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The purpose of this paper is to study the relations between the existence of minimal immersions of a Riemannian manifold M into another and some structural or topological properties of M . The properties on M which we consider are the existence of a parallel or a harmonic p-form.

Introduction

The purpose of this paper is to obtain some non existence results about minimal submanifolds. Let (M m , g) be an m-dimensional Riemannian manifold isometrically immersed by φ in an n-dimensional Riemannian manifold (N n , h) (n > m). The Gauss equation allows us to obtain rigidity results in terms of geometry of (M m , g) and (N n , h). For example, as a first consequence of the Gauss equation, we get the following well known inequality in each point x of (M m , g)

|H(x)| 2 ≥ (1/m)((Scal(x)/m) -(m -1)K 1 (φ(x))) (1) 
where |H(x)| 2 and Scal(x) are respectively the square of the mean curvature of φ and the scalar curvature of (M m , g) at x and K 1 (φ(x)) is the largest sectional curvature of (N n , h) at φ(x). In particular, if K 1 has an upper bound and if Scal > m(m -1)K

1 max
(where K

1 max = max N (K 1 
)) for at least a point of (M m , g), there is no minimal immersion of (M m , g) into (N n , h). Many other results were obtained, by assuming that (M m , g) is endowed with some particular structures or topological properties (see for instance [START_REF] Carlson | Harmonic mappings of Kaehlerian manifolds to locally symmetric spaces[END_REF], [START_REF] Sampson | Harmonic maps in Kähler geometry[END_REF] and [START_REF] Dajczer | Rigidity of a real Kaehler submanifolds[END_REF]). First recall the results of Sampson ([12]) and Dajczer and Rodriguez ([3]). They proved that there is no minimal immersion of an m-dimensional Kaehlerian manifold (m ≥ 4) into a Riemannian manifold of negative constant sectional curvature. Later, El Soufi ( [START_REF] Soufi | Géométrie des sous-variétés admettant une structure kaehlérienne ou un second nombre de Betti non nul[END_REF]) obtained a generalization of this result by assuming a pinching of the sectional curvature of (N n , h) and Hernandez ([9]) obtained the same conclusion under the negativity of the complex sectional curvature of (N n , h). More recently, Petit and El Soufi ([6]) extend this result in the case where (M m , g) is not necessarily Kaehlerian but has a parallel 2form and where the isotropic curvature of (N n , h) is negative (recall that the isotropic curvature of a Riemannian manifold is the restriction of the complex sectional curvature to isotropic tangent planes ( [START_REF] Micallef | Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two planes[END_REF])).

The section 1 of the present paper deals with some preliminaries. In the section 2, we consider the general case where (M m , g) has a parallel p-form and we prove (theorem 3.1) that if (N n , h) satisfies a curvature pinching condition, then there is no minimal immersion from (M m , g) into (N n , h). This is the generalization of the result of El Soufi stated in [START_REF] Soufi | Géométrie des sous-variétés admettant une structure kaehlérienne ou un second nombre de Betti non nul[END_REF] for the case where (M m , g) is Kaehlerian. Note that this theorem as well as the other results recalled above are of interest only if the sectional curvature of (N n , h) is negative. However, in the theorem 3.2, we obtain the same conclusion with a new pinching condition for the case where (N n , h) is not necessarily of negative sectional curvature but has a negative smallest sectional curvature. In the theorem 3.3, we study the particular case where (N n , h) is the complex hyperbolic space CH n (c) with constant holomorphic curvature equal to c and we prove that there is no totally real minimal immersion of a Riemannian manifold (M m , g) with a parallel p-form into CH n (c).

The compact manifolds with a parallel p-form are a particular case of manifolds with a harmonic p-form (or a nonzero p-th Betti number b p (M )). In the section 3, we prove (theorem 4.1 and theorem 4.2) that for any compact manifold (M m , g) with b p (M ) = 0 and isometrically immersed in a Riemannian manifold (N n , h), there exists at least a point

x of M so that m √ p p -1 p |B(x)||H(x)| ≥ k(x) - p -1 p ((m -1)K 1 + ρ 1 )(φ(x))
and

m p -1 √ p + m -p -1 √ m -p |B(x)||H(x)| ≥ Scal(x) -(m -2)((m -1)K 1 + ρ 1 )(φ(x))
where |B(x)|, k(x) and ρ 1 (φ(x)) denote respectively the norm of the second fundamental form of φ, the smallest eigenvalue of the Ricci curvature of (M m , g) at x and the largest eigenvalue of the curvature operator of (N n , h) at φ(x). El Soufi proved the first inequality for p = 2 in [START_REF] Soufi | Géométrie des sous-variétés admettant une structure kaehlérienne ou un second nombre de Betti non nul[END_REF] and the second for p = 2 but only for m = 4. The first is optimal for the usual standard minimal embeddings of the Clifford torus and of the complex projective space in the sphere. These inequalities will be a consequence of a new lower bound of the curvature term in the Weitzenböck formula for p-forms (see the relation [START_REF] Soufi | Géométrie des sous-variétés admettant une structure kaehlérienne ou un second nombre de Betti non nul[END_REF] and the propositions 4.1 and 4.2). As a consequence of the previous inequalities, we deduce

(corollary 4.2) that if (M m , g) is minimally immersed in (N n , h), if ρ 1 is bounded above and if min M (Scal) > (m -2) (m -1) max N (K 1 ) + max N (ρ 1 )
then (M m , g) is a sphere of homology. This result can be viewed as a generalization of a theorem of Leung ([10]) which has shown that if a compact Riemannian manifold (M m , g) is minimally immersed in a unit sphere and if the scalar curvature satisfies Scal > m(m-2) then it is homeomorphic to an m-dimensional sphere.

Preliminaries and notations

Let (M m , g) be an m-dimensional Riemannian manifold and let φ be an isometric immersion of (M m , g) into an n-dimensional Riemannian manifold (N n , h) (n > m). The inner product and the norm induced by g and h on the tensors will be denoted respectively by , and | | 2 . Moreover, we denote respectively by R, ρ, Ric and Scal the curvature tensor, the curvature operator, the Ricci tensor and the scalar curvature of (M m , g) and by R, K, ρ and Scal the curvature tensor, the sectional curvature, the curvature operator and the scalar curvature of (N n , h). We recall that for all vector field X, Y , Z, W ∈ Γ(T N ), ρ is defined by

ρ(X ∧ Y ), Z ∧ W = R(X, Y, Z, W )
Moreover, for all vector field X, Y ∈ Γ(T M ), the tensor R φ will be given by

R φ (X, Y ) = i≤m R(dφ(X), dφ(e i ), dφ(Y ), dφ(e i ))
where (e i ) 1≤i≤m is an orthonormal frame on M . On the other hand, for all x ∈ N , we denote respectively, K 1 (x) and K 0 (x) the largest sectional curvature and the smallest sectional curvature at x and ρ 1 (x) and ρ 0 (x) the largest eigenvalue and the smallest eigenvalue of the curvature operator. Then, it is easy to see that

ρ 0 (x) ≤ K 0 (x) ≤ K 1 (x) ≤ ρ 1 (x) (2) 
Now, let B be the second fundamental form of the immersion φ and let H be the mean curvature vector defined by: H = (1/m)trace B. The Gauss equation tells us that for any vector field X, Y , Z, W ∈ Γ(T M ), we have

R(X, Y, Z, W ) = R(X, Y, Z, W ) + B(X, Z), B(Y, W ) -B(X, W ), B(Y, Z) (3) 
For the sake of completeness, we need now to recall briefly some definitions and properties about p-forms. Let (e i ) 1≤i≤m be a local orthonormal frame. Throughout this paper, for all q-tensor T , we will write T i 1 ...iq instead of T (e i 1 , ..., e iq ) and then the inner product of two p-forms ω and θ of (M m , g) will be

ω, θ = 1 p! 1≤i 1 ,...,ip≤m ω i 1 ...ip θ i 1 ...ip
The inner product (or contraction) i(X)ω of a p-form ω with a vector field X on M is a p -1-form, defined by

(i(X))ω(X 1 , ..., X p-1 ) = ω(X, X 1 , ..., X p-1 ), ∀ X 1 , ..., X p-1 ∈ Γ(T M )
More generally, if X 1 , ...X q ∈ Γ(T M ), then the inner product of the p-form ω with the q-tensor X 1 ∧ ... ∧ X q is the p -q-form defined by

(i(X 1 ∧ ... ∧ X q )ω) (Y 1 , ..., Y p-q ) = ω(X q , ..., X 1 , Y 1 , ..., Y p-q ), ∀ Y 1 , ..., Y p-q ∈ Γ(T M )
Recall some elementary facts about inner and exterior products. Let ω and θ be respectively a p-form and a q-form and let X be a vector field on M , then

i(X)(ω ∧ θ) = i(X)ω ∧ θ + (-1) p ω ∧ i(X)θ
and if X ⋆ is the dual 1-form of the vector field X with respect to g, then i(X) is in fact the adjoint of left exterior multiplication by X ⋆ , that is

i(X)(ω), θ = ω, X ⋆ ∧ θ
If M is orientable, we also need the following relation between the inner product and the Hodge operator ⋆ on (M m , g) (see for instance [START_REF] Abraham | Manifolds, Tensor Analysis and applications[END_REF])

i(X)(⋆ω) = (-1) p ⋆ (X ⋆ ∧ ω)
On the other hand, if α is a 1-form which is real valued and β is a 1-form which is valued in a vector bundle, we define the 2-tensor α ∨ β by

(α ∨ β)(X, Y ) = α(X)β(Y ) + α(Y )β(X) (4) 
We denote now by d, d ⋆ , ∇ and ∇ ⋆ respectively the exterior differential and the codifferential acting on p-forms, the covariant derivative of (M m , g) extended to p-forms and its adjoint with respect to g. The Hodge-de Rham Laplacian ∆ acting on p-forms is given by

∆ω = dd ⋆ ω + d ⋆ dω
To compare this Laplacian to the "rough" Laplacian ∇ ⋆ ∇, one has the Weitzenböck formula, reading as

∆ω = ∇ ⋆ ∇ω + R p (ω), ∀ ω ∈ Λ p (M )
Here R p ∈ End(Λ p (M )) is a bundle endomorphism, given by

R p (ω)(X 1 , ..., X p ) = ij (-1) i [R(e j , X i )ω](e j , X 1 , ..., X i , ..., X p ), ∀X 1 , ..., X p ∈ Γ(T M )
where (e i ) 1≤i≤m is a local orthonormal frame and

R(X, Y )ω = ∇ [X,Y ] ω -[∇ X , ∇ Y ]ω ∀ X, Y ∈ Γ(T M )
An easy consequence of the Weitzenböck formula is the following

1 2 ∆|ω| 2 = ∆ω, ω -|∇ω| 2 -R p (ω), ω (5) 
In the sequel, we need to explicit the expression of R p . A straightforward calculation gives us

R p (ω), ω = i,j Ric ij i(e i )ω, i(e j )ω - 1 2 i,j,k,l R ijkl i(e j ∧ e i )ω, i(e l ∧ e k )ω (6) 
and the last term is zero when p = 1.

Geometry of submanifolds having a parallel p-form

The first result of this section is the following theorem

Theorem 3.1 Let (M m , g) be an m-dimensional Riemannian manifold admitting a non- trivial parallel p-form (1 ≤ p ≤ m) and let (N n , h) be an n-dimensional Riemannian manifold (n > m). If for any x ∈ (N n , h), we have (m -1)K 1 (x) < (p -1)ρ 0 (x) (7) 
then, there is no minimal immersion from (M m , g) into (N n , h).

Remark 3.1:

1. For p = 2 and for even dimensional manifold (M m , g), the pinching condition [START_REF] Gallot | Opérateur de courbure et Laplacien des formes différentielles d'une variété riemannienne[END_REF] can be refomulate as the negativity of the isotropic curvature ( [START_REF] Soufi | Immersions minimales et immersions pluriharmoniques entre variétés riemanniennes: résultats de non existence et de rigidité[END_REF]). If (M m , g) is Kaehlerian, this condition ( 7) is nothing but that obtained by El Soufi in [START_REF] Soufi | Géométrie des sous-variétés admettant une structure kaehlérienne ou un second nombre de Betti non nul[END_REF] (theorem 2.2).

2. From the relation (2), we see that this theorem is of interest only if the sectional curvature of (N n , h) is negative. For the hyperbolic space H n , the condition ( 7) is always satisfied for p < m and then there is no minimal immersion of a manifold having a parallel p-form (1 ≤ p ≤ m -1) into H n . However, the embeddings of H m in H n (m < n) are totally geodesic, and taking the volume form of H m , we see that [START_REF] Gallot | Opérateur de courbure et Laplacien des formes différentielles d'une variété riemannienne[END_REF] is not satisfied for p = m.

In the following theorem, we obtain the same conclusion as in the theorem 3.1 with a new pinching condition where (N n , h) is not necessarily of negative sectional curvature (in fact, there is no condition on K 1 ).

Theorem 3.2 Let (M m , g) be an m-dimensional Riemannian manifold admitting a nontrivial parallel p-form (1 ≤ p ≤ m) and let (N n , h) be an n-dimensional Riemannian manifold (n > m). If for any x ∈ (N n , h), we have

Scal(x) < (n -m)(n + m -1)K 0 (x) + (p(p -1) + (m -p)(m -p -1)) ρ 0 (x) (8)
then, there is no minimal immersion from (M m , g) into (N n , h).

Remark 3.2: We will see in the proof that this theorem is of interest only if the smallest sectional curvature is negative that is K 0 (x) < 0 for all x ∈ N . For instance, let us consider the space N n = H r × S s where n = r + s. Then Scal = -r(r -1) + s(s -1),

ρ 1 = K 1 = 1 and ρ 0 = K 0 = -1. Now, let (M m , g) be a Riemannian manifold of even dimension m and let p = m/2. Then we have Scal-(n-m)(n+m-1)K 0 -(p(p-1)+(m-p)(m-p-1))ρ 0 = 2(s 2 +rs-s-m 2 /4
) and it is easy to see that if r and m are great enough (for instance for a fixed s put m = r great enough) then the condition ( 8) is satisfied and the conclusion of the theorem 3.2 holds for this example.

Proof of theorem 3.1: Let φ be a minimal immersion of (M m , g) into (N n , h) and assume that M has a nontrivial parallel p-form ω. Then R p (ω), ω = 0 and from [START_REF] Soufi | Immersions minimales et immersions pluriharmoniques entre variétés riemanniennes: résultats de non existence et de rigidité[END_REF] we deduce

0 = i,j Ric ij i(e i )ω, i(e j )ω - 1 2 i,j,k,l R ijkl i(e j ∧ e i )ω, i(e l ∧ e k )ω (9) 
and the last term is zero for p = 1. Now from the Gauss formula (3), we obtain i,j

Ric ij i(e i )ω, i(e j )ω = i,j (R φ ) ij i(e i )ω, i(e j )ω + m i,j B ij , H i(e i )ω, i(e j )ω - i,j,k B ik , B jk i(e i )ω, i(e j )ω (10) 
and i,j,k,l [START_REF] Micallef | Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two planes[END_REF] by reporting [START_REF] Leung | Minimal submanifolds in a sphere[END_REF] and ( 11) in ( 9), we get

R ijkl i(e j ∧ e i )ω, i(e l ∧ e k )ω = i,j,k,l R ijkl i(e j ∧ e i )ω, i(e l ∧ e k )ω + i,j,k,l B ik , B jl i(e j ∧ e i )ω, i(e l ∧ e k )ω - i,j,k,l B il , B jk i(e j ∧ e i )ω, i(e l ∧ e k )ω = i,j,k,l R ijkl i(e j ∧ e i )ω, i(e l ∧ e k )ω + 2 i,j,k,l B ik , B jl i(e j ∧ e i )ω, i(e l ∧ e k )ω
0 = i,j (R φ ) ij i(e i )ω, i(e j )ω + m i,j B ij , H i(e i )ω, i(e j )ω - i,j,k B ik , B jk i(e i )ω, i(e j )ω - 1 2 i,j,k,l R ijkl i(e j ∧ e i )ω, i(e l ∧ e k )ω - i,j,k,l B ik , B jl i(e j ∧ e i )ω, i(e l ∧ e k )ω (12) 
and the two last terms are zero for p = 1. Now, put

B + (ω) = i≤m i(e ⋆ i )ω ∧ B(e i , .
). The computation of the square of the norm of B + (ω) gives

|B + (ω)| 2 = 1 p! 1 ≤ i 1 , ..., ip ≤ m i, j (i(e ⋆ i )ω ∧ B(e i , .)) i 1 ...ip , i(e ⋆ j )ω ∧ B(e j , .) i 1 ...ip = 1 p! 1 ≤ i 1 , ..., ip ≤ m i, j, s, t (-1) s+t B iis , B jit ω ii 1 ... îs...ip ω ji 1 ... ît...ip
where the indices withˆare omitted. Then

|B + (ω)| 2 = 1 p! 1 ≤ i 1 , ..., ip ≤ m i, j, s
B iis , B jis ω ii 1 ... îs...ip ω ji 1 ... îs...ip 

+ 1 p! 1 ≤ i 1 , ..., ip ≤ m i, j, s = t (-1) s+t B iis , B jit ω ii 1 ... îs...ip ω ji 1 ... ît...ip = 1 (p -1)! 1 ≤ i 1 , ..., i p-1 ≤ m i, j, k B ik , B jk ω ii 1 ...i p-1 ω ji 1 ...i p-1 - 1 p! 1 ≤ i 1 , ..., ip ≤ m i,
B ik , B jk i(e i )ω, i(e j )ω - 1 (p -2)! 1 ≤ i 1 ...i p-2 ≤ m i, j, k, l B ik , B jl ω ili 1 ...i p-2 ω jki 1 ...i p-2 = i,j,k B ik , B jk i(e i )ω, i(e j )ω + 1 (p -2)! 1 ≤ i 1 ...i p-2 ≤ m i, j, k, l B ik , B jl ω iji 1 ...i p-2 ω kli 1 ...i p-2 = i,j,k B ik , B jk i(e i )ω, i(e j )ω + i,j,k,l B ik , B jl i(e j ∧ e i )ω, i(e l ∧ e k )ω
Note that if M is Kaehlerian and ω is the Kaehler form then

|B + (ω)| 2 = |B + | 2 , where B + is the holomorphic part of B (i.e. B + (X, Y ) = 1 2 (B(X, Y ) + B(JX, JY )) where ω(X, Y ) = JX, Y ).
Now, combining the above relation with [START_REF] Sampson | Harmonic maps in Kähler geometry[END_REF], we obtain

|B + (ω)| 2 = m i,j B ij , H i(e i )ω, i(e j )ω + i,j (R φ ) ij i(e i )ω, i(e j )ω - 1 2 i,j,k,l R ijkl i(e j ∧ e i )ω, i(e l ∧ e k )ω (13) 
where the last term is zero if p

= 1. Putting X i 1 ...ip = i≤m ω ii 1 ...i p-1 e i and θ i 1 ...i p-2 = 1 2 1≤i,j≤m ω iji 1 ...i p-2 e ⋆ i ∧ e ⋆ j , we have i,j (R φ ) ij i(e i )ω, i(e j )ω = 1 (p -1)! i 1 ,...,i p-1 R φ (X i 1 ...ip , X i 1 ...ip ) ≤ (m -1) (p -1)! K 1 (φ(x)) i 1 ,...,i p-1 |X i 1 ...ip | 2 = p(m -1)K 1 (φ(x))|ω| 2 (14) 
and

1 2 i,j,k,l R ijkl i(e j ∧ e i )ω, i(e l ∧ e k )ω = 2 (p -2)! i 1 ,...,i p-2 ρ(θ i 1 ...i p-2 , θ i 1 ...i p-2 ) ≥ 2 (p -2)! ρ 0 (φ(x)) i 1 ,...,i p-2 |θ i 1 ...i p-2 | 2 = 1 (p -2)! ρ 0 (φ(x)) i 1 ,...,ip ω 2 i 1 ...ip = p(p -1)ρ 0 (φ(x))|ω| 2 (15) 
consequently, for all p ∈ {1, ..., m}, it follows from (13) and the fact that H = 0

|B + (ω)| 2 (x) ≤ p(m -1)K 1 (φ(x))|ω| 2 -p(p -1)ρ 0 (φ(x))|ω| 2
From this we conclude that if (p -1)ρ 0 (x) > (m -1)K 1 (x) holds for any x ∈ N , then there is no minimal immersion from (M m , g) into (N n , h).

Remark 3.3: In the theorem 3.1, the nonpositivity of the curvature operator of (N n , h) is not required. In ( [START_REF] Corlette | Archimedean superrigidity and hyperbolic geometry[END_REF]) Corlette proved (theorem 3.1) a similar result for harmonic maps φ from (M m , g) to (N n , h) (in fact he assumes that φ is a twisted harmonic map which is not necessary) by assuming only the nonpositivity of the curvature operator of (N n , h) without pinching condition. Indeed, under this hypothesis he proved that if (M m , g) is compact and has a parallel p-form then ∇ ⋆ (dφ ∧ ω) = 0 (here ∇ is the pullback of the Levi-Civita connection of T N ). Note that Corlette doesn't obtain a result of non existence. Moreover if φ is a minimal isometric immersion, then φ is a harmonic map and the theorem of Corlette can be proved without the compacity of M and a short computation shows that ∇ ⋆ (dφ ∧ ω) = -B + (ω).

Proof of theorem 3.2: From the relation (13) and the inequality (15) of the previous proof, we deduce that if φ is a minimal immersion, we have

|B + (ω)| 2 ≤ i,j (R φ ) ij i(e i )ω, i(e j )ω -p(p -1)ρ 0 (φ(x))|ω| 2
Since M is locally oriented, we can define locally the Hodge operator ⋆ and the m-p-form ⋆ω. But |B + (⋆ω)| 2 is independent on the choice of the orientability and is consequently globally defined. Then we have

|B + (ω)| 2 + |B + (⋆ω)| 2 ≤ i,j (R φ ) ij ( i(e i )ω, i(e j )ω + i(e i ) ⋆ ω, i(e j ) ⋆ ω ) -(p(p -1) + (m -p)(m -p -1)) ρ 0 (φ(x))|ω| 2 (16) 
Now using the properties about inner and exterior products recalled in the first section, we have

i,j (R φ ) ij i(e i )ω, i(e j )ω + (R φ ) ij i(e i ) ⋆ ω, i(e j ) ⋆ ω = i,j (R φ ) ij i(e i )ω, i(e j )ω + (R φ ) ij e ⋆ i ∧ ω, e ⋆ j ∧ ω = i,j (R φ ) ij i(e i )ω, i(e j )ω + (R φ ) ij i(e j )(e ⋆ i ∧ ω), ω = i,j (R φ ) ij i(e i )ω, i(e j )ω + i (R φ ) ii |ω| 2 - i,j (R φ ) ij e ⋆ i ∧ i(e j )ω, ω = i (R φ ) ii |ω| 2 (17) A straightforward computation gives i (R φ ) ii ≤ Scal(φ(x)) -(n -m)(n + m -1)K 0 (φ(x))
and from ( 16) and ( 17) we deduce that for all

x ∈ M 0 ≤ Scal(φ(x)) -(n -m)(n + m -1)K 0 + (p(p -1) + (m -p)(m -p -1)) ρ 0 (φ(x))
Consequently if

Scal(x) < (n -m)(n + m -1)K 0 (x) + (p(p -1) + (m -p)(m -p -1)) ρ 0 (x)
for all x ∈ N , there is no minimal immersion from (M m , g) into (N n , h). Using the inequalities (2), we can easily see that the above condition implies

m(m -1) p(p -1) + (m -p)(m -p -1) K 0 (x) < ρ 0 (x) ≤ K 0 (x)
for all x ∈ N . And the theorem 3.2 is of interest only for K 0 < 0.

To finish this section, we study the particular case where the ambient space is the complex hyperbolic space CH n (c) with constant holomorphic curvature equal to c (c < 0). Let us recall that in this case the curvature tensor of CH n (c) has the expression

R(X, Y, Z, W ) = c 4 ( X ∧ Y, Z ∧ W + X ∧ Y, JZ ∧ JW + 2 X, JY Z, JW ) (18)
for all X, Y , Z, W ∈ Γ(T CH n (c)) . Here J denotes the complex structure of CH n (c).

For any isometric immersion φ of a Riemannian manifold (M m , g) into CH n (c) , we define the (1, 1)-tensor J φ on M by J φ X = i≤m Jdφ(X), dφ(e i ) e i , ∀X ∈ Γ(T M ) and for all orthonormal frame (e i ) 1≤i≤m . Recall that the immersion φ is said to be totally real if J φ ≡ 0. For this kind of immersions we have the Theorem 3.3 Let (M m , g) be an m-dimensional Riemannian manifold admitting a nontrivial parallel p-form (p ≥ 1). Then there is no minimal totally real immersion of (M m , g) into CH n (c).

Proof: Let φ be a minimal immersion of (M m , g) into CH n and assume that M has a non trivial parallel p-form ω. Then from (13) we have

|B + (ω)| 2 = i,j (R φ ) ij i(e i )ω, i(e j )ω - 1 2 i,j,k,l R ijkl i(e j ∧ e i )ω, i(e l ∧ e k )ω
Now the conclusion follows from a straightforward computation. Using (18) the above equality becomes

|B + (ω)| 2 = c 4 p(m -p)|ω| 2 + 3 i,j≤m
J φ e i , J φ e j i(e i )ω, i(e j )ω

- i,j≤m i(e j ∧ e i )ω, i(J φ e j ∧ J φ e i )ω - i,j≤m i(e i ∧ J φ e i )ω, i(e j ∧ J φ e j )ω
where (e i ) 1≤i≤m is a local orthonormal frame.

4 Geometry of submanifolds with b p (M ) = 0

Let (M m , g) and (N n , h) be two Riemannian manifolds and assume that (M m , g) is compact. We use the same notations as in the previous sections. Moreover in this section, k(x) denotes the smallest eigenvalue at x of the Ricci curvature of (M m , g) and we put k 0 = min M (k(x)). On the other hand, if K 1 is bounded above, we will set K

1 max = max N (K 1 )
and ρ 1 max = max N (ρ 1 ). The first result is the following theorem Theorem 4.1 Let (M m , g) be a compact Riemannian manifold of dimension m ≥ 2 so that b p (M ) = 0 for some p ≥ 1. Then for any isometric immersion φ from (M m , g) into an n-dimensional Riemannian manifold (N n , h), there exists at least a point x ∈ M so that

m √ p p -1 p |B(x)||H(x)| ≥ k(x) - p -1 p ((m -1)K 1 + ρ 1 )(φ(x)) (19) 
The following corollary is an immediate consequence of this theorem.

Corollary 4.1 Let (M m , g) be a compact Riemannian manifold of dimension m ≥ 2 minimally immersed in an n-dimensional Riemannian manifold (N n , h) (n > m). If ρ 1 is bounded above and if for an integer p so that 1 ≤ p ≤ m/2, we have

k 0 > p -1 p (m -1)K 1 max + ρ 1 max
then b q (M ) = 0 for q ∈ {1, ..., p}.

Remark 4.1: The inequality ( 19) is an equality at each point for the standard embedding of S p ( p/m) × S k 1 ( k 1 /m) × ... × S kq ( k q /m) into S m+r where p + k 1 + ... + k q = m with k i ≥ p (1 ≤ i ≤ q). For the case p = 2, (19) is also an equality at each point for the standard embedding from CP q with holomorphic curvature 2q/(q + 1) into S q 2 +2q . This theorem 4.1 is a generalization of a result obtained by El Soufi (see theorem 3.1 of [START_REF] Soufi | Géométrie des sous-variétés admettant une structure kaehlérienne ou un second nombre de Betti non nul[END_REF]) in the particular case p = 2.

To prove the theorem 4.1 we need the following proposition which gives an estimate of the term R p (ω), ω for any p-form ω. Proposition 4.1 Let (M m , g) be an m-dimensional compact Riemannian manifold isometrically immersed in an n-dimensional Riemannian manifold (N n , h). Then for any p ∈ {1, ..., m} and for any p-form ω of M , we have for all

x ∈ M R p (ω), ω ≥ p pk(x) -(p -1) (m -1)K 1 + ρ 1 (φ(x)) -m p -1 √ p |H(x)||B(x)| |ω| 2
Before proving this proposition, we introduce the following p-tensor associated to any p-form ω of M and the isometric immersion φ

B -(ω) = 1 (p -2)! i,i 1 ,...,i p-2 ≤m i(e i ∧ e i 1 ∧ ... ∧ e i p-2 )ω ∨ B(e i , .) ⊗ (e ⋆ i 1 ∧ ... ∧ e ⋆ i p-2 )
where (e i ) 1≤i≤m is an orthonormal frame at a point x ∈ M and ∨ denotes the symmetric product defined in the preliminaries (see ( 4)). It will be convenient to choose the norm

|B -(ω)| so that |B -(ω)| 2 = 1 (p -2)! jki 1 ...i p-2 ≤m B -(ω) jki 1 ...i p-2 2
Such a tensor has been introduced for the first time in [START_REF] Grosjean | A new Lichnerowicz-Obata estimate in the presence of a parallel p-form[END_REF] where the second fundamental form is replaced by the Hessian of a function. First note that if ω is a volume form at a point p of M where we have define the Hodge operator ⋆ so that ω = ⋆1, we deduce from (20) shown in the proof of the proposition 4.1, that

1 2n |B -(v g )| 2 = n -1 n ijk≤n B ik , B jk i(e i ) ⋆ 1, i(e j ) ⋆ 1 - 1 n ijkl≤n B ij , B kl i(e l ∧ e i ) ⋆ 1, i(e k ∧ e j ) ⋆ 1 = n -1 n ijk≤n B ik , B jk e ⋆ i , e ⋆ j - 1 n ijkl≤n B ij , B kl e ⋆ l ∧ e ⋆ i , e ⋆ k ∧ e ⋆ j = |B| 2 -n|H| 2 = |B -H ⊗ g| 2
In other words we obtain the square of the umbilicity tensor. Moreover if α denotes the Kaehler form of a Kaehlerian manifold, a straightforward calculation gives

|B -(α)| 2 = 4|B -| 2
where B -is the anti-holomorphic part of

B (i.e. B -(X, Y ) = 1 2 (B(X, Y ) -B(JX, JY )) where α(X, Y ) = JX, Y ).
On the other hand we will see in the proof of theorem 4.1 that B -(ω) is vanishing identically for the standard embedding of

S p ( p/m) × S k 1 ( k 1 /m) × ... × S kq ( k q /m) into S m+r where p + k 1 + ... + k q = m with k i ≥ p (1 ≤ i ≤ q).
Proof of the proposition 4.1: For p = 1 and from the relation [START_REF] Soufi | Immersions minimales et immersions pluriharmoniques entre variétés riemanniennes: résultats de non existence et de rigidité[END_REF], the equality of the proposition is obvious. Suppose now that p ≥ 2. Let x ∈ M and let (e i ) 1≤i≤m be a local orthonormal frame in a neighborhood of x. We have 

(p -2)! 2 |B -(ω)| 2 = 1 2 i,
+ i,j,k,l,i 1 ,...,i p-2 i(e i ∧ e i 1 ∧ ... ∧ e i p-2 )ω k i(e j ∧ e i 1 ∧ ... ∧ e i p-2 )ω l B il , B jk = i,j,k,l,i 1 ...i p-2 B il , B jl ω iki 1 ...i p-2 ω jki 1 ...i p-2 + i,j,k,l,i 1 ,...,i p-2 B il , B jk ω iki 1 ...i p-2 ω jli 1 ...i p-2 = (p -1)! i,j,k B ik , B jk i(e i )ω, i(e j )ω -(p -2)! i,j,k,l B ij , B kl i(e l ∧ e i )ω, i(e k ∧ e j )ω
Finally, we have proved that

1 2 |B -(ω)| 2 = (p -1) i,j,k B ik , B jk i(e i )ω, i(e j )ω - i,j,k,l B ik , B jl i(e i ∧ e j )ω, i(e k ∧ e l )ω (20) 
Now, combining this with the relations ( 10) and ( 11) and using the expression of R p (ω), ω (see ( 6)), we get

1 2 |B -(ω)| 2 = R p (ω), ω -p i,j Ric ij i(e i )ω, i(e j )ω + (p -1) i,j (R φ ) ij i(e i )ω, i(e j )ω + 1 2 i,j,k,l R ijkl i(e j ∧ e i )ω, i(e l ∧ e k )ω + m(p -1) i,j B ij , H i(e i )ω, i(e j )ω (21) 
From the hypotheses on the curvature of N and by techniques already used in the proof of the theorem 3.1 (see ( 14) and ( 15)) we deduce that

1 2 |B -(ω)| 2 ≤ R p (ω), ω -p i,j Ric ij i(e i )ω, i(e j )ω + p(p -1) (m -1)K 1 (x) + ρ 1 (x) |ω| 2 + m(p -1) i,j B ij , H i(e i )ω, i(e j )ω (22) 
Now, let us estimate the last term. For this, assume that at the point x ∈ M , (e i ) 1≤i≤m diagonalizes the symmetric tensor B(X, Y ), H . We have i,j

B ij , H i(e i )ω, i(e j )ω = 1 (p -1)! i,i 1 ,...,i p-1 B ii , H ω 2 ii 1 ...i p-1 = 1 p! i,i 1 ,...,i p-1 B ii , H + B i 1 i 1 , H + ... + B i p-1 i p-1 , H ω 2 ii 1 ...i p-1 ≤ 1 p! i,i 1 ,...,i p-1 |B ii | + |B i 1 i 1 | + ... + |B i p-1 i p-1 | |H|ω 2 ii 1 ...i p-1 ≤ √ p p! i,i 1 ,...,i p-1 |B||H|ω 2 ii 1 ...i p-1
Finally we have proved

i,j B ij , H i(e i )ω, i(e j )ω ≤ √ p|B||H||ω| 2 (23) 
Since Ric ≥ kg, we have i,j

Ric ij i(e i )ω, i(e j )ω ≥ pk|ω| 2 , and we deduce from this, ( 22) and ( 23), the inequality of the proposition 4.1.

The proof of the theorem 4.1 is now an immediate consequence of the proposition 4.1

Proof of theorem 4.1: Since b p (M ) = 0, there exists a nontrivial p-form ω so that ∆ω = 0. And from the Weitzenböck formula (5), we deduce

M R p (ω), ω ≤ 0 (24)
Now, applying the estimate of the proposition 4.1 we get the desired inequality.

We can show a similar result to the theorem 4.1, with the scalar curvature Scal of (M m , g) instead of the Ricci curvature. 

The theorem 4.2 and the inequality (26) was obtained by El Soufi (theorem 3.1 and theorem 3.2 of [START_REF] Soufi | Géométrie des sous-variétés admettant une structure kaehlérienne ou un second nombre de Betti non nul[END_REF]) in the particular case where m = 4 and p = 2. On the other hand, note that for p = m/2, the theorem 4.1 is not a consequence of the theorem 4.2.

For the same reasons as in the proof of theorem 3.2, we can choose locally an orientation on M and define locally the Hodge operator ⋆. But for all p-form ω of M , the quantity R m-p (⋆ω), ⋆ω is globally defined.

The theorem 4.2 is a consequence of the following proposition 

Theorem 4 . 2 1 max + ρ 1 maxRemark 4 . 2 :

 421142 Let (M m , g) be a compact Riemannian manifold of dimension m ≥ 2 so that b p (M ) = 0 for a p ≥ 1. Then for any isometric immersion φ from (M m , g) into an n-dimensional Riemannian manifold (N n , h), there exists at least a point x ∈ M so thatm p -1 √ p + m -p -1 √ m -p |B(x)||H(x)| ≥ Scal(x) -(m -2)((m -1)K 1 + ρ 1 )(φ(x)) (25)We immediately deduce the following Corollary 4.2 Let (M m , g) be a compact Riemannian manifold of dimension m ≥ 2 minimally immersed into an n-dimensional Riemannian manifold (N n , h) (n > m). If ρ 1 is bounded above and if min M (Scal) > (m -2) (m -1)K then for any p ∈ {1, ..., m}, we have b p (M ) = 0. If p = m/2, we can improve (25) to obtain m(m -2)|H(x)| 2 ≥ Scal(x) -(m -2)((m -1)K 1 + ρ 1 )(φ(x))

Proposition 4 . 2 2 Remark 4 . 3 : 2 :

 422432 Let (M m , g) be an m-dimensional compact Riemannian manifold isometrically immersed in an n-dimensional Riemannian manifold (N n , h). Then for all p ∈ {1, ..., m -1} and for all p-form ω on (M m , g), we have for allx ∈ M R p (ω), ω + p m -p R m-p (⋆ω), ⋆ω ≥ p Scal(x) -(m -2) (m -1)K 1 + ρ 1 (φ(x)) -m p -1 √ p + m -p -1 √ m -p |H(x)||B(x)| |ω| If p = m/2, we can improve this inequality (see the proof of the proposition 4.2) to obtainR p (ω), ω + p m -p R m-p (⋆ω), ⋆ω ≥ p Scal(x) -(m -2) (m -1)K 1 + ρ 1 (φ(x)) -m(m -2)|H(x)| 2 |ω| 2 (27)And if for p ≥ 1, b p (M ) = 0, we get (26).Proof of the proposition 4.From the inequality (22) we obtain that for all p ≥ 1R p (ω), ω ≥ p i,j Ric ij i(e i )ω, i(e j )ω -p(p -1) (m -1)K 1 + ρ 1 (φ(x))|ω| 2 -m(p -1) i,j B ij , H i(e i )ω, i(e j )ω(28)Since ⋆ω is a (m -p)-form we have also R m-p (⋆ω), ⋆ω ≥ (m -p) i,j Ric ij i(e i ) ⋆ ω, i(e j ) ⋆ ω -(m -p)(m -p -1) (m -1)K 1 + ρ 1 (φ(x))|ω| 2

  j, s < t B iis , B jit ω iiti 1 ... îs... ît...ip ω jisi 1 ... îs... ît...ip B iis , B jit ω iiti 1 ... ît... îs...ip ω jisi 1 ... ît... îs...ip

	=		
		i,j,k	
	-	1 p!	1 ≤ i 1 , ..., ip ≤ m
			i, j, s > t

  j,i 1 ,...,i p-2 ∧ e i 1 ∧ ... ∧ e i p-2 )ω ∨ B(e i , .) kl , i(e j ∧ e i 1 ∧ ... ∧ e i p-2 )ω ∨ B(e j , .) kl = i,j,k,l,i 1 ,...,i p-2 i(e i ∧ e i 1 ∧ ... ∧ e i p-2 )ω k i(e j ∧ e i 1 ∧ ... ∧ e i p-2 )ω k B il , B jl

				B -(ω) i,j,i 1 ,...,i p-2	2 =
	=	1 2	i,j,k,l,i 1 ,...,i p-2	i(e i
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-m(m -p -1) i,j B ij , H i(e i ) ⋆ ω, i(e j ) ⋆ ω (29)

Multiplying (29) by p/(m -p), and summing the obtained inequality with (28), we find

By computations which are similar to (17) we get i,j

, and we show with the same arguments as in the proof of (30) that

and reporting this in (31), we obtain the inequality (27) of the remark 3.3. )

From the estimate (23), we deduce

now reporting these inequalities in (31), we find the inequality of the proposition.

The proof of the theorem is now immediate

Proof of theorem 4.2: Let ω be a harmonic p-form. Since the Hodge operator commutes with the Laplacian, then ⋆ω is a harmonic (m -p)-form, and we have

and the theorem follows from the proposition 4.2.

Remark 4.4:

We can improve all the results of this section by considering the particular case of submanifolds of the complex projective space CP n (c) (c > 0). We just need to compute in (21) the terms with the curvature tensor of the complex projective space. Then we obtain the same statements as previously by replacing (m -1)K