
HAL Id: hal-00146363
https://hal.science/hal-00146363

Submitted on 15 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvements to the Psi-SSA representation
Francois de Ferriere

To cite this version:

Francois de Ferriere. Improvements to the Psi-SSA representation. 2007. �hal-00146363�

https://hal.science/hal-00146363
https://hal.archives-ouvertes.fr

ha
l-0

01
46

36
3,

 v
er

si
on

 1
 -

 1
5

M
ay

 2
00

7

Improvements to the Psi-SSA Representation

François de Ferrière
ST Microelectronics

12 rue Jules Horowitz, 38000 Grenoble, France
francois.de-ferriere@st.com

Abstract

Modern compiler implementations use the Static Single
Assignment representation [5] as a way to efficiently im-
plement optimizing algorithms. However this representa-
tion is not well adapted to architectures with a predicated
instruction set. Theψ-SSA representation was first intro-
duced in [11] as an extension to the Static Single Assign-
ment representation. Theψ-SSA representation extends the
SSA representation such that standard SSA algorithms can
be easily adapted to an architecture with a fully predicated
instruction set. A new pseudo operation, theψ operation,
is introduced to merge several conditional definitions intoa
unique definition.

This paper presents an adaptation of theψ-SSA repre-
sentation to support architectures with a partially predi-
cated instruction set. The definition of theψ operation is
extended to support the generation and the optimization of
partially predicated code. In particular, a predicate promo-
tion transformation is introduced to reduce the number of
predicated operations, as well as the number of operations
used to compute guard registers. An out ofψ-SSA algorithm
is also described, which fixes and improves the algorithm
described in [11]. This algorithm is derived from the out of
SSA algorithm from Sreedhar et al. [10], where the defini-
tions of liveness and interferences have been extended for
theψ operations. This algorithm inserts predicated copy
operations to restore the correct semantics in the program
in a non-SSA form.

Theψ-SSA representation is used in our production com-
pilers, based on the Open64 technology, for the ST200 fam-
ily processors. In this compiler, predicated code is gener-
ated by an if-conversion algorithm performed under theψ-
SSA representation [12, 1].

1. Introduction

The Static Single Assignment representation was intro-
duced in [5] and is now widely used in modern compil-

ers. The SSA representation has proven to be a very ef-
ficient internal compiler representation for performing vari-
ous optimizations on scalar variables. In this representation,
each definition of a scalar variable is renamed into a unique
name, and variable uses are renamed to refer to these new
definition names or to specialφ instructions that are intro-
duced to merge values coming from different control-flow
paths. Most of the standard optimization algorithms have
been adapted to this representation, such as constant propa-
gation [13], dead-code elimination [9], induction variables
optimization [14], and partial redundancy elimination [2].
These algorithms usually perform equally well or even bet-
ter than their original versions on a non-SSA representa-
tion. However, these algorithms are more difficult to adapt
in presence of aliased variables, partial definitions or con-
ditional definitions. To overcome these difficulties, some
extensions to the SSA representation have already been pro-
posed, such as the HSSA representation [3] for aliases with
pointers, the Array SSA form [8] for array variables and
theψ-SSA representation [11] to handle conditional defini-
tions.

In this document we present an extension of theψ-SSA
representation for partially predicated architectures. The
first section will present theoretical and practical aspects
of theψ-SSA representation. The second section will then
describe the adaptation of theψ-SSA representation to the
context of partial predication. The third section will present
an out of SSA algorithm for theψ-SSA representation, for
both full and partial predication. This algorithm improves
the algorithm described in the originalψ-SSA paper and
also fixes some errors. In the fourth section we will present
some results we have on our production compiler for one of
the ST200 family processors.

2. The Psi-SSA representation

Theψ-SSA representation was developed to extend the
SSA representation with support for predicated operations.
In the SSA representation, each definition of a variable is
given a unique name, and new pseudo definitions are intro-

if(p)
a = op1; p? a = op1;

else

b = op2; p? b = op2;
x = Phi(a, b) x = Psi(a, b)

Figure 1. ψ-SSA representation

duced onφ instructions to merge values coming from dif-
ferent control-flow paths. In this representation, each defi-
nition is an unconditional definition, and the value of a vari-
able is the value of the expression on the unique assignment
to this variable. This essential property of the SSA repre-
sentation does not any longer hold when definitions may be
conditionally executed. When the definition for a variable is
a predicated operation, this operation is executed depending
on the value of a guard register. As a result, the value of the
variable after the predicated operation is either the valueof
the expression on the assignment if the predicate is true, or
the value the variable had before this operation if the pred-
icate is false. We need a way to express these conditional
definitions whilst keeping the static single assignment prop-
erty.

Predicated operations can be used to replace code that
contains control-flow edges by straight line code containing
predicated operations. Such a transformation is performed
by an if-conversion optimization [6, 1]. A simple example
of if-conversion is given in figure 1. In the rest of this pa-
per, we use the notationp? <exp> to say that<exp> is
executed only if the predicatep is TRUE.

In theψ-SSA representation,ψ operations are added to
the SSA representation.ψ operations are for predicated def-
initions whatφ operations are for definitions on different
control-flow edges. Aψ operation merges values that are
defined under different predicates, and defines a single vari-
able to represent these different values.

In the SSA representation,φ operations are placed at
control-flow merge points where each argument flows from
a different incoming edge. In theψ-SSA representation, on
aψ operation, all the incoming edges of aφ operation are
merged into a single execution path, and each argument is
now defined on a different predicate.

In figure 1, variablesa andbwere initially the same vari-
able. On the left-hand side, the SSA construction renamed
the two definitions of this unique variable into two different
names, and introduced a new variablex defined by aφ op-
eration to merge the two values coming from the different
control-flow paths. On the right-hand side, an if-conversion
algorithm transformed this code to remove the control-flow
edges. It introduced predicated operations for the defini-
tions of the variablesa andb and turned theφ operation
into a ψ operation. Each argument of theψ operation is
defined by a predicated operation. The intersection of the

if(p)
a = 1; p? a = 1;

else

b = −1; p? b = −1;
x = Phi(a, b) x = Psi(a, b)
if(q)

c = 0; q? c = 0;
y = Phi(x, c) y = Psi(a, b, c)

Figure 2. ψ-SSA with non-disjoint predicates

domain of the two predicates is empty and the value of the
ψ operation is given by one or the other of its arguments,
depending on the value of the predicate.

The ψ operations can also represent cases where vari-
ables are defined on predicates that are computed from in-
dependent conditions. This is illustrated in figure 2, where
the predicatesp andq are independent. During the SSA
construction a unique variable was renamed into the vari-
ablesa, b andc and the variablesx andy were introduced
to merge values coming from different control-flow paths.
In the non-predicated code, there is a control-dependency
betweenx andc, which means the definition ofc must be
executed after the value forx has been computed. In the
predicated form of this example, there are no longer any
control dependencies between the definitions ofa, b andc.
A compiler transformation can now freely move these defi-
nitions independently of each other, which may allow more
optimizations to be performed on this code. However, the
semantics of the original code requires that the definition of
c occurs after the definitions ofa andb. We use the order
of the arguments in aψ operation to keep the information on
the original order of the definitions. We take the convention
that the order of the arguments in aψ operation is, from left
to right, equal to the order of their definitions, from top to
bottom, in the control-flow dominance tree of the program
in a non-SSA representation. This information is needed
to maintain the correct semantics of the code during trans-
formations of theψ-SSA representation and when reverting
the code back to a nonψ-SSA representation.

With this definition of theψ-SSA representation, con-
ditional definitions on predicated code are now replaced
by unconditional definitions onψ operations. Usual algo-
rithms that perform optimizations or transformations on the
SSA representation can now be easily adapted to theψ-
SSA representation, without compromising the efficiency
of the transformations performed. Actually, within theψ-
SSA representation, predicated definitions behave exactly
the same as non predicated ones for optimizations on the
SSA representation. Only theψ operations have to be
treated in a specific way. As an example, the constant prop-
agation algorithm described in [13] can be easily adapted
to theψ-SSA representation. In this algorithm, the only
modification is thatψ operations have to be handled with

the same rules as theφ operations. We have also ported
dead code elimination [9] and global value numbering [4]
algorithms to this representation, and we expect that partial
redundancy elimination [2], and induction variable analy-
sis [14] should be easy to adapt.

In addition to standard algorithms that can now be easily
adapted toψ operations and predicated code, a number of
additional transformations can be performed on theψ op-
erations. These transformation areψ-inlining, ψ-reduction
andψ-projection, they are described in detail in [11].ψ-
inlining will recursively replace in aψ operation an argu-
ment that is defined by anotherψ operation by the argu-
ments of this secondψ operation.ψ-reduction will remove
from aψ operation an argument whose value will always be
overridden by arguments on its right in the argument list,
because the domain of the predicate associated with this
argument is included in the union of the domains of the
predicates associated with the arguments on its right.ψ-
projection will create from aψ operation newψ operations
for uses in operations guarded by different predicates. Each
newψ operation is created as the projection on a given pred-
icate of the originalψ operation . In this newψ operation,
arguments whose associated predicate has a domain that is
disjoint with the domain of the predicate on which the pro-
jection is performed actually contribute no value to theψ
operation and are then removed.

3. Psi-SSA and partial predication

In the original paper onψ-SSA we only considered the
use ofψ-SSA for a fully predicated processor. We describe
here how this representation has been modified to be used
for a processor with a partially predicated instruction set.

In a partially predicated instruction set, only a subset of
the instruction set of the targeted processor supports a pred-
icate operand. For example, the instruction set may support
only a conditionalmove instruction. It can also include
more specific instructions such as aselect instruction. A
select instruction takes two arguments and a guard regis-
ter, and assigns the value of one or the other of its arguments
into a variable, depending on the value of the guard register.

The only impact of partial predication on theψ-SSA rep-
resentation is that when aψ operation is created as a re-
placement for aφ operation, during if-conversion for exam-
ple, some of its arguments may be defined by operations
that cannot be predicated. A preliminary condition is that
theψ operation can be created only if these non-predicated
arguments can be safely speculated, which means executed
under some conditions where they would not have been exe-
cuted otherwise. Although these definitions are speculated,
their values were only meaningful under a given predicate
in the original code. The information on this predicate must
be kept in some way.

Figure 3 shows an example where some code with
control-flow edges was transformed into a linear sequence
of instructions. In this example, theADD operation cannot
be predicated.

In figure 3 b), we have introduced predicated move op-
erations, so thatψ operations still have the definitions of
their arguments being predicated, while allowing an if-
conversion transformation to be performed even on oper-
ations that cannot be predicated. In the case where condi-
tional move operations are not available on the target pro-
cessor, when leaving theψ-SSA representation, these op-
erations, along with theψ operation, will be replaced by
other operations available on the target processor, such as
aselect instruction for example. The main disadvantage
of this solution is that the semantics of the initialφ opera-
tion is now expressed by three operations. These operations
will have to be treated all together during transformations
on theψ operations, and in particular when reverting the
code back to nonψ-SSA representation.

In figure 3 c), we chose to express theseconditional
move operations directly in theψ operation, by means of a
predicate associated with each argument of theψ operation.
With this representation, the information represented in the
φ operation by the control-flow edges is now present in the
ψ operation by means of predicates.

In the general case, the definition of a variable can be
predicated. Using the representation in figure 3 c), there can
be one predicate associated with the definition of a variable,
and there will be one predicate associated with the use of
the variable in aψ operation. The two domains for these
two predicates do not need to be equal, only the domain
of the predicate on the definition has to contain the domain
of the predicate on theψ argument. This extension to the
representation of theψ operations allows one to perform a
copy folding algorithm to remove allmov operations in the
representation, whether they are predicated or not.

3.1. Psi-predicate promotion

The extension of theψ-SSA representation to the context
of partial predication brings another useful transformation
to theψ operations, theψ-predicate promotion.

The predicate associated with an argument in aψ oper-
ation can be promoted, without changing the semantics of
theψ operation. By predicate promotion, we mean that a
predicate can be replaced by a predicate with a larger pred-
icate domain. This promotion must obey the two following
conditions so that the semantics of theψ operation after the
transformation is valid and unchanged.

• Condition 1 For an argument in aψ operation, the do-
main of the predicate used on the definition of this ar-
gument must contain the domain of the new predicate
associated with this argument.

if(p)
a = ADD i, 1; a = ADD i, 1; a = ADD i, 1;

else p? c = a

b = ADD i, 2; b = ADD i, 2; b = ADD i, 2;
p? d = b

x = Phi(a, b) x = Psi(c, d) x = Psi(p?a, p?b)

a) before if − conversion b) conditional moves c) extended Psi operation

Figure 3. Psi-SSA for partial predication

for the instructions
p? x = ...

y = Psi(..., q?x, ...)
then

q ⊆ p

• Condition 2 For an argument in aψ operation, the do-
main of the new predicate associated with it can be
extended up to include the domains of the predicates
associated with arguments in theψ operation that were
defined after the definition for this argument in the
original program.

for an instruction
y = Psi(p1?x1, p2?x2, ..., pi?xi, ..., pn?xn)

transformed to
y = Psi(p1?x1, p2?x2, ..., p

′

i?xi, ..., pn?xn)
then

p′i ⊆
⋃n

k=i
pk

The first condition ensures that theψ operation is still
valid. This condition means that, in addition to predicate
promotion, speculation may have to be performed first on
the definition of the argument of theψ operation. The sec-
ond condition ensures that the value of theψ operation is
not changed. We already said that the order of the argu-
ments in aψ operation is, from left to right, the order, from
top to bottom, of the definitions in the control-flow dom-
inance tree of the original program. Thus, the domain of
the predicate associated with an argument in aψ operation
can be extended up to include the domains of each of the
predicates associated with arguments at its right in theψ

argument list. With this condition, we ensure that the con-
ditions under which arguments at the left of the promoted
argument can have there value overridden by arguments at
their right in theψ operation remain unchanged. This condi-
tion also means that the first argument of aψ operation can
be promoted independently of the other arguments in theψ

operation, provided that the first condition is still satisfied.
Thisψ-predicate promotion transformation allows us to

reduce the number of predicates that need to be computed,
and to reduce the dependencies between predicate computa-
tions and conditional operations. In fact, the first argument
of aψ operation can usually be promoted under theTRUE

predicate, provided that speculation can be applied. Also,
when disjoint conditions are computed, one of them can be
promoted to include the other conditions, usually reducing
the dependency height of the predicated expressions. The
ψ-predicate promotion transformation can be applied dur-
ing an if-conversion algorithm for example. A side effect
of this transformation is that it may increase the number of
copy instructions to be generated during the out ofψ-SSA
phase, because of more live-range interference between ar-
guments in aψ operation, as will be explained in the next
section.

4. An out of Psi-SSA algorithm

We have now described the semantics of theψ opera-
tion along with the transformations that can be applied on
it. Then, after optimizations have been applied on aψ-SSA
representation, the code must eventually be reverted back to
a standard, non SSA, form. On the SSA representation this
is called the out of SSA phase. This pass must be adapted
to theψ-SSA representation.

In the original paper on theψ-SSA representation [11],
an out ofψ-SSA algorithm was described. In this section,
we present a complete algorithm that extends the original
algorithm to our new representation, and also fixes one error
in the original description.

4.1. Conventional SSA

The algorithm described in the original paper onψ-SSA
and the algorithm we present here are both derived from the
out of SSA algorithm from Sreedhar et al. [10].

This algorithm usesφ congruence classes to create a con-
ventional SSA representation. Two variablesx andy are in
a φ-congruence relation if they are referenced in the same
φ function, or if there exists a variablez such thatx is in
aφ-congruence relation withz andy is in aφ-congruence
relation withz. Then we define aφ congruence class as the
transitive closure of theφ-congruence relation. The con-
ventional SSA representation has the property that the re-
naming of all the resources from aφ congruence class into

a representative name, and the elimination of theφ opera-
tions, will not violate the semantics of the program. The
Sreedhar algorithm gives three methods, the third one being
the most efficient, to convert an SSA representation into a
conventional SSA form.

4.2. Conventional Psi-SSA

We define the conventionalψ-SSA (ψ-CSSA) form in a
similar way to the Sreedhar definition of the conventional
SSA (CSSA) form. The congruence relation is extended
to theψ operations. Two variablesx andy are in aψ-
congruence relation if they are referenced in the sameφ or
ψ function, or if there exists a variablez such thatx is in
aψ-congruence relation withz andy is in aψ-congruence
relation withz. Then we define aψ congruence class as the
transitive closure of theψ-congruence relation. The prop-
erty of theψ-CSSA form is that the renaming into a single
variable of all variables that belong to the same congruence
class, and the removal of theψ andφ operations, results in
a program with the same semantics as the original program.

Now, look at figure 4 to examine the transformations that
must be performed to convert a program from aψ-SSA form
into a program inψ-CSSA form.

Looking at the first example, the dominance order of the
definitions for the variablesa andb differs from their or-
der from left to right in theψ operation. Such code may
appear after a code motion algorithm has moved the defini-
tions fora andb relatively to each other. We have said that
the semantics of aψ operation is dependent on the order of
its arguments, and that the order of the arguments in aψ

operation is the order of their definitions in the dominance
tree in the original program. In this example the renaming
of the variablesa, b andx into a single variable will not
preserve the semantics of the original program. The order
in which the definitions of the variablesa, b andx occur
must be corrected. This is done through the introduction of
the variablec that is defined as a copy of the variableb, and
is inserted after the definition ofa. Now, the renaming of
the variablesa, c andx into a single variable will result in
the correct semantics.

In the second example, the renaming of the variablesa,
b, c, x andy into a single variable will not give the cor-
rect semantics. In fact, the value ofa used in the secondψ
operation would be overridden by the definition ofb before
the definition of the variablec. Such code will occur after
copy folding has been applied on aψ-SSA representation.
We see that the value ofa has to be preserved before the
definition ofb, resulting in the code given for theψ-CSSA
representation. Now, the variablesa, b andx can be re-
named into a single variable, and the variablesd, c andy
will be renamed in another variable, resulting in a program
in a non-SSA form with the correct semantics.

We will now present an algorithm that will transform a
program from aψ-SSA form into itsψ-CSSA form. This
algorithm is made of three parts.

• ψ-normalize This part will put all ψ operations in
what we call anormalizedform.

• ψ-congruence This part will grow ψ-congruence
classes fromψ operations, and will introduce repair
code where needed.

• φ-congruenceThis part will extend theψ-congruence
classes withφ operations. This part is very similar to
the Sreedhar algorithm.

We detail now the implementation of each of these three
parts.

4.3. Psi-normalize

We define the notion ofnormalized-ψ. Whenψ opera-
tions are created during the construction of theψ-SSA rep-
resentation, as described in [11], they are naturally builtin
their normalized form. The normalized form of aψ opera-
tion has two characteristics:

• The predicate associated with each argument in a
normalized-ψ operation is equal to the predicate used
on the unique definition of this argument.

• The order of the arguments in a normalized-ψ opera-
tion is, from left to right, equal to the order of their def-
initions, from top to bottom, in the control-flow domi-
nance tree.

When transformations are applied to theψ-SSA repre-
sentation, predicated definitions may be moved relatively to
each others. Operation speculation and copy folding may
enlarge the domain of the predicate used on the definition
of a variable. These transformations may cause someψ op-
erations to be in a non-normalized form.

In the original algorithm described in [11],Condition 1
for the definition of theψ-SSA Consistency was identical
to the second characteristic of the normalized form we de-
scribe here. However, the original algorithm did not include
a specific normalization phase for the out ofψ-SSA algo-
rithm. There are two reasons why this step is now needed.
The first reason is that in the originalψ representation, there
was no predicate associated with an argument in aψ oper-
ation. Implicitly, this predicate was equal to the predicate
used on the definition of the argument, but these predicates
can now be different in our representation. The second rea-
son is to fix a problem in the original algorithm. In fig-
ure 5, we show an example where copy folding on predi-
cated code has transformed the secondψ operation into a

p? b = ... p? b = ... p? b = ...

a = ... a = ... x = ...

p? c = b p? x = b

x = Psi(1?a, p?b) x = Psi(1?a, p?c)

Psi − SSA form Psi − CSSA form non − SSA form

a = ... a = ... x = ...

d = a y = x

p? b = ... p? b = ... p? x = ...

q? c = ... q? c = ... q? y = ...

x = Psi(1?a, p?b) x = Psi(1?a, p?b)
y = Psi(1?a, q?c) y = Psi(1?d, q?c)

Psi − SSA form Psi − CSSA form non − SSA form

Figure 4. ψ-SSA and ψ-CSSA forms

p? a = op1 p? a = op1

q? b = op2 q? b = op2

p? c = a

x = Psi(p?a, q?b) x = Psi(p?a, q?b)
y = Psi(q?b, p?c) y = Psi(q?b, p?a)

a) Normalized form b) non normalized form

Figure 5. Copy folding on ψ-SSA representa-
tion

non-normalized form. The original algorithm assumed that
for variables used in the argument list ofψ operations, it
was always possible to define a strict order relation between
variables in a congruence class, noted≻c. This order was
determined using the relative order of the variables in the
differentψ argument lists where these variables were used.
Clearly, in this example, there is no such relation between
variablesa andb in the non-normalized form of theψ op-
erations.

PSI-normalize implementation. A dominator tree must
be available for the control-flow graph to lookup the dom-
inance relation between basic blocks. The dominance rela-
tion between two operations in a same basic block will be
given by their relative positions in the basic block.

Eachψ operation is processed independently. An analy-
sis of theψ operations in a top down traversal of the domi-
nator tree reduces the amount of repair code that is inserted
during this pass. We only detail the algorithm for such a
traversal.

For aψ operation, the argument list is processed from
left to right. For each argumentargi, the predicate associ-
ated with this argument in theψ operation and the predicate
used on the definition of this argument are compared. If they
are not equal, a new variable is introduced and is initialized

just below the definition forargi with a copy ofargi. This
definition is predicated with the predicate associated with
argi in theψ operation. Then,argi is replaced by this new
variable in theψ operation.

Then, we consider the dominance order of the definition
for argi, with the definition of the next argument in theψ
argument list,argi+1. Whenargi+1 is defined on aψ oper-
ation, we recursively look for the definition of the first argu-
ment of thisψ operation, until a non-ψ operation is found.
Now, if the definition we found forargi+1 dominates the
definition forargi, repair code is needed. A new variable
is created for this repair. This variable is initialized with a
copy of argi+1, guarded by the predicate associated with
this argument in theψ operation. This copy operation is in-
serted at the lowest point, either after the definition ofargi

or argi+1
1. Then,argi+1 is replaced in theψ operation by

this new variable.
The algorithm continues with the argumentargi+1, until

all arguments of theψ operation are processed. When all
arguments are processed, theψ is in its normalized form.
When allψ operations are processed, the function will con-
tain only normalized-ψ operations.

The top-down traversal of the dominator tree will ensure
that when a variable in aψ operation is defined by anotherψ
operation, thisψ operation has already been analyzed and
put in its normalized form. Thus the definition of its first
variable already dominates the definitions for the other ar-
guments of theψ operation.

In figure 6 we show how this algorithm works. The firstψ

operation is analyzed. The analysis starts with argumenta.
The predicate associated with this argument is equal to the
predicate used on the definition fora, and the definition ofa
dominates the definition ofb, thus no repair code is needed.

1Whenargi+1 is defined by aψ operation, its definition may appear
after the definition forargi, although the non-ψ definition for argi+1

appears before the definition forargi.

d = ... d = ...

p? a = ... p? a = ...

r? c = ... r? c = ...

s? f = d

b = ... b = ...

q? e = b

p|q? x = Psi(p?a, q?b) p|q? x = Psi(p?a, q?e)
r|s? y = Psi(r?c, s?d) r|s? y = Psi(r?c, s?f)

r|s? g = y

z = Psi(p|q?x, r|s?y) z = Psi(p|q?x, r|s?g)

Figure 6. Converting ψ operations into their
normalized form

The analysis continues with argumentb. The predicate as-
sociated with the argumentb in theψ operation is not equal
to the predicate used on the definition ofb. A new variable
e is introduced, and is defined as a predicated copy ofb us-
ing the predicate associated withb in theψ operation. Then
b is replaced bye in thisψ operation. On the nextψ oper-
ation, the definition forc does not dominate the definition
for d. A new variablef is introduced and initialized withd
under predicates. This copy operation is inserted just af-
ter the definition forc. On the lastψ operation, sincey is
defined on aψ operation we use the definition ofc as the
definition point fory. The definition ofx does not dominate
the definition forc, so a repair is needed. The copyg = y
is inserted after the definition ofy, and is predicated with
the predicate associated withy in theψ operation.

This algorithm ensures that the program contains only
normalizedψ operations. This property is used by the next
two passes of the algorithm.

4.4. Psi-congruence

In this pass, we repair theψ operations when variables
cannot be put into the same congruence class, because their
live ranges interfere. In the same way as Sreedhar gave a
definition of the liveness on theφ operation, we first give a
definition for the liveness onψ operations. With this defini-
tion of liveness, an interference graph is built.

Liveness and interferences in Psi-SSA. We have already
seen that in some cases, repair code is needed so that the ar-
guments and definition of aψ operation can be renamed into
a single name. Here, we give a definition of the liveness on
ψ operations such that these cases can be easily detected
by observing that live-ranges for variables in aψ operation
overlap. Our definition of liveness differs from the defini-
tion used in the original paper, and allows for more precise
detection and repair of the interferences between variables
in ψ operations.

Consider the code in figure 7. Theψ operation has been

a = op1 a = op1

p? b = op2 b = p ? op2 : a

q? c = op3 c = q ? op3 : b

x = Psi(1?a, p?b, q?c) x = c

a) Psi-SSA form b) select form

Figure 7. ψ and select operations equivalence

replaced by explicitselect operations on each predicated
definition. In this example, there is no relation between
predicatesp and q. Each of theseselect operations
makes an explicit use of the variable immediately to its left
in the argument list of the originalψ operation. We can see
that a renaming of the variablesa, b, c andx into a single
representative name will still compute the same value for
the variablex. Note that this transformation can only be
performed on normalizedψ operations, since the definition
of an argument must be dominated by the definition of the
argument immediately to its left in the argument list of the
ψ operation. Using this equivalent representation for theψ

operation, we now give a definition of the liveness for theψ

operations.
Definition We say that the point of use of an argument in

a normalizedψ operation occurs at the point of definition of
the argument immediately to its right in the argument list of
theψ operation. For the last argument of theψ operation,
the point of use occurs at theψ operation itself.

Given this definition of liveness onψ operations, and
using the definition of liveness forφ operations given by
Sreedhar, a traditional liveness analysis can be run. Then an
interference graph can be built to collect the interferences
between variables involved inψ or φ operations.

Repairing interferences on ψ operations. We now
present an algorithm that creates congruence classes withψ

operations such that there are no interference between two
variables in the same congruence class.

First, the congruence classes are initialized such that
each variable in theψ-SSA representation belongs to its
own congruence class. Then,ψ operations are processed
one at a time, in no specific order. Two arguments of aψ

operation interfere if one or more variables from the con-
gruence class of the first argument and one or more vari-
ables from the congruence class of the second argument in-
terfere. When there is an interference, the twoψ arguments
are marked as needing a repair. When all pairs of arguments
of theψ operation are analyzed, repair code is inserted. For
each argument in theψ operation that needs a repair, a new
variable is introduced. This new variable is initialized with a
predicated copy of the argument’s variable. The copy oper-
ation is inserted just below the definition of the argument’s

p? a = ... p? a = ...

q? b = ... q? b = ...

q? e = b

r? c = ... r? c = ...

r? f = c

x = Psi(p?a, q?b, r?c) g = Psi(p?a, q?e, r?f)
x = g

s? d = b + 1 s? d = b + 1

Figure 8. Elimination of ψ live-interference

variable, predicated with the predicate associated with the
argument in theψ operation.

Once aψ operation has been processed, the interference
graph must be updated, so that otherψ operations are cor-
rectly handled. Interferences for the newly introduced vari-
ables must be added to the interference graph. Conserva-
tively, we can say that each new variable interferes with all
the variables that the original variable interfered with, ex-
cept those variables that are now in its congruence class.
Also, conservatively, we can say that the original variable
interferes with the new variable in order to avoid a merge
of a laterψ or φ operation of the two congruence classes
these two variables belong to. The conservative update of
the interference graph may increase the number of copies
generated during the conversion to theψ-CSSA form.

Consider the code in figure 8 to see how this algorithm
works. The definition of liveness on theψ operation will
create a live-range for variablea that extends down to the
definition of b, but not further down. Thus, the variable
a does not interfere with the variablesb, c or x. The live-
range for variableb extends down to its use in the definition
of variabled. This live-range creates an interference with
the variablesc andx. Thus variablesb, c andx cannot be
put into the same congruence class. These variables are re-
named respectively into variablese, f andg and initialized
with predicated copies. These copies are inserted respec-
tively after the definitions forb, c andx. Variablesa, e, f
andg can now be put into the same congruence class, and
will be renamed later into a unique representative name.

4.5. Phi-congruence

When all ψ operations are processed, the congruence
classes built fromψ operations are extended to include the
variables inφ operations. In this part, the algorithm from
Sreedhar is used, with a few modifications.

The first modification is that the congruence classes must
not be initialized at the beginning of this process. They
have already been initialized at the beginning of theψ-
congruence step, and were extended during the processing
of ψ operations. These congruence classes will be extended
now withφ operations during this step.

The other modification is that the live-analysis run for

this part must also take into account the special liveness rule
on theψ operations. The reason for this is that for any two
variables in the same congruence class, any interference, ei-
ther on aψ or on aφ operation, will not preserve the correct
semantics if the variables are renamed into a representative
name.

All other parts of the algorithm are unchanged, and in
particular, any of the three algorithms described for the con-
version into a CSSA form can be used.

We have described a complete algorithm to convert aψ-
SSA representation into aψ-CSSA representation. The final
step to convert the code into a non-SSA form is a simple
renaming of all the variables in the same congruence class
into a representative name. Theψ andφ operations are then
removed.

Now that a complete algorithm has been described to
convert aψ-SSA representation to aψ-CSSA representa-
tion, we will present some improvements that can be added
so as to reduce the number of copies inserted by this algo-
rithm.

4.6. Improvements to the out of Psi-SSA
algorithm

Below we present a list of improvements that can be
added to the algorithm.

Non-normalized ψ operations with disjoint predicates.
When two arguments in aψ operation do not have their defi-
nitions correctly ordered, theψ operation is not normalized.
We presented an algorithm to restore the normalized prop-
erty by adding a new predicated definition of a new variable.
However, if we know that the predicate domains of the two
arguments are actually disjoint, the semantics of theψ op-
eration is independent on their relative order. So, insteadof
adding repair code, these two arguments can simply be re-
ordered in theψ operation itself, to restore the normalized
property.

Interference with disjoint predicates. When the live-
ranges of two variables overlap, an interference is added
for these two variables in the interference graph. If the def-
initions for these variables are predicated definitions, their
live-ranges are only valid under a specific predicate domain.
These domains are the domains of the predicates used on
the definitions of the variables. Then, if these domains are
disjoint, then although the live-range overlap, they are on
disjoint conditions and thus they do not create an interfer-
ence in the interference graph. Removing this interference
from the interference graph will avoid the need to add repair
code when live-ranges on disjoint predicates overlap.

Repair interference on the left argument only. When an
interference is detected between two arguments in aψ oper-
ation, only the argument on the left actually needs a repair.
The reason is that, since theψ operations are normalized,
the definition of an argument is always dominated by the
definition of an argument on its left. Thus adding a copy for
the argument on the right will not remove the interference.

Interference with the result of aψ operation. When the
live-range for an argument of aψ operation overlaps with
the live-range of the variable defined by theψ operation,
this interference can be ignored. Actually, there are two
cases to consider:

• If the argument is not the last one in theψ operation,
and its live-range overlaps with the live-range of the
definition of theψ operation, then this live-range also
overlaps with the live-range of the last argument. Thus
this interference will already be detected and repaired.

• If the argument is the last one of theψ operation, then
the value of theψ operation is the value of this last ar-
gument, and this argument and the definition will be
renamed into the same variable out of the SSA repre-
sentation. Thus, there is no need to introduce a copy
here.

5. Experimental results

Theψ-SSA representation has been implemented in our
production compiler for the ST200 family processors [7].
This compiler is based on the Open64 compiler technol-
ogy, and theψ-SSA representation has been used to imple-
ment optimizations in the code generator part of the com-
piler. The experiment has been conducted on a variant of
the ST231 processor. The ST231 is a 4-issue VLIW proces-
sor that targets multimedia and digital consumer embedded
applications. It is composed of four 32-bit integer ALUs,
two 32x32 multipliers, one load/store unit, a branch unit,
64 32-bit general purpose registers and 8 1-bit branch regis-
ters. The variant we used includes support for partial predi-
cation, through predicated load and store instructions anda
select instruction.

The ψ-SSA representation is used in the backend of
our compiler to implement several optimizations. These
optimizations include a range-propagation analysis to re-
move redundant or useless computations, an address ex-
pressions analysis to optimize the use of available address-
ing modes, and an if-conversion algorithm [1]. However,
these transformations will only very occasionally produce
non-normalizedψ operations or add interferences between
variables inψ operations.

In order to analyze the situations where some repair code
is introduced onψ operations, we added a copy folding al-
gorithm just before the out ofψ-SSA algorithm. We ran our
algorithms on a set of small benchmarks from multimedia
applications. The results are reported in figures 9 and 10. In
these experiments we measured the number of copy opera-
tions that were inserted during each of the three steps of the
out ofψ-SSA algorithm, and we measured the total number
of copy operations in the program after the out ofψ-SSA
phase.

In figure 9, we report the figures when noψ-predicate
promotion algorithm was applied. In the first column, we
report the number of copies when the if-conversion and the
copy folding optimizations are not run. As expected, the
transformations that are performed on the SSA represen-
tations do not break theψ-SSA conventional property on
these benchmarks, which results in no copy operation be-
ing inserted during the out ofψ-SSA phase. The second
column shows the results when the if-conversion transfor-
mation is performed. A number of copy operations are in-
serted during theψ-normalize step, which shows that the
if-conversion algorithm generates non-normalizedψ opera-
tions. Most of these non-normalizedψ operations are due
to the predicate being different on the definition of the vari-
able and on its use in theψ operation. Theψ-congruence
step creates no additional copy operations, which means
that no interference was detected between variables onψ

operations during this step. In the third column, copy fold-
ing was performed in addition to the if-conversion transfor-
mation. This resulted in additional non-normalizedψ oper-
ations. These additional non-normalized operations are cre-
ated when predicated copy operations are folded, resulting
in moreψ operations with a different predicate on the def-
inition for a variable and its use in theψ operation. There
is also one interference in theψ-congruence step that was
created by the copy folding. This copy operation cannot
be optimized away. The large number of copy operations
generated during theφ-congruence step is mostly due to the
fact that we only implemented the second method of the
Sreedhar algorithm, use of the third method would reduce
this number. Finally, the total number of copy instructions
after the out ofψ-SSA phase is greater after copy folding
has been performed, mostly due to the number of copy op-
erations generated during theφ-congruence step.

In figure 10, we report the figures whenψ-predicate pro-
motion algorithm was performed. Theψ-predicate promo-
tion propagates into theψ operations the effect of the spec-
ulation that was performed during the if-conversion algo-
rithm. The main reason to perform theψ-predicate pro-
motion is to reduce the number of predicates that must be
computed in the code. This transformation also reduces the
number of non-normalizedψ operations, so that fewer copy
operations need to be inserted during theψ-normalize step.

This is shown in the second and third columns for theψ-
normalize step. The number of copy instructions introduced
in this step is reduced compared to the number of copy
instructions that were introduced in the same step without
theψ-predicate promotion. On theψ-congruence step, we
see that performing theψ-predicate promotion actually in-
creased the number of interferences to be repaired. In fact,
these interferences also existed without theψ-predicate pro-
motion, but, due to the smaller number of non-normalized
ψ-operations, they were not repaired as a side effect of the
ψ-normalize step.

On the last line of this figure, we see that after the out
of ψ-SSA phase there is a small decrease in the number of
copy instructions in the code whenψ-predicate promotion
is performed. The cases where fewer copy operations are
generated occur in loops where aψ operation uses and de-
fines variables that are used in the sameφ operation. Such
a situation is described in figure 11. Theψ operation in the
code on the left is not normalized, because the predicate for
the variablec is different on its definition in theφ operation
and on its use in theψ operation. In the code on the right,
a variablee has been added to normalize thisψ operation.
Theψ-congruence step creates a congruence class with the
variablese, d andb, since there is no interference between
these variables. Theφ operation is then processed during
theφ-congruence step. The interferences between the vari-
ablec and the variables in the congruence class forb are
checked. In fact, the variablesc ande interfere, which will
require that a new variable is introduced and a new copy
instruction is inserted. When the predicate promotion is
performed first on theψ operation for the variablec, the
variablee is no longer introduced. Theψ-congruence step
creates a congruence class with variablesc, d andb. In the
φ-congruence step, when processing theφ operation, no in-
terference needs to be repaired since the variablesb andc
are already in the same congruence class, and thus no addi-
tional copy instruction is inserted.

Future work will include improving the out of SSA al-
gorithm in order to reduce the number of copies generated
during this phase. In particular, we will work on a better in-
tegration between theψ-congruence and theφ-congruence
steps to avoid the cases where repair code introduced in the
ψ-congruence step creates interferences to be repaired in
theφ-congruence step.

6. Conclusion

In this article we presented several aspects of theψ-SSA
representation. Theψ-SSA representation is an extension of
the SSA representation to support predicated code, where
some definitions are conditionally executed depending on
the value of a guard register. We presented an improvement
to the originalψ-SSA representation to better support archi-

no if-conv
copies if-conv if-conv + folding

psi-normalize +0 +129 +163
psi-congruence +0 +0 +1
phi-congruence +0 +82 +1543
total copies 7041 7268 7948

Figure 9. Out of ψ-SSA without ψ-predicate
promotion

no if-conv
copies if-conv if-conv + folding

psi-normalize +0 +34 +65
psi-congruence +0 +5 +11
phi-congruence +0 +11 +1493
total copies 7041 7107 7810

Figure 10. Out of ψ-SSA with ψ-predicate pro-
motion

loop : loop :
c = Phi(a, b) c = Phi(a, b)

p? e = c

q = c < 10 q = c < 10

p? d = op1 p? d = op1

b = Psi(p?c, p?d) b = Psi(p?e, p?d)
q? goto loop q? goto loop

Figure 11. ψ-normalize adds new interfer-
ences

tectures with only a partially predicated instruction set.We
added a new transformation that can be performed on the
ψ operations in the context of partial predication, namely
theψ-predicate promotion, which is useful for example in
an if-conversion algorithm. Finally, we presented a detailed
implementation of the out ofψ-SSA representation algo-
rithm, which includes the support for partially predicated
architectures and fixes an error in the original algorithm.
Theψ-SSA representation is implemented in our produc-
tion compiler for the ST200 family processors, and is used
to perform several algorithms on theψ-SSA representation,
including an if-conversion optimization.

7. Acknowledgements

I would like to thank Christian Bruel for his implementa-
tion of an if-conversion algorithm underψ-SSA, Christophe
Guillon and Fabrice Rastello for their very useful remarks
and feedback, and Stephen Clarke for his review.

References

[1] C. Bruel. If-conversion ssa framework for partially predi-
cated vliw architectures. SIGPLAN, ACM and IEEE, March
2006.

[2] F. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu.
A new algorithm for partial redundancy elimination based
on ssa form. ACM SIGPLAN Notices, 32(5):273 – 286,
1997.

[3] F. Chow, S. Chan, S.-M. Liu, R. Lo, and M. Streich. Ef-
fective representation of aliases and indirect memory op-
erations in SSA form. In T. Gyimothy, editor,Compiler
Construction, 6th International Conference, volume 1060
of Lecture Notes in Computer Science, pages 253–267,
Linköping, Sweden, 24–26 Apr. 1996. Springer.

[4] C. Click. Global code motion global value numbering. In
SIGPLAN International Conference on Programming Lan-
guages Design and Implementation, pages 246 – 257, 1995.

[5] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph.ACM Transactions
on Programming Languages and Systems, 13(4):451 – 490,
1991.

[6] J. Fang. Compiler algorithms on if-conversion, speculative
predicates assignment and predicated code optimizations.In
9th International Workshop on Languages and Compilers
for Parallel Computing (LCPC), LNCS #1239, pages 135 –
153, 1996.

[7] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and
F. Homewood. Lx: a technology platform for customiz-
able VLIW embedded processing. InThe 27th Annual Inter-
national Symposium on Computer architecture 2000, pages
203–213, New York, NY, USA, 2000. ACM Press.

[8] K. Knobe and V. Sarkar. Array ssa form and its use in par-
allelization. InACM Symposium on the Principles of Pro-
gramming Languages, pages 107 – 120, 1998.

[9] R. Morgan. Building an optimizing compiler, January 1998.
[10] V. Sreedhar, R. Ju, D. Gillies, and V. Santhanam. Translat-

ing out of static single assignment form. InStatic Analysis
Symposium, Italy, pages 194 – 204, 1999.

[11] A. Stoutchinin and F. de Ferrière. Efficient static single as-
signment form for predication. In34th annual ACM/IEEE
international symposium on Microarchitecture, pages 172–
181. IEEE Computer Society, 2001.

[12] A. Stoutchinin and G. Gao. If-conversion in SSA form. In
Proceedings of Euro-Par 2004 Parallel Processing, volume
3149 ofLNCS, pages 336–345. SIGPLAN, Springer Verlag,
Aug 2004.

[13] M. Wegman and K. Zadeck. Constant propagation with con-
ditional branches.ACM Transactions on Programming Lan-
guages and Systems, 13(2):181 – 210, 1991.

[14] M. Wolfe. Beyond induction variables. InSIGPLAN In-
ternational Conference on Programming Languages Design
and Implementation, pages 162 – 174, 1992.

