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Short proofs of some results of algebraic independence in non-zero characteristic.

Federico Pellarin

Abstract. The aim of this note is to give short and almost elementary proofs of two theorems, by Papanikolas [START_REF] Papanikolas | Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms[END_REF] and Chang-Yu [START_REF] Chang | Determination of algebraic relations among special values in positive characteristic[END_REF], on algebraic independence of Carlitz logarithms and values of Carlitz-Goss zeta function, modifying and generalising arguments of Denis [START_REF] Denis | Indépendance algébrique de logarithmes en caractéristique p[END_REF] which proved earlier special cases of these results. These proofs where sketched in the text [START_REF] Pellarin | Aspects de l'indépendance algébrique en caractéristique non nulle[END_REF] and this note is intended to accompany it, somewhat as an appendix, by giving full details to some few lines remarks.

1 Introduction.

In [START_REF] Papanikolas | Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms[END_REF] Papanikolas proved the analog of a well known conjecture of algebraic independence of logarithms of algebraic numbers, for logarithms of algebraic points on the F q [T ]-module of Carlitz. The proof is a consequence of a variant of Grothendieck period conjecture for a certain tannakian category of t-motives, also due Papanikolas. Another application of this variant of Grothendieck conjecture is due to Chang and Yu [START_REF] Chang | Determination of algebraic relations among special values in positive characteristic[END_REF]. They determine all the algebraic relations between values of Carlitz-Goss zeta function at integers n ≥ 1, hence proving the analogue of a well known conjecture describing algebraic relations between values of the Riemann zeta function at integers greather than or equal to two. The proofs these author gave require the computation of Galois groups associated to certain linear systems of order one σ-difference equations, somewhat involved essentially due to the multitude of algebraic subgroups of G n a in positive characteristic. Particular cases of these results are also contained in Denis work [START_REF] Denis | Indépendance algébrique de logarithmes en caractéristique p[END_REF], where he applies so-called Mahler's method without appealing to Galois theory. In this text we will show how Mahler-Denis method extends to prove the results above mentioned directly.

Statement of the results.

Let q = p r be a power of a prime number, F q the field with q elements, T an indeterminate, and let us write A = F q [T ], K = F q (T ). The valuation opposite of the degree (in T )

v : K → Z ∪ {∞} defined by v(a/b) = deg b -deg a defines the norm | • | by |x| = q -v(x) .
Let us write K ∞ = F q ((T -1 )) (completion of K for v). The degree of an algebraic closure K ∞ over K ∞ is infinite and K ∞ is not complete for the unique extension of | • |.

Let C be the completion of K ∞ for | • |. It is well known that it is algebraically closed with residual field F q . We write K for an algebraic closure of K and we fix embeddings K ⊂ K ∞ ⊂ C. Elements of C are said numbers, elements of K are said algebraic numbers. Let us write [i] := T q i -T (i ≥ 1) and [0] := 1, let us consider Carlitz's exponential and logarithm:

e Car (z) = i≥0 z q i [i][i -1] q • • • [1] q i-1 [0] q i , log Car (z) = i≥0 (-1) i z q i [i][i -1] • • • [1][0]
.

The series e Car converges uniformly on every open ball with center in 0 to an F q -linear surjective function e Car : C → C. Its kernel can be written as πA, where

π = T (-T ) 1/(q-1) ∞ i=1 (1 -T 1-q i ) -1 , (1) 
convergent product defined once a choice of a (q -1)-th root of -T is made (the number π is defined up to multiplication by an element of F × q ). Carlitz's exponential function e Car allows to endow C with an action of A by polynomials so that the short exact sequence of A-modules holds:

0 → πA → C → C → 0,
drinfeldian analogue of the short exact sequence for the exponential function exp : C → C × , exp(0) = 1 (the A-action in the middle is the usual multiplication). The formal series log Car , reciprocal of e Car in 0, converges for |z| < q q/(q-1) = |π|.

The first Theorem we shall prove in an elementary way is the following:

Theorem 1 (Papanikolas) Let ℓ 1 , . . . , ℓ m ∈ C be such that e Car (ℓ i ) ∈ K (i = 1, . . . , m).
If ℓ 1 , . . . , ℓ m are linearly independent over K, then they also are algebraically independent.

Carlitz-Goss polylogarithms and zeta functions.

Let us write A + = {a ∈ A, a monic}. In [START_REF] Goss | v-adic zeta functions, L-series and measures for function fields[END_REF], Goss introduced a function ζ, defined over C × Z p with values in C, such that

ζ(T n , n) = a∈A+ 1 a n ∈ K ∞ , n ≥ 1.
In the following, we will write

ζ(n) for ζ(T n , n). For n ∈ N, let us also write Γ(n) := s i=0 D ni i ∈ K, n 0 + n 1 q + • • • + n s q s being the expansion of n -1 in base q and D i being the polynomial [i][i -1] q • • • [1] q i-1 . It can be proved that z/e Car (z) = ∞ n=0 B n z n Γ(n+1) for certain B n ∈ K.
The so-called Bernoulli-Carlitz relations can be obtained by a computation involving the logarithmic derivative of e Car (z): for all m ≥ 1,

ζ(m(q -1)) π m(q-1) = B m Γ(m(q -1) + 1) ∈ K. (2) 
In particular, one sees that

π q-1 = (T q -T ) a∈A+ a 1-q ∈ K ∞ .
We also have the rather obvious relations:

ζ(mp k ) = ζ(m) p k , m, k ≥ 1. (3) 
The second theorem we are going to prove directly is: 

Two propositions.

We consider a perfect field U of characteristic p containing F q and a F q -automorphism α : U → U . Let us also consider the ring R = U [X 1 , . . . , X N ] and write, for a polynomial P = λ c λ X λ ∈ R, P α as the polynomial λ α(c λ )X λ . Let A 1 , . . . , A N be elements of U × , B 1 , . . . , B N be elements of U and, for a polynomial P ∈ R, let us write

P = P α (A 1 X 1 + B 1 , . . . , A N X N + B N ).
We now prove the following two Propositions, which provide together the analogue in positive characteristic of a result of Kubota [10, Theorem 2] (see also [START_REF] Töpfer | Algebraic independence of the values of generalized Mahler functions[END_REF]Lemma 6]). Proposition 1.1 Let P ∈ R be a non-constant polynomial such that P /P ∈ R. Then there exists a polynomial G ∈ R of the form G = i c i X i + B p such that G/G ∈ R, where c 1 , . . . , c N ∈ U are not all vanishing and B ∈ R. If W is the subfield generated by F q and the coefficients of P , then there exists M ≥ 1 such that for each coefficient c of G, c p M ∈ W .

Proof. If P ∈ R is such that P = QP for Q ∈ R one sees, comparing the degrees of P and P , that Q ∈ U and if P is non-zero, Q = 0. The subset of R of these polynomials is a semigroup S containing U . If P ∈ S satisfies P = QP , then F := ∂P/∂X i belongs to S since F = A -1 i QF . Similarly, if P = F p ∈ S with F ∈ S then F ∈ S as one sees easily that in this case, F = Q 1/p F . By hypothesis, S contains a non-constant polynomial P . We now show that the polynomial G ∈ S as in the Proposition can be constructed by iterated applications of partial derivatives ∂ 1 = ∂/∂X 1 , . . . , ∂ N = ∂/∂X N and p-root extrations starting from P .

Let P be as in the hypotheses. We can assume that P is not a p-th power. We can write:

P = λ=(λ1,...,λ N )∈{0,...,p-1} N c λ X λ , c λ ∈ R p . Let M := max{λ 1 + • • • + λ N , c λ = 0}
. We can write P = P 1 + P 2 with

P 1 := λ1+•••+λ N =M c λ X λ .
There exists (β 1 , . . . , β N ) ∈ {0, . . . , p -1} N with β 1 + • • • + β N = M -1 and

P ′ := ∂ β1 1 • • • ∂ β N N P = N i=1 c ′ i X i + c ′ 0 ∈ S \ {0}, c ′ 0 , c ′ 1 , . . . , c ′ N ∈ R p ,
where

∂ β1 1 • • • ∂ β N N P 1 = N i=1 c ′ i X i , ∂ β1 1 • • • ∂ β N N P 2 = c ′ 0 .
If (case 1) the polynomials c ′ 1 , . . . , c ′ N are all in U , then we are done. Otherwise, (case 2), there exists i such that c ′ i is non-constant (its degree in X j is then ≥ p for some j). Now, c ′ i = ∂ i P ′ belongs to (R p ∩ S) \ {0} and there exists s > 0 with c ′ i = P ′′p s with P ′′ ∈ S which is not a p-th power. We have constructed an element P ′′ of S which is not a p-th power, whose degrees in X j are all strictly smaller than those of P for all j (if the polynomial depends on X j ).

We can repeat this process with P ′′ at the place of P and so on. Since at each stage we get a polynomial P ′′ with partial degrees in the X j strictly smaller than those of P for all j (if P ′′ depends on X j ), we eventually terminate with a polynomial P which has all the partial degrees < p in the indeterminates on which it depends, for which the case 1 holds.

As for the statement on the field W , we remark that we have applied to P an algorithm which constructs G from P applying finitely many partial derivatives and p-th roots extractions successively, the only operations bringing out of the field W being p-root extractions. Hence, the existence of the integer M is guaranteed.

We denote by U 0 the subfield of U whose elements are the x ∈ U such that α(x) = x. Let V be a subgroup of U × such that V \ V p = ∅.

Proposition 1.2 Under the hypotheses of Proposition 1.1, let us assume that for all

A ∈ V \ {1}, the only solution x ∈ U of α(x) = Ax is zero and that A 1 , . . . , A N ∈ V \ V p . Then, the polynomial G ∈ R given by this Proposition is of the form G = i c i X i + c 0 with c 1 , . . . , c N ∈ U 0 and c 0 ∈ U . Moreover, if c i , c j = 0 for 1 ≤ i < j ≤ N , then A i = A j .
Let I be the non-empty subset of {1, . . . , N } whose elements i are such that c i = 0, let A i = A for all i ∈ I. Then,

c 0 = α(c 0 ) A + 1 A i∈I c i B i . Proof. Proposition 1.1 gives us a polynomial G with G/G ∈ R, of the form i c i X i + B p with c i ∈ U not all vanishing and B ∈ R. Let dX pλ be a monomial of maximal degree in B p . Since G = QG with Q ∈ U × , we have α(d) = (A λ1 1 • • • A λ N N ) -p Qd. Moreover, α(c i ) = A -1 i Qc i for all i. Hence, if i is such that c i = 0, r := d/c i satisfies α(r) = A i (A λ1 1 • • • A λ N N ) -p r. Now, A i (A λ1 1 • • • A λ N N ) -p = 1 (because A i ∈ V \ V p
) and r = 0, that is d = 0. This shows that B ∈ U . Let us suppose that 1 ≤ i, j ≤ N are such that i = j and c i , c j = 0. Let us write r = c i /c j ; we have α(r) = A j /A i r, from which we deduce r ∈ U 0 in case A j /A i = 1 and r = 0 otherwise. The Proposition is proved dividing i c i X i + B p by c j with j = 0 and by considering the relation P = QP , once observed that Q = A.

2 Direct proof of Theorem 1.

For β ∈ K such that |β| < q q/(q-1) , we will use the formal series in K((t))

L β (t) = β + ∞ i=1 (-1) i β q i (T q -t) • • • (T q i -t) ,
defining holomorphic functions for |t| < q q with L β (T ) = log Car β ( 1 ).

We denote by W one of the following fields:

K, K ∞ , C. For f = i c i t i ∈ W ((t)) and n ∈ Z we write f (n) := i c q n i t i ∈ W ((t)), so that f (-1) = i c 1/q i t i .
We have the functional equation:

L (-1) β (t) = β 1/q + L β (t) t -T .
This implies that L β allows meromorphic continuation to the whole C, with simple poles at the points T q , T q 2 , . . . , T q n , . . . of residue (log Car β) q , (log Car β) q 2 T q 2 -T q , . . . ,

(log Car β) q n (T q n -T q )(T q n -T q 2 ) • • • (T q n -T q n-1 ) . . . . (4) 
Let β 1 , . . . , β m be algebraic numbers with |β| < q q/(q-1) , let us write L i = L βi for i = 1, . . . , m. Let us also consider the infinite product (once a choice of a (q -1)-th root of -T is performed):

Ω(t) = (-T ) -q/(q-1) ∞ i=1 (1 -t/T q i ),
converging everywhere to a entire holomorphic function with zeros at T q , T q 2 , . . ., and write L 0 = -Ω -1 , satisfying the functional equation

L (-1) 0 (t) = L 0 (t) t -T ,
with L 0 (T ) = π, meromorphic with simple poles at the points T q , T q 2 , . . . , T q n , . . ., with residues π q , π q 2 T q 2 -T q , . . . ,

π q n (T q n -T q )(T q n -T q 2 ) • • • (T q n -T q n-1 ) , . . . (5) 
We now prove the following Proposition. 1 Papanikolas uses this series in [START_REF] Papanikolas | Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms[END_REF]. It is also possible to work with the series Proof. The functions L i having infinitely many poles, are transcendental. Without loss of generality, we may assume that m ≥ 1 is minimal so that for all 0 ≤ n ≤ m the functions obtained from the family (L 0 , L 1 , . . . , L m ) discarding L n are algebraically independent over K(t).

We now apply Propositions 1.1 and 1.2. We take U := n≥0 K(t 1/p n ), which is perfect, and α : U → U the q-th root map on K (inverse of the Frobenius map), such that α(t) = t; this is an F q -automorphism. Moreover, we take

N = m + 1, A 1 = • • • = A N = (t -T ) -1 , (B 1 , . . . , B N ) = (0, β 1/q 1 , . . . , β 1/q m ),
and

V = (t -T ) Z . Let T ⊂ C[[t]
] be the subring of formal series converging for all t ∈ C with |t| ≤ 1, let L be its fraction field. Let f ∈ L be non-zero. A variant of Weierstrass preparation theorem (see [1, Lemma 2.9.1]) yields a unique factorisation:

f = λ |a|∞≤1 (t -a) orda(f ) 1 + ∞ i=1 b i t i , (6) 
where 0 = λ ∈ C, sup i |b i | < 1, and |b i | → 0, the product being over a finite index set.

Taking into account [START_REF] Denis | Indépendance algébrique de différents π[END_REF], it is a little exercise to show that U 0 = i≥0 F q (t 1/p i ) and that for A ∈ V \ {1}, the solutions in U of f (-1) = Af are identically zero (for this last statement, use the transcendence over U of Ω). Let P ∈ R be an irreducible polynomial such that P (L 0 , L 1 , . . . , L m ) = 0; we clearly have P = QP with Q ∈ U and Propositions 1.1 and 1.2 apply to give c 1 (t), . . . , c m (t) ∈ U 0 not all zero and c ∈ U such that

c(t) = (t -T )c (-1) (t) + (t -T ) m i=1 c i (t)β 1/q i . (7) 
We get, for all k ≥ 0:

c(t) = - m i=1 c i (t) β i + k h=1 (-1) h β q h i (T q -t)(T q 2 -t) • • • (T q h -t) (8) 
+ c (k+1) (t) (T q -t)(T q 2 -t) • • • (T q k+1 -t)
.

We endow L with a norm • in the following way: if f ∈ L × factorises as in ( 6), then f := |λ|. Let g be a positive integer. Then • extends in a unique way to the subfield L g := {f : f p g ∈ L}. If (f i ) i∈N is a uniformly convergent sequence in L g (on a certain closed ball centered at 0) such that f i → 0, then f i → 0 uniformly. We observe that there exists g ≥ 0 such that c(t), c 1 (t), . . . , c m (t) ∈ L g . Hence c 1 (t), . . . , c m (t) ∈ F q (t 1/p g ) and

c i = 1 if c i = 0. This implies that m i=1 c i β 1/q i ≤ max i {|β 1/q i |} < q 1/(q-1)
. By [START_REF] Denis | Indépendance algébrique des dérivées d'une période du module de Carlitz[END_REF], c ≤ q q/(q-1) . Indeed, two cases occur. The first case when c (-1) ≤ max i {|β 1/q i |}; here we have c < q q/(q-1) because c (-1) = c 1/q by (6) and max i {|β i |} < q q/(q-1) by hypothesis. The second case when c (-1) > max{|β

1/q 1 |, . . . , |β 1/q m |}. In this case, max{ c (-1) (t -T ) , (t -T ) m i=1 c i (t)β 1/q i } = c (-1
) (t -T ) which yields c = q q/(q-1) by [START_REF] Denis | Indépendance algébrique des dérivées d'une période du module de Carlitz[END_REF].

Going back to [START_REF] Denis | Indépendance algébrique de logarithmes en caractéristique p[END_REF] we see that the sequence of functions

E h (t) = c (h+1) (t) (T q -t)(T q 2 -t) • • • (T q h+1 -t)
converges uniformly in every closed ball included in {t : |t| < q q }, as the series defining the functions L i (i = 1, . . . , m) do. We want to compute the limit of this sequence: we have two cases.

First case. We assume that c < q q/(q-1) ; there exists ǫ > 0 such that c = q (q-ǫ)/(q-1) . Then, for all h ≥ 0, c (h+1) = c q h+1 = q (q h+2 -ǫq h+1 )/(q-1) . On the other side:

(T q -t)(T q 2 -t) • • • (T q h+1 -t) = |T | q+•••+q h+1
= q q(q h+1 -1)/(q-1) .

Hence,

E h = q q h+2 -ǫq h+1 q-1 -q h+2 -q q-1 = q q-ǫq h+1 q-1 → 0,
which implies E h → 0 (uniformly on every ball as above). This means that m i=1 c i (t)L i (t)+ c(t) = 0. Let g be minimal such that there exists a non-trivial linear relation as above, with c 1 , . . . , c m ∈ U 0 ∩ L g ; we claim that g = 0. Indeed, if g > 0, c 1 , . . . , c m ∈ F q and there exists a non-trivial relation

m i=1 d i (t)L i (t) p g + d(t) = 0 with d 1 , . . . , d m ∈ F q [t
] not all zero, d(t) ∈ K(t) and max i {deg t d i } minimal, non-zero. But letting the operator d/dt act on this relation we get a non-trivial relation with strictly lower degree because dF p /dt = 0, leading to a contradiction.

Hence, = 0 and c 1 , . . . , c m ∈ F q (t). This also implies that c ∈ K; multiplying by a common denominator, we get a non-trivial relation

m i=1 c i (t)L i (t) + c(t) = 0 with c 1 , . . . , c m ∈ F q [t
] and c ∈ K(t). The function c being algebraic, it has finitely many poles. means that

m i=1 c i (t)L i (t)
has finitely many poles but for all i, L i has poles at T q , T q 2 , . . . with residues as in (4), which implies that m i=1 c i (t)L i (t) has poles in T q , T q 2 , . . .. Since the functions c i belong to F q [t], they vanish only at points of absolute value 1, and the residues of the poles are multiples of m i=0 c i (T ) q k (log Car β i ) q k (k ≥ 1) by non-zero factors in A. They all must vanish: this happens if and only if m i=1 c i (T ) log Car β i = 0, where we also observe that c i (T ) ∈ K; the Proposition follows in this case.

Second case. Here we know that the sequence E h converges, but not to 0 and we must compute its limit. Let ν be in C with |ν| = 1. Then, there exists µ ∈ F q × , unique such that |ν -µ| < 1. Hence, if λ ∈ C is such that |λ| = q q/(q-1) , there exists µ ∈ F q × unique with |λµ(-T ) q/(q-1) | < q q/(q-1) .

We have:

c(t) = λ |a|≤1 t 1/p g -a ordac   1 + i≥1 b i t i/p g   ,
with λ ∈ C × , the product being finite and |b i | < 1 for all i so that c = |λ|. Let µ ∈ F q × be such that (9) holds, and write:

c 1 (t) = (λ -µ(-T ) q/(q-1) ) |a|≤1 t 1/p g -a ordac   1 + i≥1 b i t i/p g   , c 2 (t) = µ(-T ) q/(q-1) |a|≤1 t 1/p g -a ordac   1 + i≥1 b i t i/p g   , (10) 
so that c(t) = c 1 (t) + c 2 (t), c 1 < q q/(q-1) and c 2 = q q/(q-1) . For all h, we also write:

E 1,h (t) = c (h+1) 1 (t) (T q -t)(T q 2 -t) • • • (T q h+1 -t) , E 2,h (t) = c (h+1) 2 (t) (T q -t)(T q 2 -t) • • • (T q h+1 -t)
.

Following the first case, we easily check that E 1,h (t) → 0 on every closed ball of center 0 included in {t : |t| < q q }. It remains to compute the limit of E 2,h (t). We look at the asymptotic behavior of the images of the factors in [START_REF] Kubota | On the algebraic independence of holomorphic solutions of certain functional equations and their values[END_REF] under the operators f → f (n) , n → ∞. The sequence of functions (1+ i≥1 b i t i/p g ) (n) converges to 1 for n → ∞ uniformly on every closed ball as above. Let E be the finite set of the a's involved in the finite product [START_REF] Kubota | On the algebraic independence of holomorphic solutions of certain functional equations and their values[END_REF], take a ∈ E. If |a| < 1, then a (n) → 0 and (t 1/p ga) (n) → t 1/p g . If |a| = 1, there exists µ a ∈ F q × such that |aµ a | < 1 and we can find n a > 0 integer such that lim s→∞ a (sna) = µ a , whence lim s→∞ (t 1/p ga) (sna) = t 1/p gµ a . Let us also denote by ñ > 0 the smallest positive integer such that µ q ñ = µ. Let N be the lowest common multiple of ñ and the n a 's with a varying in E. Then the sequence of functions:

    |a|≤1 t 1/p g -a ordac     1 + i≥1 b i t i/p g     (N s)
, s ∈ N converges to a non-zero element Z of F q (t 1/p g ) ∈ U .

For n ∈ N, let us write:

V n (t) := µ q n (-T ) q n+1 /(q-1) (T qt)(T q 2t) • • • (T q n+1t) .

We have:

(-T ) q/(q-1) n+1 i=1 1 - t T q i -1
= (-1) q/(q-1) T q/(q-1)

T (q+•••+q n+1 ) n+1 i=1 (T q i -t) -1
= (-1) q/(q-1) T q n+2 /(q-1) n+1 i=1

(T q i -t) -1 .
Hence lim n→∞ T q/(q-1) /((T q -t)(T q 2 -t) • • • (T q n+1 -t)) -1 = Ω(t) -1 from which we deduce that lim s→∞ E 2,sN (t) = c 0 (t)L 0 (t) with c 0 ∈ F q × (t 1/p g ). We have proved that for some

c 1 , . . . , c m ∈ F q (t 1/p g ), c 0 ∈ F q (t 1/p g ) × and c ∈ K(t 1/p g ), m i=0 c i L i + c = 0.
Applying the same tool used in the first case we can further prove that in fact, g = 0. If c 0 is not defined over F q , then applying the operator f → f (-1) we get another non-trivial relation

c ′ 0 + m i=1 c i L i = c ′ with c ′ ∈ K(t) and c ′ 0 ∈ F q × (t) not equal to c 0 ; subtracting it from the former relation yields L 0 ∈ K(t) which is impossible since Ω is transcendental over C(t). Hence c 0 ∈ F q (t) too.
Multiplying by a common denominator in F q [t] and applying arguments of the first case again (by using the explicit computation of the residues of the poles of L 0 at T q , T q 2 , . . .), we find a non-trivial relation c 0

(T )π + m i=1 c i (T ) log Car β i = 0.
Proof of Theorem 1. If ℓ ∈ C is such that e Car (ℓ) ∈ K, then there exist a, b ∈ A, β ∈ K with |β| < q q/(q-1) such that ℓ = a log Car β + bπ. This well known property (also used in [START_REF] Papanikolas | Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms[END_REF], see Lemma 7.4.1), together with Theorem 3.1.1 of [START_REF] Anderson | Determination of the algebraic relations among special Γ-values in positive characteristic[END_REF], implies Theorem 1.

3 Direct proof of Theorem 2.

Let s ≥ 1 be an integer and let Li n denote the s-th Carlitz's polylogarithm:

Li s (z) = ∞ k=0 (-1) ks z q k ([k][k -1] • • • [1]) n ,
so that Li 1 (z) = log Car (z) (the series Li s (z) converges for |z| < q sq/(q-1) ).

For β ∈ K ∩ K ∞ such that |β| < q sq/(q-1) , we will use as in [START_REF] Denis | Indépendance algébrique de logarithmes en caractéristique p[END_REF] the series

F s,β (x) = β(x) + ∞ i=1 (-1) is β(x) q i (x q -T ) s • • • (x q i -T ) s ,
where β(x) is the formal series in F q ((1/x)) obtained from the formal series of β ∈ F q ((1/T )) by replacing T with x, an independent indeterminate. These series define holomorphic functions for |x| > q 1/q allowing meromorphic continuations to the whole C \ {0}, with poles at the points T 1/q i . We have the functional equations:

F s,β (x q ) = (x q -T ) s (F s,β (x) -β(x)), moreover, F s,β (T ) = β j + ∞ i=1 (-1) i β q i (T q -T ) s • • • (T q i -T ) s = Li s (β).
Let J be a finite non-empty subset of {1, 2, . . .} such that if n ∈ J , p does not divide n. Let us consider, for all s ∈ J , an integer l s ≥ 1 and elements β s,1 , . . . , β s,ls ∈ K ∩ K ∞ with |β s,i | < q qs/(q-1) (i = 1, . . . , l s ). We remark that if s is divisible by q -1 then, for all r > q 1/q the product:

(-x) sq/(q-1) ∞ i=1 1 - T x q i -s
converges uniformly in the region {x ∈ C, |x| ≥ r} to a holomorphic function F s,0 (x), which is the (q -1)-th power of a formal series in K((1/(-x) 1/(q-1) )), hence in K((1/x)). Moreover, F s,0 (T ) = π s .

Proposition 3.1 If the functions (F s,βs,1 , . . . , F s,β s,ls ) s∈J are algebraically dependent over K(x), there exists s ∈ J and a non-trivial relation

ls i=1 c i F s,βs,i (x) = f (x) ∈ K(x)
with c 1 , . . . , c ls ∈ K if q -1 does not divide s, or a non-trivial relation:

ls i=1 c i F s,βs,i (x) + λF s,0 (x) = f (x) ∈ K(x)
with c 1 , . . . , c ls , λ ∈ K if q -1 divides s. In both cases, non-trivial relations can be found with c 1 , . . . , c ls , λ ∈ A.

Proof. Without loss of generality, we may assume that J is minimal so that for all n ∈ J and i ∈ {1, . . . , l n } the functions obtained from the family (F s,βs,1 , . . . , F s,β s,ls ) s∈J F n,βn,1 are algebraically independent over K(x). We want to apply Propositions 1.1 and 1.2. We take U := n≥0 K(x 1/p n ), which is perfect, and α : U → U the identity map on K and such that α(x) = x q . We also take:

(X 1 , . . . , X N ) = (Y s,1 , . . . , Y s,ls ) s∈J , (A 1 , . . . , A N ) = ((x q -T ) s , . . . , (x q -T ) s lstimes ) s∈J , (B 1 , . . . , B N ) = ( β s,1 (x), . . . , β s,ls (x)) s∈J .
We take V = (x q -T ) Z . We have U 0 = K and for A ∈ V \ {1}, the solutions of f (x q ) = Af (x) are identically zero as one sees easily writing down a formal power series for f ∈ U at infinity.

Let P ∈ R be an irreducible polynomial such that P ((F s,βs,1 , . . . , F s,β s,ls ) s∈J ) = 0; we clearly have P = QP with Q ∈ U and Propositions 1.1 and 1.2 apply. They give s ∈ J , c 1 , . . . , c ls ∈ K not all zero and c 0 ∈ U such that

c 0 (x) = c 0 (x q ) (x q -T ) s - 1 (x q -T ) s ls i=1 c i β s,i (x). (11) 
We now inspect this relation in more detail. To the notations, we write l s = m and F i (x) := F s,βs,i (i = 1, . . . , m). Since β(x) q = β(x q ) for all β ∈ K, from (11) we get, for all k ≥ 0:

c 0 (x) = - m i=1 c i β i (x) + k h=1 (-1) hs β i (x) q h ((x q -T )(x q 2 -T ) • • • (x q h+1 -T )) s (12) 
+ c 0 (x q k+1 ) ((x q -T )(x q 2 -T ) • • • (x q k+1 -T )) s .
By Proposition 1.1, there exists M > 0 such that c 0 (x) q M ∈ K(x), which implies that c 0 (x q M ) ∈ K(x). Indeed, the expansion of c 0 (x) q M in K((1/x)) is ultimately periodic if and only if the expansion of c 0 (x q M ) is ultimately periodic. By equation [START_REF] Pellarin | Aspects de l'indépendance algébrique en caractéristique non nulle[END_REF] we see that c 0 (x) ∈ K(x).

We write c 0 (x) = i≥i0 d i x -i with d i ∈ K. The sequence (|d i |) i is bounded; let κ be an upper bound. If x ∈ C is such that |x| ≥ r > q 1/q with r independent on x, then |c 0 (x)| = sup i |d i ||x| -i ≤ κ sup i |x| -i ≤ κ|x| deg x c0 . Moreover, for |x| > r with r as above, |x| q s > |T | = q for all s ≥ 1 so that |x q s -T | = max{|x| q s , |T |} = |x| q s . Hence we get:

|(x q -T )(x q 2 -T ) • • • (x q k+1 -T )| = |x| q+q 2 +•••+q h+1 = |x| q(q k+1 -1) q-1 .
Let us write:

R k (x) := c 0 (x q k+1 ) ((x q -T )(x q 2 -T ) • • • (x q k+1 -T )) s .
We have, for |x| ≥ r > q 1/q and for all k:

|R k (x)| ≤ κ|x| q k+1 deg x c0-sq(q k+1 -1) q-1 . ( 13 
)
Since |β i | < q sq/(q-1) , deg x β i (x) < sq/(q-1) for all i. In [START_REF] Papanikolas | Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms[END_REF] we have two cases: one if deg x (c 0 (x q )/(Tx q ) s ) ≤ max i {deg x β i }, one if deg x (c 0 (x q )/(Tx q ) s ) > max i {deg x β i }.

In the first case we easily see that deg x c 0 < sq/(q-1) (notice that deg x c 0 (x q ) = q deg x c 0 ). In the second case, deg x c 0 = q deg x c 0sq which implies deg x c 0 = sq/(q -1).

First case. Here, there exists ǫ > 0 such that deg x c 0 = (sqǫ)/(q -1). We easily check (assuming that |x| ≥ r > q 1/q ):

|R k (x)| ≤ κ|x| sq-ǫ q-1 q k+1 - sq(q k+1 -1) q-1 ≤ κ|x| sq-ǫq k+1 q-1
and the sequence of functions (R k (x)) k converges uniformly to zero in the domain {x, |x| ≥ r} for all r > q 1/q . Letting k tend to infinity in [START_REF] Pellarin | Aspects de l'indépendance algébrique en caractéristique non nulle[END_REF], we find i c i F i (x) + c 0 (x) = 0; that is what we expected.

Second case. In this case, the sequence |R k (x)| is bounded but does not tend to 0. Notice that this case not occur if q -1 does not divide s, because c 0 ∈ K(x) and its degree is a rational integer. Hence we suppose that q -1 divides s.

Let us write: c 0 (x) = λx sq/(q-1) + i>sq/(q-1)

d i x i , with λ ∈ K × . We have lim k→∞ i>sq/(q-1) d i x q k i ((x q -T )(x q 2 -T ) • • • (x q k+1 -T )) s = 0
(uniformly on |x| > r > q 1/q ), as one checks easily by following the first case.

For all k ≥ 0 we have:

(-x) sq/(q-1) k+1 i=1 1 -T x q i -s = (-1) sq/(q-1) x sq/(q-1) x s(q+•••+q k+1 ) k+1 i=1 (x q i -T ) -s = (-1) sq/(q-1) x sq k+2 /(q-1) k+1 i=1 (x q i -T ) -s .

Hence we have lim k→∞ λx sq/(q-1) /((x q -T )(x q 2 -T ) • • • (x q k+1 -T )) s = λF s,0 (x) and i c i F i (x) + λF s,0 (x) + c 0 (x) = 0. We now prove the last statement of the Proposition: this follows from an idea of Denis. The proof is the same in both cases and we work with the first only. There exists a ≥ 0 minimal such that the p a -th powers of c 1 , . . . , c ls are defined over the separable closure K sep of K. The trace K sep → K can be extended to formal series K sep ((1/x)) → K((1/x)); its image does not vanish. We easily get, multiplying by a denominator in A, a non-trivial relation

i b i F i (x) q a + b 0 (x) = 0 with b i ∈ A and b 0 (x) ∈ K(x).
If the coefficients b i are all in F q , this relation is the p a -th power of a linear relation as we are looking for. If every relation has at least one of the coefficients b i not belonging to F q , the one with max i {deg T b i } and a minimal has in fact a = 0 (otherwise, we apply the operator d/dT to find one with smaller degree, because dg p a /dT = 0 if a > 0).

We need a criterion of algebraic independence by Denis in [START_REF] Denis | Indépendance algébrique de différents π[END_REF][START_REF] Denis | Indépendance algébrique des dérivées d'une période du module de Carlitz[END_REF] that we quote here for convenience of the reader.

Theorem 3 Let L ⊂ K be a finite extension of K. We consider f 1 , . . . , f m holomorphic functions in a domain |x| > r ≥ 1 with Taylor's expansions in L((1/x)). Let us assume that there exist elements a i , b i ∈ L(x) (i = 1, . . . , m) such that

f i (x) = a i (x)f i (x q ) + b i (x), 1 ≤ i ≤ m. Let x 0 ∈ L, |x 0 | > r,
such that for all n, x q n 0 is not a zero of any of the functions a i and is not a pole of any of the functions b i .

If the series f 1 , . . . , f m are algebraically independent over K(x), then the numbers f 1 (x 0 ), . . . , f m (x 0 ) are algebraically independent.

The next step is the following Proposition. Proof. By Theorem 3, the functions F s,i (s ∈ J , 1 ≤ i ≤ l s ) are algebraically dependent over K(t). Proposition 3.1 applies and gives s ∈ J as well as a non-trivial linear dependence relation. If q -1 does not divide s, by Proposition 3.1 there exists a non-trivial relation

ls i=1 c i F s,βs,i (x) = f (x) ∈ K(x)
with c 1 , . . . , c ls ∈ A. We substitute x = T in this relation:

ls i=1 c i Li s (β s,i ) = f ∈ K.
After [START_REF] Anderson | Tensor powers of the Carlitz module and zeta values[END_REF] pp.172-176, for all x ∈ C such that |x| < q qs/(q-1) , there exist . . .

v 1 (x), . . . , v s-1 (x) ∈ C such that      0 . . . 0 x      = exp s      v 1 (x) . . . v s-1 (x) Li s (x)      ,
w s-1 c      ∈ K s .
Yu's sub-t-module Theorem (in [START_REF] Yu | Analytic homomorphisms into Drinfeld modules[END_REF]) implies the following analogue of Hermite-Lindemann's Theorem. Let G = (G s a , φ) be a regular t-module with exponential function e φ , with φ(g) = a 0 (g)τ 0 + • • •, for all g ∈ A. Let u ∈ C s be such that e φ (u) ∈ G s a (K). Let V the smallest vector subspace of C s containing u, defined over K, stable by multiplication by a 0 (g) for all g ∈ A. Then the F q -subspace e φ (V ) of C s equals H(C) with H sub-t-module of G.

This result with G the s-th twist of Carlitz's module and e φ = exp s implies the vanishing of c and the K-linear dependence of the numbers Li s (β s,1 ), . . . , Li s (β s,ls ).

If q -1 divides s then by Proposition 3.1 there exists a non-trivial relation ls i=1 c i F s,βs,i (x) + λF s,0 (x) = f (x) ∈ K(x) with c 1 , . . . , c ls , λ ∈ K. We substitute x = T in this relation: Proof of Theorem 2. To deduce Theorem 2 from Proposition 3.2 we quote Theorem 3.8.3 p. 187 of Anderson-Thakur in [START_REF] Anderson | Tensor powers of the Carlitz module and zeta values[END_REF]. For all i ≤ nq/(q -1) there exists h n,i ∈ A such that if we set

P n := i φ ⊗n Car (h n,i )      0 . . . 0 T i      ,
then the last coordinate P n is equal to Γ(n)ζ(n) (where Γ(n) denotes Carlitz's arithmetic Gamma function). Moreover, there exists a ∈ A \ {0} with φ ⊗n Car (a)P n = 0 if and only if q -1 divides n. This implies that

Γ(n)ζ(n) = [nq/(q-1)] i=0 h n,i Li n (T i ).
The numbers h n,i are explicitly determined in [START_REF] Anderson | Tensor powers of the Carlitz module and zeta values[END_REF]. In particular, one has ζ(s) = Li s (1), s = 1, . . . , q -1.

We apply Theorem 3 and Proposition 3.2 with J = J ♯ ∪ {q -1}, J ♯ being the set of all the integers n ≥ 1 with p, q -1 not dividing n, l q-1 = 1, β q-1,1 = 1, and for s ∈ J ♯ , (β 1 , . . . , β ls ) = (T i0 , . . . , T im s ), where the exponents 0 ≤ i 0 < • • • < i ms ≤ sq/(q -1) are chosen so that ζ(s) ∈ KLi s (1) + • • • + KLi s (T [sq/(q-1)] ) = KLi s (T i0 ) ⊕ • • • ⊕ KLi s (T im s ).
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