N

N
N

HAL

open science

Improvements to the Psi-SSA representation

Francois de Ferriere

» To cite this version:

‘ Francois de Ferriere. Improvements to the Psi-SSA representation. 2007. hal-00146363

HAL Id: hal-00146363
https://hal.science/hal-00146363
Submitted on 15 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00146363
https://hal.archives-ouvertes.fr

hal-00146363, version 1 - 15 May 2007

Improvements to the Psi-SSA Representation

Francois de Ferriere
ST Microelectronics
12 rue Jules Horowitz, 38000 Grenoble, France
francois.de-ferriere@st.com

Abstract ers. The SSA representation has proven to be a very ef-
ficient internal compiler representation for performingiva
Modern compiler implementations use the Static Single ous optimizations on scalar variables. In this represiemtat
Assignment representatiofi] [5] as a way to efficiently im- each definition of a scalar variable is renamed into a unique
plement optimizing algorithms. However this representa- name, and variable uses are renamed to refer to these new
tion is not well adapted to architectures with a predicated definition names or to specialinstructions that are intro-
instruction set. The)-SSA representation was first intro- duced to merge values coming from different control-flow
duced in] as an extension to the Static Single Assign- paths. Most of the standard optimization algorithms have
ment representation. TheSSA representation extends the been adapted to this representation, such as constant propa
SSA representation such that standard SSA algorithms cargation], dead-code eliminatioﬁ [9], induction variebl
be easily adapted to an architecture with a fully predicated optimization], and partial redundancy eIiminati([h.[Z]

instruction set. A new pseudo operation, theperation, These algorithms usually perform equally well or even bet-

is introduced to merge several conditional definitions iato ter than their original versions on a non-SSA representa-

unique definition. tion. However, these algorithms are more difficult to adapt
This paper presents an adaptation of theSSA repre- in presence of aliased variables, partial definitions or-con

sentation to support architectures with a partially predi- ditional definitions. To overcome these difficulties, some
cated instruction set. The definition of tileoperation is extensions to the SSA representation have already been pro-
extended to support the generation and the optimization ofposed, such as the HSSA representatﬂ)n [3] for aliases with
partially predicated code. In particular, a predicate prom pointers, the Array SSA fornﬂ[S] for array variables and
tion transformation is introduced to reduce the number of they-SSA representatiorﬂlll] to handle conditional defini-
predicated operations, as well as the number of operationstions.
used to compute guard registers. An oute$SA algorithm In this document we present an extension ofth8SA
is also described, which fixes and improves the algorithm representation for partially predicated architecturehie T
described in]. This algorithm is derived from the out of first section will present theoretical and practical aspect
SSA algorithm from Sreedhar et 4[[10], where the defini- of they)-SSA representation. The second section will then
tions of liveness and interferences have been extended fodescribe the adaptation of thfeSSA representation to the
the ¢) operations. This algorithm inserts predicated copy context of partial predication. The third section will pees
operations to restore the correct semantics in the program an out of SSA algorithm for thé-SSA representation, for
in a non-SSA form. both full and partial predication. This algorithm improves
They-SSA representation is used in our production com- the algorithm described in the origingtSSA paper and
pilers, based on the Open64 technology, for the ST200 fam-also fixes some errors. In the fourth section we will present
ily processors. In this compiler, predicated code is gener- some results we have on our production compiler for one of
ated by an if-conversion algorithm performed underihe the ST200 family processors.
SSA representatiof 1B, 1].

2. The Psi-SSA representation

1. Introduction The)-SSA representation was developed to extend the
SSA representation with support for predicated operations

The Static Single Assignment representation was intro- In the SSA representation, each definition of a variable is
duced in [E] and is now widely used in modern compil- given a unigue name, and new pseudo definitions are intro-

if(p) if(p)

a = opl; p? a = opl; a=1; p? a=1;
else else
b = op2; p? b= op2; b=—-1; p? b=-1;
x = Phi(a,b) x = Psi(a,b) x = Phi(a, b) x =Psi(a,b)
if(q)
Figure 1. ¢)-SSA representation c=0; q? c=0;
y = Phi(x,c¢) y =Psi(a,b,c)

Figure 2. ¢-SSA with non-disjoint predicates

duced ong instructions to merge values coming from dif-
ferent control-flow paths. In this representation, each-defi

nition is an unconditional definition, and the value of avari yomain of the two predicates is empty and the value of the
able is the value of the expression on the unique assignmen&) operation is given by one or the other of its arguments,
to this variable. This essential property of the SSA repre- depending on the value of the predicate.
sentation does not any longer hold when definitions may be The ¢ operations can also represent cases where vari-
conditionally executed. When the definition for a variale i gp1es are defined on predicates that are computed from in-
a predicated operation, this operation is executed depgndi gependent conditions. This is illustrated in figfire 2, where
on the value of a guard register. As a result, the value of thei,e predicatep andq are independent. During the SSA
variable after the predicated operation is either the vafue -gnstruction a unique variable was renamed into the vari-
the expression on the assignment if the predicate is true, Ohplesa, b andc and the variables andy were introduced
Fhe va}lue the variable had before this operation if the p_red—to merge values coming from different control-flow paths.
icate is false. We need a way to express these conditional the non-predicated code, there is a control-dependency
definitions whilst keeping the static single assignmenppro petweerx andc, which means the definition af must be
erty. executed after the value for has been computed. In the

Predicated operations can be used to replace code thagredicated form of this example, there are no longer any
contains control-flow edges by straight line code cont@nin control dependencies between the definitiona,df andc.
predicated operations. Such a transformation is performeda compiler transformation can now freely move these defi-
by an if-conversion optimizatior{ [§] 1]. A simple example nitions independently of each other, which may allow more
of if-conversion is given in figurg| 1. In the rest of this pa- gptimizations to be performed on this code. However, the
per, we use the notatign? <exp> to say that<exp> is semantics of the original code requires that the definitfon o
executed only if the predicafeis TRUE. ¢ occurs after the definitions af andb. We use the order

In the 1)-SSA representation; operations are added to of the arguments in @ operation to keep the information on
the SSA representatiogh.operations are for predicated def- the original order of the definitions. We take the convention
initions what¢ operations are for definitions on different that the order of the arguments inveoperation is, from left
control-flow edges. A) operation merges values that are to right, equal to the order of their definitions, from top to
defined under different predicates, and defines a single vari pottom, in the control-flow dominance tree of the program
able to represent these different values. in @ non-SSA representation. This information is needed

In the SSA representatio; operations are placed at to maintain the correct semantics of the code during trans-
control-flow merge points where each argument flows from formations of the)-SSA representation and when reverting
a differentincoming edge. In thge-SSA representation, on the code back to a nap-SSA representation.

a) operation, all the incoming edges ofjaoperation are With this definition of they-SSA representation, con-
merged into a single execution path, and each argument islitional definitions on predicated code are now replaced
now defined on a different predicate. by unconditional definitions o operations. Usual algo-

In figureﬂ, variablea andb were initially the same vari- rithms that perform optimizations or transformations oa th
able. On the left-hand side, the SSA construction renamedSSA representation can now be easily adapted toythe
the two definitions of this unique variable into two diffeten SSA representation, without compromising the efficiency
names, and introduced a new variabldefined by ap op- of the transformations performed. Actually, within the
eration to merge the two values coming from the different SSA representation, predicated definitions behave exactly
control-flow paths. On the right-hand side, an if-conversio the same as non predicated ones for optimizations on the
algorithm transformed this code to remove the control-flow SSA representation. Only thé operations have to be
edges. It introduced predicated operations for the defini-treated in a specific way. As an example, the constant prop-
tions of the variables andb and turned the) operation agation algorithm described iEIlS] can be easily adapted
into a operation. Each argument of theoperation is to the {-SSA representation. In this algorithm, the only
defined by a predicated operation. The intersection of themaodification is that) operations have to be handled with

the same rules as thg operations. We have also ported
dead code eliminatiof][9] and global value numberiig [4]
algorithms to this representation, and we expect thataarti
redundancy eliminatior[|[2], and induction variable analy-
sis] should be easy to adapt.

Figure|]3 shows an example where some code with
control-flow edges was transformed into a linear sequence
of instructions. In this example, th&DD operation cannot
be predicated.

In figure[} b), we have introduced predicated move op-

In addition to standard algorithms that can now be easily erations, so that) operations still have the definitions of
adapted ta) operations and predicated code, a number of their arguments being predicated, while allowing an if-

additional transformations can be performed on¢hep-
erations. These transformation apenlining, ¢-reduction
and-projection, they are described in detail [1]1]).—
inlining will recursively replace in a) operation an argu-
ment that is defined by another operation by the argu-
ments of this second operation.-reduction will remove
from a1 operation an argument whose value will always be
overridden by arguments on its right in the argument list,

conversion transformation to be performed even on oper-
ations that cannot be predicated. In the case where condi-
tional move operations are not available on the target pro-
cessor, when leaving the-SSA representation, these op-
erations, along with the) operation, will be replaced by
other operations available on the target processor, such as
asel ect instruction for example. The main disadvantage
of this solution is that the semantics of the initiabpera-

because the domain of the predicate associated with thigion is now expressed by three operations. These operations

argument is included in the union of the domains of the
predicates associated with the arguments on its right.
projection will create from a operation new) operations

for uses in operations guarded by different predicateshEac
news) operation is created as the projection on a given pred-

icate of the originat) operation . In this new) operation,

will have to be treated all together during transformations
on thet operations, and in particular when reverting the
code back to now-SSA representation.

In figure[3 c), we chose to express thesadi t i onal
nove operations directly in thé operation, by means of a
predicate associated with each argument of/ttoperation.

arguments whose associated predicate has a domain that M/ith this representation, the information representedhén t

disjoint with the domain of the predicate on which the pro-
jection is performed actually contribute no value to the
operation and are then removed.

3. Psi-SSA and partial predication

In the original paper or-SSA we only considered the
use ofy)-SSA for a fully predicated processor. We describe

here how this representation has been modified to be use

for a processor with a partially predicated instruction set

In a partially predicated instruction set, only a subset of

the instruction set of the targeted processor supportsta pre

icate operand. For example, the instruction set may support

only a conditionalmove instruction. It can also include
more specific instructions such aseal ect instruction. A

sel ect instruction takes two arguments and a guard regis-

¢ operation by the control-flow edges is now present in the
1) operation by means of predicates.

In the general case, the definition of a variable can be
predicated. Using the representationin figﬂre 3¢), thare ca
be one predicate associated with the definition of a varjable
and there will be one predicate associated with the use of
the variable in a) operation. The two domains for these
two predicates do not need to be equal, only the domain

f the predicate on the definition has to contain the domain

f the predicate on the¢ argument. This extension to the
representation of th¢ operations allows one to perform a
copy folding algorithm to remove atfov operations in the
representation, whether they are predicated or not.

3.1. Psi-predicate promotion

The extension of th¢-SSA representation to the context

ter, and assigns the value of one or the other of its argument,¢ - ia| predication brings another useful transforomati

into a variable, depending on the value of the guard register

The only impact of partial predication on tijeSSA rep-
resentation is that when @ operation is created as a re-
placement for @ operation, during if-conversion for exam-

ple, some of its arguments may be defined by operations

that cannot be predicated. A preliminary condition is that

the operation can be created only if these non-predicated

to they operations, the)-predicate promotion.

The predicate associated with an argument i @per-
ation can be promoted, without changing the semantics of
the ¢) operation. By predicate promotion, we mean that a
predicate can be replaced by a predicate with a larger pred-
icate domain. This promotion must obey the two following
conditions so that the semantics of theperation after the

arguments can be safely speculated, which means exeCUteﬁlansformation is valid and unchanged
under some conditions where they would not have been exe- '

cuted otherwise. Although these definitions are speculated
their values were only meaningful under a given predicate
in the original code. The information on this predicate must

be kept in some way.

e Condition 1 For an argument in @ operation, the do-
main of the predicate used on the definition of this ar-
gument must contain the domain of the new predicate
associated with this argument.

if(p)

a=ADD1i,1; a=ADD1i,1; a=ADD1i,1;
else p? c=a
b= ADD i,2; b=ADDi,2; b= ADD i,2;
p? d=b
x = Phi(a, b) x = Psi(c, d) x = Psi(p?a, p’b)

a) before if — conversion b) conditional moves c) extended Psi operation

Figure 3. Psi-SSA for partial predication

for the instructions predicate, provided that speculation can be applied. Also,

p? x=.. when disjoint conditions are computed, one of them can be
y =Psi(..,q%x,...) promoted to include the other conditions, usually reducing

then the dependency height of the predicated expressions. The
qcp 1-predicate promotion transformation can be applied dur-

ing an if-conversion algorithm for example. A side effect
of this transformation is that it may increase the number of
copy instructions to be generated during the outye8SA
phase, because of more live-range interference between ar-
guments in a) operation, as will be explained in the next
section.

e Condition 2 For an argument in & operation, the do-
main of the new predicate associated with it can be
extended up to include the domains of the predicates
associated with arguments in tite@peration that were
defined after the definition for this argument in the
original program.

for an instruction
y = Psi(p1?%1,Pa?X2, .e; Pi?Xiy vy Pn %n)
transformed to

4. An out of Psi-SSA algorithm

y = Psi(p1?%1,P27%2, -y Pi7%i, ooy Pnl%n) We have now described the semantics of thepera-
then tion along with the transformations that can be applied on
pi € Us_;px it. Then, after optimizations have been applied af+&SA

representation, the code must eventually be reverted back t
a standard, non SSA, form. On the SSA representation this
is called the out of SSA phase. This pass must be adapted
to they-SSA representation.

The first condition ensures that thieoperation is still
valid. This condition means that, in addition to predicate
promotion, speculation may have to be performed first on
h finition of the argument of ration. Th - - .
the definition of the argument of the operatio © sec In the original paper on the-SSA representatiof [JL1],
ond condition ensures that the value of theperation is i .) :

. an out ofy-SSA algorithm was described. In this section,
not changed. We already said that the order of the argu-) -
; o . we present a complete algorithm that extends the original
ments in a) operation is, from left to right, the order, from . . .
o . algorithm to our new representation, and also fixes one error
top to bottom, of the definitions in the control-flow dom-

inance tree of the original program. Thus, the domain of in the original description.
the predicate associated with an argumentih@peration
can be extended up to include the domains of each of the-1- Conventional SSA
predicates associated with arguments at its right inythe
argument list. With this condition, we ensure that the con- The algorithm described in the original papersSA
ditions under which arguments at the left of the promoted and the algorithm we present here are both derived from the
argument can have there value overridden by arguments abut of SSA algorithm from Sreedhar et d1.]10].
their right in they operation remain unchanged. This condi- This algorithm uses congruence classes to create a con-
tion also means that the first argument af aperation can ventional SSA representation. Two variabkeandy are in
be promoted independently of the other arguments in/the a ¢-congruence relation if they are referenced in the same
operation, provided that the first condition is still sa@sfi ¢ function, or if there exists a variable such thaix is in

This ¢-predicate promotion transformation allows us to a ¢-congruence relation with andy is in a¢-congruence
reduce the number of predicates that need to be computedielation withz. Then we define & congruence class as the
and to reduce the dependencies between predicate computaransitive closure of the-congruence relation. The con-
tions and conditional operations. In fact, the first argumen ventional SSA representation has the property that the re-
of a operation can usually be promoted under THJE naming of all the resources fromgacongruence class into

a representative name, and the elimination of ghepera- We will now present an algorithm that will transform a
tions, will not violate the semantics of the program. The program from a)-SSA form into itsy)-CSSA form. This
Sreedhar algorithm gives three methods, the third one beingalgorithm is made of three parts.

the most efficient, to convert an SSA representation into a
conventional SSA form. e -normalize This part will put all ¢y operations in
what we call anormalizedform.

4.2. Conventional Psi-SSA e y-congruence This part will grow i-congruence

classes from) operations, and will introduce repair

We define the conventional-SSA (/-CSSA form in a code where needed.
similar way to the Sreedhar definition of the conventional .)
SSA (CSSA form. The congruence relation is extended ® ¢-congruenceThis part will extend the)-congruence
to the ¢ operations. Two variables andy are in ay- classes withp opergtlons. This part is very similar to
congruence relation if they are referenced in the sare the Sreedhar algorithm.
1 function, or if there exists a variable such thatx is in
aip-congruence relation with andy is in ay-congruence
relation withz. Then we define & congruence class as the
transitive closure of th&-congruence relation. The prop-
erty of they)-CSSA form is that the renaming into a single
variable of all variables that belong to the same congruence
class, and the removal of theand¢ operations, results in We define the notion afiormalizedy. Whenv opera-
a program with the same semantics as the original programtions are created during the construction of {h€SA rep-

Now, look at figurd}4 to examine the transformations that résentation, as described [n][11], they are naturally fuilt
must be performed to convert a program from-8SA form the|r normalized form._ The normalized form of/aopera-
into a program in)-CSSA form. tion has two characteristics:

Looking at the first example, the dominance order of the
definitions for the variablea andb differs from their or-
der from left to right in they) operation. Such code may
appear after a code motion algorithm has moved the defini-
tions fora andb relatively to each other. We have said that o The order of the arguments in a normalizédpera-

We detail now the implementation of each of these three
parts.

4.3. Psi-normalize

e The predicate associated with each argument in a
normalized operation is equal to the predicate used
on the unigque definition of this argument.

the semantics of & operation is dependent on the order of tion is, from left to right, equal to the order of their def-
its arguments, and that the order of the argumentsin a initions, from top to bottom, in the control-flow domi-
operation is the order of their definitions in the dominance nance tree.

tree in the original program. In this example the renaming

of the variablesa, b andx into a single variable will not When transformations are applied to theSSA repre-

preserve the semantics of the original program. The ordersentation, predicated definitions may be moved relatively t
in which the definitions of the variables b andx occur each others. Operation speculation and copy folding may
must be corrected. This is done through the introduction of enlarge the domain of the predicate used on the definition
the variablec that is defined as a copy of the variableand of a variable. These transformations may cause sorop-
is inserted after the definition @&. Now, the renaming of erations to be in a non-normalized form.
the variables, c andx into a single variable will result in In the original algorithm described ifi [L1fondition 1
the correct semantics. for the definition of they)-SSA Consistency was identical

In the second example, the renaming of the variahles to the second characteristic of the normalized form we de-
b, c, x andy into a single variable will not give the cor- scribe here. However, the original algorithm did not in&ud
rect semantics. In fact, the valueafused in the second a specific normalization phase for the outyefSSA algo-
operation would be overridden by the definitionbolbefore rithm. There are two reasons why this step is now needed.
the definition of the variable. Such code will occur after The first reason is that in the originalrepresentation, there
copy folding has been applied orn/aSSA representation. was no predicate associated with an argumentinagper-
We see that the value @f has to be preserved before the ation. Implicitly, this predicate was equal to the predécat
definition ofb, resulting in the code given for the-CSSA used on the definition of the argument, but these predicates
representation. Now, the variablasb andx can be re- can now be different in our representation. The second rea-
named into a single variable, and the varialdes andy son is to fix a problem in the original algorithm. In fig-
will be renamed in another variable, resulting in a program urel}, we show an example where copy folding on predi-
in a non-SSA form with the correct semantics. cated code has transformed the secgndperation into a

p? b=.. p? b= p? b=
a=... a—= X =
p? c¢c=b p? x=b
x = Psi(17a, p?b) x = Psi(17a, p?c)
Psi — SSA form Psi — CSSA form non — SSA form
a=... a= X =
d=a y=x
p? b=.. p? b= p? x=
q? c=.. q? c=.. qQ? y=
x = Psi(17a, p7b) x = Psi(17a, p?b)
y = Psi(17a, q7c) y = Psi(17d, q7c)
Psi — SSA form Psi — CSSA form non — SSA form
Figure 4. ¢)-SSA and ¢-CSSA forms
P! 2 OP; P 2 °P; just below the definition fourg; with a copy ofarg;. This
! = 0 ! =0 . el
g? c— ap 4 P definition is predicated with the predicate associated with
x = Psi(p?a, q7b) x = Psi(p?a, q7b) arg; in theq operation. Thengrg; is replaced by this new
y = Psi(q?b, p?c) y = Psi(q?b,p?a) variable in the)) operation.

Then, we consider the dominance order of the definition
for arg;, with the definition of the next argument in thle
Figure 5. Copy folding on -SSA representa- argumentlistarg; 1. Whenarg; . is defined on a oper-
tion ation, we recursively look for the definition of the first argu
ment of thisy) operation, until a non operation is found.
Now, if the definition we found forrg;,; dominates the
definition forarg;, repair code is needed. A new variable
. - . is created for this repair. This variable is initialized hva
non-nqrmahzed form. The original aI_gonthm ass.umed.that copy of arg;11, guarded by the predicate associated with
for variables use_d in the "’.‘rgumem list @fopera_tlons, T this argument in th@ operation. This copy operation is in-
was always possible to define a strict order Te'a“"” loetWeenserted at the lowest point, either after the definitiomaf;
varlable_s N a congruence _class, noted This o_rder was or argi+1. Then,arg;,, is replaced in the) operation by
determined using the relative order of the variables in the this new variable.
differenty argument lists where these variables were used.

Clearly, in this example, there is no such relation between _, ¢ 2/90rithm continues with the argument; ., unti
any, ample, . all arguments of the) operation are processed. When all
variablesa andb in the non-normalized form of the op-

. arguments are processed, thas in its normalized form.
erations. . . .
When ally) operations are processed, the function will con-
tain only normalizeds operations.

PSI-normalize implementation. A dominator tree must The top-down traversal of the dominator tree will ensure
be available for the control-flow graph to lookup the dom- thatwhen a variable in@ operation is defined by another
inance relation between basic blocks. The dominance rela-OPeration, this) operation has already been analyzed and

given by their relative positions in the basic block. variable already dominates the definitions for the other ar-

guments of the) operation.

a) Normalized form b) non normalized form

Eachiy operation is processed independently. An analy-
sis of they operations in a top down traversal of the domi-
nator tree reduces the amount of repair code that is inserted In figure|]5 we show how this algorithm works. The fiyst
during this pass. We only detail the algorithm for such a operation is analyzed. The analysis starts with argument
traversal. The predicate associated with this argument is equal to the

For at operation, the argument list is processed from predicate used on the definition f@yand the definition o
left to right. For each argument-g;, the predicate associ- dominates the definition df, thus no repair code is needed.
ated with this ar_gg_ment n the operation and the predicate Whenarg; 1 is defined by a) operation, its definition may appear
used on the definition of this argument are compared. Ifthey after the definition forarg;, although the noné definition for arg; .1
are not equal, a new variable is introduced and is initidlize appears before the definition farg;.

d=.. d=.. a =opl a = opl

p? a=.. p? a=.. p? b =op2 b=p?o0p2 : a
r? c=.. r? =... q? c=op3 c=q?0p3 : b
s? f=4d x =Psi(17a,p?b,q%c) x=c
b= b=..
q? e=bD a) Psi-SSA form b) select form
pla? x =Psi(p?a, q’b) pla? x =Psi(p?a, q’e)
rls? y=Psi(r?c,s?d) I}SZ y =Psi(r?c, s?f) Figure 7. ¢ and select operations equivalence
rls? g=y
z = Psi(p|q?x, r|s?y) z = Psi(p|q?x, r|s?g)

Figure 6. Converting « operations into their

normalized form replaced by explicisel ect operations on each predicated

definition. In this example, there is no relation between
predicatesp and gq. Each of thesesel ect operations
makes an explicit use of the variable immediately to its left
The analysis continues with arguméntThe predicate as- in the argument list of the original operation. We can see
sociated with the argumehtin the operation is notequal that a renaming of the variablas b, ¢ andx into a single
to the predicate used on the definitionofA new variable representative name will still compute the same value for

e is introduced, and is defined as a predicated cofy - the variablex. Note that this transformation can only be
ing the predicate associated within thet operation. Then performed on normalized operations, since the definition
b is replaced b in this ¢ operation. On the next oper- of an argument must be dominated by the definition of the
ation, the definition foc does not dominate the definition argumentimmediately to its left in the argument list of the
for d. A new variabld is introduced and initialized with 1 operation. Using this equivalent representation forithe
under predicats. This copy operation is inserted just af- operation, we now give a definition of the liveness forthe
ter the definition forc. On the last) operation, since is operations.

defined on a) operation we use the definition ofas the Definition We say that the point of use of an argument in
definition point fory. The definition of does notdominate a normalized) operation occurs at the point of definition of
the definition forc, so a repair is needed. The copy= vy the argument immediately to its right in the argument list of
is inserted after the definition of, and is predicated with the) operation. For the last argument of theoperation,
the predicate associated within the) operation. the point of use occurs at the operation itself.

This algorithm ensures that the program contains only Given this definition of liveness o operations, and
normalizedy operations. This property is used by the next using the definition of liveness fas operations given by

two passes of the algorithm. Sreedhar, a traditional liveness analysis can be run. Tien a
interference graph can be built to collect the interferaence
4.4. Psi-congruence between variables involved in or ¢ operations.

In this pass, we repair th¢ operations when variables Repairing interferences on ¢ operations. We now

cannot be putinto the same congruence class, because thejfasent an algorithm that creates congruence classegwith

Iivel ranges interfere. In the same way as Sre.edha.r gave E?)perations such that there are no interference between two
definition of the liveness on the operation, we first give a variables in the same congruence class.

definition for the liveness ot operations. With this defini- First, the congruence classes are initialized such that

tion of liveness, an interference graph is built each variable in the)-SSA representation belongs to its
own congruence class. Then,operations are processed
Liveness and interferences in Psi-SSA. We have already one at a time, in no specific order. Two arguments af a
seen that in some cases, repair code is needed so that the asperation interfere if one or more variables from the con-
guments and definition of@ operation can be renamedinto gruence class of the first argument and one or more vari-
a single name. Here, we give a definition of the liveness onables from the congruence class of the second argument in-
1 operations such that these cases can be easily detecte@rfere. When there is an interference, the tivarguments
by observing that live-ranges for variables i aperation are marked as needing a repair. When all pairs of arguments
overlap. Our definition of liveness differs from the defini- of the operation are analyzed, repair code is inserted. For
tion used in the original paper, and allows for more precise each argument in the operation that needs a repair, a new
detection and repair of the interferences between vasable variable is introduced. This new variable is initializedma
in ¢ operations. predicated copy of the argument’s variable. The copy oper-
Consider the code in figuﬂa 7. Thieoperation has been ation is inserted just below the definition of the argument’s

p? a=.. p?

;.) this part must also take into account the special livendss ru
q’ =.. q!

on they operations. The reason for this is that for any two
variables in the same congruence class, any interfereince, e

o

r? c=.. r?

R
~J
QX0 HOo o o

c ther on &y or on a¢ operation, will not preserve the correct
x = Psi(p?a, q7b, r?c) Psi(p?a, q?e,r?f) semantics if the variables are renamed into a represeatativ
g
s? d=b+1 s? b+ 1 name.
All other parts of the algorithm are unchanged, and in
Figure 8. Elimination of % live-interference particular, any of the three algorithms described for the co

version into a CSSA form can be used.

We have described a complete algorithm to convert a
variable, predicated with the predicate associated with th SSA representationintoa CSSA representation. The final
argument in the) operation. step tq convert the coqle mto_a non-SSA form is a simple

Once ayp operation has been processed, the interferencgnaming of all th_e variables in the same congruence class
graph must be updated, so that otiieoperations are cor- N0 arepresentative name. Theande operations are then
rectly handled. Interferences for the newly introduced-var émoved.
ables must be added to the interference graph. Conserva- Now that a complete algorithm has been described to
tively, we can say that each new variable interferes with all convert ay-SSA representation to a-CSSA representa-
the variables that the original variable interfered witk; e tion, we will present some improvements that can be added
cept those variables that are now in its congruence classSO as to reduce the number of copies inserted by this algo-
Also, conservatively, we can say that the original variable rithm.
interferes with the new variable in order to avoid a merge
of a laters) or ¢ operation of the two congruence classes 4.6. Improvements to the out of Psi-SSA
these two variables belong to. The conservative update of algorithm
the interference graph may increase the number of copies
generated during the conversion to th&€CSSA form.

Consider the code in figuﬂa 8 to see how this algorithm
works. The definition of liveness on the operation will
create a live-range for variabkethat extends down to the
definition of b, but not further down. Thus, the variable
a does not interfere with the variablbsc or x. The live-
range for variabl® extends down to its use in the definition

of variabled. This live-range creates an interference with \y/ presented an algorithm to restore the normalized prop-
the yarlable$ andx. Thus variables, ¢ andx cgnnot be erty by adding a new predicated definition of a new variable.

put into the same congruence class. These variables are r40owever, if we know that the predicate domains of the two

named respectively into variablesf andg and initialized arguments are actually disjoint, the semantics ofythep-

with predicated copies. These copies are inserted respecaarion is independent on their relative order. So, instéad
tively after the definitions fob, ¢ andx. Variablesa, e, f

adding repair code, these two arguments can simply be re-

andg can now be put into the same congruence class, anty gereq in the) operation itself, to restore the normalized
will be renamed later into a unique representative name. property.

Below we present a list of improvements that can be
added to the algorithm.

Non-normalized) operations with disjoint predicates.
When two arguments in@ operation do not have their defi-
nitions correctly ordered, thg operation is not normalized.

4.5. Phi-congruence
Interference with disjoint predicates. When the live-

When all ¢ operations are processed, the congruenceranges of two variables overlap, an interference is added
classes built from) operations are extended to include the for these two variables in the interference graph. If the def
variables in¢ operations. In this part, the algorithm from initions for these variables are predicated definitionsirth
Sreedhar is used, with a few modifications. live-ranges are only valid under a specific predicate domain

The first modification is that the congruence classes mustThese domains are the domains of the predicates used on
not be initialized at the beginning of this process. They the definitions of the variables. Then, if these domains are
have already been initialized at the beginning of the disjoint, then although the live-range overlap, they are on
congruence step, and were extended during the processindisjoint conditions and thus they do not create an interfer-
of ¢ operations. These congruence classes will be extendeence in the interference graph. Removing this interference
now with ¢ operations during this step. from the interference graph will avoid the need to add repair

The other modification is that the live-analysis run for code when live-ranges on disjoint predicates overlap.

Repair interference on the left argument only. When an In order to analyze the situations where some repair code
interference is detected between two arguments/ioper- is introduced on) operations, we added a copy folding al-
ation, only the argument on the left actually needs a repair.gorithm just before the out af-SSA algorithm. We ran our
The reason is that, since theoperations are normalized, algorithms on a set of small benchmarks from multimedia
the definition of an argument is always dominated by the applications. The results are reported in figLﬂes 9@1d 10. In
definition of an argument on its left. Thus adding a copy for these experiments we measured the number of copy opera-
the argument on the right will not remove the interference. tions that were inserted during each of the three steps of the
out of)-SSA algorithm, and we measured the total number
of copy operations in the program after the out/eSSA

Interference with the result of a) operation. When the phase.

live-range for an argument of @ operation overlaps with] .)
the live-range of the variable defined by theoperation, In figure [§, we report the figures when mopredicate

this interference can be ignored. Actually, there are two Promotion algorithm was applied. In the first column, we
cases to consider: report the number of copies when the if-conversion and the

copy folding optimizations are not run. As expected, the
transformations that are performed on the SSA represen-
tations do not break thé-SSA conventional property on
definition of they; operation, then this live-range also these benchmarks, which results in no copy operation be-

overlaps with the live-range of the last argument. Thus "9 inserted during the out ap-SSA phase. The second
this interference will already be detected and repaired.C0|umn shows the results when the if-conversion transfor-

mation is performed. A number of copy operations are in-
serted during the)-normalize step, which shows that the
if-conversion algorithm generates non-normalizeodpera-
tions. Most of these non-normalizedoperations are due
to the predicate being different on the definition of the vari
able and on its use in the operation. Thej-congruence
step creates no additional copy operations, which means
that no interference was detected between variables on
operations during this step. In the third column, copy fold-
5. Experimental results ing was performed in addition to the if-conversion transfor
mation. This resulted in additional non-normalizédper-

The-SSA representation has been implemented in ourations. These additional non-normalized operations are cr
production compiler for the ST200 family processdis [7]. ated when predicated copy operations are folded, resulting
This compiler is based on the Open64 compiler technol- in morety operations with a different predicate on the def-
ogy, and the)-SSA representation has been used to imple- inition for a variable and its use in the operation. There
ment optimizations in the code generator part of the com- iS also one interference in the-congruence step that was
piler. The experiment has been conducted on a variant ofcreated by the copy folding. This copy operation cannot
the ST231 processor. The ST231 is a 4-issue VLIW proces-be optimized away. The large number of copy operations
sor that targets multimedia and digital consumer embedded@enerated during the-congruence step is mostly due to the
applications. It is composed of four 32-bit integer ALUs, fact that we only implemented the second method of the
two 32x32 multipliers, one load/store unit, a branch unit, Sreedhar algorithm, use of the third method would reduce
64 32-bit general purpose registers and 8 1-bit branch-registhis number. Finally, the total number of copy instructions
ters. The variant we used includes support for partial predi after the out ofy-SSA phase is greater after copy folding
cation, through predicated load and store instructionssand Nhas been performed, mostly due to the number of copy op-
sel ect instruction. erations generated during teecongruence step.

The ¢-SSA representation is used in the backend of Infigure,we report the figures wheénpredicate pro-
our compiler to implement several optimizations. These motion algorithm was performed. Thepredicate promo-
optimizations include a range-propagation analysis to re-tion propagates into thg operations the effect of the spec-
move redundant or useless computations, an address exslation that was performed during the if-conversion algo-
pressions analysis to optimize the use of available addressrithm. The main reason to perform thiepredicate pro-
ing modes, and an if-conversion algorithfh [1]. However, motion is to reduce the number of predicates that must be
these transformations will only very occasionally produce computed in the code. This transformation also reduces the
non-normalized) operations or add interferences between number of non-normalized operations, so that fewer copy
variables iny) operations. operations need to be inserted during thaormalize step.

¢ If the argument is not the last one in tiieoperation,
and its live-range overlaps with the live-range of the

o If the argument is the last one of thieoperation, then
the value of the) operation is the value of this last ar-
gument, and this argument and the definition will be
renamed into the same variable out of the SSA repre-
sentation. Thus, there is no need to introduce a copy
here.

This is shown in the second and third columns for ifhe , _ho | if-conv
normalize step. The number of copy instructions introduced psic_?‘g'fnianze 'f'cofg 'f'icl’g\é b fo?l'gga
in this step is reduced compared to the number of copy psi-congruence +0 +0 +1
instructions that were introduced in the same step without phi-congruence +0 +82 +1543
they-predicate promotion. On thg-congruence step, we total copies 7041 | 7268 7948

see that performing the-predicate promotion actually in-

creased the number of interferences to be repaired. In fact, Figure 9. Out of y-SSA without y-predicate

these interferences also existed withoutithpredicate pro- promotion

motion, but, due to the smaller number of non-normalized

1-operations, they were not repaired as a side effect of the

1b-normalize step. no Fconv
On the last line of this figure, we see that after the out copies if-conv | if-conv | + folding

of 1-SSA phase there is a small decrease in the number of psi-normalize +0 +34 +65

copy instructions in the code whenpredicate promotion Si'lzgr;grr‘lﬁ:zz :8 Ji . 12213

is performed. The cases where fewer copy operations are total copies Z0a1 7107 =810

generated occur in loops where)aoperation uses and de-

fines variables that are used in the sapngperation. Such Figure 10. Out of ¢-SSA with ¢-predicate pro-

a situation is described in figuEl 11. Theoperation in the motion

code on the left is not normalized, because the predicate for

the variable is different on its definition in the operation

and on its use in the operation. In the code on the right,

a variablee has been added to normalize thioperation. Loop : Lloop :

The-congruence step creates a congruence class with the ¢ = Phi(ab) _, c=rhi@b)

variablese, d andb, since there is no interference between q=c <10 P <10

these variables. The operation is then processed during p? d=op1 p? d=opl

the ¢-congruence step. The interferences between the vari- b = Psi(p?c,p?d) b = Psi(p?e,p?d)

ablec and the variables in the congruence classbf@re 4’ goto loop 4’ goto loop

checked. In fact, the variablesande interfere, which will
require that a new variable is introduced and a new copy
instruction is inserted. When the predicate promotion is
performed first on the) operation for the variable, the
variablee is no longer introduced. The-congruence step
creates a congruence class with varialsled andb. In the
¢-congruence step, when processingdi@peration, noin- 5q4ed a new transformation that can be performed on the
terference needs to be repaired since the varidblasdc 1) operations in the context of partial predication, namely
are already in the same congruence class, and thus no addp,q ./, predicate promotion, which is useful for example in
tional copy instruction is inserted. an if-conversion algorithm. Finally, we presented a dethil

Future work will include improving the out of SSA al- jjplementation of the out of-SSA representation algo-
gorithm in order to reduce the number of copies generatedrithm, which includes the support for partially predicated

during this phase. In particular, we will work on a better in- 5 chitectures and fixes an error in the original algorithm.
tegration between the-congruence and the-congruence g ,y-SSA representation is implemented in our produc-

steps to avoid the cases Whe.re repair code introduced_ in th_cﬁon compiler for the ST200 family processors, and is used
-congruence step creates interferences to be repaired i, perform several algorithms on theSSA representation,
the ¢-congruence step. including an if-conversion optimization.

Figure 11. ¢-normalize adds new interfer-
ences

tectures with only a partially predicated instruction &%

6. Conclusion

7. Acknowledgements
In this article we presented several aspects of/tf&SA
representation. The-SSA representation is an extension of
the SSA representation to support predicated code, where | would like to thank Christian Bruel for his implementa-
some definitions are conditionally executed depending ontion of an if-conversion algorithm undérSSA, Christophe
the value of a guard register. We presented an improvemenGuillon and Fabrice Rastello for their very useful remarks
to the originak)-SSA representation to better support archi- and feedback, and Stephen Clarke for his review.

References

(1]

(2]

(3]

(4]

(5]

C. Bruel. If-conversion ssa framework for partially gre
cated vliw architectures. SIGPLAN, ACM and IEEE, March
2006.

F. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu.
A new algorithm for partial redundancy elimination based
on ssa form. ACM SIGPLAN Notices32(5):273 — 286,
1997.

F. Chow, S. Chan, S.-M. Liu, R. Lo, and M. Streich. Ef-
fective representation of aliases and indirect memory op-
erations in SSA form. In T. Gyimothy, edito€ompiler
Construction, 6th International Conferenceolume 1060
of Lecture Notes in Computer Sciencpages 253—-267,
Linkdping, Sweden, 24—-26 Apr. 1996. Springer.

C. Click. Global code motion global value numbering. In
SIGPLAN International Conference on Programming Lan-
guages Design and Implementatigrages 246 — 257, 1995.
R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
K. Zadeck. Efficiently computing static single assignment
form and the control dependence gragiCM Transactions
on Programming Languages and Syste@®(4):451 — 490,
1991.

[6] J. Fang. Compiler algorithms on if-conversion, spetiuéa

(7]

(8]

(9]
(10]

(11]

(12]

(13]

(14]

predicates assignment and predicated code optimizafions.
9th International Workshop on Languages and Compilers
for Parallel Computing (LCPC), LNCS #123pages 135 —
153, 1996.

P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and
F. Homewood. Lx: a technology platform for customiz-
able VLIW embedded processing. The 27th Annual Inter-
national Symposium on Computer architecture 20ges
203-213, New York, NY, USA, 2000. ACM Press.

K. Knobe and V. Sarkar. Array ssa form and its use in par-
allelization. InACM Symposium on the Principles of Pro-
gramming Languagepages 107 — 120, 1998.

R. Morgan. Building an optimizing compiler, January 899

V. Sreedhar, R. Ju, D. Gillies, and V. Santhanam. Tegnsl
ing out of static single assignment form. $tatic Analysis
Symposium, ltalypages 194 — 204, 1999.

A. Stoutchinin and F. de Ferriere. Efficient staticgdaas-
signment form for predication. 184th annual ACM/IEEE
international symposium on Microarchitectungages 172—
181. IEEE Computer Society, 2001.

A. Stoutchinin and G. Gao. If-conversion in SSA form. In
Proceedings of Euro-Par 2004 Parallel Processinglume
3149 ofLNCS pages 336—-345. SIGPLAN, Springer Verlag,
Aug 2004.

M. Wegman and K. Zadeck. Constant propagation with con-
ditional branchesACM Transactions on Programming Lan-
guages and Systents3(2):181 — 210, 1991.

M. Wolfe. Beyond induction variables. ISIGPLAN In-
ternational Conference on Programming Languages Design
and Implementatigrpages 162 — 174, 1992.

