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1 Introduction

The off-shell field content of 10-dimensional super-Yang–Mills theory has an excess of

seven fermionic degrees of freedom as compared to the number of gauge invariant bosonic

degrees of freedom. To balance this mismatching, it was proposed in [1] to add to the

supersymmetry transformation laws a set of seven auxiliary scalar fields Ga, together with

a
∑

aG
2
a term in the action. In order for the algebra to close off-shell, the parameters

associated with the supersymmetry transformations must obey some identities. However,

there is no linear solution to these identities, and thus no conventional supersymmetric

formulation which permits the algebra to completely close.

It has been demonstrated in [1] that it is impossible to construct more than nine

consistent solutions of these identities. Thus, only nine supersymmetry generators can

generate an algebra that closes off-shell. These nine supersymmetry generators in ten-

dimensional super-Yang–Mills are related to the octonionic division algebra in the same

manner that the supersymmetry generators in three-, four-, and six-dimensional super-

Yang–Mills are related to the real, complex, and quaternionic division algebras. However,

the non-associativity of octonions makes the ten-dimensional supersymmetry algebra

more complicated than in the other dimensions.

On the other hand, the N = 2 twisted 8-dimensional super-Yang–Mills theory, which

is a particular dimensional reduction of the 10-dimensional theory, has been determined in

[2] by the invariance under a subalgebra of the maximal Yang–Mills supersymmetry. This

subalgebra is small enough to close independently of equations of motion with a finite set

of auxiliary fields, and yet is large enough to determine the Yang–Mills supersymmetric

theory. It is also made of nine generators. The latter can be geometrically understood and

constructed as scalar and vector topological Yang–Mills symmetries. This 8-dimensional

topological symmetry can be built independently of the notion of supersymmetry, but,

surprisingly, the latter symmetry with 16 generators can be fully recovered at the end of

the construction.

The aim of this paper is to make a bridge between the results of [1] and [2]. We will

find that in 10-dimensional flat space with Lorentz group SO(1, 9) reduced to SO(1, 1)×

Spin(7), the supersymmetry algebra can be twisted such that the 10-dimensional super-

Yang–Mills theory is determined by a supersymmetry algebra with 9 generators, which

is related by dimensional reduction to the twisted N = 2 8-dimensional super-Yang–

Mills theory. Reciprocally, the extended curvature equation of the N = 2 8-dimensional

supersymmetric theory can be “oxidized” into an analogous 10-dimensional equation
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that determines the supersymmetry algebra and 10-dimensional super-Yang–Mills action.

We argue that the largest symmetry group that can preserve an off-shell subalgebra of

supersymmetry is SO(1, 1)×Spin(7), and we obtain the most general SO(1, 1)×Spin(7)

covariant solution of the identities defined in [1]. The supersymmetry algebra that we

derive is exactly the one obtained by the twist operation.

We then define a superspace involving nine Grassmann θ variables such that the

off-shell supersymmetry subalgebra acts in a manifest way on the super-Yang–Mills su-

perfields. Using these off-shell superfields, a superspace action is constructed which

reproduces the ten-dimensional super-Yang–Mills action including the seven auxiliary

scalar fields Ga. Although this superspace action is manifestly invariant under only a

Spin(7) × SO(1, 1) subgroup of SO(9, 1), it is manifestly invariant under nine super-

symmetries as well as gauge transformations. This can be compared with the light-cone

superspace action for ten-dimensional super-Yang–Mills which is manifestly invariant un-

der eight supersymmetries and an SO(8) × SO(1, 1) (or U(4) × SO(1, 1)) subgroup of

SO(9, 1), but is not manifestly invariant under gauge transformations.

2 Ten dimensional supersymmetric Yang–Mills with

auxiliary fields

The Poincaré supersymmetric Yang–Mills theory in ten dimensional Minkowski space

contains a gauge field Aµ (µ = 1, · · · 10) and a sixteen-component Majorana–Weyl spinor

Ψ, with values in the Lie algebra of some gauge group. In order to balance the gauge-

invariant off-shell degrees of freedom, one can introduce a set of scalar fields Ga (a =

1, · · ·7) which count for the 7 missing bosonic degrees of freedom [1]. The Lagrangian is

given by

L = Tr{−
1

4
FµνF

µν +
i

2
(Ψ̄Γ̂µDµΨ) + 8GaGa} (1)

where Γ̂µ are the ten-dimensional gamma matrices. As shown in [1], the action (1)

is invariant under the following supersymmetry transformations, which depend on the

ordinary Majorana–Weyl parameter ǫ and on seven other spinor parameters va

δAµ = iǭΓ̂µΨ

δΨ = Γ̂µνFµνǫ+ 4Gava (2)

δGa =−
i

4
v̄aΓ̂

µDµΨ (3)
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The commuting spinor parameters va must be constrained as follows

v̄aΓ̂µǫ = v̄a Γ̂µvb − δabǭΓ̂µǫ = 0 (4)

The transformations (2) generate a closed algebra modulo gauge transformations and

equations of motion

{δ, δ̂} ≈ −2iǭΓ̂µǫ̂ ∂µ − 2iδgauge(ǭΓ̂µAµǫ̂) (5)

and close independently of equations of motion when

(ǫ̂, v̂a) (6)

is some linear combination of (Γ̂µνǫ, Γ̂µνva). To recover conventional supersymmetry

transformations, one must have a solution for v in (4) that is linear in ǫ. This in turn

will give a realisation of (5) which, thanks to (6), will effectively hold off-shell.

Using octonionic notations and light-cone coordinates, a solution was found for the

v’s and ǫ in [1] that preserves nine supersymmetries. This solution is only covariant under

SO(1, 1)×Spin(7) ⊂ SO(1, 9). In fact, in order to define the v’s as linear combinations of

ǫ, we must reduce the covariance to a subgroup H that admits a 7-dimensional represen-

tation. Moreover, since the maximal sub-algebra that can be closed off-shell contains 9

supersymmetry generators, the Majorana–Weyl spinor representation of Spin(1, 9) must

decompose into 7 + 9 of H . The biggest subgroup of SO(1, 9) that satisfies these criteria

is SO(1, 1)× Spin(7).

2.1 Light-cone variables

The choice of light-cone variables implies a reduction of the Lorentz group as

SO(1, 9) → SO(8) × SO(1, 1) (7)

where the spinor Ψ ∈ 16+ of SO(1, 9) decomposes into one chiral and one antichiral

spinor of Spin(8), Ψ → λ1 ⊕ λ2 ∈ 8−1

+ ⊕ 81

−, as well as ǫ → ǫ1 ⊕ ǫ2 and va → va1 ⊕ va2.

The connection Aµ ∈ 10 of SO(1, 9) decomposes according to Aµ → Ai ⊕ A+ ⊕ A− ∈

80

v
⊕12⊕1−2 of SO(8)×SO(1, 1), where the superscripts denote the eigenvalue associated

with the SO(1, 1) factor and A± = A0 ±A9.

We can consider a gamma matrix algebra of Cl(1, 9) in terms of gamma matrices of

Cl(0, 8)

Γ̂0 =(iσ2) ⊗ Γ9

Γ̂i =σ2 ⊗ Γi (i = 1 . . . 8)

Γ̂9 =σ1 ⊗ 1 (8)
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and Γ̂11Ψ = σ3 ⊗ 1 Ψ = Ψ. These matrices obey [Γ̂µ, Γ̂ν ] = 2 ηµν , with the metric

ηµν = diag(−1,+1, . . . ,+1) and [Γi,Γj ] = 2 δij. The decomposition SO(1, 9) → SO(8)×

SO(1, 1) is performed by taking A± = A0 ± A9 and by projecting Ψ to Γ̂+Ψ → λ2 and

Γ̂−Ψ → λ1, with Γ9λ1 = λ1 and Γ9λ2 = −λ2.

The transformations laws (2) read

δAi =−iǭΓiλ

δA+ =−2ǭ2λ2

δA− =2ǭ1λ1

δλ1 =(FijΓij +
1

2
F+−)ǫ1 + iFi−Γiǫ2 + 4Gava1

δλ2 =(FijΓij −
1

2
F+−)ǫ2 − iFi+Γiǫ1 + 4Gava2

δGa =
i

4
v̄aΓiDiλ+

1

4
v̄a1D+λ1 −

1

4
v̄a2D−λ2 (9)

together with the constraints

v̄aΓiǫ = v̄a1ǫ1 = v̄a2ǫ2 = 0 (10)

v̄a1vb1 = δabǭ1ǫ1 v̄aΓivb = δabǭΓiǫ v̄a2vb2 = δabǭ2ǫ2

The Lagrangian is given by

L = Tr
(

−
1

4
(F ij)(Fij) −

1

4
(F i+)(Fi+) −

1

4
(F i−)(Fi−) −

1

8
(F+−)(F+−)

−
i

2
λ̄ΓiDiλ−

1

2
λ̄1D+λ1 +

1

2
λ̄2D−λ2 + 8(Ga)

2
)

. (11)

2.2 Twisted variables

In [1], the light-cone projections ǫ1 and ǫ2 of the spinor parameter are expressed in

terms of octonions and the imaginary components of ǫ1 are set to zero, that is ǫ1 is

taken real. Formally, the reality constraint on the supersymmetry parameter ǫ1 implies

the decomposition of the corresponding representation 8+ → 1 ⊕ 7 associated to the

inclusion Spin(7) ⊂ Spin(8)1

ǫ1 ∈ 8+ →1 ⊕ 7

ǫ2 ∈ 8− → 8 (12)
1A discussion of various solutions of (4) can be found in [4] together with their invariance groups. In

particular, a solution is presented preserving nine supersymmetries, but with a reduction of SO(1, 9) →

G2 × SO(1, 1).
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where 1,7 and 8 define the scalar, vectorial respectively spinorial representations of

Spin(7). The reality constraint is then equivalent to retaining just the singlet part of ǫ1,

isolating 9 supersymmetries.

For expressing the decomposition SO(8) → Spin(7), it is convenient to introduce

projectors onto the irreducible representations of Spin(7). In order to do so, we use the

spinor ζ scalar of Spin(7). We take it chiral and of norm 1 and define

(4!)ζ̄Γijklζ ≡ Ωijkl with ζ̄ζ = 1, (13)

where Ωijkl stands for the octonionic Spin(7) invariant 4-form. It can be used to construct

orthogonal projectors to decompose the adjoint representation 28 of Spin(8) into the

irreducible Spin(7) ones 21 ⊕ 7

P+ kl
ij ≡

3

4
(δ kl

ij +
1

6
Ω kl

ij ) (14)

P− kl
ij ≡

1

4
(δ kl

ij −
1

2
Ω kl

ij )

The supersymmetry parameter can then be expressed as

ǫ1 = ω̄ζ + Γijν
ijζ

ǫ2 = iΓiε
iζ (15)

where νij = P− kl
ij νkl. This provides us with a decomposition of the supersymmetry

generators as an antiselfdual tensorial charge δij , a scalar charge δ0 and a vectorial charge

δi, of which we will retain just the scalar and vectorial ones.

2.3 Decoupling and resolution of the constraints

In terms of Spin(7) representations, the relations (10) together with the explicit expres-

sion for the supersymmetry paramaters (15) read

v̄
ij
1 (ω̄ + νklΓkl)ζ = 0, v̄

ij
1 Γmiε

kΓkζ + v̄
ij
2 Γm(ω̄ + νklΓkl)ζ = 0, v̄

ij
2 iε

kΓkζ = 0 (16)

v̄1ijv
kl
1 = 8P− kl

ij (ω̄2 + 2|ν|2), v̄ijΓmv
kl = 16iP− kl

ij (ω̄εm + 4εnνmn), v̄2ijv
kl
2 = −8P− kl

ij |ε|2

In order to find the most general covariant solution for vij that is linear in the supersym-

metry parameters, we consider

v
ij
1 = aω̄Γijζ + eνijζ + fνklΓ

ijklζ

v
ij
2 = bεkΓkΓ

ijζ + cε[iΓj]−ζ (17)
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from which we can show, remembering that all terms, but ζ̄ζ and ζ̄Γijklζ , vanish, that

(16) is verified for the solution νij = 0, a = −ib = 2 and c = 0, that is

ǫ1 = ω̄ζ v
ij
1 = 2ω̄Γijζ

ǫ2 = iΓiε
iζ v

ij
2 = 2iεkΓkΓ

ijζ

As expected, this solution provides us with a set of nine components parameterized by ω̄

and εi, which form the maximal set of supersymmetry generators that can generate an

off-shell algebra.

The fields of the theory decompose according to

λ1 ∈ 8+ →1 ⊕ 7

λ2 ∈ 8−, Ai ∈ 8v → 8 (18)

and Ga is reexpressed in terms of G−
ij ∈ 7 as G8a = Ga and Gab = Cab

cGc, where Cab
c are

the structure constants of the imaginary octonions. One has explicitly

λ1 = ηζ + Γijχ
ijζ

λ2 = iΓiψ
iζ (19)

and

η= ζ̄λ1

χij =−
1

2
ζ̄Γijλ1

ψi =−iζ̄Γiλ2 (20)

where χij = P− kl
ij χkl. The supersymmetry transformations are now generated by

δSusy = ω̄δ0 + εiδi (21)

We display here the resulting transformation laws in a form which is more convenient with

respect to the approach related to theories of cohomological type ( called BRSTQFTs in

the terminology of [7]) of the next section. That is, we redefine Gij → Gij −P−kl
ij Fkl and
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redefine some of the fields by scale factors to get

δ0Ai =ψi

δ0A+ = 0

δ0A− = η

δ0ψi =−Fi+

δ0η=F+−

δ0χij =Gij

δ0Gij =D+χij (22)

δiAj =−δijη − χij

δiA+ =−ψi

δiA− = 0

δiψj =Fij +Gij + δijF+−

δiη=Fi−

δkχij = 8P− l
ijk Fl−

δkGij =Dkχij − 8P− l
ijk (Dlη −D−ψl) (23)

The algebra closes independently of the equations of motion as

δ2
0 = ∂+ + δgauge(A+)

δ{iδj} = δij(∂− + δgauge(A−))

{δ0, δi}= ∂i + δgauge(Ai) (24)

and the action becomes

S =

∫

M

d10xTr

(

1

2
Gij(Fij +

1

4
Gij) − χij(Diψj +

1

8
D+χij) + ηDiψ

i +

+(F i
−)(Fi+) − ψiD−ψi + (F+−)2 − ηD+η

)

. (25)

The formal dimensional reduction on the “Minkowski torus” consists trivially here

to neglect the non-zero modes of the operators ∂±. Doing so we recover the eight-

dimensional cohomological action and its twisted supersymmetry algebra, obtained in

[2] by twisting the eight-dimensional theory. In the next section, we discuss this link to

eight-dimensional cohomological theory in more details.
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3 Link with eight-dimensional Yang–Mills BRSTQFT

In this section, we will directly obtain the light-cone twisted subalgebra of 10-dimensional

super-Yang–Mills of the last section. It will close off-shell by construction and will be

inspired by the analogous known subalgebra of maximal twisted2 supersymmetry in 8

dimensions.

The eight-dimensional algebra has been built [2] from the scalar and vector topological

symmetries with 9 = 1 + 8 generators that can be algebraically constructed. These 9

generators build a maximally closed and consistent sector of the twisted N = 2, d = 8

Yang–Mills supersymmetry. Invariance under this subalgebra completely determines the

Yang–Mills supersymmetric action. The full on-shell supersymmetry is recovered in this

way and one can then interpret the invariance of the action under the 7 additional

supercharges as accidental.

3.1 The 8-dimensional BRSTQFT formula

The nine 8-dimensional supersymmetry generators can be encoded in a graded differential

operator Q which depends on nine twisted supersymmetry parameters consisting of one

scalar ω̄ and one eight-dimensional vector ε.

Using the notation of [2], Q satisfies the horizontality condition in eight dimensions

F̂8 ≡ (d+Q− ω̄iε)(A+ c) + (A + c)2

= F + ω̄ψ + δ(ǫ)η + iεχ+ ω̄2Φ + |ε|2Φ̄. (26)

In Eq. (26), all fields are forms taking values in the Lie algebra of the gauge group.

For example, A = Aidx
i is the Yang–Mills connection where i = 1 to 8, Φ and Φ̄

are scalars, and F = dA + AA is a two-form. Furthermore, Ψ = Ψidx
i is a 1-form,

χ = 1
2
χijdx

idxj is an antiselfdual 2-form with seven independent components, and η is a

scalar field where (Ψi, χij, η) are twisted Fermi spinors. Moreover, d is the usual exterior

differential d = ∂idx
i, iv is the contraction operator along the vector v, iεdx

i = εi, and

δ(ε) ≡ εiδijdx
j .

Finally, the anticommuting scalar field c is a shadow field. It plays an important

role by closing the supersymmetry without field-dependent gauge transformations in the

right-hand-side of commutators, and, eventually, for quantizing the theory [3] . There

2Here, the word twist means the mapping between forms and spinors that is allowed reducing the

SO(8) covariance down to Spin(7) [7].
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is no need at this stage to introduce a Faddeev–Popov ghost. Note that all fields and

operators have a grading that is the sum of shadow number and ordinary form degree.

The closure of Q is ensured by the Bianchi identity, which also determines the action

of the symmetry on the fields on the right-hand-side of Eq. (26). By expanding the

equation

(d+Q− ω̄iε)(F + ω̄ψ + δ(ǫ)η + iεχ + ω̄2Φ + |ε|2Φ̄)

+[A+ c, F + ω̄ψ + δ(ǫ)η + iεχ+ ω̄2Φ + |ε|2Φ̄] = 0, (27)

one finds that the action of the operator Q on the fields can be decomposed into a

gauge transformation with parameter c and a supersymmetry transformation δSusy with

9 twisted parameters ω̄ and ε as

Q = δSusy − δgauge(c) = ω̄δ0 + εiδi − δgauge(c). (28)

The off-shell closure of δSusy follows from the identity Q2 = ω̄Lε. Notice that no gauge

transformation is involved in this equation.

3.2 Light-cone 10-dimensional equation

We may understand Eq. (26) as a light-cone projection of an analogous equation in

10 dimensions. In order to determine the subalgebra of the 10-dimensional theory, we

“oxidize” this equation by introducing light-cone modes (∂+,∂−) and redefining (Φ, Φ̄) →

(A+, A−) in such a way that

Spin(7) ×R∗
+
∼= Spin(7) × SO(1, 1) ⊂ SO(8) × SO(1, 1) ⊂ SO(1, 9). (29)

In this way, we can interpret the scalar fields in the right-hand-side of Eq. (26) as el-

ements of a connexion in 10 dimensions. They can be carried to the left-hand-side of

the horizontality condition (26), which thus appears as the dimensional reduction of the

10-dimensional condition

F̂10 ≡ (d+Q− ω̄iε − ω̄2i+ − |ε|2i−)(A+ c) + (A+ c)2

= F + ω̄(ψ + ηdx−) + (δ(ǫ)η + iεχ+ iεψ dx
+). (30)

Eq. (30) has the Bianchi identity

(d+Q− ω̄iε − ω̄2i+ − |ε|2i−)(F + ω̄(ψ + ηdx−) + (δ(ǫ)η + iεχ+ iεψ dx
+))

+[A+ c, F + ω̄(ψ + ηdx−) + (δ(ǫ)η + iεχ+ iεψ dx
+)] = 0, (31)

9



which insures that (d+Q− ω̄iε − ω̄2i+ − |ε|2i−)2 = 0.

By expansion according to the various gradings, we obtain 10-dimensional transfor-

mation laws for all fields, which exactly reproduce those described earlier and determined

by a mere twist of supersymmetry transformations. The self-dual 2 form auxiliary fields

Gij with seven degrees of freedom is now introduced here in the standard TQFT way, by

solving the degenerate equations δ0χij + δiΨj + · · · = 0. As a consequence of the Bianchi

identity, the algebra of generators δ0 and δi closes independently of any equations of

motion, as expressed in the preceding section. Let us stress again the relevance of the

shadow c for supressing field dependent gauge transformations in the commutators of

supersymmetries.

The 10-dimensional action (assuming no higher-derivative terms) is completely deter-

mined from the Q-invariance with the nine parameters ω̄ and εi. As in [2], one can show

that the most general Q-invariant expression, which is independent of εi and contains

no higher order derivative terms, can be written either as a δ0-exact or as a δi-exact

functional up to a topological term

S= δ0Z
(−1) −

1

8

∫

M

d10xTr
(

ΩijklFijFkl

)

= εiδiZ
(+1) +

1

8

∫

M

d10xTr
(

ΩijklFijFkl

)

(32)

where Z(−1) and Z(+1) are completely fixed respectively by the δi and δ0 symmetries, i.e.

δiZ
(−1) = δ0Z

(+1) = 0.

As will be shown in the following section, this matches the Lagrangian obtained by

twist in (25). We have thus obtained an off-shell formulation of ten-dimensional super-

Yang–Mills from the eight-dimensional Yang–Mills BRSTQFT.

4 Toward a superspace formulation in twisted fermionic

variables

The fact that we are able to obtain a subalgebra that closes without the use of the equa-

tions of motion suggests that there should exist an off-shell superspace formulation of ten

dimensional super-Yang–Mills. Since there are nine off-shell supersymmetry generators,

it is natural to define a superspace with nine anticommuting variables. Let us define the

reduced superspace with vector coordinates θi (spinor representations of Spin(7)) and

10



scalar coordinate θ. We define superspace derivatives

∇̂ =
∂

∂θ
− θ∂+, ∇̂i =

∂

∂θi
− θ∂i − θi∂−,

∂+, ∂−, ∂i, (33)

which obey

∇̂2 = −∂+, ∇̂{i∇̂j} = −δij∂−, {∇̂, ∇̂i} = −∂i, (34)

with all other commutators equal to zero. For each of the superspace derivatives, we intro-

duce a corresponding gauge connection superfield and define the covariant superderiva-

tives

∇ = ∇̂ + C, ∇i = ∇̂i + Γi,

D+ = ∂+ +A+, D− = ∂− +A−, Di = ∂i +Ai. (35)

To reduce the number of degrees of freedom, one needs to constrain the supercurvature

associated to the connection superfields. The usual SO(9, 1)-covariant constraint for

N = 1 D = 10 super-Yang–Mills superfields is {∇α,∇β} + 2γm
αβDm = 0, which puts the

superfields on-shell. However, in the reduced superspace, the analogous constraints are

∇2 + D+ = 0, {∇i,∇j} + 2δijD− = 0,

{∇,∇i} + Di = 0, (36)

It is remarkable that the resolution of these constaints no longer imply the equations

of motion, in contrast with the case of the full superspace constraints, that can only be

written on-shell.

As usual, the commutator of a fermionic covariant derivative and a bosonic covariant

derivative gives a fermionic gauge-covariant superfield. The Bianchi identities imply

that the symmetric part of [∇i,Dj] is proportional to δij . In order to obtain the right

supermultiplet we furthermore impose the constraint that the antisymmetric part of

[∇i,Dj] is antiselfdual

P+kl
ij [∇k,Dl] = 0 (37)

We therefore define the gauge-covariant superfields Ψi, η and χij = P−kl
ij χkl that corre-

spond to the commutators

[∇,Di] ≡ Ψi = −[∇i,D+], [∇,D−] ≡ η, [∇,D+] = 0,

[∇i,D−] = 0, [∇i,Dj] = −δijη − χij. (38)
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The constraints and their Bianchi identities imply that Ψ, η and χ satisfy

∇{iΨj} + δij∇η = 0, ∇kχij + 8P−
ijk

l
∇lη = 0. (39)

Furthermore, the commutators of bosonic covariant derivative give the superderivative

of these fermionic superfields as

[Di,D−] ≡ Fi− = ∇iη,

[Di,D+] ≡ Fi+ = ∇Ψi,

[D−,D+] ≡ F−+ = ∇η,

[Di,Dj] ≡ Fij = ∇χij −∇[iΨj].
(40)

The superfields C and Γi have expansion of the formC = c+ θici + · · · Γi = γi + θjγij + · · · (41)

The transformation laws are such that, c can be identified as the shadow of [3] and γiκ
i

as an analogous field introduced in [2], in the context of the topological vector symmetry,

for κ a constant vector field.

In order to concretely realize the abstract algebra defined by the above equations,

one must determine the action of δ0 and δi on all components of C and Γi, which satisfy

the relevant commutation relations. We have checked this non trivial property, both in

component formalism and directly in superfield formalism [8], and prove thereby that

the above constraints that hold off-shell can be solved and that the solution corresponds

to the supermultiplet of ten dimensional super-Yang–Mills in its twisted formulation.

4.1 Super-Yang–Mills action in superspace

To write a superspace action in terms of these constrained superfields, first note that the

component action of (25) can be written as a δ0-exact functional as long as we neglect

instantons

S = δ0Z
(−1) (42)

with Z(−1) completely fixed by the δi symmetry, i.e. δiZ
(−1) = 0 where

Z(−1) =

∫

M

d10xTr
(1

2
χij(Fij +

1

4
Gij) + F−iψ

i + ηF+−

)

(43)

Moreover, defining δ(ε) = εiδi, the action can be expressed as a δ0δ(ε)-exact term as

S = δ0δ(ε)

∫

M

d10x
1

|ε|2
F (44)

12



with

F = Tr

(

1

4
εiΩ

ijkl(AjFkl −
2

3
AjAkAl) + εi(−δ

ijη − χij)ψj

)

. (45)

Note that F is completely constrained by the condition that its δ(ε) variation is inde-

pendent of ε.

This situation is reminiscent of the case of harmonic superspace [5, 6] where harmonic

coordinates allow the construction of manifestly supersymmetric actions using a reduced

superspace. In this case, one does not have harmonic variables but one can nevertheless

write the above action in reduced superspace as

S =

∫

M

d10x∇∇i K
i ≡

∫

M

d10x

∫

dθdθi K
i (46)

where

Ki = Tr

(

1

4
Ωijkl(AjFkl −

2

3
AjAkAl) − (δijη + χij)Ψj

)

. (47)

Since the δ(ε) variation of 1
|ε|2

F is independent of ε, one learns that

∇iKj + ∇jKi = δijf +
∂

∂xµ
h

µ
ij (48)

for some f and hµ
ij . Using (48), it is straightforward to show that (46) is independent of

θ and θi and is therefore invariant under all nine supersymmetries.
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