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Abstract We are interested in the structure of tilings that can be ob-
tained from a given tile sets. We choose to study this structure by com-
paring the set of finite patterns they contain. We use two different ap-
proaches of the same notions: one combinatorial, the other topological.
These two approaches provide nice results somehow surprising.

1 Introduction

Tilings are basic models for geometric phenomena of computation: local con-
straints they formalize happened to be of broad interest in the community since
they capture geometric aspects of computation. This phenomenon was discov-
ered in the 60ies when tiling problems happened to be crucial in logics: more
specifically, interest shown in tilings drastically increased when Berger proved
the undecidability of the so-called domino problem [1] (see also [7] and the well
known book [2] for logical aspects). Later, tilings were basic tools for complexity
theory (see the nice review of Peter van Emde Boas [15] and some of Leonid
Levin’s paper such as [11]).

Because of this growing interest for this very simple model, several research
tracks were aimed directly on tilings: some people tried to generate the most
complex tilings with the most simple constraints (see [14,8,12,5]), others were
most interested in structural aspects (see [13,4]).

In this paper we are interested in structural properties of tilings. To analyze
and compare what kind of family of tilings is the consequence of a given tile set,
we focus on finite patterns they contain. We thus introduce a natural preorder
on tilings: a tiling is extracted from another one if all finite patterns that appear
in the first one also appear in the later. We develop this combinatorial notion in
Section 2.1. This notion can be expressed in terms of topology (subshifts of finite
type) and we explain the relations between both these approaches in Section 2.2.

It is important to stress that both these combinatorial and topological ap-
proaches have independent merits. Among results we present, different approaches
are used for proofs. More specifically, we prove Theorem 6 by a rather subtle com-
binatoric construction and Theorem 7 with the strong help of topology. These
results are our main results: despite its apparent simplicity, Theorem 6 was sur-
prisingly open until now and Theorem 7 gives a nice result involving periodicity
in a unique direction.
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Our paper is organized as follows: Section 2 is devoted to definitions (combi-
natorics, topology) and basic structural remarks. Then Section 3 focuses on our
main results. We first prove the existence of minimal and maximal elements in
tilings enforced by a tile set. Then we present an analysis in terms of Cantor-
Bendixon derivative which provides powerful tools. We study the particular case
where tilings are countable and present our main results. We conclude by the
presentation of some open problems.

2 Definitions

2.1 Tilings

We present notations and definitions for tilings since several models are used
in literature: Wang tiles, geometric frames of rational coordinates, local con-
straints. . . all these models are equivalent for our purposes since we consider
very generic properties of them (proofs in [3]). We focus our study on tilings of
the plane although all our results still hold in higher dimensions.

In our definition of tilings, we first associate a state with each cell of the plane
and then impose a local constraint on them. More formally, Q is a finite set, called
the set of states. A configuration c consists of cells of the plane associated with
states; thus c is an element of QZ

2

. We denote by ci,j or c(i, j) the state of c at
the cell (i, j).

A tiling is a configuration which satisfies a given finite set of finite constraints
everywhere. We may define these constraints as a set of allowed patterns: a
configuration is a tiling if around any of its cells we can see one of the allowed
patterns:

Definition 1 (patterns). A pattern P is a finite restriction of a configuration
i.e., an element of QV for some finite domain V of Z

2. A pattern appears in a
configuration c (resp. in some other pattern P ′) if it can be found somewhere in
c (resp. in P ′); i.e., if there exists a vector t ∈ Z

2 such that c(x + t) = P (x) on
the domain of P (resp. if P ′(x + t) is defined for x ∈ V and P ′(x + t) = P (x)) .

By language extension we say that a pattern is absent in a configuration if
it does not appear in it.

Definition 2 (tile-sets and tilings). A tile-set is a tuple τ = (Q,Pτ ) where
Pτ is a finite set of patterns on Q. All the elements of Pτ are supposed of same
domain denoted by V (Pτ ⊆ QV ).

A tiling by τ is a configuration c equal to one of the patterns on all cells:
∀x ∈ Z

2, c|V +x ∈ Pτ .
We denote by Tτ the set of tilings by τ .

Notice that we could as well define tile-sets with patterns of different sizes
since we consider only finitely many of them.

Throughout the following, it will be more convenient to define tile-sets by
the set of their forbidden patterns, even if this defininition is less common in



literature: a tile-set is then given by a finite set Fτ of forbidden patterns (Fτ =
QV \ Pτ ); a configuration is a tiling if no forbidden pattern appears.

An example of a tile-set is given in Fig. 1. Produced tilings are given in Fig. 2;
the meaning of the edges will be explained later. Tilings in Fig. 2 are represented
up to shift, with an exception for Ai and Bi where i is an integer that represents
the size of the white stripe.

Figure 1. Allowed patterns
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Figure 2. Lattice

The goal of our article is to study the structure of sets of tilings. It is natural
to focus on finite parts of them, that is patterns. We thus introduce the following
natural preorder:

Definition 3 (Preorder). Let x, y be two tilings, we say that x � y if any
pattern that appears in x also appears in y.

We say that two tilings x, y are equivalent if x � y and y � x. We denote
this relation by x ≈ y. In this case, x and y contain the same patterns. The
equivalence class of x is denoted by 〈x〉. We write x ≺ y if x � y and x 6≈ y.



Some structural properties of tilings can be seen with the help of this pre-
order. The edges in Fig. 2 correspond to the relation ≺.

We choose to distinguish two types of tilings: A tiling x is of type a if any
pattern that appears in x appears infinitely many times: x is of type b if there
exists a pattern that appears only once in x. Remark that any tiling is either of
type a or of type b: suppose that there is a pattern that appears only a finite
number of times in x; consider the pattern which is the union of those patterns,
this pattern appears only once.

If x is of type b, then the only tilings equivalent to x are its shifted: there is
a unique way in 〈x〉 to grow around the unique pattern.

2.2 Topology

In the domain of symbolic dynamics, topology provides both interesting results
and is also a nice way to express some combinatorial proofs in a condensed way
[9,6]. The benefit of topology is a little more surprising for tilings since they are
essentially static objects. Nevertheless, we can get nice results with topology as
will be seen in the sequel.

We see the space of configurations QZ
2

as a metric space in the following way:
the distance between two configurations c and c′ is 2−i where i is the minimal
offset of a point where c and c′ differ:

d(c, c′) = 2−min{|i|, c(i) 6=c′(i)}

We could also endow Q with the discrete topology and then QZ
2

with the product
topology, and thus obtain the same topology as the one induced by d.

In this topology, a basis of open sets is given through the patterns: for each
pattern P , the set OP of all configurations c which contains P in their center (i.e.,
such that c is equal to P on its domain) is an open set. Furthermore cylinders
such defined are also closed (complements as a finite unions of OP ′ where P ′ are
patterns of same domain different from P ). Thus OP ’s are clopen.

Proposition 1. QZ
2

is a compact perfect metric space (a Cantor space).

We say that a set of configurations S is shift-invariant if any shifted version of
any of its configuration is also in S; i.e., if for every c ∈ S, and every t ∈ Z

2 the
configuration c′ defined by c′(x) = c(x + t) is also in S.

For a given configuration x, we define the topological closure of shifted forms
of x: Γ (x) = {σi,j(x), i, j ∈ Z}. We remark that x � y if and only if Γ (x) ⊆
Γ (y), therefore x is minimal for ≺ if and only if 〈x〉 is closed.

As sets of tilings omit a finite number of patterns, they correspond to sub-
shifts of finite type. In the sequel, we sometimes use arbitrary subshifts; they
correspond to a set of configurations with a possibly infinite set of forbidden
patterns.



3 Main results

3.1 Basic structure

Let us first present a few structural result so that we understand better those
objects we manipulate in this paper.

First, the existence of minimal classes for ≺ is well known.

Theorem 1 (minimal elements). Every set of tilings contains a minimal
class for ≺.

In the context of tilings, those that belong to minimal classes are often called
quasiperiodic, while in language theory they are called uniformly recurrent or al-
most periodic. Those quasiperiodic configurations admit a nice characterization:
any pattern that appears in one of them can be found in any sufficiently large
pattern (placed anywhere in the configuration).

For a combinatorial proof of this theorem see [4]. Alternatively, consider a
minimal subshift of Tτ (such a subshift exists, see e.g. [13]). Remark that every
tiling in this set is in a minimal class.

The existence of maximal classes of tilings is not trivial and we have to prove
it:

Theorem 2 (maximal elements). Every set of tilings contains a maximal
class for ≺.

Proof. Let us prove that any increasing chain has an upper bound. The theorem
is then obtained by Zorn’s lemma.

Consider Ti an increasing chain of tiling classes. Consider the set P of all
patterns that this chain contains. As the set of all patterns is countable, P is
countable too, P = {pi}i∈N.

Now consider two tilings Ti and Tj , any pattern that appears in Ti or Tj

appears in Tmax(i,j). Thus for all i ∈ N there exists a pattern p′i that contains all
pj , j ≤ i and p′i−1. Note that p′i is correctly tiled by the considered tile set.

The sequence of patterns p′i grows in size. By shift invariance, we can center
each p′i by superimposing an instance of p′i−1 found in p′i over p′i−1, we can
conclude that this sequence has a limit and this limit is a tiling that contains all
pi, hence is an upper bound for the chain Ti. ⊓⊔

Note that this proof also works when the set of states Q and/or the set of
forbidden patterns Fτ are countably infinite (neither compactness nor finiteness
is assumed). We do not know if there always exists a minimal tiling when Q is
infinite.

3.2 Cantor-Bendixson

In this section we use the topological derivative and define Cantor-Bendixson
rank and then discuss properties of set of tilings from this viewpoint.



A configuration c is said to be isolated in a set of configurations S if there
exists a pattern P (of domain V ) such that c is the only configuration in S

that contains the pattern P in its center (∀x ∈ V, c(x) = P (x)). We say that P

isolates c. This corresponds to the topological notion: a point is isolated if there
exists an open set that contains only this point. As an exemple, in Fig. 3, the
tilings Ai are isolated, the pattern isolating an Ai is the boundary between red,
white, black and green parts of it.

The topological derivative of a set S is formed by its elements that are not
isolated. We denote it by S′.

If S is a set of tilings, or more generally a subshift, we get some more proper-
ties. If P isolates a configuration in S then a shifted form of P isolates a shifted
form of this configuration. Any configuration of S that contains P is isolated.

As a consequence, if S = Tτ , then S′ = Tτ ′ where τ ′ forbids the set Fτ ∪
{P |P isolates some configuration in Tτ}.

Note that S′ is not always a set of tilings, but remains a subshift. Let us
examine the example shown in Fig. 3. S′ is S minus the classes Ai, however if
C,Bi and D are obtained by in a set of tilings (subshift of finite type) then one
of the Ai is also obtained. Hence S′ is not of finite type in this example.

We define inductively S(λ) for any ordinal λ :

– S(0) = S

– S(α+1) = (S(α))′

– S(λ) =
⋂

α<λ S(α)

Notice that there exists a countable ordinal λ such that S(λ+1) = S(λ). In-
deed, at each step of the induction, the set of forbidden patterns increases, and
there is at most countably many patterns. We call the least such ordinal the
Cantor-Bendixson rank of S.

An element c is of rank λ in S if λ is the least ordinal such that c 6∈ S(λ). If no
such λ exists, c is of infinite rank. For instance all quasiperiodic configurations
are of infinite rank. We write ρ(x) the rank of x.

An example of what Cantor-Bendixson ranks look like is shown in Fig. 3, the
first row contains the tilings of rank 1, the second row the ones of rank 2. . .

Ranked tilings have many interesting properties. First of all, as any T
(λ)

τ is
shift-invariant, a tiling has the same rank as its shifted forms.

Note that at each step of the inductive definition, the set of isolated points
is at most countable (there are less isolated points than patterns). As a con-
sequence, if all tilings are ranked, Tτ is countable, as a countable union (the
Cantor-Bendixson rank is countable) of countable sets.

The converse is also true:

Theorem 3. Tτ is countable if and only if all tilings are ranked.

Proof. Let λ be the Cantor-Bendixson rank of Tτ . T
(λ)

τ = T
(λ+1)

τ is a perfect

set (no points are isolated). As a consequence, T
(λ)

τ must be either empty or
uncountable (classical application of Baire’s Theorem).

As Tτ is countable, T
(λ)

τ = ∅. ⊓⊔
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Figure 3. Cantor-Bendixson ranks

As the topology of QZ
2

has a basis of clopens OP , QZ
2

is a 0-dimensional
space, thus any subset of QZ

2

is also 0-dimensional. As any (non empty) perfect
0-dimensional compact metric space is isomorphic to the Cantor Space and, we
also get:

Theorem 4 (Cardinality of tiling spaces). A set of tilings is either finite,
countable or has the cardinality of continuum.

We now present a link between the preorder ≺ and the Cantor-Bendixson
rank.

Lemma 1. Let x and y be two ranked tilings such that x ≺ y, then ρ(x) > ρ(y).

Proof. By definition, any pattern that appears in x also appears in y. As a
consequence, if P isolates x in S(λ), then y cannot be in S(λ). ⊓⊔

As a consequence, tilings of rank 1 (minimal rank) are maximal tilings. If all
tilings are ranked, tilings of maximal rank are minimal tilings and thus periodic.

Another consequence is that if all tilings are ranked, there is no infinite
increasing chain for ≺ because this would give an infinite decreasing chain of
ordinals:

Theorem 5. If Tτ is countable, there is no infinite decreasing chain for ≺.

In previous results, we saw that the case where the set of tiling is countable
is an interesting particular case. We study this case more precisely in the next
section.



3.3 The countable case

We will now deal with tile-sets that generate only countably many tilings. If the
number of tilings is finite, the situation is easy: any tiling is periodic.

Our aim is to prove that in the countable case, there exists a tiling c which
has exactly one vector of periodicity (such a tiling is sometimes called weakly
periodic in the literature).

We split the proof in three steps :

– There exists a tiling which is not minimal.
– There exists a tiling c which is at level 1, that is such that all tilings less

than c are minimal.
– Such a tiling has exactly one vector of periodicity.

The Cantor-Bendixson rank will is used only in the last two steps. The first step
is a result of independent interest.

Since minimal tilings are quasiperiodic tilings, if the number of tilings is
countable, any minimal tiling is periodic. As a consequence, the first step of the
proof may be reformulated:

Theorem 6. If all tilings produced by a tile-set are periodic, then there are only
finitely many of them.

Proof. Suppose that Tτ is infinite with only periodic configurations. We will
prove that there exists a sequence (Mi)i∈N of patterns such that :

– Mi is a subpattern of Mi+1;
– for any i, there exists an infinite number of elements of Tτ that contain Mi;
– any configuration containing Mi has a period greater than i;
– each Mi is a mi × mi pattern centered at 0;

Take M0 an empty pattern.
Assuming that Mi is constructed, let us construct Mi+1. If Mi has a size of

a×a, consider the patterns of size (a+2(i+1))×(a+2(i+1)) that contain Mi at
their center and that are not i + 1−periodic. There are infinitely many elements
of Tτ that contain such a pattern : Consider a configuration that contains Mi,
shift it so that Mi is at its center; if it does not contain any of those non
(i + 1)−periodic patterns, then it can be shifted by i + 1 in both directions with
Mi still at its center. Therefore, if it does not contain any of those patterns
it is i + 1−periodic and since there are only a finite number of i + 1−periodic
configurations, there are infinitely many configurations that contain one of those
new patterns.

Since there is only a finite number of patterns of size (a+2(i+1))×(a+2(i+1))
that contain Mi and that are not i + 1−periodic, one of them is contained in an
infinite number of elements of Tτ , call this pattern Mi+1. By construction, any
tiling that contains Mi has a period greater than i.

Now to finish the proof, the ”limit” of the sequence Mi defines a configuration
that is in Tτ (since it is closed) and that is not i-periodic for any i, a contradiction.

⊓⊔



This proof does not assume that Fτ is finite, therefore it is still valid for any
shift-invariant closed subset of QZ

2

.

Important remark: the authors would be interested in a topological proof
of this theorem. If any reader can find such a proof please contact the authors.

Now we prove stronger results about the Cantor-Bendixson rank of Tτ :

Let α be the Cantor-Bendixson rank of Tτ . Since (Tτ )(α) = ∅, α cannot
be a limit ordinal. Suppose that it is, therefore

⋂
β<α(Tτ )(β) = ∅ is an empty

intersection of closed sets in QZ
2

therefore by compactness there exists γ < α

such that
⋂

β<γ(Tτ )(β) = ∅ and therefore Tτ can not have rank α. Hence α is a
successor ordinal, α = β + 1.

However, we can refine this result :

Lemma 2. The rank of Tτ cannot be the successor of a limit ordinal.

Proof. Suppose that β = ∪i<ωβi. Since (Tτ )(β+1) = ∅, (Tτ )(β) is finite (otherwise
it would have a non-isolated point by compactness), it contains only periodic
tilings.

Let p be the least common multiple of the periods of the tilings in (Tτ )(β).
Let M be the set of patterns of size 2p × 2p that does not admit p as a period.
Let xi be an element that is isolated in (Tτ )(βi).

As there is only a finite number of p-periodic tilings, we may suppose w.l.o.g.
that no xi admit p as a period.

For any i, there exists a pattern of M that appears in xi, let x′
i be the

tiling with this pattern at its center. By compactness, one can extract a limit
x′ of the sequence (x′

i)i∈N, y′ ∈ (Tτ )(β), x’ is by construction in ∩i(Tτ )(βi) =

T
(β)

τ . However, x′ does not contain a p periodic pattern at its center, that is a
contradiction. ⊓⊔

We write α = λ + 2 the rank of Tτ .

We proved that there exists a non minimal tiling but this is not sufficient
to conclude that there exists a tiling at level 1. However, we achieve this as a
corollary of the previous lemma: (Tτ )(λ) is infinite (otherwise (Tτ )(λ+1) would
be empty) and contains a non periodic tiling by theorem 6. This non periodic
tiling c is not minimal (otherwise it would be strictly quasiperiodic and then Tτ

would not be countable). Now c is at level 1 : any tiling less than c is in (Tτ )(λ+1)

therefore periodic (hence minimal).

If a tiling x is of type a and is ranked, then it has a vector of periodicity:
Consider the pattern P that isolates it in the last topological derivative of Tτ

that it belongs to. Since x is of type a, this pattern appears twice in it, therefore
there exists a shift σ such that σ(x) contains P at its center. x = σ(x) because
P isolates x.

As any tiling of type a has a vector of periodicity, it remains to prove that c

is of type a.

Lemma 3. c is of type a.



Proof. Suppose the converse : there exists a pattern P that appears only once
in c. Considering the union of this pattern P and a pattern that isolates c, we
may assume that P isolates c. c has only a finite number of tilings smaller than

itself: they lie in T
(λ+1)

τ which is finite, and are all periodic, say of period p. As
P isolates c, none of these tilings contain P .

Consider the patterns of size 2p × 2p of T that are not p-periodic. If those
patterns can appear arbitrary far from P then one can extract a tiling from c

(thus smaller than c) that is not p-periodic and does not contain P ; this is not
possible.

Therefore there is a pattern in c that contains P (thus appears only once)
and any other part of c is p-periodic (one can gather all non p-periodic parts of
c around P ).

This non periodic part could also be inserted elsewhere in c since the tiling
rules are of bounded radius. Hence the number of tilings is not countable. ⊓⊔

c is of type a, c is not periodic, c has a vector of periodicity, therefore our
theorem 7 holds :

Theorem 7. If the set of tilings is countable then one of the tilings has exactly
one vector of periodicity.

4 Open problems

We are interested in proving more precise results for the order ≺ for a countable
set of tilings : We believe that the order ≺ has at most 3 levels, as it is the case
in Fig. 2.

We also intend to prove a similar result for uncountable set of tilings; the
problem is that we are tempted to think that if the set of tilings is uncountable,
then a quasiperiodic tiling must appear. However, this is not true: imagine a tile
set that admit a vertical line of white or black cells with red on the left and
green on the right. The uncountable part is due to the vertical line that itself
contains a quasiperiodic of dimension 1 but not of dimension 2.

A generalization of lemma 2 would be to prove that the Cantor-Bendixson
rank of a countable set of tilings cannot be infinite; we know how to construct
set of tilings that have an arbitrary finite Cantor-Bendixson rank, but we do not
know how to obtain a set of tilings of rank greater than ω. Note that there exists
countable compact spaces with Cantor-Bendixson rank greater than ω.
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