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Let Ω represent a two-dimensional isotropic elastic body. We consider the problem of determining the body force F whose form ϕ(t)(f 1 (x), f 2 (x)) with ϕ be given inexactly. The problem is nonlinear and ill-posed. Using the Fourier transform, the methods of Tikhonov's regularization and truncated integration, we construct a regularized solution from the data given inexactly and derive the explicitly error estimate.
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Introduction

Let Ω = (0, 1) × (0, 1) represent a two-dimensional isotropic elastic body. For each x := (x 1 , x 2 ) ∈ Ω, we denote by u = (u 1 (x, t), u 2 (x, t)) the displacement, where u j is the displacement in the x jdirection, for all j ∈ {1, 2}. As known, u satisfies the Lamé system (see, e.g., [START_REF] Timoshenko | Theory of Elasticity[END_REF][START_REF] Sadd | Elasticity Theory, Applications, and Numerics[END_REF]) ∂ 2 u ∂t 2 = µ∆u + (λ + µ) ∇ (div(u)) + F where F := (F 1 , F 2 ) is the body force, div(u) = ∇ • u = ∂u 1 /∂x 1 + ∂u 2 /∂x 2 , and λ, µ are Lamé constants. We shall assume that the boundary of the elastic body is clamped and the initial conditions are given.

In this paper, we shall consider the problem of determining the body force F . The problem is a kind of inverse source problems. The inverse source problems are investigated in many aspects such as the uniqueness, the stability and the regularization. There are many papers devoted to the uniqueness and the stability problem. In [START_REF] Isakov | Inverse source problems[END_REF], Isakov disscused the problem of finding a pair of functions (u, f ) satisfying

cu tt -∆u = f
where f is independent of t. He proved that using some preassumptions on f , from the final overdetermination u(x, T ) = h(x)

, we get the uniqueness of (u, f ). As shown in [START_REF] Grasselli | An inverse source problem for the Lamé system with variable coefficients[END_REF], the body force (in the form φ(t)f (x)) will be defined uniquely from an observation of surface stress (the lateral overdetermination) given on a suitable boundary of Ω × (0, T ). In the paper, the authors also gave an abstract formula of reconstruction.

Another inverse source problem is one of finding the heat source F (x, t, u) satisfying

u t -∆u = F.
The problem was considered intensively in the last century. The problem with the final overdetermination was studied by Tikhonov in 1935 (see [START_REF] Tikhonov | Théorèmes d'unicité pour l'équation de la chaleur[END_REF]). He proved the uniqueness of problem with prescribed lateral and final data. In the last three decades, the problem is considered by many authors (see [START_REF] Dang Duc Trong | Nonhomogeneous heat equation: Identification and regularization for the inhomogeneous term[END_REF][START_REF] Trong | Determination of a two-dimentional heat source: Uniqueness, regularization and error estimate[END_REF][START_REF] Ivanchov | The inverse problem of determining the heat source power for a parabolic equation under arbitrary boundary conditions[END_REF][START_REF] Ivanchov | Inverse problem for a multidimensional heat equation with an unknow source function[END_REF][START_REF] Kim | Construction of the solution of a certain system of heat equations with heat sources that depend on the temperature[END_REF][START_REF] Li | Exixtence of a nonlinear heat source in invarse heat conduction problems[END_REF]). Although we have many works on the uniqueness and the stability of inverse source problems, the literature on the regularization problem is quite scarce. Very recently, in [START_REF] Dang Duc Trong | Nonhomogeneous heat equation: Identification and regularization for the inhomogeneous term[END_REF][START_REF] Trong | Determination of a two-dimentional heat source: Uniqueness, regularization and error estimate[END_REF] , the authors considered the regularization problem under both the lateral and the final overdetermination. The ideas of using the Fourier transform and truncated integration in the two papers are used in the present paper. We also consider the regularization problem under the final data and prescribed surface stress.

To get the lateral overdetermination, some mechanical arguments are in order. Let σ 1 , σ 2 , τ be the stresses (see [START_REF] Timoshenko | Theory of Elasticity[END_REF][START_REF] Sadd | Elasticity Theory, Applications, and Numerics[END_REF]) defined by

τ = µ ∂u 1 ∂x 2 + ∂u 2 ∂x 1 σ j = λdiv(u) + 2µ ∂u j ∂x j , j ∈ {1, 2}
We shall assume that the surface stress is given on the boundary of the body, i.e.,

σ 1 τ τ σ 2 n 1 n 2 = X 1 X 2
where X = (X 1 , X 2 ) is given on ∂Ω, and n = (n 1 , n 2 ) is the outward unit normal vector of ∂Ω.

As discussed, our problem is severely ill-posed. Hence, to simplify the problem, a preassumption on the form of the body force is needed. We shall use the separable form force as in [START_REF] Grasselli | An inverse source problem for the Lamé system with variable coefficients[END_REF] (

F 1 (x, t), F 2 (x, t)) = ϕ(t)(f 1 (x), f 2 (x))
where ϕ is given inexactly. The form is issued from an approximated model for elastic wave generated from a point dislocation source (see, e.g., [START_REF] Grasselli | An inverse source problem for the Lamé system with variable coefficients[END_REF][START_REF] Aki | Quantitative Seismology Theory and Methods[END_REF]). But, since ϕ is inexact, our problem is nonlinear. Morever, the problem is still ill-posed because the measured data is not only inexact but also non-smooth. Precisely, we consider the problem of identifying a pair of functions (u, f ) satisfying the system:

∂ 2 u j ∂t 2 = µ∆u j + (λ + µ) ∂ ∂x j div(u) + ϕ(t)f j (x), ∀j ∈ {1, 2} (1) 
for (x, t) ∈ Ω × (0, T ), where µ, λ are real constants satisfying µ > 0 and λ + 2µ > 0.

Since the boundary of the elastic body is clamped, the displacement u = (u 1 , u 2 ) satisfies the boundary condition

(u 1 (x, t), u 2 (x, t)) = (0, 0), x ∈ ∂Ω (2) 
In addition, the initial and final displacement are given in Ω

         (u 1 (x, 0), u 2 (x, 0)) = (u 01 (x), u 02 (x)) ∂u 1 ∂t (x, 0), ∂u 2 ∂t (x, 0) = (u * 01 (x), u * 02 (x)) (u 1 (x, T ), u 2 (x, T )) = (u T 1 (x), u T 2 (x)) (3) 
Finally, the surface stress is given on ∂Ω

n 1 σ 1 + n 2 τ = X 1 n 2 σ 2 + n 1 τ = X 2 (4) 
We shall assume that the data of the system (1) -(4)

I = (ϕ, X, u 0 , u * 0 , u T ) ∈ L 1 (0, T ), (L 1 (0, T, L 1 (∂Ω))) 2 , (L 1 (Ω)) 2 , (L 1 (Ω)) 2 , (L 1 (Ω)) 2
are given inexactly since they are results of experimental measurements. The system (1)-( 4) usually has no solution; moreover, even if the solution exists, it does not depend continously on the given data. Hence, a regularization is in order. Denoting by I ex the exact data, which are probably unknown, corresponding to an exact solution (u ex , f ex ) of the system (1) -(4) , from the inexact data I ε approximating I ex , we shall construct a regularized solution f ε approximating f ex . In fact, using the Fourier transform, we shall reduce our problem to finding the solutions of the binomial equations whose binomial term is an entire function (see Lemma 1). In this case, the problem is unstable in the neighborhood of zeros of the entire function. The zeroes can be seen as singular values. Using the method of Tikhonov's regularization and truncated integration, we shall eliminate the singular values to regularize our problem. Error estimates are given.

The remainder of the paper is divided into two sections. In Section 2, we shall set some notations and state our main results. In Section 3, we give the proofs of the results.

Notations and main results

We recall that Ω = (0, 1)× (0, 1). We always assume that the data I = (ϕ, X, u 0 , u T , u * T ) belong to

L 1 (0, T ), (L 1 (0, T, L 1 (∂Ω))) 2 , (L 1 (Ω)) 2 , (L 1 (Ω)) 2 , (L 1 (Ω)) 2 For all ξ = (ξ 1 , ξ 2 ), ζ = (ζ 1 , ζ 2 ) ∈ R 2 , we set ξ • ζ = ξ 1 ζ 1 + ξ 2 ζ 2 and |ξ| = √ ξ • ξ.
We first have the following lemma.

Lemma 1. If u ∈ (C 2 ([0, T ]; L 2 (Ω)) ∩ L 2 (0, T ; H 2 (Ω))) 2 , f ∈ (L 2 (Ω)) 2 satisfy (1) -(4)
corresponding the data I, then for all α = (α 1 , α 2 ) ∈ R 2 \{0}, we have

2D(I). Ω f j (x). cos(α • x)dx = g j (I), ∀j ∈ {1, 2}
where

D(I) = D 1 (I).D 2 (I), g j (I) = 2 |α| 2 (α j D 2 (I)h 0 + D 1 (I)h j ) with D 1 (I) = T 0 ϕ(T -t) sin( λ + 2µ |α| t)dt, D 2 (I) = T 0 ϕ(T -t) sin( √ µ |α| t)dt h 0 (I) = -sin( λ + 2µ|α|T ). Ω (α • u * 0 ). cos(α • x)dx + λ + 2µ.|α|. Ω (α • u T ). cos(α • x)dx -λ + 2µ.|α|. cos( λ + 2µ|α|T ). Ω (α • u 0 ). cos(α • x)dx - T 0 ∂Ω sin( λ + 2µ|α|(T -t))(α • X). cos(α • x)dωdt h j (I) = -sin( √ µ|α|T ). Ω (|α| 2 u * 0j -α j (α • u * 0 )). cos(α • x)dx + √ µ.|α|. Ω (|α| 2 u T j -α j (α • u T )). cos(α • x)dx - √ µ.|α|. cos( √ µ|α|T ). Ω (|α| 2 u 0j -α j (α • u 0 )). cos(α • x)dx - T 0 ∂Ω sin( √ µ|α|(T -t))(|α| 2 X j -α j (α • X)). cos(α • x)dωdt, ∀j ∈ {1, 2}.
From Lemma 1, we consider the function

D(I) = T 0 ϕ(T -t) sin( λ + 2µ |α| t)dt. T 0 ϕ(T -t) sin( √ µ |α| t)dt
The problem is unstable in the neighborhood of zeros of this function. However, from the properties of analytic function, we can show that if ϕ ≡ 0 then this function differ from 0 for almost every where in R 3 . Furthermore, using the idea of Theorem 4 in [START_REF] Duc | Error of Tikhonov's regularization for intergral convolution equation[END_REF], we get the following lemma.

Lemma 2. Let τ, q be positive constants,

ϕ 0 ∈ L 1 (0, T )\{0} and D(ϕ 0 , τ ) : R 2 → R D(ϕ 0 , τ )(α) = T 0 ϕ 0 (t) sin( √ τ |α|t)dt
Then D(ϕ 0 , τ ) = 0 for a.e α ∈ R 2 . Moreover, if we put

R ε = q 9eT . ln(ε -1 ) ln(ln(ε -1 ))
, ∀ε > 0 then the Lebesgue measure of the set

B(ϕ 0 , τ, ε) = {α ∈ B(0, R ε ), |D(ϕ 0 , τ )(α)| ≤ ε q } is less than R -1 ε for ε > 0 small enough, where B(0, R ε ) is the open ball in R 2 .
Lemma 1 and Lemma 2 imply immediately the uniqueness result.

Theorem 1. Let u, u * ∈ (C 2 ([0, T ]; L 2 (Ω)) ∩ L 2 (0, T ; H 2 (Ω))) 2 , f, f * ∈ (L 2 (Ω)) 2 . If (u, f ), (u * , f * ) satisfy (1) -(4)
corresponding the same data I, and ϕ ≡ 0, then

(u, f ) = (u * , f * )
Let (u ex , f ex ) be the exact solution of the system (1) -(4) corresponding the exact data

I ex = (ϕ ex , X ex , u ex 0 , u * ex 0 , u ex T ). Notice that, if we assume u ex ∈ (C 2 ([0, T ]; L 2 (Ω)) ∩ L 2 ([0, T ]; H 2 (Ω))) 2 , f ex ∈ (L 2 (Ω)) 2 , ϕ ex ∈ L 1 (0, T )\{0} (5) 
then for all j ∈ {1, 2},

F ( f jex )(α) = 2 Ω f jex (x) cos(α • x)dx = g j (I ex ) D(I ex )
for a.e α ∈ R 2 , where g j , D are defined by Lemma 1,

f jex : R 2 → R is defined by f jex (x) = χ(Ω)f jex (x) + χ(-Ω)f jex (-x), and F is the Fourier transform in R 2 . From approximate data I ε = (ϕ, X, u 0 , u * 0 , u T ) satisfying ϕ -ϕ ex L 1 (0,T ) ≤ ε, X j -X ex j L 1 (0,T,L 1 (∂Ω)) ≤ ε, u 0j -u ex 0j L 1 (Ω) ≤ ε u * 0j -u * ex 0i L 1 (Ω) ≤ ε, u T j -u ex T j L 1 (Ω) ≤ ε, ∀j ∈ {1, 2} (6) 
, we construct a regularized solution f ε = (f 1ε , f 2ε ) whose Fourier transform is

F (f jε )(α) = χ(B(0, R ε )). g j (I ε ).D(I ε ) δ ε + (D(I ε )) 2 , ∀α ∈ R 2 \{0}
where

q = 1 7 , δ ε = ε 1+6q 2 , R ε = q 9eT . ln(ε -1 ) ln(ln(ε -1 )) (7) 
We have two regularization results.

Theorem 2. Let (u ex , f ex ) be the exact solution of the system (1) -(4) corresponding the exact data I ex , and (5) hold. Then from the given data I ε satisfying (6), we can construct a regularized solution

f ε ∈ (C(Ω)) 2 such that lim ε→0 f jε -f jex L 2 (Ω) = 0, ∀j ∈ {1, 2}
If we assume, in addition, that

f ex ∈ (H 1 (Ω)) 2 ,then f jε -f jex 2 L 2 (Ω) ≤ 63eT 66 f jex 2 H 1 (Ω) + (2π) -2 . ln(ln(ε -1 )) ln(ε -1 ) , ∀j ∈ {1, 2}
for ε > 0 small enough.

Theorem 3. Let (u ex , f ex ) be the exact solution of the system (1) -(4) corresponding the exact data I ex , and (5) hold. We assume, in addition, that

R 2 Ω f jex (x). cos(α • x)dx dα < ∞, ∀j ∈ {1, 2}
Then from the given data I ε satisfying (6), we can construct a regularized solution f ε ∈ (C(Ω)) 2 , which coincides the one in Theorem 2, such that

lim ε→0 f jε -f jex L ∞ (Ω) = 0, ∀j ∈ {1, 2}

Proofs of the results

Proof of Lemma 1

Proof. Let α = (α 1 , α 2 ) ∈ R 2 and G = cos(α • x).
Notice that the j-th equation of the system (1) can rewrite

∂ 2 u j ∂t 2 = ∂σ j ∂x j + ∂τ ∂x k + ϕ(t)f j (x), {j, k} = {1, 2}
Getting the inner product (in L 2 (Ω)) of the equation and G and using the condition (2), for {j, k} = {1, 2}, we get

d dt 2 Ω u j G = ∂Ω (n j σ j + n k τ )Gdω - Ω σ j ∂G ∂x j dx - Ω τ ∂G ∂x k dx + ϕ(t) Ω f j Gdx = ∂Ω X j Gdω -µ |α| 2 Ω u j Gdx -(λ + µ)α j Ω (α • u)Gdx + ϕ(t) Ω f j Gdx (8) 
Multiplying ( 8) by α j , then getting the sum for j = 1, 2, we obtain

d dt 2 Ω (α • u)Gdx = ∂Ω (α • X)Gdω -(λ + 2µ)|α| 2 Ω (α • u)Gdx + ϕ(t) Ω (α • f )Gdx (9)
Multiplying ( 8) by |α| 2 and multiplying ( 9) by -α j , then getting the sum of them, we have

d dt 2 Ω |α| 2 u j -α j . (α • u) Gdx = ∂Ω |α| 2 X j -α j . (α • X) Gdx -µ |α| 2 Ω |α| 2 u j -α j . (α • u) Gdx + ϕ(t) Ω |α| 2 f j -α j . (α • f ) Gdx (10) 
We consider ( 9) and [START_REF] Aki | Quantitative Seismology Theory and Methods[END_REF] as the differential equations whose form

y ′′ + η 2 y = h(t) (11) 
where η is a real constant and y(0), y ′ (0), y(T ) are given. Getting the inner product (in L 2 (0, T )) of [START_REF] Ivanchov | The inverse problem of determining the heat source power for a parabolic equation under arbitrary boundary conditions[END_REF] and sin(η(Tt)), we have

-y ′ (0)sin(ηT ) + ηy(T ) -ηy(0)cos(ηT ) = T 0 h(T -t) sin(ηt)dt (12) 
Applying ( 12) to ( 9) with η = (λ + 2µ)|α| and y = Ω (α • u).Gdx, we get

D 1 (I). Ω (α • f ).Gdx = h 0 (I) (13) 
where D 1 (I), h 0 (I) are defined by Lemma 1.

Similarly, applying [START_REF] Ivanchov | Inverse problem for a multidimensional heat equation with an unknow source function[END_REF] to [START_REF] Aki | Quantitative Seismology Theory and Methods[END_REF] with η = √ µ|α| and y = Ω (|α| 2 u jα j .(α • u)).Gdx, we get

D 2 (I). Ω (|α| 2 f j -α j (α • f )).Gdx = h j (I), ∀j ∈ {1, 2} (14) 
where D 2 (I), h j (I) are defined by Lemma 1. Multiplying ( 13) by α j D 2 (I) and multiplying ( 14) by D 1 (I), then getting the sum of them, we obtain the result of Lemma 1.

Proof of Lemma 2

Proof. Put

ϕ 0 : R → R ϕ 0 (t) = 1 2      ϕ 0 (t) t ∈ (0, T ) -ϕ 0 (-t) t ∈ (-T, 0) 0 t / ∈ (-T, T ) and φ : C → C φ(z) = ∞ -∞ e -itz ϕ 0 (t)dt = T -T e -itz ϕ 0 (t)dt
Then φ is an entire function and D(ϕ 0 , τ )(α) = iφ( √ τ |α|). Because ϕ 0 ≡ 0, its Fourier transform (in R) does not coincide 0. Therefore, there exists z 0 ∈ R such that |φ(z 0 )| = C 1 > 0. Thus φ ≡ 0. Since φ is an entire function, its zeros set is either finite or countable. Consequently, D(ϕ 0 , τ )(α) = 0 for a.e α ∈ R 2 .

To estimate the measure of B(ϕ 0 , τ, ε), we shall use the following result (see Theorem 4 of $11.3 in [START_REF] Ya | Lectures on Entire Functions[END_REF]). Returning Lemma 2, we put

φ 1 : C → C φ 1 (z) = φ(z + z 0 ) C 1
Then φ 1 is an entire function, φ 1 (0) = 1, and for all z ∈ C, |z| ≤ 2eR,

C 1 |φ 1 (z)| = T -T e -it(z+z 0 ) ϕ 0 (t) ≤ e 2eRT . T -T | ϕ 0 (t)| dt = e 2eRT ϕ 0 L 1 (0,T )
For ε > 0 small enough, applying Lemma 3 with

R = 4 3 R ε and η = √ τ 8πR 3 ε , we get ln |φ 1 (z)| > -3 ln R ε + ln( 8π √ τ ) + ln(15e 3 ) . 8 3 .eT R ε + ln ϕ 0 L 1 (0,T ) C 1 > - 17 2 T.R ε ln R ε > -q ln(ε -1 ) -ln(C 1 ) = ln( ε q C 1 )
for all |z| ≤ 4 3 R ε except a set of disks {B(z j , r j )} j∈J with sum of radii

r i ≤ ηR = √ τ 6πR 2 ε .
Consequently, for ε > 0 small enough, we have

|z 0 | < 1 3 R ε and |φ(z)| = C 1 . |φ 1 (z -z 0 )| ≥ ε q for all |z| ≤ R ε except the set ∪ j∈J B(z j + z 0 , r j ) . Hence, B(ϕ 0 , τ, ε) is contained in the set ∪ j∈J B j , where B j = {α ∈ B(0, R ε ), √ τ |α| -y j ≤ r j } with y j = Re(z j + z 0 ). If y j > √ τ R ε + r j then B j = ∅. If y j ≤ r j then B j ⊂ B(0, 2r j √ τ ), so m(B j ) ≤ 4πr 2 j τ . If r j < y j ≤ √ τ R ε + r j then B j ⊂ B(0, y j + r j √ τ )\B(0, y j -r j √ τ ) hence m(B j ) ≤ π(y j + r j ) 2 τ - π(y j -r j ) 2 τ = 4πy j r j τ ≤ 4π( √ τ R ε + r j )r j τ Thus we get m(B(ϕ, τ, ε)) ≤ 4π( √ τ R ε + r j )r j τ + 4πr 2 j τ ≤ 4πR ε √ τ r j + 8π τ ( r j ) 2 ≤ 4πR ε √ τ . √ τ 6πR 2 ε + 8π τ .( √ τ 6πR 2 ε ) 2 < 1 R ε
for ε > 0 small enough. The proof of Lemma 2 is completed.

Proof of theorem 1

Proof. Put w = uu * and v = ff * then (w, v) satisfies ( 1) -(4) corresponding the data I = (ϕ, (0, 0), (0, 0), (0, 0), (0, 0)) Let v j : R 2 → R be defined by v j (x) = χ(Ω)v j (x) + χ(-Ω)v j (-x). Lemma 1 implies that, for all j ∈ {1, 2}, for all α ∈ R 2 \{0}, we get

D(I).F ( v j )(α) = 2D(I). Ω v j (x) cos(α • x)dx = g j (I) = 0
Applying Lemma 2 with ϕ 0 (t) = ϕ(Tt), we get D(I) = 0 for a.e α ∈ R 2 . Therefore, F ( v j ) ≡ 0, and it implies that v j ≡ 0. Thus v ≡ (0, 0). Hence, w satisfies that

∂ 2 w ∂t 2 = µ∆w + (λ + µ) ∇ (div(w)) (15) 
Getting the inner product (in (L 2 (Ω)) 2 ) of ( 15) and ∂w/∂t, we have

1 2 . d dt 2 j=1 ∂w j ∂t 2 L 2 (Ω) = - µ 2 . d dt 2 j=1 ∇w j 2 L 2 (Ω) - λ + µ 2 . d dt div(w) 2 L 2 (Ω)
Integrating this equality in (0, t), we get

2 j=1 ∂w j ∂t 2 L 2 (Ω) + µ 2 j=1 ∇w j 2 L 2 (Ω) + (λ + µ) div(w) 2 L 2 (Ω) = 0 (16) 
for all t ∈ (0, T ). Using the condition (2), we have

div(w) 2 L 2 (Ω) = 2 j=1 ∂w j ∂x j 2 L 2 (Ω) + 2 Ω ∂w 1 ∂x 1 . ∂w 2 ∂x 2 = 2 j=1 ∂w j ∂x j 2 L 2 (Ω) + 2 Ω ∂w 1 ∂x 2 . ∂w 2 ∂x 1 ≤ 2 j=1 ∂w j ∂x j 2 L 2 (Ω) + ∂w 1 ∂x 2 2 L 2 (Ω) + ∂w 2 ∂x 1 2 L 2 (Ω) = 2 j=1 ∇w j 2 L 2 (Ω)
Since µ > 0 and λ + 2µ > 0, the above inequality implies that

µ 2 j=1 ∇w j 2 L 2 (Ω) + (λ + µ) div(w) 2 L 2 (Ω) ≥ 0
From (16), we obtain ∂w/∂t = (0, 0). Since w(x, 0) = (0, 0), the proof is completed.

To prove two main regularization results, we state and prove some preliminary lemmas.

Lemma 4. Let (u ex , f ex ) be the exact solution of (1) -(4) corresponding the exact data I ex satisfying (5), and the given data I ε satisfying [START_REF] Ya | Lectures on Entire Functions[END_REF]. Using notations of (7), we put

G j (I ε ) = χ(B(0, R ε )). g j (I ε )D(I ε ) δ ε + (D(I ε )) 2
Then for all j ∈ {1, 2}, we have G j (I ε ) ∈ L 1 (R 2 )∩L 2 (R 2 ); moreover, there exists a constant C 0 depend only on I ex such that for all ε ∈ (0, e -e ),

G j (I ε ) -F ( f jex ) ≤ χ(B(0, R ε ))C 0 R ε ε 1-6q 2 +2χ(B ε ) f jex L 2 (Ω) + χ(R 2 \B(0, R ε )) F ( f jex )
where

B ε = α ∈ B(0, R ε ), |D(I ex )(α)| ≤ ε 2q .
Proof. First, we show that there exists a constant C 2 > 0 depend only on I ex such that for all ε ∈ (0, e -e ), r > r 0 = q/(9T ), j ∈ {1, 2},

D(I ex ) L ∞ (R 2 ) ≤ C 2 , D(I ε ) -D(I ex ) L ∞ (R 2 ) ≤ C 2 ε g j (I ex ) L ∞ (B(0,r)) ≤ C 2 r, g j (I ε ) -g j (I ex ) L ∞ (B(0,r)) ≤ C 2 rε
Recall that D 1 (I), D 2 (I), h 0 (I), h j (I) are defined by Lemma 1. For all α ∈ R 3 we have

|D k (I ex )| ≤ ϕ ex L 1 (0,T ) , |D k (I ε ) -D k (I ex )| ≤ ϕ ε -ϕ ex L 1 (0,T ) ≤ ε for all k ∈ {1, 2}. Hence, |D(I ex )| ≤ ϕ ex 2 L 1 (0,T )
and

|D(I ε ) -D(I ex )| = |D 1 (I ε ) -D 1 (I ex )| . |D 2 (I ε )| + |D 1 (I ex )| . |D 2 (I ε ) -D 2 (I ex )| ≤ ε.( ϕ ex L 1 (0,T ) + ε) + ϕ ex L 1 (0,T ) .ε ≤ (2 ϕ ex L 1 (0,T ) + e -e ).ε
A straightforward calculation show that, for all α ∈ B(0, r)\{0}, we have

|α j h 0 (I ex )| ≤ C 3 r |α| 2 , |α j (h 0 (I ε ) -h 0 (I ex ))| ≤ C 3 r |α| 2 ε, |h j (I ex )| ≤ C 3 r |α| 2 , |h j (I ε ) -h j (I ex )| ≤ C 3 r |α| 2 ε
for all j ∈ {1, 2}, where C 3 is a positive constant depending only on I ex . Therefore,

|g j (I ex )| ≤ |α j h 0 (I ex )| |α| 2 . |D 2 (I ex )| + |h j (I ex )| |α| 2 . |D 1 (I ex )| ≤ 2C 3 ϕ ex L 1 (0,T ) r and |g j (I ε ) -g j (I ex )| ≤ |α j (h 0 (I ε ) -h 0 (I ex ))| |α| 2 . |D 2 (I ε )| + |α j h 0 (I ex )| |α| 2 . |D 2 (I ε ) -D 2 (I ex )| + |h j (I ε ) -h 0 (I ex )| |α| 2 . |D 1 (I ε )| + |h j (I ex )| |α| 2 . |D 1 (I ε ) -D 1 (I ex )| ≤ C 3 rε. ϕ ex 2 L 1 (0,T ) + ε + C 3 r.ε + C 3 rε. ϕ ex 2 L 1 (0,T ) + ε + C 3 r.ε ≤ 2C 3 ϕ ex 2 L 1 (0,T ) + e -e + 1 rε
Returning Lemma 4, for all j ∈ {1, 2}, we get

G j (I ε ) ∈ L 1 (R 2 ) ∩ L 2 (R 2 ) because the support of G j (I ε ) is contained in B(0, R ε ) and G j (I ε ) ∈ L ∞ (R 2 ). Moreover, G j (I ε ) -F ( f jex ) ≤ χ(B(0, R ε )) g j (I ε ) D(I ε ) δ ε + (D(I ε )) 2 - g j (I ex ) D(I ex ) δ ε + (D(I ex )) 2 +χ(B(0, R ε )) g j (I ex ) D(I ex ) δ ε + (D(I ex )) 2 - g j (I ex ) D(I ex ) + χ(R 2 \B(0, R ε )). F ( f jex )
We shall estimate each of the terms of the right-hand side. We have

g j (I ε ) D(I ε ) δ ε + (D(I ε )) 2 - g j (I ex ) D(I ex ) δ ε + (D(I ex )) 2 ≤ δ ε |g j (I ε ) D(I ε ) -g j (I ex ) D(I ex )| δ ε + (D(I ε )) 2 δ ε + (D(I ex )) 2 + |D(I ε )| . |D(I ex )| . |g j (I ε ) D(I ex ) -g j (I ex ) D(I ε )| δ ε + (D(I ε )) 2 δ ε + (D(I ex )) 2 ≤ |g j (I ε ) D(I ε ) -g j (I ex ) D(I ex )| δ ε + |g j (I ε ) D(I ex ) -g j (I ex ) D(I ε )| δ ε
If ε ∈ (0, e -e ) then R ε > r 0 , so for all α ∈ B(0, R ε ) we get

|g j (I ε )D(I ε ) -g j (I ex )D(I ex )| ≤ |g j (I ε ) -g j (I ex )| . |D(I ε )| + |g j (I ex )| . |D(I ε ) -D(I ex )| ≤ C 2 R ε ε.(C 2 + ε) + C 2 R ε ε ≤ (C 2 + 1) 2 R ε ε and similarly, |g j (I ε )D(I ex ) -g j (I ex )D(I ε )| ≤ (C 2 + 1) 2 R ε ε
Consequently, for all ε ∈ (0, e -e ), we can estimate the first term

χ(B(0, R ε )) g j (I ε ) D(I ε ) δ ε + (D(I ε )) 2 - g j (I ex ) D(I ex ) δ ε + (D(I ex )) 2 ≤ χ(B(0, R ε )). 2(C 2 + 1) 2 R ε ε δ ε
Considering the second term, we have

g j (I ex ) D(I ex ) δ ε + (D(I ex )) 2 - g j (I ex ) D(I ex ) = δ ε |g j (I ex )| δ ε + (D(I ex )) 2 . |D(I ex )|
We always have

δ ε |g j (I ex )| δ ε + (D(I ex )) 2 . |D(I ex )| ≤ g j (I ex ) D(I ex ) = 2 Ω f jex (x) cos(α • x)dx ≤ 2 f jex L 2 (Ω) Furthermore, if α ∈ B(0, R ε )\B ε then δ ε |g j (I ex )| δ ε + (D(I ex )) 2 . |D(I ex )| ≤ δ ε |g j (I ex )| |D(I ex )| 3 ≤ δ ε C 2 R ε ε 6q
Therefore, for all ε ∈ (0, e -e ), we can estimate the second term

χ(B(0, R ε )) g j (I ex ) D(I ex ) δ ε + (D(I ex )) 2 - g j (I ex ) D(I ex ) ≤ 2χ(B ε ) f jex L 2 (Ω) + χ(B(0, R ε )) δ ε C 2 R ε ε 6q
Thus, for all ε ∈ (0, e -e ), we have

G j (I ε ) -F ( f jex ) ≤ χ(B(0, R ε )) 2(C 2 + 1) 2 R ε ε δ ε + δ ε C 2 R ε ε 6q +2χ(B ε ) f jex L 2 (Ω) + χ(R 2 \B(0, R ε )) F ( f jex ) Choosing δ ε = ε 6q+1 2
and C 0 = 2(C 2 + 1) 2 + C 2 , we complete the proof.

It is obvious that, for all j ∈ {1, 2}, by Lebesgue's dominated convergence theorem, χ(R 2 \B(0, R ε )) F ( f jex ) converges to 0 in L 2 (R 2 ) when ε → 0. However, to get an explicitly estimate for it, some a-priori information about f ex must be assume.

Lemma 5. Let a ∈ R, Q be an measurable subset of R n (n ≥ 1), and w ∈ L 1 (Q) ∩ L 2 (Q). Then R n Q w(x) sin(a + n k=1 α k x k )dx 2 dα = 2 n-1 π n w 2 L 2 (Q)
Proof. We first prove in the case a = 0. Put w :

R n → R w(x) = χ(Q)w(x) -χ(-Q)w(-x) Then w ∈ L 1 (R n ) ∩ L 2 (R n ) and F n ( w)(α) = 2i Q w(x) sin( n k=1 α k x k )dx
where F n is the Fourier transform in R n . Using Paserval equality, we get

R n Q w(x) sin( n k=1 α k x k )dx 2 dα = 1 4 F n ( w) 2 L 2 (R n ) = (2π) n 4 w 2 L 2 (R n ) = 2 n-1 π n w 2 L 2 (Q)
Similarly, we also have

R n Q w(x) cos( n k=1 α k x k )dx 2 dα = 2 n-1 π n w 2 L 2 (Q)
Now, we notice that

Q w(x) sin(a + n k=1 α k x k )dx 2 = (cos(a)) 2 Q w(x) sin( n k=1 α k x k )dx 2 +(sin(a)) 2 Q w(x) cos( n k=1 α k x k )dx 2 + v(α)
where

v(α) = sin(2a). Ω w(x) sin( n k=1 α k x k )dx. Ω w(x) cos( n k=1 α k x k )dx Since v(-α) = -v(α) for all α ∈ R n , we get R n v(α)dα = 0. Thus R n Q w(x) sin(a + n k=1 α k x k )dx 2 dα = (cos(a)) 2 .2 n-1 π n w 2 L 2 (Q) + (sin(a)) 2 .2 n-1 π n w 2 L 2 (Q) = 2 n-1 π n w 2 L 2 (Q)
The proof is completed.

Using Lemma 5, we have the following result.

Lemma 6. Let w ∈ H 1 (Ω) and r > π/(2 √ 2). Then

R 2 \B(0,r) Ω w(x) cos(α • x)dx 2 dα ≤ 72 √ 2π r w 2 H 1 (Ω) Proof. Since R 2 \B(0,r) Ω w(x) cos(α • x)dx 2 dα ≤ 2 j=1 |α j |≥r/ √ 2 Ω w(x) cos(α • x)dx 2 dα
, the proof will be completed if we show that, for all j ∈ {1, 2},

|α j |≥r/ √ 2 Ω w(x) cos(α • x)dx 2 dα ≤ 24 √ 2π r w 2 L 2 (Ω) + 2 ∂w ∂x j 2 L 2 (Ω)
We will prove for the case j = 1, and the other cases are similar. We have

Ω w(x) cos(α • x)dx = 1 0 w(x) sin(α • x) α 1 x 1 =1 x 1 =0 dx 2 - Ω ∂w ∂x 1 . sin(α • x) α 1 dx so Ω w(x) cos(α • x)dx 2 ≤ 3 α 2 1 1 0 w(1, x 2 ) sin(α 1 + α 2 x 2 )dx 2 2 + 3 α 2 1 1 0 w(0, x 2 ) sin(α 2 x 2 )dx 2 2 + 3 α 2 1 Ω ∂w ∂x 1 . sin(α • x)dx 2 Therefore, |α 1 |≥r/ √ 2 Ω w(x) cos(α • x)dx 2 dα ≤ 6 r 2 R 2 Ω ∂w ∂x 1 (x). sin(α • x)dx 2 dα + |α 1 |≥r/ √ 2 3 α 2 1 dα 1 . ∞ -∞ 1 0 w(1, x 2 ) sin(α 1 + α 2 x 2 )dx 2 2 dα 2 + |α 1 |≥r/ √ 2 3 α 2 1 dα 1 . ∞ -∞ 1 0 w(0, x 2 ) sin(α 2 x 2 )dx 2 2 dα 2 = 12π 2 r 2 ∂w ∂x 1 2 L 2 (Ω) + 6 √ 2π r w(1, .) 2 L 2 (0,1) + 6 √ 2π r w(0, .) 2 L 2 (0,1)
Noting that

w(1, x 2 ) = 1 0 ∂ ∂x 1 (x 1 w(x)) dx 1 = 1 0 w(x) + x 1 ∂w ∂x 1 (x) dx 1 , we get |w(1, x 2 )| 2 ≤ 1 0 2 |w(x)| 2 + 2 ∂w ∂x 1 (x) 2 dx 1
Hence,

1 0 |w(1, x 2 )| 2 dx 2 ≤ 2 w 2 L 2 (Ω) + 2 ∂w ∂x 1 2 L 2 (Ω)
Similarly,

1 0 |w(0, x 2 )| 2 dx 2 = 1 0 1 0 ∂ ∂x 1 ((1 -x 1 )w(x)) dx 1 2 dx 2 ≤ 1 0 1 0 2 |w(x)| 2 + 2 ∂w ∂x 1 (x) 2 dx 1 dx 2 = 2 w 2 L 2 (Ω) + 2 ∂w ∂x 1 2 L 2 (Ω)
Thus, we have

|α 1 |≥r/ √ 2 Ω w(x) cos(α • x)dx 2 dα ≤ 12π 2 r 2 ∂w ∂x 1 L 2 (Ω) + + 24 √ 2π r w(1, .) 2 L 2 (Ω) + ∂w ∂x 1 2 L 2 (Ω) ≤ 24 √ 2π r w(1, .) 2 L 2 (Ω) + 2 ∂w ∂x 1 2 L 2 (Ω)
The proof is completed.

Remark 1. By the same way, we can show that, if w ∈ H 1 (Ω) and r > π/(2 √ 2) then

R 2 \B(0,r) Q w(x 1 , x 2 ) cos(α 1 x 1 ) cos(α 2 x 2 )dx 2 dα ≤ 16 √ 2π r w 2 H 1 (Q)
This result improves immediately the results of [START_REF] Trong | Determination of a two-dimentional heat source: Uniqueness, regularization and error estimate[END_REF].

Proof of theorem 2

Proof. Recall that q, δ ε , R ε are defined by [START_REF] Isakov | Inverse source problems[END_REF], and G j (I ε ), B ε are defined by Lemma 4. For all j ∈ {1, 2}, we define

f jε : R 2 → R f jε (ξ) = 1 4π 2 R 2 G j (I ε )(α)e i(ξ•α) dα Applying Lemma 4, we have G j (I ε ) ∈ L 1 (R 2 ) ∩ L 2 (R 2 ) , so f jε ∈ C(R 2 ) ∩ L 2 (R 2 ) and F (f jε ) = G j (I ε ).
Applying Lemma 4 again, for all ε ∈ (0, e -e ), we get

F (f jε ) -F ( f jex ) ≤ χ(B(0, R ε ))C 0 R ε ε 1-6q 2 +2χ(B ε ) f jex L 2 (Ω) + χ(R 2 \B(0, R ε )) F ( f jex ) (17) 
where C 0 is a positive constant depending only I ex . It implies that

F (f jε ) -F ( f jex ) 2 ≤ 2χ(B(0, R ε ))C 2 0 R 2 ε ε 1-6q +4χ(B ε ) f jex 2 L 2 (Ω) + 2χ(R 2 \B(0, R ε )) F ( f jex ) 2 
Hence,

F (f jε ) -F ( f jex ) 2 L 2 (R 2 ) ≤ 2C 2 0 πR 4 ε ε 1-6q + 4m(B ε ) f jex 2 L 2 (Ω) + 2 R 2 \B(0,Rε) F ( f jex ) 2 dα It is obvious that 2C 2 0 πR 4 ε ε 1-6q ≤ R -1 ε for ε > 0 small enough. Moreover, since B ε ⊂ ({α ∈ B(0, R ε ), |D 1 (I ex )(α)| ≤ ε q } ∪ {α ∈ B(0, R ε ), |D 2 (I ex )(α)| ≤ ε q })
, we apply Lemma 2 (with ϕ 0 (t) = ϕ ex (Tt)) to get that m(B ε ) ≤ 2R -1 ε for ε > 0 small enough. Thus, for ε > 0 small enough, we get

F (f jε ) -F ( f jex ) 2 L 2 (R 2 ) ≤ 1 R ε + 8 R ε f jex 2 L 2 (Ω) + 2 R 2 \B(0,Rε) F ( f jex ) 2 dαdβ
By Parseval equality, we have

f jε -f jex 2 L 2 (Ω) ≤ f jε -f jex 2 L 2 (R 2 ) = 1 4π 2 F (f jε ) -F ( f jex ) 2 L 2 (R 2 ) ≤ 1 4π 2    1 R ε + 8 R ε f jex 2 L 2 (Ω) + 2 R 2 \B(0,Rε) F ( f jex ) 2 dα    (18) 
for ε > 0 small enough. Since F ( f jex ) ∈ L 2 (R 2 ), we obtain that

lim ε→0 f jε -f jex L 2 (Ω) = 0 If f jex ∈ H 1 ( 
Ω) then using (18) and Lemma 6, we get

f jε -f jex 2 L 2 (Ω) ≤ 1 4π 2 1 R ε + 8 R ε f jex 2 L 2 (Ω) + 2.4. 72 √ 2π R ε f jex 2 H 1 (Ω) ≤ 66 f jex 2 H 1 (Ω) + 1 4π 2 . 1 R ε = 63eT 66 f jex 2 H 1 (Ω) + 1 4π 2 . ln(ln(ε -1 )) ln(ε -1 )
for ε > 0 small enough. This complete the proof.

Proof of Theorem 3

Proof. We shall use the notations of the proof of Theorem 2. Notice that the assumtion

R 2 Ω f jex (x). cos(α • x)dx dα < ∞, is equivalent to F ( f jex ) ∈ L 1 (R 2 ). Since f jex , F ( f jex ) ∈ L 1 (R 2 ) ∩ L 2 (R 2 ), we get f jex (ξ) = 1 4π 2 R 2
F ( f jex )(α)e i(α•ξ) dα Therefore,

4π 2 f jε -f jex L ∞ (Ω) ≤ 4π 2 f jε -f jex L ∞ (R 2 ) ≤ F (f jε ) -F ( f jex ) L 1 (R 2 ) (19) 
From (17), we have

F (f jε ) -F ( f jex ) L 1 (R 2 ) ≤ C 0 πR 3 ε ε 1-3q 2 + 2m(B ε ) f jex L 2 (Ω) + R 2 \B(0,Rε) F ( f jex ) dα
For ε > 0 small enough, we have C 0 πR 3 ε ε 1-3q 2

≤ R -1 ε and m(B ε ) ≤ 2R -1 ε . Thus, from (19), for ε > 0 small enough, for all j ∈ {1, 2}, we get

4π 2 f jε -f jex L ∞ (Ω) ≤ 1 R ε + 4 R ε f jex ) L 2 (Ω) + R 2 \B(0,Rε) F ( f jex ) dα Since F ( f jex ) ∈ L 1 (R 2 )
, we obtain that lim ε→0 f jεf jex L ∞ (Ω) = 0 for all j ∈ {1, 2}.

Remark 2. We can replace R ε defined by (7) by R ε = 10 ln(ε -1 ) 9/10 to construct a better regularized solution in the case that ε is not too small.

A numerical experience

Assume that T = 1, µ = 1/12, λ = -1/8. We consider the exact data I ex = (ϕ, X, u 0 , u * 0 , u T ) given by ϕ = π 2 3 sin(πt), 

Lemma 3 .

 3 Let f (z) be a function analytic in the disk {z : |z| ≤ 2eR}, |f (0)| = 1, and let η be an arbitrary small positive number. Then the estimate ln |f (z)| >ln( 15e 3 η ). ln(M f (2eR)) is valid everywhere in the disk {z : |z| ≤ R} except a set of disks (C j ) with sum of radii r j ≤ ηR. Where M f (r) = max |z|=r |f (z)|.

g 1 () 9 / 10 .Figure 2 .

 19102 Figure 1. The exact solution.

Figure 3 .Figure 4 .

 34 Figure 3. The Fourier transform of the exact solution.

Then the corresponding exact solution of the system (1) -(4) is u ex = (sin(πt) sin(4πx 1 ) sin(2πx 2 ), sin(πt) sin(4πx 1 ) sin(2πx 2 )) , f ex = (cos(2πx 1 ) cos(4πx 2 ), cos(4πx 1 ) cos(2πx 2 )) .

For each n = 1, 2, 3, ..., we consider the inexact data I n = (ϕ n , X n , u n 0 , u * n 0 , u n T ) given by

Then the corresponding disturbed solution of the system (1) -( 4) is

Hence, when n is large, a small error of data will cause a large error of solution. It show that the problem is ill-posed, and a regularization is necessary.

We shall construct the regularized solution as in Theorem 1 corresponding ε = n -1/2 . From the straightforward calculation, we obtain that

.