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SPREADING FUNCTION REPRESENTATION OF OPERATORS

AND GABOR MULTIPLIER APPROXIMATION

MONIKA DÖRFLER AND BRUNO TORRÉSANI

Abstract. Modification of signals in the time-frequency domain are used in

many applications. However, the modification is often restricted to be purely
multiplicative. In this paper, it is shown that, in the continuous case, a quite
general class of operators can be represented by a twisted convolution in the

short-time Fourier transform domain. The discrete case of Gabor transforms
turns out to be more intricate. A similar representation will however be de-
rived by means of a special form for the operator’s spreading function (twisted
spline type function). The connection between STFT- and Gabor-multipliers,

their spreading function and the twisted convolution representation will be
investigated. A precise characterization of the best approximation and its ex-
istence is given for both cases. Finally, the concept of Gabor multipliers is
generalized to better approximate “overspread” operators.

1. Introduction

Time-frequency expansions have been shown to provide extremely efficient rep-
resentations for functions and distributions, and found many relevant applications,
notably in signal processing. Efficient representation of linear operators in the
time-frequency domain still remains a difficult challenge. Many theoretical results
have been obtained, but these have only had little practical impact so far. We
here address this problem from a slightly different point of view, emphasizing the
geometrical aspects of short time Fourier and Gabor transforms.

It is well known that twisted convolution plays a central role as soon as functions
and operators are studied directly on the phase space. We first show that the
spreading function representation of Hilbert-Schmidt operators is equivalent to a
representation by left twisted convolution in the STFT domain. Unfortunately,
such a remark does not hold true any more when the STFT is discretized, i.e.
replaced with a Gabor transform.

Gabor multipliers are often proposed as an efficient alternative for time-frequency
operator representation. It is well known that for “nice operators”, i.e. operators
that do not involve time-frequency shifts of large magnitude, Gabor multipliers
can provide accurate approximations. We show that for more general operators
suitable generalizations of Gabor multipliers may still provide good approximation.
We mainly propose two possible extensions. In the first one, the analyzed operator is
approximated by a linear combination of adapted Gabor multipliers, and when the
latter are given on a suitably chosen lattice in the time-frequency plane, the question
of optimal approximation (in Hilbert-Schmidt sense) may be well formulated.

In the second extension, an adaptation of the synthesis window to the analyzed
operator is proposed, while the time-frequency transfer function is fixed. In both
situations, the final result reveals interesting connections to twisted convolution.
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2. The Weyl-Heisenberg group, Time-frequency representations

Classical time-frequency analysis is based on translation and modulation opera-
tors, which generate the Weyl-Heisenberg group. Even though the group theoretical
language may be completely avoided in most applications and theoretical develop-
ments, it is nevertheless interesting to trace back some tools which play a central
role in Gabor theory (including covariance issues, and twisted convolution) to their
algebraic origins.

2.1. Preliminaries: the Weyl-Heisenberg group and its unitary repre-

sentations. We start by briefly reviewing the main results concerning the Weyl-
Heisenberg group and its representation theory that will be of interest here. We
refer the interested reader to [5, 11] for a more thorough analysis.

Classical time-frequency analysis rests on translation operators Tb and modula-
tion operators Mν , defined by

Tbf(t) = f(t− b) , Mνf(t) = e2iπνtf(t) , f ∈ L2(R) ,

and the corresponding time-frequency shifts π(b, ν) = MνTb, which satisfy the
canonical commutation relations

MνTb = e2iπνbTbMν .

These operators generate a three-parameter Lie group, called the (reduced) Weyl-
Heisenberg group1

H.

(1) H = {(b, ν, ϕ) ∈ R × R × [0, 1]} ,

with group multiplication

(2) (b, ν, ϕ)(b′, ν′, ϕ′) = (b+ b′, ν + ν′, ϕ+ ϕ′ − ν′b) .

The zero element is clearly e = (0, 0, 0), and the inverse operation is (b, ν, ϕ)−1 =
(−b,−ν,−ϕ−bν). The group H is unimodular, i.e. its two Haar measures coincide,
and read

(3) dµ(b, ν, ϕ) = db dν dϕ .

The left regular representation of H on L2(H) takes the following form:
(4)
L(b′, ν′, ϕ′)F (b, ν, ϕ) = F

(
(b′, ν′, ϕ′)−1(b, ν, ϕ)

)
= F (b−b′, ν−ν′, ϕ−ϕ′+b′(ν−ν′)) .

The unitary dual Ĥ of H (i.e. the set of unitary equivalence classes of irreducible
unitary representations of H) has the following form

Ĥ ≃ R
2 ∪ Z

∗ ,

with Z
∗ = Z\{0}. The R

2 part consists of the unitary characters χα,β , α, β ∈ R

χα,β(b, ν, ϕ) = e2iπαbe2iπβν ,

while the Z
∗ part consists in a series of representations πλ on Hλ ≃ L2(Rd):

(5) πλ(b, ν, ϕ)f(t) = e2iπλ[ϕ+νt]f(t− b) .

In other terms,
πλ(b, ν, ϕ) = e2iπλϕMλνTb ,

1Notice that there exist other versions of the Weyl-Heisenberg group, including a more sym-
metric one generated by time-frequency shifts Mν/2TbMν/2, and another one often used in signal

processing, generated by time-frequency shifts TbMν .
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The representations πλ, which form the so-called discrete series, may be shown to
be square-integrable, i.e. such that there exist g ∈ Hλ such that

0 <

∫

H

|〈πλ(h)g, g〉|
2
dµ(h) <∞ .

It follows (see [7, 8] and references therein) that the integral transform Vg, defined
by

(6) f ∈ Hλ 7−→ Vgf =
1

‖g‖
〈f, πλ(·)g〉 ∈ L2(H)

maps isometrically Hλ to L2(H).

2.2. More details on Ĥ and Vg. The dual Ĥ of the Weyl-Heisenberg group H

and the integral transform Vg turn out to be closely connected, as we outline next.
Classical L2 Fourier series theory yields the following

Lemma 1. For F ∈ L2(H), the mapping F → {Fℓ, ℓ ∈ Z} defined by

(7) Fℓ(b, ν, ϕ) = e2iπℓϕFℓ(b, ν, 0) = e2iπℓϕ
∫ 1

0

F (b, ν, α)e−2iπℓα dα

establishes a bijective isometry

L2(H) ≃
⊕

ℓ∈Z+

Eℓ

where

(8) Eℓ =
{
F ∈ L2(H), F (b, ν, ϕ) = e2iπℓϕFℓ(b, ν, 0)

}
≃ L2(R2) .

Hence, we have for all F ∈ L2(H)

(9) F (b, ν, ϕ) =

∞∑

ℓ=−∞

Fℓ(b, ν, ϕ) =

∞∑

ℓ=−∞

Fℓ(b, ν, 0)e2iπℓϕ

and ∫

G

|F (b, ν, ϕ)|2dµL(b, ν, ϕ) =
∞∑

ℓ=−∞

‖Fℓ‖
2
L2(R2) .

In addition, we immediately get

Lemma 2. Let πλ be an irreducible unitary representation in the discrete series of

Ĥ, g ∈ H and let Vg be defined as above in (6). Then Vgx ∈ E−λ.

From now on, we shall limit ourselves to the case λ = 1, i.e. Vgx ∈ E−1 for all x ∈
L2(R). We denote by π = π1 the corresponding irreducible unitary representation
of H on H−1, and identify the latter with L2(R).

2.3. Twisted convolution and Plancherel transform. The left convolution
on the Weyl-Heisenberg group induces a twisted convolution product on E−1, as
follows. Let F,G ∈ E−1. Then

F ∗G(b, ν, ϕ) =

∫
F (b′, ν′, ϕ′)G(b− b′, ν − ν′, ϕ− ϕ′ + b′(ν − ν′))db′dν′dϕ′

= e−2iπ[ϕ′+b′(ν−ν′)]

∫

R2

F (b′, ν′, 0)G(b− b′, ν − ν′, 0)e−2iπb′(ν−ν′) db′dν′

= e−2iπϕ′

F ∗G(b, ν, 0) .
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Therefore, F∗G ∈ E−1. In addition, identifying E−1 with L2(R2) yields the following
twisted convolution product on L2(R2) (see [4] for more details)

(10) (F♮G)(b, ν) =

∫

R2

F (b′, ν′)G(b− b′, ν − ν′)e−2iπb′(ν−ν′) db′dν′ .

The Plancherel transform may be seen as a generalization of usual Fourier trans-
form to more general groups. In the case of the Heisenberg group, the Plancherel
transform associates with any function F ∈ L2(H) the operator valued function on

Ĥ defined by

(11) F̂ : σ ∈ Ĥ 7−→ F̂ (σ) =

∫

H

f(h)σ(h) dµ(h) ,

the equality being understood in the weak operator sense. In the particular case
σ = π, identifying again E−1 with L2(R2) one may associate with any F ∈ L2(R2)

the operator valued function F̂ (π) defined as

(12) F̂ (π)f =

∫
∞

−∞

∫
∞

−∞

F (b, ν)MνTbf dbdν , f ∈ L2(R)

2.4. Connection to short time Fourier transform. Given the representation
of the Weyl-Heisenberg group π = π1 (see Eq. (5)), and g ∈ L2(R), ‖g‖ = 1, define
the short time Fourier transform (STFT, also called continuous Gabor transform,
CGT) Vgx ∈ L2(R2) of x ∈ L2(R) by

(13) Vgx(b, ν) = 〈x, π(b, ν, 0)g〉 = 〈x,MνTbg〉 ,

where by an abuse of notation we have identified E−1 with L2(R2).2 Then it is a
well known fact that the image of L2(R2) by Vg is a proper subspace Kg of L2(R2),
consisting of solutions of the kernel equation

Kg =

{
F ∈ L2(R2), F (b, ν) =

∫
F (b′, ν′)〈π(b′, ν′)ψ, π(b, ν)ψ〉 db′dν′ ,∀b, ν ∈ R

}
.

The following result is proved by direct calculations. We denote by H the set of
Hilbert-Schmidt operators on L2(R).

Proposition 1. The short time Fourier transform intertwines twisted convolution
and action of Hilbert-Schmidt operators on L2(R). More precisely, let F ∈ L2(R2).

(1) There exists a linear operator HF = F̂ (π1) ∈ H such that

(14) F♮Vgx = VgHFx .

Therefore, F♮Vgx ∈ Kg.
(2) The linear operator HF ∈ H also satisfies

Vgx♮F = VH∗

F
gx .

Remark 1. The consequence of this result is the fact that the image of the STFT
of a signal x ∈ L2(Rd) by a twisted convolution with some function of two variables
is itself the STFT of some signal HFx: Kg is invariant under left twisted convolu-
tion. Similarly, right twisted convolution of Vgx with some function yields another

2Notice that this transform is only modulation covariant, i.e. VψMν0x(b, ν) = Vψx(b, ν +
ν0), but not translation-covariant, i.e. VψTb0x(b, ν) 6= Vψ(b + b0, ν). The other non-symmetric
version of the Weyl-Heisenberg group yields a waveform transform that is shift-covariant, but not

modulation covariant.
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STFT of x with respect to a different window: right twisted convolution maps the
reproducing kernel space Kg to the reproducing kernel space KH∗

F
g.

The Gabor transform (see for example [6] for a review) is defined as a sampled
version of the STFT. Given two constants a0, ν0 ∈ R

+, the corresponding Gabor
transform associates with any f ∈ L2(R) the sequence of Gabor coefficients

(15) Vgf(mb0, nν0) = 〈f,Mnν0Tmb0g〉 = 〈f, gmn〉 ,

the functions gmn = Mnν0Tmb0g being the Gabor atoms associated with g and the
lattice constants b0, ν0. Under suitable assumptions, the Gabor transform is left
invertible, and there exists h ∈ L2(R) such that any f may be expanded as

(16) f =
∑

m,n

Vgf(mb0, nν0)hmn .

Proposition 1 does not have any simple analogue if STFT is replaced with Ga-
bor transform. However, connections between Gabor representations of Hilbert-
Schmidt operators and twisted convolutions will appear below.

3. Spreading function and twisted convolution operator
representation

3.1. The continuous case. Let H ∈ H , the class of Hilbert-Schmidt operator
on L2(R). Then there exists a function η = ηH ∈ L2(R2), called the spreading
function (see for example [6] and references therein), such that 3

(17) H =

∫
∞

−∞

∫
∞

−∞

η(b, ν)π(b, ν) dbdν .

Such a representation turns out to be closely related to the twisted convolution,
defined in (10) above.

Our first remark is the fact that the spreading function representation of the op-
erator H ∈ H actually takes the form of a twisted convolution in the (continuous)
time-frequency domain. η be its spreading function. Indeed, the following result [1]
is a direct consequence of Proposition 1, that follows from the comparison of the
spreading function representation with the Plancherel transform (12).

Theorem 1. Let H ∈ H , with spreading function ηH . Let g, h ∈ L2(R) be such
that 〈g, h〉 = 1. Then H may be realized as a left twisted convolution in the time-
frequency domain: for all f ∈ L2(R),

(18) Hf =

∫
∞

−∞

∫
∞

−∞

(ηH♮Vgf) (b, ν)MνTbh dbdν .

An immediate consequence is the fact, that the range of Vg is invariant under
left twisted convolution.

Remark 2. Again, let us notice that no simple analogue of this expression is avail-
able when the STFT is replaced with the Gabor transform. Replacing the integrals
with discrete sums does not yield simple operators.

3Here, this representation must be interpreted in the weak sense. More general, the spreading
representation can be given an interpretation for η ∈ S′, i.e. , if the spreading function is a
tempered distribution. For more regular spreading functions, e.g., η ∈ L

1, the integral is absolutely

convergent in operator norm.
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3.2. The discrete Heisenberg group. Although the focus of the present article
is not on discrete groups, let us shortly mention that the above discussion applies
almost directly to the case of the discrete Weyl-Heisenberg group

HN = ZN × ZN × ZN ,

with group law

(m,n, ϕ)(m′, n′, ϕ′) = (m+m′, n+ n′, ϕ+ ϕ′ − n′b) ,

all operations being understood modulo N .

The unitary dual ĤN has a structure similar to that of H:

ĤN = Z
2
N ∪ Z

∗

N

and the Z
∗

N component of the dual consists in representations πλ on Hλ = C
N ,

given by

πλ(m,n, ϕ) = e2iπλϕ/NMnTm ,

with the following definition for periodic discrete translation and modulation oper-
ators

Tmx(k) = x((k −m)[mod N ]) , Mnx(k) = e2iπkn/Nx(k) .

Given g ∈ C
N , the corresponding short time Fourier transform maps any x ∈ C

N

to Vgx ∈ C
2N , defined by

Vgx(m,n) = 〈x, πλ(m,n, 0)g〉 .

Focusing on the case λ = 1, and following the lines developed in the continuous
case, one is naturally led to the following discrete version of the twisted convolution:
for F,G ∈ C

N ,

(19) F♮G(m,n) =

N−1∑

m′,n′=0

F (m′, n′)G(m−m′, n− n′)e−2iπm(n−n′)/N .

The spreading function representation of operators takes here a particularly simple
form: the family of operators

{MnTm, m, n ∈ ZN}

is an orthonormal basis of Hom(CN ). Every H ∈ Hom(CN ) is characterized by a

spreading function ηH ∈ C
N2

, such that

H =

N−1∑

m,n=0

ηH(m,n)MnTm .

The consequence of this result is the same as in the continuous theory: let
H ∈ Hom(CN ), and let ηH be its spreading function. Let ψ ∈ C

N be a unit norm
vector. Then H may be realized as a twisted convolution in the time-frequency
domain: for all x ∈ C

N ,

Hx =
∑

m,n

(ηH♮Vψx) (m,n)MnTnψ .

Actually, a similar theory may be developed for Weyl-Heisenberg groups associated
with any locally compact abelian group.
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STFT of original signal
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Figure 1. Transposition performed by twisted convolution in the
TF-domain

3.3. Examples. As a first example, a simple transposition has been realized by
a twisted convolution with a ”dirac pulse” in the TF-domain. See Figure 1. The
reconstruction is performed with the dual of the original Gabor frame 4 and yields
a perfect result. This twisted convolution corresponds, of course, to a pure time-
or frequency shift. However, adding several dirac pulses, i.e. setting the spreading
function to 1 in several places, will yield an amalgam of the signal components
present in the original signal.

Figure 2 shows a nicely concentrated spreading function and the images of a
random signal under the corresponding operator. The second pair of images shows
the spreading function of a convolution operator and again the result of this op-
erator being applied to a random signal. Both operators have a strong smoothing
character, however, the convolution performs infinite time-shifts.

4If synthesis is desired, we need to assume that the Gabor system is a frame, meaning that

there exist constants 0 < A, B < ∞, such that

(20) A‖f‖2 ≤
∑

m

∑

n

|〈f, gmn〉|
2 ≤ B‖f‖2.
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Figure 2. Spreading functions and resulting operators applied to
random signal

4. STFT and Gabor multipliers

Twisted convolution operator representations such as the ones described above
are not suitable for practical implementations, mainly because of the difficulty of
sampling such representations, as stressed in Remark 2. In addition, even if such
twisted convolutions could be treated practically, they would hardly lead to efficient
algorithms, as a twisted convolution involves quite a large number of terms.

STFT and Gabor multipliers have been proposed as a valuable alternative for the
approximation of operators in the time-frequency domain. In the present section
we analyse the relationship between such multipliers and the spreading function
representations, referring to [3] for a survey.

4.1. Time-frequency multipliers. Let g, h ∈ L2(R2) be such that 〈g, h〉 = 1,
and m ∈ L∞(R2), and define the STFT multiplier Mm;g,h by

(21) Mm;g,hf =

∫
∞

−∞

∫
∞

−∞

m(b, ν)Vgf(b, ν)π(b, ν)h dbdν, f ∈ L2(Rd) .
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This clearly defines a bounded operator on L2(Rd). We shall call m the time-
frequency transfer function, in analogy with signal processing notation, where time-
invariant linear filters (convolution operator) are defined by multiplication in the
Fourier domain with a bounded function called transfer function (which is the
Fourier transform of the filter’s impulse response). We refer to [9] and references
therein for a presentation in a signal processing context. In the mathematical
literature, m is also called the symbol of the multiplier, but we prefer to reserve
this terminology for the Kohn-Nirenberg symbol or the Weyl symbol of operators
(see [4, 6] for example). m is sometimes also called a mask.

STFT multipliers may also be extended to various functional settings. For exam-
ple, suitable assumptions on the transfer function m ensure that the corresponding
multiplier is compact. We refer to [3] for a thorough review of these results.

In a similar way, given lattice constants b0, ν0 ∈ R
+, set πmn = π(mb0, nν0) =

Mnν0Tmb0 . Then, for m ∈ ℓ∞(Z2), the corresponding Gabor multiplier is defined
as

(22) M
G
m;g,hf =

∞∑

−∞

∞∑

−∞

m(m,n)Vgf(mb0, nν0)πmnh .

In both cases, the spreading function may be computed explicitely, and yields the
following result [1].

Lemma 3. (1) The spreading function of the STFT multiplier Mm;g,h is given
by

(23) ηMm
(b, ν) = M (b, ν)Vgh(b, ν) ,

where M is the symplectic Fourier transform of the transfer function m

M (t, ξ) =

∫
∞

−∞

∫
∞

−∞

m(b, ν)e2iπ(νt−ξb) dbdν .

(2) The spreading function of the Gabor multiplier M
G
m;g,h is given by

(24) ηG
Mm

(b, ν) = M
(d)(b, ν)Vgh(b, ν) ,

where the (ν0
−1, b0

−1)-periodic function M (d) is the symplectic Fourier
transform of the transfer function m

M
(d)(t, ξ) =

∞∑

m=−∞

∞∑

n=−∞

m(m,n)e2iπ(nν0t−mb0ξ) .

Therefore, we can see that the spreading function of a STFT or a Gabor mul-
tiplier has a very specific form. In the STFT case, the following result is easily
proved.

Lemma 4. Let H ∈ H , with spreading function η. Assume there exists a non-
negative function µ ∈ L2(R2) such that

|η(b, ν)| ≤ µ(b, ν) |Vgh(b, ν)| ,

then H admits a STFT multiplier representation.

In a nutshell, when the spreading function of H decays faster than the ambiguity
function, H admits a STFT multiplier representation. However, when the decay is
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not fast, the transfer function m may lack smoothness. A simple way of controlling
such a property is to assume compact support for the spreading function [9, 10].

In the case of Gabor multiplier approximations, the periodicity of the function
M (d) imposes strong constraints, which we analyze in more detail below.

4.2. Further Examples. We now give some examples for illustration of the rela-
tion between Gabor Multipliers as well as more general operators and their spread-
ing functions.
Figure 3 shows the STFT of a synthezised signal with two components, the spread-
ing function of a Gabor multiplier, which removes one of the components, and the
STFT of the resulting signal. Figure 4 shows the spreading function of an operator
that again filters out one of the components, but simultaneously moves it in the
TF-plane, as well as, again, the STFT of the resulting signal. Note that, while still
being well-concentrated, this operator’s spreading function is no longer centered
about the origin.
Finally, Figure 5 shows the spreading function of an operator that filters the same
component as before, but “duplicates” it: once, it is shifted in time and once in
frequency. Quite obviously, the spreading function has two peaks in this case.
The two latter operators will not be well-approximated by a simple Gabor multiplier
and require a more general treatment, as suggested in Section 5.1.

4.3. Approximation by Gabor multipliers. It follows from (24) that not any
η ∈ L2(R2) can be the spreading function of a STFT or Gabor multiplier. In partic-
ular, for Gabor multipliers, the function η/Vgh has to be periodic, which is generally
not true. In such cases, the optimal (in Hilbert-Schmidt sense) approximation may
be seeked, provided that the family of rank one operators

Pmb0,nν0 : f ∈ L2(R) → Pmb0,nν0f = 〈f, gmb0,nν0〉hmb0,nν0 , m, n ∈ Z

is a Riesz sequence. This question has been addressed by several authors (see [3]
and references therein). The answer turns out to be positive [1] if and only if there
exist real constants 0 < A ≤ B <∞ such that for all (t, ξ)

(25) 0 < A ≤

∞∑

k,ℓ=−∞

∣∣∣∣Vgh
(
t+

k

ν0
, ξ +

ℓ

b0

)∣∣∣∣
2

≤ B <∞ .

The latter condition is obtained from the more classical one found in [3] by applying
the Poisson summation formula.

Now, if the above condition is fulfilled, the best Gabor multiplier approximation
(in Hilbert-Schmidt sense) of H ∈ H with spreading function ηH is defined by the
time-frequency transfer function m whose discrete symplectic Fourier transform
reads

(26) M (b, ν) =

∑
∞

k,ℓ=−∞
Vgh (b+ k/ν0, ν + ℓ/b0) ηH (b+ k/ν0, ν + ℓ/b0)∑

∞

k,ℓ=−∞
|Vgh (b+ k/ν0, ν + ℓ/b0)|

2

Therefore, assuming that the windows g, h and the lattice constants b0, ν0 have
been chosen so that condition (25) holds, the above expression may be used to
compute the best Gabor multiplier approximation for any linear operator H ∈ H .
For numerical realisation of approximation by Gabor multipliers, see, for example,
[2].
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Figure 3. Spreading function of a Gabor multiplier

5. Generalized Gabor Multipliers

Gabor multipliers have the advantage of having a diagonal matrix in a suitable
Gabor representation. Unfortunately, approximating a Hilbert-Schmidt operator
by a Gabor multiplier may turn out to result in poor approximations when the
spreading function of the operator is not “concentrated” enough, i.e. when the
operators are not underspread [9, 10].

Two strategies may be developped in such a situation. A first strategy amounts
to “split” the operator into a finite sum of operators, whose spreading function
is much more concentrated in the time-frequency domain, and may thus be con-
veniently approximated by a Gabor multiplier. When the construction preserves
the action of the Weyl-Heisenberg group, the corresponding optimal time-frequency
transfer functions may be given a closed form. This leads to multiple Gabor mul-
tipliers, whose contruction is briefly outlined below.

The second possible strategy rests on a spline type approximation of the spread-
ing function, expressed as a sum of building blocks with smaller support. Again,
when this is done in a H-covariant way, and if the building blocks are spreading
functions of Gabor multipliers, the resulting approximation turns out to take an
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Figure 4. Spreading function of a modifying Gabor multiplier

extremely simple form. A simple instance of this construction is described below,
and we refer again to [1] for a thorough analysis of the general case.

5.1. Multiple Gabor multipliers. The strategy to restrict the modification of
the Gabor transform to be multiplicative (i.e. the operator is represented by a
diagonal matrix in the Gabor system) may be generalized to allow for banded ma-
trices in this modification. This is the equivalent to allowing generalized Gabor
multipliers, in the following sense.

Definition 1 (Multiple Gabor Multiplier). Let a lattice Λ = b0Z × ν0Z, g, hk ∈
L2(R2) and bounded sequences mk = (mk(λ))λ∈Λ , with k ∈ Z, be given. Then the
multiple Gabor multiplier (MGM) Gg,hk,Λ,mk

is defined by

(27) Gg,hk,Λ,mk
(f) =

∑

k

∑

λ∈Λ

mk(λ)〈f, π(λ)g〉π(λ)hk.

Remark 3. For hk = π(µk)h with µk ∈ Λ, |µk| ≤ K, this extends Gabor multipliers
by replacing their diagonal matrix by a banded one. This is a generalization of
ample relevance in applications, for example as prominent ones as mobile commu-
nication, see [12] for an overview and justification of banded matrices in mobile
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Figure 5. Spreading function of a modifying Gabor multiplier

communication.
The operator described in the last example of Section 4.2 would actually be a
(simple) example of a Multiple Gabor Multiplier.

Given such a scheme, the same questions as before may be asked. In particular,
for a given Hilbert-Schmidt operator H ∈ H , is it possible to find time-frequency
transfer functions such that the corresponding multiple Gabor multiplier minimizes
the quadratic approximation error. To our knowledge, this question hasn’t received
an answer so far.

However, such a very general formulation turns out to assume a much simpler
form when the synthesis windows hk are constructed through the action of the Weyl-
Heisenberg group on the time-frequency plane. Indeed, it may be shown [1] that
when the synthesis windows are taken from a suitable lattice in the time-frequency
plane, i.e.

hk(t) = π(bk, νk)h(t) = e2iπνkth(t− bk) ,

the existence of optimal transfer functions mk is actually equivalent to the invert-
ibility of some (right) discrete twisted convolution operator. When this twisted
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convolution operator is invertible, then a closed form may be obtained for the time-
frequency transfer functions mk.

5.2. Twisted spline type spreading functions. Let us finally discuss a different
form of operators, which allow for a discrete twisted convolution representation in
the Gabor transform domain. Let φ be a square-integrable function, and assume
that the spreading function η of H ∈ H may be written as a twisted spline type
(TST) function

(28) η(b, ν) =
∑

k,ℓ

αkℓφ(b− kb0, ν − ℓν0)e
−2iπ(ν−ℓν0)kb0 =

∑

k,ℓ

αkℓφkℓ(bν) ,

i.e. as a sum of time-frequency translates of φ, using the H-covariant time-frequency
translations. Then the following result expresses that covariance at the operator
level

Lemma 5. Let H be a Hilbert-Schmidt operator associated with a TST spreading
function. Let Hφ ∈ H denote the operator with spreading function φ. Then

(29) H =
∑

k,ℓ

αkℓπ(kb0, ℓν0)Hφ .

Proof: Simply compute

H =
∑

k,ℓ

αkℓ

∫
φ(b′, ν′)e−2iπν′kb0Mν′+ℓν0Tb′+kb0 db

′dν′

=
∑

k,ℓ

αkℓ

∫
φ(b′, ν′)e−2iπν′kb0Mℓν0Mν′Tkb0Tb′ db

′dν′

=
∑

k,ℓ

αkℓπ(kb0, ℓν0)

∫
φ(b′, ν′)Mν′Tb′ db

′dν′ ,

which proves the result. ♠
Now, suppose that Hφ admits a Gabor multiplier representation, with time-

frequency transfer function m; then5 for f =
∑
m,n Vgf(mb0, nν0)hmn, we have

Hφf =
∑

m,n

m(m,n)Vgf(mb0, nν0)hmn ,

for some h ∈ L2(Rd), with hmn = πmnh, and some bounded sequence of weights
m(m,n). Plugging this expression into the above lemma, we obtain

Hf =
∑

k,ℓ

αkℓπkℓ
∑

m,n

m(m,n)Vgf(mb0, nν0)hmn

=
∑

m,n

m(m,n)Vgf(mb0, nν0)
∑

k,ℓ

αkℓπ(kb0, ℓν0)πmnh .

This yields the following result

5Here, once more, we implicitly assume, that the system of time-frequency translated functions
gmn constitutes a frame and thus allows for reconstruction by means of a dual frame generated

by a dual window h, see [6] for a review of Gabor frames.
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Theorem 2. Assume that the spreading function η of H ∈ H is of the form (28),
with φ the spreading function of a Gabor multiplier Mm;g,h. Then H may be realized
as follows

(30) Hf =
∑

p,q

Ṽgf(p, q)hpq , f ∈ L2(Rd) ,

where

Ṽgf(p, q) = (α♮W )pq(31)

Wmn = m(m,n)Vgf(mb0, nν0) .(32)

In addition, if the right twisted convolution operator α→ α♮G with the sequence G
defined by

Gmn =

∫
∞

−∞

∫
∞

−∞

φ(b, ν)φ(b−mb0, ν − nν0)e
−2iπmb0(ν−nν0) dbdν

is invertible, then the coefficients α in (28) may be recovered from the scalar products
〈η, φkℓ〉.

Remark 4. Notice that the expression provided in the theorem above is not a Gabor
multiplier. It indeed expresses Hf as a sum of elementary atoms hpq, but the latter
are not time-frequency shifts of a unique window function.

From a practical point of view, Gabor coefficients of Hf may be obtained by the
following two-steps procedure: given f ∈ L2(Rd), and a (discrete) Gabor transform
Vgf

(1) Weight coefficients Vgf(mb0, nν0) using the time-frequency transfer func-
tion m of the Gabor multiplier Mm;g,h.

(2) Evaluate the twisted convolution of the so-obtained weighted coefficients
with the coefficients α of the TST expansion of the spreading function η of
H.

This results in a fairly simple algorithm. Corresponding numerical results will be
reported elsewhere.

Let us point out that this scheme may be modified in several respects. In partic-
ular, it may be shown that using a different sampling lattice for the TST functions,
one ends up with approximations involving true Gabor multipliers. These results
are described in [1].

6. Conclusions and perspectives

In this paper, we have mainly focused on the approximation of 1D continuous
time Hilbert Schmidt operators by Gabor multipliers and generalizations. Gener-
alizing Gabor multipliers may be performed in various ways. We have described
mainly two approaches, in which the synthesis windows or the time-frequency trans-
fer function are varied. More general results are described in [1].

Let us also point out that this approach generalizes mutatis mutandis to more
complex situations, for example Gabor transforms in higher dimensions, or Gabor
transforms on non-rectangular (regular) lattices. It may also be formulated in a
completely discrete setting, which makes it suitable for numerical applications.

This was actually one of our main motivations for developing such methods in
a purely group theoretical setting. The latter opens interesting perspectives for
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generalizations, including wavelet multiplier approximations, or even more general
situations.
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[7] A. Grossmann, J. Morlet, and T. Paul. Transforms associated to square integrable group

representations I: General results. J. Math. Phys., 26:2473–2479, 1985.
[8] A. Grossmann, J. Morlet, and T. Paul. Transforms associated to square integrable group

representations II: Examples. Annales de l’Institut Henri Poincaré, 45:293, 1986.
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