
HAL Id: hal-00146671
https://hal.science/hal-00146671

Submitted on 15 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intersection Optimization is NP Complete
Guillaume Bonfante, Joseph Le Roux

To cite this version:
Guillaume Bonfante, Joseph Le Roux. Intersection Optimization is NP Complete. 2007. �hal-
00146671�

https://hal.science/hal-00146671
https://hal.archives-ouvertes.fr

Intersection Optimization is NP Complete

Guillaume Bonfante1 and Joseph Le Roux2

1 INRIA - LORIA
2 INPL - Nancy 2 - LORIA

Abstract. We propose a method for lexical disambiguation based on
polarities found in several grammatical formalisms which require multi-
ples intersection of finite state automata. We then prove that there is
no efficient technique to minimize the state complexity of these intersec-
tions.

1 Introduction

The main concern of this paper is to answer the following question: given a
set {A1, . . . , Ak} of finite state automata, can we guess an order on them to
perform efficiently their intersection? More precisely, can we find a permutation
π for which the following algorithm will run as fast as possible ?

A = A[pi[1]];

for i = 2 to k do

A = A intersect A[pi[i]]

done

Observe that computing the intersection as above takes in the worst case
exponential time. Indeed, the size of the result |

⋂

i≤k Ai| =
∏

i≤k |Ai| is expo-
nential. We refer to Saaloma and Yu to learn more about state complexity [1,
2]. But this is not the issue addressed here. The question is to find the order in
which we have to perform the intersections. And we show that this part of the
problem is also inherently difficult. To get rid of the size problem, we consider
the ordering problem with regards to some a priori upper bound on the size of
automata. It results that the decision problem is NP-complete.

A standard NP-complete problem about intersection of automata is the
emptiness of the result. See for instance [3], or [4] who gives explicit upper
bounds. But, here, we are more concerned by the intersection process than by
the result itself. A question analogous to our present issue is about matrix mul-
tiplication. Given a sequence of matrices M1, . . . , Mk of different size. The way
one parenthesizes the expression M1 × · · · × Mk has a huge impact on the cost
of evaluating the product (see [5]). For this problem, computing the good order
can be done in polynomial time by a dynamic programming procedure.

Let us now present the practical application for which the question aroused
as a motivation for the present study. It deals with disambiguation of lexical-
ized polarized grammars (PGs) like Categorial Grammars [6] (CGs), Interaction

Grammars [7] (IGs) or Polarized Unification Grammars of Kahane [8] (PUGs). A
lexicalized grammar is defined by its lexicon, which associates a set of syntactic

items to every word of the language; each of these items specifies a grammatical
construction in which the corresponding word participates. There is a complex-
ity issue if one considers exact parsing with large scale lexicalized grammars.
Indeed, the number of way of associating to each word of a sentence a corre-
sponding item is the product of the number of lexical entries for each word. The
idea of using automata to represent this exponential is not new. The main reason
is that the representation of all lexical choices can be done in linear space. In
particular, methods based on Hidden Markov Models (HMMs) use such a tech-
nique for part-of-speech tagging [9–11]. With such a representation, one may
conceive dynamic programming procedures, and consequently, benefits from an
exponential temporal speed up as well as the space one.

One of the main features of PGs is that each syntactical item is equipped
with positive features, negative features and neutral ones. A positive feature
is a resource brought by a word, a negative one is expected by the word. For
instance, a determiner provides a noun phrase and expects a common noun.
A neutral feature represents a linguistic property which does not behave as a
consumable resource. Polarities are used to guide the process of syntactic compo-
sition: features with the same type but with opposite polarities try to neutralize
themselves mutually. The process ends successfully in the parse structure of a
sentence where all polarized features are neutralized.

Syntactic items, if we forget their structure, become bags of polarized fea-
tures. A necessary condition for a tagging to be successful is that counting po-
larized features in the bag must end with a zero. Automata are a well-suited
way of factorizing this counting of polarities. The problematic point is that one
may count different features, each of which provides an automaton. Hence, the
resulting necessary condition is given by the intersection of these automata [12].

As it is known [13], when performing multiple intersections, intermediate au-
tomata can possibly be huge, even if the final automaton is small. So in the
second part of this article we address the issue of the state complexity not of
the atomic operation itself, namely intersection, but the state complexity of the
whole process in which these atomic operations have to be performed. So, the
main issue is to intersect the automata in a right order. To fix the ideas, usually,
we have from 10 to 20 automata, each of which has say 20 states. The state
complexity theory gives an appalling bound of the order 2010. For our applica-
tion, we have observed that the size of the resulting automata are somewhat
reasonable. But, the choice of the order in which we perform the intersection
has a great influence on the speed of the algorithm. We have experienced ratios
above 100 between a ”good” order and a ”bad” order.

We prove that looking for the order in which intersections have to be per-
formed in order to create the minimal number of intermediate states is actually
NP-hard. For that reason, we have used heuristics in our implementation.

2 Polarized Grammars and Lexical Disambiguation

In this section, we present a general lexical disambiguation method for PGs
relying on automata intersection. For sake of simplicity, we have kept our expla-
nations independent from concrete formalisms.

2.1 Polarized Grammars and Parsing

We give here a very brief description of such grammars. We have adapted it
to our current purpose and any reader who wants a wider presentation of the
formalism of these grammars should refer to [6–8].

A polarized grammar is equipped with:

– a set W of words (for instance English vocabulary);
– a set S of item (such an entry can be a ”noun phrase coordination”);
– a function ℓ : W → Pfin(S) which associates any word with a finite set of

items;
– a set of feature names F and a set of feature values V . Examples of feature

name are ”category” and ”gender”. Examples of feature value are ”noun” or
”masculine”;

– a function ρ : S × F × V → I[Z] which associates to any item and fea-
ture name/value a finite interval over the integers. This function counts
the polarized features of items. For instance, ρ(determiner, ”cat”, ”noun”) =
[−1,−1] which says that a determiner waits for exactly one noun. Intervals
are summed according to [a, b] + [c, d] = [a + c, b + d].

Given a sentence w1, . . . , wn of words in W , the parsing process consists in
a) selecting one item for each word of the sentence, say s1, . . . , sn and b) to
check that this selection verifies some properties depending on the grammatical
framework. However, there is one common property to all PGs which is: ∀f, v ∈
F × V : 0 ∈

∑

i≤n ρ(si, f, v). This property that we call the global neutrality

criterion reflects the neutrality constraint on final structures.

2.2 Counting with automata

We assume a sentence w1w2 . . . wn to parse with a PG G.
Given a feature name and a feature value (f, v), consider the automaton

A(f, v) as follows.

– A state of the automaton is a pair (i, p), where i corresponds to the position
of the word in the sentence and p is an interval of Z, which represents the
counting of polarities.

– Transitions have the form (i, p)
sα−→ (i + 1, q), where sα ∈ ℓ(wi), q = p +

ρ(sα, f, v).
– The initial state is (0, [0, 0]).
– The accepting states are states (n, p) such that 0 is an element of p.

Every path in A(v, f) from the initial state (0, [0, 0]) to an accepting state repre-
sents a lexical selection that verifies the global neutrality criterion. Other paths
can be deleted. So, any path to an accepting state is a candidate for selection.

Actually, it is a necessary condition for a correct lexical selection to be recog-
nized by the polarity automata, for every choice of the feature f and the value
v. As a consequence, the intersection of two or more polarity automata gives an
automaton which also contains the good solutions. The principle of our selection
is to build the automaton3

⋂

(f,v)∈F×V A(f, v).
We implemented this disambiguation method in our parsing platform for

IGS in the leopar tool4. The screenshot given in Appendix come from this
software. We illustrate the results for a French5 sentence ”Il reste la demande.”

(the request remains). Figure 1 shows the initial automaton representing all
lexical selections provided by an IG for the sentence and figure 2 shows the final
automaton after all intersections have been performed whatever the order is. We
filtered by intersections with automata from Table 1.

Table 1 present the different filtering automata for disambiguation. Numbers
of states, numbers of edges and numbers of paths are given although in the
following, we will focus on the number of states. Table 1 shows that while we
always end up with the same final automaton, sizes of intermediate automata
may vary according to the order in which intersections take place (last two
columns). Ordering filtering automata by their size in increasing order seems
to be a good heuristic. Although this sentence is very short (4 words and a
punctuation mark) we can see that there is a ratio of 1.6 between the two orders
presented. On real size sentences with 20 or 30 words, ordering intersections has
a dramatic influence on the performance of the computations.

3 NP-Completeness of the problem

In this section, we review three problems, which we prove to be NP-complete,
related to our disambiguation technique based on automata intersections.

In these three problems we ask whether it is possible to choose the right
order in which the intersection of several automata must be performed in order
to minimize the number of intermediate states.

We prove NP-hardness of these problems by reduction from the Traveling
Salesman Problem (TSP) [3]. To fix the notations, we first recall this illustrious
problem.

An instance of the TSP is a triple (V, d, K) where V = {1, . . . , n} is a set of
cities, d is a distance function between any pair of different cities, d(i, j) ∈ IN+,
and a bound K ∈ IN+ . The problem is to decide whether there exists a tour of all

3 In fact we can restrict our attention to some more restricted values for f and v as
shown in Appendix. See [12] for details.

4 see http://www.loria.fr/
5 Since our grammar for French is the more complete, it illustrates more correctly

the issues of disambiguation. But the question would be the same for English for
instance.

cities with a length lesser than K or in other words if there exists a permutation
π of the cities such that (

∑i=n−1
i=1 d(π(i), π(i + 1))) + d(π(n), π(1)) ≤ K. To

help writing, when π is a function [1..n] → [1..n] and the context is clear, we
write π(n + 1) for π(1) and π(0) for π(n). So the previous sum can be written
∑i=n

i=1 d(π(i), π(i + 1)) ≤ K. From now on, we restrict our attention to those
cases where d(i, j) ≤ 2. The problem remains NP-complete (it corresponds to
the reduction from Hamiltonian Circuit).

We will distinguish between the traditional TSP as it has been exposed above
and a variant that we call the exact TSP in which the tour must be of length
exactly K (see [3]).

3.1 Intersection Optimization Problems

We present a first intersection optimisation problem, that we will enrich to get
the second and third problems that are more difficult.

Problem 1. (IO1) Let An = (Ai)1≤i≤n be a set of n finite state automata, B ∈
IN+ a bound and K a target size. Is there an injective function π : [1..j] → [1..n]
such that

– |(. . . (Aπ(1) ∩ Aπ(2)) ∩ · · ·) ∩ Aπ(j)| = K

– for all k < j, |(. . . (Aπ(1) ∩ Aπ(2)) ∩ · · ·) ∩ Aπ(k)| ≤ B.

In other words, is there a subset A ⊆ An such that |
⋂

A∈A A| = K with all
intermediate steps smaller than B?

Problem 2. (IO2) Let An = (Ai)1≤i≤n be a set of n finite state automata and
and B ∈ IN+ a bound. Is there a bijection π : [1..n] → [1..n] such that for any
j ≤ n we have |(. . . (Aπ(1) ∩ Aπ(2)) ∩ · · ·) ∩ Aπ(j)| ≤ B ?

Problem 3. (IO3) Let An = (Ai)1≤i≤n be a set of n finite state automata and
and B ∈ IN+ a bound. Is there a permutation π of [1..n] such that
∑

1≤j≤n |(. . . (Aπ(1) ∩ Aπ(2)) ∩ · · ·) ∩ Aπ(j)| ≤ B ?

In the proofs, we do not use automata with loops. So the problems can be
stated with or without star languages.

3.2 NP algorithms

These three problems are in NP. Each time we have to choose a permutation π

and then:

– for (IO1), if an intermediate intersection is empty we stop and the answer to
the problem is “no” (of course, if K = 0 it is ”yes”) if it has size greater than
B, the answer is no. Otherwise we proceed to the next intersection. When
j intersections have been performed we compare the size of the resulting
automaton to K. Observe that those intersections can be performed in time
bounded by B2 since all intermediate steps must have size smaller than B.
And so, we are polynomial with regards to B.

– for (IO2), if an intermediate intersection is empty then the answer is “yes”
else if it is greater than B (again, we may need to consider B2 states before
minimization) the answer to the problem is “no” else we proceed to the next
intersection.

– for (IO3), we need to sum the sizes of the intermediate intersections and
check that this sum is never greater than B. If an intersection is empty or if
a partial sum exceeds B then we can stop immediately.

3.3 NP-Completeness

Theorem 1. (IO1) is NP-complete.

Proof. We consider some cells, that we will associate to build automata. They
are given by Figure 3.

We can note that for i ∈ {0, 1, 2} we have |Ci| = |C0| + i. In other words,
these automata encode the ”length” of an edge. Observe also that Ci ∩C0 = Ci.
So that C0 is the ”neutral” element for the intersection. Finally, if A is some
automaton, A′ denotes the same automaton, but with primed letters.

Now, given an instance of the exact TSP (V, d, k). We consider a set of
automata Ai,j,m with i, j ∈ V and m ≤ n where n is the number of cities in
V . We suppose we are given an arbitrary (but minimal) automaton D of size
6 × n + 3.

We define

Ai,j,1 = ViCd(i,j)Vj(C0VV \{i,j})
n−2C0Vi + V ′

V \{1}D
′

and for n > m > 1,

Ai,j,m = (VV \{i,j}C0)
m−1ViCd(i,j)Vj(C0VV \{i,j})

n−m + V ′
V \{m}D

′

and
Ai,j,n = VjC0(VV \{i,j}C0)

n−2ViCd(i,j)Vj + V ′
V \{n}D

′

To fix the intuition, the automaton Ai,j,m correspond to the choice of going
from city i to city j at step m. In other words, it corresponds to the choice
π(m) = i and π(m + 1) = j.

Let us consider the ”witness” automaton A = (VV C0)
nVV . Observe that

|Ai,j,m| = |A| + d(i, j) + |D′|.
The reduction is then (V, d, k) 7→ ((Ai,j,m)i,j,m, 2|D′|, |A| + k).
For the correctness, observe that if there is a tour defined by π of length

exactly k, then

⋂

1≤m≤n

Aπ(m),π(m+1),m = Vπ(1)Cd(π(1),π(2))Vπ(2)Cd(π(2),π(3)) · · ·Cd(π(n),π(1))Vπ(1)

which has size |
⋂

1≤m≤n Aπ(m),π(m+1),m| = |A| +
∑

1≤m≤n d(m, m + 1). The
bound on intermediate automata is discussed widely in the following. So, if the
TSP problem has a solution, then its encoding has a solution for (IO1).

For the converse part, we consider the set A of automata (Ai,j,m)i,j,m closed
by intersection. Any non empty automata A ∈ A has the following properties
(proved by successive inductions):

(i) A = A1 + A2 with
– A1 = ∅ or
– A1 = Vα1

Cβ1
Vα2

Cβ2
· · ·Vαn

Cβn
Vαn+1

, αi ⊆ V , βi ∈ {0, 1, 2},
and A2 = VSD′ with S ⊆ {1..n} ;

(ii) In (i), if αj = {k} for some j, then no other αℓ contains k for ℓ ≤ n,
(iii) In (i), βi = 0 iff i ∈ S,
(iv) In (i), if βi 6= 0, then αi = {k}, αi+1 = {ℓ} are singleton sets and βi = d(k, ℓ).
(v) In (i), α1 = αn+1

From (i), we can say that |A| = |A1| + |A2| − 1 if both part are not empty.
Otherwise |A| = |A1|+ |A2|. So, in the worst case, |A| ≤ 2+

∑n

i=1 |Cβi
|+ |D′| <

2×|D′|, and the bound on intermediate steps is always respected. From (iii), we
learn that V ′

SD′ is empty iff ∀j : βj 6= 0. So that (iv) with (ii,v) gives us the fact
(F) that for all i, the set αi = {ki} is a singleton set and π : [1..n] → [1..n] which
sends i 7→ ki is a bijection and k1 = kn+1. Since, |D′| > |A|+ k, |A| = |A|+ k iff
S is empty. The fact (F) above shows that it corresponds to an acceptable tour.

Theorem 2. (IO2) is NP-complete.

Proof. We reduce the TSP to IO2. Let (V, d, k) be an instance of the TSP, Again,
let 2 be the maximal distance between two towns and n = |V |. Again, for each
edge (i, j) with distance d(i, j) we build n automata according to the possible
positions of this edge in a tour. That is to say we build n3 automata Ai,j,p.
Technically speaking, with regards to what precedes, we must have a stronger
control on the order in which the intersection is performed. This is due to the fact
that we have a weaker condition that applies to every intermediate automaton.
We decompose automata in three components:

1. The first one detailed in Fig. 4 (that we call C1,i,j,p) is responsible for com-
puting the total distance of the tour, like in (IO1) but without indexing V by
a set of cities. The end states of the C0 sub-components are connected to the
initial state of C2,i,j,p by a dummy letter X . Hence, if all the distances are in-
stantiated (as in IO1) then only the last V will connect this first component
to the second component.

2. The second one (C2,i,j,p) is responsible for chaining the edges correctly to
make a valid tour. This component is shown on Figure 5. It should be ob-
served that if it is intersected with C2,j,k,p+1 then the resulting automaton
is of the same size. Otherwise (if city indexes do not match) then it grows
by 2n states.

3. The third one (C3,i,j,p), presented in Fig. 6, forbids (by making any intersec-
tion too big) the use of a position more than once and the use of position
p without first considering positions 1, . . . , p − 1. Otherwise it grows by 4n

states.

Finally we need an additional automaton T , shown on Fig. 7.
The size of Ai,j,p is |Ai,j,p| = |C1,i,j,p| + |C2,i,j,p| + |C3,i,j,p| where

|C1,i,j,p| = 2n + d(i, j)

|C2,i,j,p| =

{

6n + 2 if p = n

4n + 2 otherwise
|C3,i,j,p| = 3(p − 1)(4n) + 2(n − p + 1)(4n) + 2n = 2n(4n + 2p − 1)

|Ai,j,p| =

{

2 + d(i, j) + 4n(2 + p + 2n) if 1 ≤ p < n

2 + d(i, j) + 2n + 4n(2 + 3n) otherwise

We want to prove that i1, i2, . . . , in, i1 is a tour for the TSP with length lesser
than k if and only if every intermediate automaton of the intersection

⋂

1≤i≤m,α(i)∈I⊂[1..n]3

Aα(i) ∩ T
⋂

m+1≤j≤n3,β(j)∈[1..n]3\I

Aβ(j)

is an automaton whose size is lesser than B = 2 + k + 4n(1 + 2n).

Preliminary observations Without loss of generality, we can suppose that k ≤
2n. Otherwise the TSP is trivial. This entails that, among all the automata
(Ai,j,p)i,j,p, only the automata (Ai,j,1)i,j are smaller than B.

i) |Ai,j,1| = 2 + d(i, j) + 4n(1 + 2n) < B
ii) otherwise,

|Ai,j,p| ≥ 2 + d(i, j) + 4n(1 + p + 2n)
≥ 2 + d(i, j) + 4n(2 + 2n) + 4n(p − 1)
> 2 + d(i, j) + 4n(1 + 2n) + k > B

Then, notice that:

iii) |C1,i,j,p| = 2n + d(i, j)
iv)

|C1,i,j,p ∩ C1,k,l,q| =

{

2n + d(i, j) + d(k, l) if p 6= q

2n + max(d(i, j), d(k, l)) otherwise

v)

|C2,i,j,p ∩ C2,k,l,q| =

{

|C2,i,j,p| if q = p + 1 and j = k

|C2,i,j,p| + 2n otherwise

vi)

|C3,i,j,p ∩ C3,k,l,q| =

|C3,i,j,p| if q = p + 1
|C3,i,j,p| + 4n|p − q| if q > p + 1
|C3,i,j,p| + 4n if q ≤ p

More generally for any sequence prefix of a tour i1, i2, . . . , ik with k ≤ n + 1
(if k = n + 1 we force ik = i1) in our instance of the TSP, we have

|
⋂

1≤p≤k Aip,ip+1,p| = |
⋂

1≤p≤k C1,ip,ip+1,p| + |
⋂

1≤p≤k C2,ip,ip+1,p| + |
⋂

1≤p≤k C3,ip,ip+1,p|
= |

⋂

1≤p≤k C1,ip,ip+1,p| + |C2,i1,i2,1| + |C3,i1,i2,1|
= 2n + (

∑

1≤p≤k d(ip, ip+1)) + 4n + 2 + 2n(4n − 1)

= 2 + (
∑

1≤p≤k d(ip, ip+1)) + 4n(1 + 2n)

Correction of the reduction. We first show that if there exists a tour i1, i2, . . . , in, i1
with length lesser than k then all the intersections Ai1,i2,1 ∩ . . . ∩ Aij ,ij+1,j for
j ranging from 1 to n are of size lesser than B. We do this by induction on the
steps of the intersection process.

As stated earlier, the initial automaton must be Ai1,i2,1 because every other
Ai1,i2,p would be too large. Then, by application of the equality defined in the
previous section

|A =
⋂

1≤p≤n Aip,jp+1,p| = 2 + (
∑

1≤p≤n d(ip, ip+1)) + 4n(1 + 2n)

≤ 2 + k + 4n(1 + 2n)

So these first n intersections straightforwardly encode the tour in the TSP
instance. Now, observe that A∩T = ∅ because every Ci from its first component
is different from C0. Consequently if the instance of the TSP has a solution, the
sequence Ai1,i2,1, . . . ,Ain,i1,n, T, S where S is a sequence over
{(Ai,j,p)i,j,p}\{Aik,ik+1,k : k ≤ n} is a solution to IO2.

Completeness Consider an intersection of the form

A = (
⋂

(αi)i∈I

Aαi
) ∩ T ∩ (

⋂

(αj)j∈[1..n]3\I

Aαj
)

where no intermediate automaton has a size greater than B. In particular this
is true for A′ = (

⋂

(αi)i∈I Aαi
). We note m = |I| and we can deduce that:

– α1 is of the form (x1, y1, 1) ; if αi = (xi, yi, p) then αi+1 = (xi+1, yi+1, p + 1)
and m ≤ n, otherwise component 3 would make |A′| > B. This implies that
αi is of the form (xi, yi, i)

– if αi = (xi, yi, i) and αi+1 = (xi+1, yi+1, i + 1) then yi = xi+1 and m = n

implies that αm is of the form (xm, x1, m). Otherwise component 2 would
make |A′| > B

– Finally, m ≥ n otherwise |A′ ∩ T | > B. This implies that m = n. Remark
that this also implies that |A′ ∩ T | = 0.

In other words A′ encodes a tour i1, i2, . . . , in, i1 in our instance of the TSP.
Furthermore the size of A′ if we follow its construction as stated above is

|A′| = |C1| + |C2| + |C3| ≤ B

|C1| + |C2,i1,i2,1| + |C3,i1,i2,1| ≤ B

|C1| + 4n + 2 + 2n(4n− 1) ≤ B

|C1| + 2 + 2n(1 + 4n) ≤ 2 + k + 4n(1 + 2n)
|C1| ≤ k + 2n

2n + d(i1, i2) + · · · + d(in, i1) ≤ k + 2n

d(i1, i2) + · · · + d(in, i1) ≤ k

And so the tour is actually a solution for our instance of the TSP.

Theorem 3. (IO3) is NP-complete.

Proof. The encoding remains the same that the one for (IO2) except for the
first component. The non-instantiated distances before position p are erased by
intersection with C⊥. (Notice that C⊥ ∩ Ci∈{0,1,2} = C⊥)

C1,i,j,p = (V (C⊥+XC2,i,j,pXC3,i,j,p))
p−1V Cd(i,j)(V (C0+XC2,i,j,pXC3,i,j,p))

n−pV (C2,i,j,pXC3,i,j,p)

The bound for this third problem is B = k + n(2 + 2n + |C2| + |C3|) =
k + n(2 + 8n + 8n2) which corresponds to k and the part of the first automaton
of the tour that does not disappear by intersection before the intersection with
T .

References

1. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2) (1994) 315–328

2. Yu, S.: On the state complexity of combined operations. In Ibarra, O.H., Yen,
H.C., eds.: CIAA. Volume 4094 of Lecture Notes in Computer Science., Springer
(2006) 11–22

3. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco
(1979)

4. Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting finite
state automata. In: IEEE Conference on Computational Complexity. (2000) 229–
234

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press (1990)

6. Moortgart, M.: Categorial Type Logics. In van Benthem, J., ter Meulen, A., eds.:
Handbook of Logic and Language. Elsevier (1996)

7. Perrier, G.: La sémantique dans les grammaires d’interaction. Traitement Au-
tomatique des Langues 45(3) (2004) 123–144

8. Kahane, S.: Polarized unification grammars. In: ACL, The Association for Com-
puter Linguistics (2006)

9. Kupiec, J.: Robust part-of-speech tagging using a hidden Markov model. Computer
Speech and Language 6 (1992) 225–242

10. Merialdo, B.: Tagging English text with a probabilistic model. Computational
Linguistics 20(2) (1994) 155–172

11. Weischedel, R., Meteer, M., Schwarz, R., Ramshaw, L.A., Palmucci, J.: Coping
with ambiguity and unknown words through probabilistic models. Computational
Linguistics 19(2) (1993) 155–172

12. Bonfante, G., Guillaume, B., Perrier, G.: Polarization and abstraction of gram-
matical formalisms as methods for lexical disambiguation. (2004)

13. Tapanainen, P.: Applying a Finite-State Intersection Grammar. In: Finite-State
Language Processing. MIT (1997)

A Appendix

A.1 A disambiguation example

resteIl la demande .

DSubjectClitic_48

DSubjectClitic_49

DN0VattrC1_1663

DN0VattrC1_1664

DN0VattrC1_1665

DS0VattrC1_479

DS0VattrC1_485

DS0VattrC1_491

DS0VattrC1_497

DN0V_1338

DN0V_1339

DN0V_1340

DN0V_1355

DN0VattrC1_1615

DN0VattrC1_1616

DN0VattrC1_1617

DComplClitic_13

DComplClitic_23

DComplClitic_33

DStandardDeterminer_6

DCommonNoun_4

DN0VN1_546

DN0VN1_547

DN0VN1_548

DN0VN1aN2_1735

DN0VN1aN2_1736

DN0VN1aN2_1737

DN0VS1_140

DN0VS1_141

DN0VS1_162

DN0VS1_163

DN0VS1aN2_1490

DN0VS1aN2_1502

DN0VS1aN2_1503

DN0VS1aN2_1511

DN0VS1aN2_1511

DN0VS1aN2_1512

DN0VS1aN2_1512

DN0VaN1_1302

DN0VaN1_1303

DN0VaN1_1304

DDeclSentenceStop_14

DDeclSentenceStop_15

DSubjectClitic_47

DN0VS1aN2_1489

Fig. 1. Initial automaton provided by an IG for the sentence ”Il reste la demande.”.
There are initially 7392 way of tagging the sentence.

The following table illustrates the fact that the choice of the order has some
influence on the performance of the computation of the intersection. The first
two column correspond to the choice of the feature name and the feature value.
The third/fourth/fifth colums give the number of states (number of paths and
number of edges) for this choice. The sixth column show the number of states
of the intersection of automata above the current line and the last colum gives
the number of states of the intersection of automata below the current line.

A.2 Some automata for the reduction

Il reste la demande .

DSubjectClitic_49

DSubjectClitic_47

DSubjectClitic_48

DN0V_1355

DN0VattrC1_1664

DN0V_1339

DN0VattrC1_1663

DN0V_1355

DN0VattrC1_1664

DComplClitic_23

DComplClitic_33

DComplClitic_13

DCommonNoun_4 DDeclSentenceStop_15

DStandardDeterminer_6

Fig. 2. Final automaton after every filtering step has been performed. Only XXX
tagging candidates remain.

f v states paths edges intersection ↓ intersection ↑

6 7392 45

break close 6 3696 44 6 8

cat pp 6 2688 31 6 8

cat ap 6 5808 42 6 8

cpl que 6 5760 41 6 8

cpl ou|pourquoi|quand|si 6 5376 39 6 8

cpl de 6 6048 41 6 12

prep a 6 2688 31 6 12

reflex true 6 6720 43 6 12

cat s 8 3984 49 8 12

cat n|np 13 2334 70 10 18

funct subj|obj|attr 12 800 61 8 12

total 87 74 118

Table 1. Sizes of filtering automata for ”Il reste la demande.”

VS:
(s)s∈S

X, Y

X, Y

X X

Y Y

X

Y

X

Y

X

Y

C2:C1:

C⊥: X X XX, Y X, YC0:

Fig. 3. some brick automata

X
C2,i,j,p C3,i,j,p

V V

X

X

X

p − 1 n − p

C0
C0 Ci,j C0 C0V

X

V

Fig. 4. automaton Ai,j,p with detailed first component

Intermediate Position

Position 1

Position n
X X

X X

X X

X X

2n

1ij
1ij

{∗∗∗}\{1ij} {∗∗∗}\{1ij}
{F∗}\{Fi} {F∗}\{Fi}

X X

2n

nij
nij

Fj Fj

X X

X X

pij
pij

2n

F∗F∗

Otherspij
= {∗∗∗}\{pij}\{p

′
∗i|p

′ = p − 1}

Otherspij
Otherspij

Othersnij
Othersnij

Fig. 5. the second component for the automaton Ai,j,p

n∗∗

X X X

X X X

X X X

X X X
X X

X X

H1

H1

H1
H2

H2 H2

H2

pij pij

pij

pij

H1|H2

X X

X X

H1|H2

H1

HH

H1|H2

X X

X X

H1|H2

4n

n − pp − 1

1∗∗

1∗∗

(p − 1)∗∗

(p − 1)∗∗

(p + 1)∗∗

(p + 1)∗∗

n∗∗

Fig. 6. the third component for the automaton Ai,j,p

X
component 2 component 3V V

C0
C0 C0

X

X

X

n

Fig. 7. the automaton T

