a contract with firm constraints, a more operating form (see [4]) can be the
following

P (tk, Stk , Qtk) = max
{
q(Stk−K) + E(P (tk+1, Stk+1

, Qtk +q)|Stk), (7)

q∈ [qmin, qmax], Qtk + q∈ [(Qmin − (n− k)qmax)+, (Qmax − (n− k)qmin)+]} .

1.4 Bang Bang consumption

1.4.1 Case with penalties on purchased volumes

[6] showed the following theoretical result.

Theorem 1.2. Consider the Problem 1 and P
T
(x,Q) = −xP (Q), P being a continuously differ-

entiable function. If the following condition holds

P
(
e−rtk(Stk −K) + E(e−rTSTP

′(Q∗
T )|Stk , Q

∗
tk

) = 0
)

= 0,

the optimal consumption at time tk is necessarily of bang-bang type given by

q∗(tk, Stk , Q
∗
tk

) = qmax1{e−rtk (Stk
−K)+E(e−rT ST P ′(Q∗

T )|Stk
,Q∗

tk
)>0}

+qmin1{e−rtk(Stk
−K)+E(e−rT ST P ′(Q∗

T )|Stk
,Q∗

tk
)<0}.

The above assumption seems difficult to check since it involves the unknown optimal consump-
tion. However, this would be the case provided one shows that the random variable e−rtk(Stk −
K) + E(e−rTSTP

′(Q∗
T )|Stk , Q

∗
tk

) is absolutely continuous as noticed in [6].

1.4.2 Case with firm constraints

In the companion paper [4], we establish some properties of the value function of the swing options
viewed as a function of the global volume constraints (Qmin, Qmax). Thanks to (4) one may assume
without loss of generality that the contract is normalized, i.e. qmin = 0 and qmax = 1. We consider
the following value function:

P (Qmin, Qmax) = sup
(qtk

)0≤k≤n−1∈A
Qmin,Qmax
0,0

E

(
n−1∑

k=0

e−rtkqtk(Stk −K)

)

defined on the unit (upper) simplex {(u, v)∈ R
2, 0 ≤ u ≤ v ≤ n}.

Proposition 1.3. The premium function (Qmin, Qmax) 7→ P (Qmin, Qmax) is a concave, piecewise
affine function of the global purchased volume constraints, affine on elementary triangles (m,M)+
{(u, v), 0 ≤ u ≤ v ≤ 1}, (m,M) ∈ N

2, m ≤ M ≤ n and (m,M) + {(u, v), 0 ≤ v ≤ u ≤ 1},
(m,M) ∈ N

2, m ≤M − 1 ≤ n− 1 which tile of the unit (upper) simplex.

5



Theorem 1.4. For integral valued global constraints, i.e. (Qmin, Qmax)∈ N
2, there always exists a

bang-bang optimal strategy i.e. the a priori [0, 1]-valued optimal purchased quantities q∗tk are in fact
always equal to 0 or 1.

Remark 1.2. This result can be extended in some way to any couple of global constraints when all
the payoffs are nonnegative (see [4]). Furthermore, it has nothing to do with the Markov dynamics
of the underlying asset and holds in a quite general abstract setting.

An example of the premium function (Qmin, Qmax) 7→ P (Qmin, Qmax) is depicted on Figure 1.
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Figure 1: Value function P (Qmin, Qmax) versus the global constraints

Now we turn to the problem of the numerical evaluation of such contracts. As announced, we focus
on an optimal quantization algorithm.

2 Optimal quantization

Optimal Quantization [21, 1, 2, 3] is a method coming from Signal Processing devised to approxi-
mate a continuous signal by a discrete one in an optimal way. Originally developed in the 1950’s,
it was introduced as a quadrature formula for numerical integration in the late 1990’s, and for
conditional expectation approximations in the early 2000’s, in order to price multi-asset American
style options.
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Let X be an R
d-valued random vector defined on a probability space (Ω,F ,P). Quantization

consists in studying the best approximation of X by random vectors taking at most N fixed values
x1, . . . , xN ∈ R

d.

Definition 2.1. Let x = (x1, . . . , xN ) ∈ (Rd)N . A partition (Ci(x))i=1,...,N of R
d is a Voronoi

tessellation of the N -quantizer x (or codebook; the term grid being used for {x1, . . . , xN}) if, for
every i ∈ {1, . . . , N}, Ci(x) is a Borel set satisfying

Ci(x) ⊂ {ξ ∈ R
d, |ξ − xi| ≤ min

i6=j
|ξ − xj |}

where | . | denotes the canonical Euclidean norm on R
d.

The nearest neighbour projection on x induced by a Voronoi partition is defined by

Projx : y ∈ R
d 7→ xi if y∈ Ci(x).

Then, we define an x-quantization of X by

X̂x = Projx(X).

The pointwise error induced when replacing X by X̂x is given by |X− X̂x| = d(X, {x1, . . . , xN}) =
min1≤i≤N |X − xi|. When X has an absolutely continuous distribution, any two x-quantizations
are P-a.s. equal.

The quadratic mean quantization error induced by the the N -tuple x ∈ R
d is defined as the

quadratic norm of the pointwise error i.e. ‖X − X̂x‖2 .
We briefly recall some classical facts about theoretical and numerical aspects of Optimal Quan-

tization. For details we refer e.g. to [15, 22].

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Figure 2: Optimal quadratic quantization of the normal distribution N (0, I2), N = 200.

Theorem 2.1. [15] Let X∈ L2(Rd,P). The quadratic quantization error function

x = (x1, . . . , xN ) 7−→ E( min
1≤i≤N

|X − xi|2) = ‖X − X̂x‖2

reaches a minimum at some quantizer x∗. Furthermore, if the distribution PX has an infinite
support then x∗,(N) = (x∗,1, . . . , x∗,N ) has pairwise distinct components and N 7→ minx∈(Rd)N ‖X −
X̂x‖2 is decreasing to 0 as N ↑ +∞.
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Figure 2 shows a quadratic optimal quantization grid for a bivariate normal distribution N (0, I2).
The convergence rate to 0 of optimal quantization error is ruled by the so-called Zador Theorem.

Theorem 2.2. [15] Let X ∈ L2+δ(P), δ > 0, with PX(dξ) = ϕ(ξ)λd(dξ) + ν(dξ), ν ⊥ λd (λd

Lebesgue measure on R
d). Then

lim
N→+∞

(N
2
d min
x∈(Rd)N

‖X − X̂x‖2) = J2,d

(∫

Rd

ϕ
d

d+2dλd

)1+ 2
d

.

The true value of J2,d is unknown as soon as d ≥ 3. One only knows that J2,d = d
2πe + o(d).

Zador’s Theorem implies that ‖X − X̂x∗,(N)‖2 = O(N− 1
d ) as N → +∞.

Proposition 2.3. [21, 22] Any L2-optimal quantizer x ∈ R
d satisfy the following stationarity

property
E(X|X̂x) = X̂x.

In particular, for any stationary quantizer E(X) = E(X̂x).

The random vector X̂x takes its value in a finite space {x1, . . . , xN}, so for every continuous
functional f : R

d → R with f(X)∈ L2(P) , we have

E(f(X̂x)) =

N∑

i=1

f(xi)P(X ∈ Ci(x))

which is the quantization based quadrature formula to approximate E (f(X)) [21, 22]. As X̂x is
close to X , it is natural to estimate E(f(X)) by E(f(X̂x)) when f is continuous. Furthermore,
when f is smooth enough, on can upper bound the resulting error using ‖X − X̂x‖2 , or even
‖X − X̂x‖2

2
(when the quantizer x is stationary).

The same idea can be used to approximate the conditional expectation E(f(X)|Y ) by E(f(X̂)|Ŷ ),
but one also needs the transition probabilities:

P(X ∈ Cj(x)|Y ∈ Ci(y)).

The application of this technique to the quantization of spot price processes is discussed in
details in the Annex, page 22.

3 Pricing swing contracts with optimal quantization

3.1 Description of the algorithm (general setting)

In this section we assume that (Stk)0≤k≤n is a Markov process. For sake of simplicity, we consider
that there is no interest rate. We also consider a normalized contract, as defined in Section 1.2.

In the penalized problem, the price of the swing option is given by the following dynamic pro-
gramming equation (see Equation 6):






P (tk, Stk , Qtk) = max
q∈{0,1}

[q(Stk −K) + E(P (tk+1, Stk+1
, Qtk + q)|Stk)]

P (T, ST , QT ) = P
T
(ST , QT )

where tk = k∆, k = 0, . . . , n, ∆ = T
n .

8



The bang-bang feature of the optimal consumption (see Section 1.4) allows us to limit the
possible values of q in the dynamic programming equation to q∈ {0, 1}. At time tk, possible values
of the cumulative consumption are

Qℓ
tk

= ℓ, 0 ≤ ℓ ≤ k. (8)

At every time tk we consider a(n optimized) Nk-quantization Ŝtk = Ŝ
x
(N)
k

tk
, k = 0, . . . , n based

on an optimized quantization Nk-tuple (or grid) x
(Nk)
k :=

(
s1k, . . . , s

Nk
k

)
of the spot Stk .

The modeling of the future price by multi-factor Gaussian processes with memory (see Section 4
for a toy example) implies that (St)t∈[0,T ] is itself a Gaussian process. Then the quantization of Stk

can be obtained by a simple dilatation-contraction (by a factor StD(Stk)) from optimal quantization
grids of the (possibly multivariate) normal distribution, to be downloaded on the website [23]

www.quantize.maths-fi.com

Then we compute the price at each time tk, for all points on the corresponding grid, and for all
the possible cumulative consumptions:






P (tk, s
i
k, Q̂tk) = max

q∈{0,1}
[q(si

k −K) + E(P (tk+1, Ŝtk+1
, Q̂tk + q)|Ŝtk = si

k)]

i = 1, . . . , Nk,

P (T, si
T , Q̂T ) = P

T
(si

T , Q̂T ), i = 1, . . . , Nn.

(9)

When considering a contract with firm constraints, we need to compute the price at each time
tk, for all the points of the quantization grid of the spot price, and for all the admissible cumulative
consumptions (See Figure 3)

Qℓ
tk

= ℓ+ (Qmin − (n− k + 1))+ , ℓ = 0, ...,min(k,Qmax) − (Qmin − (n− k + 1))+ . (10)
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Figure 3: Volume Constraints

Using the bang-bang feature (See section 1.4) and the dynamic programming principle (Equation 7),
this price is given by

P (tk, s
i
k, Q̂tk) = max

{
q(si

k−K)+E(P (tk+1, Ŝtk+1
, Q̂tk +q)|Ŝtk = si

k), (11)

q∈ {0, 1}, Q̂tk + q∈ [(Qmin − (n− k))+ , Qmax]
}
.

Since Ŝtk takes its values in a finite space, we can rewrite the conditional expectation as:

E(P (tk+1, Ŝtk+1
, Q)|Ŝtk = si

k) =

Nk+1∑

j=1

P (tk+1, s
j
k+1, Q)πij

k

9



where
π

ij
k = P(Ŝtk+1

= s
j
k+1|Ŝtk = si

k)

is the quantized transition probability between times tk and tk+1. The whole set of quantization
grids equipped with the transition matrices make up the so-called “quantization tree”. The tran-
sition weights (πij

k ) matrices are the second quantity needed to process the quantized dynamic
programming principle (9 or 11). A specific fast parallel quantization procedure has been devel-
oped in our multi-factor Gaussian framework to speed up (and parallelize) the computation of these
weights (see Annex). In a more general framework, one can follow the usual Monte Carlo approach
described in [1] to compute the grids and the transition of the global quantization tree.

When (Stk) has no longer a Markov dynamics but appears as a function of a Markov chain
(Xk): Stk = f(Xk), one can proceed as above, except that one has to quantize (Xk). Then the
dimension of the problem (in term of quantization) is that of the structure process (Xk).

Of course one can always implement the above procedure formally regardless of the intrinsic
dynamics of (Stk). This yields to a drastic dimension reduction (from that of X downto that of
(Stk)). Doing so, we cannot apply the convergence theorem (see Section 3.3) which says that in a
Markovian framework the premium resulting from (9) or (11) will converge toward the true one as
the size of the quantization grid goes to infinity.

This introduces a methodological residual error that can be compared to that appearing in [5]
algorithm for American option pricing. However, one checks on simulations that this residual error
turns out to be often negligible (see Section 4.3).

3.2 Complexity

The first part of the algorithm consists in designing the quantization tree and the corresponding
weights. The complexity of this step is directly connected to the size of the quantization grids
chosen for the transitions computation in 1-dimension, or to the number of Monte Carlo simulations
otherwise. However those probabilities have to be calculated once for a given price model, and
then several contracts can be priced on the same quantization tree. So we will mainly focus on the
complexity of the pricing part.

We consider a penalized normalized contract, i.e qmin = 0 and qmax = 1. The implementation
of the dynamic programming principle requires three interlinked loops. For each time step k (going
backward from n to 0), one needs to compute for all the points si

k, i = 1, . . . , Nk of the grid and
for every possible cumulative consumption Qℓ

tk
(0 ≤ ℓ ≤ k) (see (8)) the functional

max
q∈{0,1}

[q(si
k −K) + E(P (tk+1, Ŝtk+1

, Qtk + q)|Ŝtk = si
k)]

which means computing twice a sum of Nk+1 terms.
Hence, the complexity is proportional to

n−1∑

k=0

(k + 1)NkNk+1.

In the case where all layers in the quantization tree have the same size, i.e N = Nk,∀k = 1, . . . , n,
the complexity is proportional to n2N2

2 . This is not an optimal design but only one grid needs to
be stored. It is possible to reduce the algorithm complexity by optimizing the grid sizes Ni

1(with
the constraint

∑
k Nk = nN), but it costs more memory space.

1To minimize the complexity, set Nk ≈
2nN

(k+1)log(n)
, k = 0, . . . , n−1, which leads to a global complexity proportional

to 4n2N2

log(n)

10



In the case of firm constraints, the dynamic programming principle (11) has to be computed
for every admissible cumulative consumption, i.e for every Qℓ

tk
(0 ≤ ℓ ≤ min(k − 1, Qmax) −

(Qmin − (n− k + 1))+, see (10)). The complexity is proportional to

n−1∑

k=0

(min(k,Qmax) − (Qmin − (n− k + 1))+ + 1)NkNk+1.

The complexity in the case of firm constraints is lower than the one for a penalized problem,
and depends on the global constraints (Qmin, Qmax). But the implementation is easier in the case
of a penalized problem, because one does not need to check if the cumulative consumption volume
is admissible. Both approaches have been numerically tested and results are indistinguishable for
large enough penalties. For the implementation readiness, the approach with penalties has been
adopted.

In order to reduce the complexity of the algorithm, one usually prunes the quantization tree.
In most examples, at each layer k, many terms of the transition matrix (πk

ij)i,j are equal to 0
or negligible. So while the transition probabilities are estimated, all the transitions that are not
visited are deleted. This step is important because it allows to reduce significantly the algorithm
complexity.

In practice we can even neglect transitions whose probability is very low, say less than 10−5.

3.3 Convergence

In [4] is proved an error bound for the pricing of swing options by optimal quantization.
Let Pn

0 (Q) denote the price of the swing contract at time 0. n is the number of time step,
and Q = (Qmin, Qmax) is the global constraint. We consider a contract with normalized local
constraints, i.e qmin = 0 and qmax = 1. The “quantized” price P̂n

0 (Q) is the approximation of the
price obtained using optimal quantization.

Proposition 3.1. Assume there is a real exponent p ∈ [1,+∞) such that the (d-dimensional)
Markov structure process (Xk)0≤k≤n−1 satisfies

max
0≤k≤n−1

|Xk| ∈ Lp+η(P), η > 0.

At each time k ∈ {0, . . . , n − 1}, we implement a (quadratic) optimal quantization grid xN of size
N of Xk. Then

‖ sup
Q∈T+(n)

|Pn
0 (Q) − P̂n

0 (Q)| ‖p≤ C
n

N
1
d

where T+(n) := {(u, v), 0 ≤ u ≤ v ≤ n} is the set of admissible global constraints (at time 0).

In fact this error bound turns out to be conservative and several numerical experiments, as
those presented in Section 4, suggest that in fact the true rate (for a fixed number n of purchase

instants) behaves like O(N− 2
d ).

4 Numerical experiments

In this section the same grid size has been used at each time step, i.e. we always have Nk = N, k =
0, . . . , n. The results have been obtained by implementing the penalized problem and using the
canonical decomposition (see Section 1.2).
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4.1 The one factor model

Swing options are often priced using the least squares regression method “à la Longstaff-Schwartz”
[19]. This section aims to compare our numerical results to those obtained with Longstaff-Schwartz
method. We consider a one factor model, which corresponds to a one dimensional Markov structure
process.

4.1.1 Quantization tree for a one dimensional structure process

We consider the following diffusion model for the forward contracts (Ft,T )0≤t≤T :

dFt,T

Ft,T
= σe−α(T−t)dWt

where W is a standard Brownian motion. It yields:

St = F0,t exp

(
σ

∫ t

0
e−α(t−s)dWs −

1

2
Λ2

t

)

where

Λ2
t =

σ2

2α
(1 − e−2αt).

Denote Xk =
∫ k∆
0 e−α(t−s)dWs. The structure process (Xk)k≥0 can be quantized using the fast

parallel quantization method described in the Annex (page 22). Let x
(N)
k denote an (optimal)

quantization grid of Xk of size N . We have to compute for every k ∈ {0, . . . , n − 1}, and every
(i, j)∈ {1, . . . , N}2, the following (quantized transition) probabilities:

p
ij
k = P(η1 ∈ Ci(x

(N)
k );αk+1η1 + βk+1η2 ∈ Cj(x

(N)
k+1)) (12)

where (η1, η2) ∼ N (0, I2), and αk and βk are scalar coefficients that can be explicited.
This can be done by using quantization again and importance sampling as presented in the

Annex, page 22 (see (21)).

4.1.2 Comparison with the regression method

We first use the following parameters for the one factor model:

σ = 70%, α = 4, F0,tk = 20, k = 0, . . . , n.

The following tables present the results obtained with Longstaff Schwartz and optimal quan-
tization, for different strike values. 1000 Monte-Carlo sample paths have been used for Longstaff-
Schwartz method and the confidence interval of the Monte Carlo estimate is given in the table.
A 100-point grid has been used to quantize the spot price process, and the transitions have been
computed with a 500-point grid. The local volume constraints qmin and qmax are set to 0 and 6
respectively .

We first consider a case without constraints (Table 1), which means that the swing option is a
strip of calls, whose price is easily computed with the Black-Scholes formula.

Table 2 presents the results obtained with the global constraints Qmin = 1300 and Qmax = 1900.
Volume constraints are presented on Figure 4.
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K = 5 K = 10 K = 15 K = 20

Longstaff-Schwartz [32424,33154] [21360,22127] [11110,11824] [3653,4109]

10 point grid 32726 21806 11311 3905
20 point grid 32751 21834 11367 3943
50 point grid 32759 21843 11380 3964
100 point grid 32759 21843 11380 3964
200 point grid 32761 21845 11382 3967

Theoretical price 32760 21844 11381 3966

Table 1: Comparison for a call strip (no global constraints)
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Figure 4: Consumption constraints

K = 5 K = 10 K = 15 K = 20

Longstaff-Schwartz [29068,;29758] [19318,;19993] [10265,;10892] [2482,;3038]

10 point grid 29696 20216 10981 3067
20 point grid 29494 20018 10841 2863
50 point grid 29372 19895 10729 2718
100 point grid 29348 19872 10704 2687
200 point grid 29342 19866 10698 2680

Table 2: Comparison with constraints

The results seem consistent for both methods, the price given by quantization always belongs
to the confidence interval of the Longstaff-Schwartz method. One can note that it is true even for
small grids, which means that quantization gives quickly a good price approximation. Moreover,
the price given by quantization is very close of the theoretical price in the case of a call strip.
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4.1.3 Execution time

In this section are compared the execution times to price swing options using optimal quantization
and Longstaff-Schwartz method.

The size of the quantization grid is 100 for the pricing part and 200 for the transitions compu-
tation. And 1000 Monte Carlo simulations are used. The maturity of the contract is one year.

The computer that has been used has the following characteristics:

Processor: Celeron; CPU 2,4 Ghz; 1,5 Go of RAM; Microsoft Windows 2000.

The execution times given in Table 3 concern the pricing of one contract, which yields the
building of the quantization tree and the pricing using dynamic programming for quantization.

Longstaff-Schwartz Quantization: Quantization:
Quantization tree building + Pricing Pricing only

160 s 65 s 5 s

Table 3: Execution time for the pricing of one contract

If we consider the pricing of several contracts, there is no need for re computing the quantization
tree if the underlying price model has not changed. That is why quantization is really faster than
Longstaff-Schwartz in this case, as one can note from the results presented in Table 4.

Longstaff-Schwartz Quantization

1600 s 110 s

Table 4: Execution time for the pricing of 10 contracts

4.1.4 Sensitivity Analysis

When contracts such as swing options ought to be signed, negotiations usually concern the volume
constraints. That is why the valuation technique has to be very sensitive and coherent to constraints
variation. In this section we will compare the sensibility to global constraints for Longstaff-Schwartz
method and optimal quantization.

Figure 5 represents the price of the contract with regards to the global constraints Qmin and
Qmax, and Figure 6 represents the price versus Qmax for a fixed value of Qmin equal to 1300.

One can notice that the surface obtained with optimal quantization is very smooth. If Qmax

increases, the price increases. However, it is not always true with Longstaff-Schwartz because of
the randomness of the method, and the limited number of Monte Carlo simulations imposed by
the dimension of the problem and the number of time steps.

New Monte Carlo simulations are done for each different contract, i.e each time Qmin or Qmax

varies. Of course, the same simulations could be used to price all the contracts, but unfortunately
these simulations could be concentrated in the distribution queues and give a price far from the
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real one for all the contracts. As concerns quantization, the grid is build in order to give a good
representation of the considered random variable. One of the great advantages of optimal quanti-
zation over Monte-Carlo is that this first algorithm always approximates the whole distribution of
the payoff meanwhile it can take a while before Monte-Carlo explores some parts of it.
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4.1.5 Convergence

In this section we will study the convergence of the quantization method. We focus on the conver-
gence of the pricing part of the algorithm.

We consider a one year maturity contract with the volume constraints depicted on Figure 4,
and the daily forward curve depicted on Figure 7.
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Figure 7: Daily forward curve

Let P (N) be the price obtained for a quantization grid of size N , the error has been computed
as |P (N) − P (400)|, N ≤ 400. We assume that the error can be written as a functional of the grid
size N with the following shape:

N 7→ C

Nα
.

A linear regression in a logarithmic scale is done to find the functional that best fits the empirical
error. The α coefficient obtained is 1.96.

Figures 8 and 9 show the obtained numerical convergence and the corresponding fitted func-
tional.
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The same experiments have been done for other contracts, results are presented in Table 5.
qmin and qmax are set to 0 and 6.

Forward Curve Strike Constraints (Qmin −Qmax) Estimated α

Figure 7 20 1300-1900 1.96
Flat (20) 20 1300-1900 2.07
Flat (20) 10 1300-1900 2.32
Flat (20) 20 1000-2000 1.95
Flat (20) 20 1600-1800 2.26

Table 5: Estimation of the convergence rate

We can conclude that the convergence rate of the quantization algorithm for pricing swing
options is close to O( 1

N2 ). This convergence rate is much better than Monte-Carlo, and leads to

17



think that optimal quantization is an efficient alternative to Longstaff-Schwartz method for this
problem.

4.2 Two factor model

We consider the following diffusion model for the forward contracts (Ft,T )0≤t≤T :

dFt,T

Ft,T
= σ1e

−α1(T−t)dW 1
t + σ2e

−α2(T−t)dW 2
t

where W 1 and W 2 are two Brownian motions with correlation coefficient ρ.
Standard computations based on Itô formula yield

St = F0,t exp

(
σ1

∫ t

0
e−α1(t−s)dW 1

s + σ2

∫ t

0
e−α2(t−s)dW 2

s − 1

2
Λ2

t

)

where

Λ2
t =

σ2
1

2α1
(1 − e−2α1t) +

σ2
2

2α2
(1 − e−2α2t) + 2ρ

σ1σ2

α1 + α2
(1 − e−(α1+α2)t).

Unlike the one factor model, the spot price process obtained from the two factor model is not a
Markov process. Hence the dynamic programming equation (6) cannot be used directly. However,
the structure process of the two factor model (See Annex, page 25)

Xt =

(∫ t

0
e−α1(t−s)dW 1

s ,

∫ t

0
e−α2(t−s)dW 2

s

)

is a Markov process, and St = f(Xt) where f : R
2 7→ R is a continuous function. So we can rewrite

the dynamic programming equation as follows:






P (tk,Xtk , Qtk) = maxq∈[qmin,qmax] {q(f(Xtk ) −K) + E(P (tk+1,Xtk+1
, Qtk + q)|Xtk)},

P (T,XT , QT ) = PT (f(XT ), QT ).

(13)

Then we need to quantize the R
2 valued structure process (Xk)k≥0. This can be done using

the Fast Parallel Quantization (See Annex). The transitions are computed using Monte Carlo
simulations and importance sampling (see (19)).

4.2.1 Call strip

We first consider a case without constraints, and compare the results with the theoretical price
of the call strip, for several values of the strike K. The maturity of the contract is one month.
Transitions have been computed with 3000000 of Monte-Carlo simulation. The parameters of the
two factor model are:

σ1 = 36%, α1 = 0.21, σ2 = 111%, α2 = 5.4, ρ = −0.11. (14)

Table 6 presents the results obtained for a strip of call. Even if the quantized process is taking
values in R

2, prices are close to the theoretical price even for small grids.
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K = 5 K = 10 K = 15 K = 20

Theoretical Price 2700 1800.21 924.46 268.59

50 point grid 2695.26 1795.26 918.18 261.06
100 point grid 2699.79 1799.89 923.64 267.17
200 point grid 2697.67 1797.83 921.94 266.71
300 point grid 2702.02 1800.16 924.40 268.52

Table 6: Call Strip
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Figure 10: Numerical Convergence

Forward Curve Strike Constraints (Qmin −Qmax) Estimated α

Flat (20) 10 80-140 1.26
Flat (20) 20 80-140 1.00
Flat (20) 20 30-170 0.67
Flat (20) 20 100-120 1.19

Table 7: Estimation of the convergence rate

4.2.2 Convergence

We use the same procedure as in section 4.1.5 to find the functional N 7→ C
Nα that best fits the

empirical error.
Figure 10 shows an example of the empirical error and table 7 gather the values of α obtained

for different contracts. The contract maturity has been set to one month.

The convergence of the quantization algorithm is close to O( 1
N ). The convergence rate is linked

to the dimension d of the structure process, and from the results obtained in section 4.1.5 and in
this section, we can assume that the convergence rate is close to O( 1

N2/d ), which is better than the
error bound theoretically established in Section 3.3.
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4.3 Dimension reduction

In the case of multi-factorial models, we need to quantize the structure process (Xk)k instead of
the spot process Stk = f(Xk) in order to work with a Markov process (See section 4.2). Only the
one factor model is Markovian. That is why quantization and Longstaff-Schwartz method have
been compared just for this model. Longstaff Schwartz method also requires a Markov underlying
process.

From an operational point of view, it is interesting to study the results obtained by formally
quantizing the spot process (Stk), regardless to its dynamics, and using the approximation

E(X|Ftk) ≃ E(X|Stk)

for any random variable X, even if the spot price (Stk) is not a Markov process. Similar approx-
imation has already been proposed by Barraquand-Martineau in [5]. Numerical tests have shown
that the resulting prices remain very close to those obtained by quantizing the structure process in
the case of a two factor model. Execution time and convergence rate are significantly faster, and
the quantization tree can be computed as presented in the Annex page 22 using Equation (21).

Even if there is no theoretical evidence on the error, this approach seems useful to get quick
results. Table 8 presents some results, parameters of the two factor model are those of (14) and
volume constraints are represented on Figure 4.

Quantized Process K = 5 K = 10 K = 15 K = 20

Spot Price 30823.38 21414.30 13021.87 5563.68

Structure Process 30705.78 21518.75 13123.56 5722.89

Table 8: Quantization of the spot price vs Quantization of the bivariate structure process

The convergence rate obtained in this case is always O( 1
N ), which is consistent with the general

rate O( 1
N2/d ), because the quantized process is R-valued.

Therefore, even if the spot process is not Markov, the quantization method can be performed
all the same way as if it were, with small damage in practice. This is of course not a general
consideration but rather an observation over the considered problem. The dramatic increase in the
computation effort that can be gained from this observation can justify in this case a lack of formal
rigor.

Conclusion

In this article, we have introduced an optimal quantization method for the valuation of swing op-
tions. These options are of great interest in numerous modeling issues of the energy markets and
their accurate pricing is a real challenge.
Our method has been compared to the famous Longstaff-Schwartz algorithm and seems to perform
much better on various examples. In fact, the optimal quantization method shares the good prop-
erties of the so called tree method but is not limited by the dimension of the underlying. Moreover,
specific theoretical results provide a priori estimates on the error bound of the method.
Thus, optimal quantization methods suit very well to the valuation of complex derivatives and
further studies should be done in order to extend the present results to other structured products
arising in the energy sector.
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Annex: Fast Parallel quantization (FPQ)

In this annex we propose an efficient method to quantize a wide family of spot price dynamics
(Stk). To be precise we will assume that a time discretization ∆ being fixed,

Sk∆ = fk(Xk), k ≥ 0 (15)

where (Xk)k≥0 is a R
m-valued Gaussian auto-regressive process and (fk)0≤k≤n a family of contin-

uous functions. The fast quantization method applies to the Gaussian process (Xk)0≤k≤n. We will
apply it to a scalar two factor model in full details. As a conclusion to this section we will sketch
the approach to a multi-factor model.

Quantization of the Gaussian structure process

We consider a centered Gaussian first order auto-regressive process in R
m:

Xk+1 = AXk + Tεk+1 (16)

where A ∈ M(m×m,R), T ∈ M(m×m,R) lower triangular, and (εk) i.i.d. with N (0, Im) distri-
bution.

Denote by D(Z) = [E(ZiZj)]1≤i,j≤m the covariance matrix of Z. We have ∀k ∈ N:

D(Xk+1) = AD(Xk)A
∗ + TT ∗.
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Denote Σk the lower triangular matrix such that D(Xk) = ΣkΣ
∗
k.

We consider for every k = 0, . . . , n − 1, an optimal (quadratic) quantizer x
(Nk)
k of size Nk, for

the N (0, Im) distribution. The quantization grid of the random variable Xk is taken as a dilatation

of x
(Nk)
k ,i.e

x̄k = Σk x
(Nk)
k := (Σkx

(Nk),i)1≤i≤Nk
.

To calculate the conditional expectations in the dynamic programming equation, we need to
get the following transition probabilities:

π
ij
k = P(Xk+1 ∈ Cj(x̄k+1)|Xk ∈ Ci(x̄k))

where Ci(x) denotes the i-th Voronoi cell of the generic quantizer x∈ (Rd)N . Then

P(Xk ∈ Ci(x̄k)) = P(Z ∈ Ci(x
(Nk)
k )),

with Z ∼ N (0, Im). This probability is provided as a companion parameter with the normal
distribution grid files (available on [23]).

To get the transition probability πij
k we need to compute

p
ij
k = P(Xk+1 ∈ Cj(x̄k+1),Xk ∈ Ci(x̄k)).

Proposition 4.1. Let X be a discrete time process described as above. Let U , V be two gaussian
random variables N (0, Im). Then we have for every k ∈ {0, . . . , n−1}, every i ∈ {1, . . . , Nk}, every
j ∈ {1, . . . , Nk+1},

P(Xk+1 ∈ Cj(x̄k+1),Xk ∈ Ci(x̄k)) = P(U ∈ Ci(x
(Nk)
k ), Ak+1U +Bk+1V ∈ Cj(x

Nk+1

k+1 )) (17)

where Ak and Bk are q × q matrices whose coefficients depend on k, and on the matrices A, T . If
k = 0,

P(X1 ∈ Cj(x̄1)) = P(V ∈ Cj(x
(N1)
1 )). (18)

Proof. We have:

P(Xk+1 ∈ Cj(x̄k+1);Xk ∈ Ci(x̄k)) = P(AXk + Tεk+1 ∈ Cj(x̄k+1);Xk ∈ Ci(x̄k)).

We consider the couple (Xk, T εk+1). Tεk+1 is independent of Xk. Let η = (η1, η2) a couple of
independent Gaussian random vectors: ηi ∼ N(0, Im), i = 1, 2. Then (Xk, T εk+1) ∼ (Σkη1, T η2)
and

P(Xk+1 ∈ Cj(x̄k+1);Xk ∈ Ci(x̄k)) = P(AΣkη1 + Tη2 ∈ Cj(x̄k+1); Σkη1 ∈ Ci(x̄k))

= P(Σ−1
k+1 (AΣkη1 + Tη2) ∈ Cj(x

(Nk+1)
k+1 ); η1 ∈ Ci(x

(Nk)
k )).

Setting
Ak+1 = Σ−1

k+1AΣk, Bk+1 = Σ−1
k+1T

we get

P(Xk+1 ∈ Cj(x̄k+1);Xk ∈ Ci(x̄k)) = P(Ak+1η1 +Bk+1η2 ∈ Cj(x
(Nk+1)
k+1 ); η1 ∈ Ci(x

(Nk)
k )).

If k = 0 and Σ0 ≡ 0, the quantity

P(Xk ∈ Cj(x̄k)) = P(η1 ∈ Cj(x
(Nk)
k ))

is given as a companion parameter with the quantization grids of the normal distribution.

Remark 4.1. Equation (17) emphasizes the fact that the transitions can be computed in parallel.

Remark 4.2. To simplify the structure of the quantization tree we propose to consider the same
normalized grid of size Nk = N at each step k but other choices are possible like those recommended
in [1].

23



Numerical methods

Hereafter we will focus on the numerical computation of these transitions.

• The standard Monte Carlo approach The simplest way is to use a Monte Carlo method.
One just needs to simulate couples of independent gaussian random variables (η1, η2). This approach
can be used whatever the dimension m of the random variables η1 and η2 is. It can clearly be
parallelized as any MC simulation but fail to estimate the transition form states which are not
often visited.

• Fast Parallel Quantization Method In order to improve the accuracy, especially for the

points x(Nk+1),j of the grids x
(Nk+1)
k+1 which are rarely reached by the paths starting from the cell of

x(Nk),i, it is possible to perform importance sampling. The idea is to use Cameron-Martin formula
to re-center the simulation: for every k∈ {0, . . . , n− 1} and every i∈ {1, . . . , Nk},

p
ij
k = P

(
η1 ∈ Ci(x

(Nk)
k );Ak+1η1 +Bk+1η̃2 ∈ Cj(x

(Nk+1)
k+1 )

)
=

e−
1
2
|x

(Nk),i

k |2
E

(
e−(x

(Nk),i

k )∗η11
{η1+x

(Nk),i

k ∈Ci(x
(Nk)

k )}
1
{Ak+1(η1+x

(Nk),i

k )+Bk+1η2∈Cj(x
(Nk+1)

k+1 )}

)
. (19)

Then these expectations can be computed by Monte Carlo simulations, the transitions between the
different times steps can be computed in parallel.

• Quantized Parallel Quantization Method If m = 1, the transitions can be computed
using again optimal quantization, because in low dimension (say d ≤ 4), quantization converges
faster than Monte Carlo method. In this case, we have to compute a two dimensional expectation.

We estimate for every k∈ {0, . . . , n− 1}, every i∈ {1, . . . , Nk} and every j ∈ {1, . . . , Nk+1} the
following probabilities:

p
ij
k = P(η1 ∈ Ci(x

(Nk)
k );αk+1η1 + βk+1η2 ∈ Cj(x

(Nk+1)
k+1 )) (20)

where (η1, η2) ∼ N (0, I2), and αk and βk are scalar coefficients satisfying α2
k + β2

k = 1:

αk = ΣkA
Σk+1

βk = T
Σk+1

.

To alleviate notations, we temporarily set x = x
(Nk)
k and y = x

(Nk+1)
k+1 .

We define
[
xi− 1

2 , xi+ 1
2

]
=
[

1
2(xi + xi−1), 1

2(xi + xi+1)
]

= Ci(x) (the same shortcut is implicitly

defined for y).
In order to reduce the problem dimension, it is possible to write the probability pk

ij as a double
integral, and to integrate first with respect to the second variable by using Fubini theorem:

P(η1 ∈ Ci(x); αk+1η1 + βk+1η2 ∈ Cj(y)) =

E

(
1
{xi− 1

2 ≤η1≤xi+1
2 }

(
N (

yj− 1
2 − αk+1η1

βk+1
) −N (

yj+ 1
2 − αk+1η1

βk+1
)

))

where N (x) is the distribution function of the normal distribution.
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Importance sampling can again be used to improve the results precision. Eventually we have
to compute the following one dimensional expectation:

P (η1 ∈ Ci(x);αk+1η1 + βk+1η̃2 ∈ Cj(y)) =

e
−(xi)2

2 E

[

e−xiη11{
−∆xi

2
≤η1≤

∆xi+1

2

}

{

N
(
yj− 1

2 − αk+1(η1 + xi)

βk+1

)

−N
(
yj+ 1

2 − αk+1(η1 + xi)

βk+1

)}]

. (21)

For this one-dimensional expectation computation, quantization can be used again since it converges
faster than Monte Carlo method.

Example: Two factor model

We consider the following diffusion model for the forward contracts (Ft,T )0≤t≤T :

dFt,T

Ft,T
= σ1e

−α1(T−t)dW 1
t + σ2e

−α2(T−t)dW 2
t

where W 1 and W 2 are two Brownian motions with correlation coefficient ρ.
Standard computations based on Itô formula yield

St = F0,t exp

(
σ1

∫ t

0
e−α1(t−s)dW 1

s + σ2

∫ t

0
e−α2(t−s)dW 2

s − 1

2
Λ2

t

)

where

Λ2
t =

σ2
1

2α1
(1 − e−2α1t) +

σ2
2

2α2
(1 − e−2α2t) + 2ρ

σ1σ2

α1 + α2
(1 − e−(α1+α2)t).

We have St = F0,t exp
(
σ1X

1
t + σ2X

2
t − 1

2Λ2
t

)
, where Xt is the following structure process:

Xt =

(∫ t

0
e−α1(t−s)dW 1

s ,

∫ t

0
e−α2(t−s)dW 2

s

)
. (22)

Proposition 4.2. Let Z = (Zt) be an Ornstein-Uhlenbeck process. Zt = Z0 +
∫ t
0 e

−α(t−s)dBs where
B is a standard Brownian motion, and Z0 is Gaussian and independent of B. Z can be written at
discrete times k∆ as a first order auto-regressive process:

Zk+1 = e−α∆Yk +
√

1 − e−2α∆

√
1

2α
εk+1 (23)

where (εk) is i.i.d and ε1 ∼ N (0, 1).

Xt is made up with two Ornstein-Uhlenbeck processes. Using Proposition 4.2, it yields:

Proposition 4.3.

Xk+1 = AXk + Tεk+1

with εk ∼ N (0, I2) i.i.d. and

A =

[
e−α1∆ 0

0 e−α2∆

]
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r = ρ

1
α1+α2

(1 − e−(α1+α2)∆)
√

1
4α1α2

(1 − e−2α1∆)(1 − e−2α2∆)

T =

[
1

2α1
(1 − e−2α1∆) 0

1
2α2

(1 − e−2α2∆)r 1
2α2

(1 − e−2α2∆)
√

1 − r2

]
.

Hence it is possible to use the fast parallel quantization method described in section 4.3.

General multi-factor Gaussian model

More generally, we consider a family of price dynamics that can be written as follows:

dFt,T

Ft,T
=

m∑

i=1

Pi(T − t)e−αi(T−t)dW i
t (24)

where Pi(x) is a polynomial function of degree di, for every i = 1, . . . ,m, and W is a Brownian
motion, with d < W i,W j >t= ρijdt.

The two factor model (Section 4.3) corresponds to m = 2, Pi ≡ σi, i = 1, 2.
In order to price a swing option with such a model, we first need to quantize it. Equation (24)

yields:

Ft,T = F0,T e
∑m

i=1

∫ t
0 Pi(T−s)e−αi(T−s)dW i

s−
1
2
φ(t,T ) (25)

where

φ(t, T ) =

m∑

i=1

∫ t

0
P 2

i (T − s)e−2αi(T−s)ds+
∑

i6=j

ρij

∫ t

0
Pi(T − s)Pj(T − s)e−(αi+αj)(T−s)ds.

Practically we focus on the spot price Ft,t or the day-ahead contract Ft,t+1. Unfortunately these
processes are not Markovian in a general setting, except when m = 1 and d1 = 0 (Ornstein-
Uhlenbeck process).

We consider a discretization time step ∆ > 0, and we set, for all i ∈ {1, . . . ,m} and for all
l ∈ {0, . . . , di}

X
i,l
k =

∫ k∆

0
Pi ((k + l)∆ − s) e−αi((k+l)−s)dW i

s .

Proposition 4.4. Xk = [Xi,l
k ]1≤i≤m,0≤l≤di

is a R
d1+···+dm+m-valued gaussian AR(1).

Lemma 4.5. Let P ∈ R[Z], doP = d and θ ∈ R
∗. Then (P (Z + lθ))0≤l≤d is a basis of R

d.

Proof. Using a dimension argument, only the linear independence of the family has to be checked.
And we have

d∑

k=0

λkP (Z + kθ) = 0 ⇔
d∑

k=0

λk

d∑

j=0

(kθ)j

j!
P (j)(Z) = 0

⇔
d∑

j=0

θj

j!

(
d∑

k=0

λkk
j

)

P (j)(Z) = 0.

Since
(
P (j)(Z)

)
0≤j≤d

is a basis of Rd[Z], it yields

∀j∈ {0, . . . , d},
d∑

k=0

λkk
j = 0

so that λk = 0, 0 ≤ k ≤ d since det[kj ]0≤k,j≤d 6= 0 (Vandermonde determinant).
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Proof. (of Proposition 4.4) We can extend the definition of Xi,l
k to l ∈ N. It is easy to check that

X
i,l
k+1 =

∫ (k+1)∆

0
Pi ((k + 1 + l)∆ − s) e−αi((k+1+l)∆−s)dW i

s

= X
i,l+1
k + ε

i,l
k+1

where εi,lk+1 =
∫ (k+1)∆
k∆ Pi ((k + 1 + l)∆ − s) e−αi((k+1+l)∆−s)dW i

s .
If l = di,

X
i,di

k+1 = X
i,di+1
k + ε

i,di

k+1.

According to Lemma 4.5,

Pi (Z + (di + 1)∆) =

di∑

l=0

λi,lPi(Z + l∆).

Hence

X
i,di+1
k =

∫ k∆

0
Pi ((k + di + 1)∆ − s) e−αi((k+di+1)∆−s)dW i

s

=

di∑

l=0

λi,l

∫ k∆

0
Pi ((k + l)∆ − s) e−αi((k+l)∆−s)dW i

se
−αi(di+1−l)∆

=

di∑

l=0

λi,le−αi(di+1−l)∆X
i,l
k

=

di∑

l=0

λ̃i,lX
i,l
k .

Finally we have
Xi.

k+1 = AiXi.
k + εi.k+1

where

Ai. =





0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1

λ̃i,0 · · · · · · · · · λ̃i,di





and
Xk+1 = AXk + εk,X0 = 0

where εk ∈ σ
(
W i

u −W i
k∆, k∆ ≤ u ≤ (k + 1)∆, i = 1, . . . ,m

)
is independent of FW

k∆. The process
(Xk)k is thus a gaussian AR(1).

Xk is the structure process for the spot price Sk∆ = Fk∆,k∆. Its dimension is
∑m

i=1(di +1). For
the two factor model, the structure process is R

2-valued, because m = 2, and di = 0, i = 1, 2. This
is coherent with (22).
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