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Lie antialgebras

V. Ovsienko
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Abstract

We introduce a new class of algebras that we call Lie antialgebras. The subject is situated
in between commutative algebra, symplectic/contact geometry and Lie superalgebra theory.
We define the odd Lie-Poisson structure on the space dual to a Lie antialgebra and study
the notion of central extensions. We classify simple finite-dimensional Lie antialgebras.
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1 Introduction

We call antialgebra a Z2-graded vector space a = a0 ⊕ a1 with an odd product, that is a
bilinear map from a ⊗ a to a changing the parity: if a ∈ ai and b ∈ aj with i, j ∈ {0, 1|mod2},
then a · b ∈ ai+j+1. Such structures are well-known and often appear in the context of Poisson
geometry. One example is the Buttin bracket (or the “Poisson antibracket”), see, e.g., [1, 13, 14].
Another one is the usual Schouten bracket on the space of skew-symmetric contravariant tensors
in the Batalin-Vilkovisky formalism, see [12] for a survey. All these notions are related to graded
Lie superalgebras.

We introduce a new class of antialgebras.

Definition 1.1. An antialgebra a is called a Lie antialgebra if its product, denoted by ] , [:
a⊗ a→ a, is skew-symmetric:

]x, y[ = −(−1)p(x) p(y) ]y, x[, (1.1)

where p is the parity function, and satisfies the following properties.

1. The odd part a1 is a commutative associative algebra, i.e., one has

]α, ]β, γ[[ = ]]α, β[ , γ[ (1.2)

for all α, β, γ ∈ a1.

2. The map ] , [: a1 ⊗ a0 → a0 satisfies the relation

]α, ]β, a[[ = ]β, ]α, a[[ =
1

2
]]α, β[ , a[ (1.3)

for all α, β ∈ a1 and a ∈ a0. In other words, the map ρ : a1 → End(a0) defined by

ρα(a) := 2 ]α, a[

is an action of the commutative algebra a1 on a0:

ρα ◦ ρβ = ρβ ◦ ρα = ρ]α,β[.

The skew-symmetric map ] , [: a0 ⊗ a0 → a1 satisfies

3. the Leibniz identity:
]α, ]b, c[[ = ]]α, b[ , c[ + ]b, ]α, c[[ (1.4)

for all α ∈ a1 and b, c ∈ a0.

4. the Jacobi-type identity:

]a, ]b, c[[ + ]b, ]c, a[[ + ]c, ]a, b[[ = 0 (1.5)

for all a, b, c ∈ a0.

2



A Lie antialgebra is, therefore, nothing but a commutative associative algebra a1, together
with an a1-module a0, equipped with a skew-symmetric bilinear form with coefficients in a1.
This bilinear form has to satisfy two extra conditions, namely (1.4) and (1.5). The situation
can, of course, be considered purely from the commutative algebra viewpoint. The main purpose
of this paper is to show, however, that the notion of Lie antialgebra has a strong similarity with
Lie algebras (and Lie superalgebras). This suggests another, “Lie algebraic” approach. We make
first steps in this direction.

The notion of Lie antialgebra seems to be non-equivalent to any known algebraic structure.
In particular, the usual parity-inverting functor

Π : a0 ⊕ a1 → a1 ⊕ a0

transforming an antialgebra structure to a usual algebra (which is non-associative with additional
properties) does not make much sense here. The reason is as follows. The Lie superalgebra “of
symmetry”, ga = Der(a), acts on a and preserves the algebraic structure. The condition of
ga-invariance is, of course, understood in the graded sense:

̺x ]a, b[ = (−1)p(x) ]̺xa, b[ + (−1)p(x)(1+p(a)) ]a, ̺xb[ , (1.6)

where x ∈ ga, a, b ∈ a, ̺ : ga→ End(a) is the action and p is the parity function. The sign rule
in (1.6) is due to the fact that ]·, ·[ is an odd operation. The functor Π then has no ga-invariant
meaning. This notion of algebra of symmetry is important since it often allows to characterize
the initial Lie antialgebra a as the unique Lie antialgebra preserved by the ga-action.

The origin of Lie antialgebras is related to symplectic geometry. The first examples come
from the standard symplectic Z2-graded space (over K = R or C) of dimension 2|1. It turns out
that there is an odd bivector Λ which is preserved by the Lie supergroup of linear orthosymplectic
transformations1. In this way we obtain our first example of a 2|1-dimensional Lie antialgebra
that we denote by asl(2, K). The Lie antialgebra asl(2, K) simple, that is, it contains no non-
trivial ideal.

Already this first example provides as many examples of Lie antialgebras as of commutative
ones. Since the tensor product of a Lie antialgebra with an arbitrary commutative algebra C is
again a Lie antialgebra, one defines

asl(2,C) = C⊗K asl(2, K).

The odd part of this Lie antialgebra is C and the even part is C⊕C. If, furthermore, C is a field
(e.g., of rational functions on an algebraic manifold, or Laurent series, etc.) then asl(2,C) is a
simple infinite-dimensional Lie antialgebra.

The same odd bivector Λ on R
2|1 defines an antibracket on the space of homogeneous func-

tions and leads to a very interesting simple infinite-dimensional Lie antialgebra that we call the
conformal Lie antialgebra and denote AK(1). This is a conformal version of asl(2, R). This Lie
antialgebra is closely related to the well-known conformal Lie superalgebra K(1), also known as
the (centerless) Neveu-Schwarz algebra; we show that K(1) is the algebra of symmetry:

K(1) = Der(AK(1)).

1The bivector Λ was introduced in [4])
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The odd part of the conformal Lie antialgebra is the algebra of Laurent polynomials in one
variable:

K(1)1 = K[t, t−1],

or Laurent series according to the choice of topology.
It is natural to consider a similar problem for the symplectic space of any dimension n|m.

However, in this case, the situation is more complicated: there is no odd bivector preserved by
the supergroup of linear symplectic transformations. We consider the space R

4|2 equipped with
a pair of linear symplectic structures. There exists an odd bivector preserved by the supergroup
of linear “bi-symplectic” transformations. This 4|2-dimensional odd invariant bivector is related
to asl(2, C), the conformal version is AK(1)C. The algebra of conformal symmetry is the Lie
superalgebra K(1)C. We conjecture that, in the multi-dimensional case, Lie superalgebras are
always related to milti-Hamiltonian structures.

Let us mention that Lie antialgebras are related not only to symplectic geometry but also
to contact geometry. In the natural case where the commutative subalgebra a1 contains the
unit element ε, its action is given by the Euler vector field, the generator of homotheties. This
defines a natural projection

R
2n|m \ {0} −→ RP

2n−1|m

from the symplectic vector space to the contact projective space. Amazingly, Lie antialgebras
are represented by vector fields tangent to the contact distribution, whereas the corresponding
symmetry algebras are represented by contact vector fields.

The results of this paper are as follows.
A. We classify finite-dimensional simple Lie antialgebras. It turns out that asl(2, C) is the

only complex simple finite-dimensional Lie antialgebra; in the real case, there are two simple
finite-dimensional Lie antialgebras: asl(2, R) and asl(2, C) viewed as a 4|2-dimensional real Lie
antialgebra.

We also classify Lie antialgebras of rank 1. This, in particular, provides a number of examples
of Lie antialgebras other than simple ones.

B. We introduce the conformal Lie antialgebra AK(1) and define its representation by vec-
tor fields on R

1|1 tangent to the contact distribution. The complexified version AK(1)C (and
asl(2, C)) is described in terms of bi-Hamiltonian formalism.

C. We also consider a few very simple ingredients of the general theory. We introduce the no-
tions of representation and module over a Lie antialgebra. We define the canonical odd bivector
on the dual space a∗ of an arbitrary Lie antialgebra a. This bivector is an analog of the classical
Poisson-Lie-Berezin-Kirillov-Kostant-Souriau structure on the dual of a Lie (super)algebra, and
this is the way Lie antialgebras are related to symplectic and contact geometry. We define the
notion of symmetry superalgebra and conformal symmetry superalgebra and relate the context
to multi-Hamiltonian formalism. We also introduce the notions of central extension of a Lie
antialgebra. We prove that existence of the unit element ε ∈ a1 implies that the Lie antialgebra
a has no non-trivial central extension.

In the end of this paper, we formulate a number of open problems and suggest some further
developments.
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2 Simple Lie antialgebras

We call a Lie antialgebra a simple if it contains no ideal except for the trivial one and a itself.
It turns out that the classification of finite-dimensional simple Lie antialgebras is similar to that
of commutative algebras.

Theorem 1. (i) There exists a unique finite-dimensional complex simple Lie antialgebra.
(ii) There are two finite-dimensional simple Lie antialgebras over R.

Recall that the only simple finite-dimensional commutative algebras over R are R and C = R+iR.
In the complex case there is only C itself.

In this section, we construct the simple Lie antialgebras build on R and C as the odd parts.
We also calculate the corresponding Lie superalgebras of symmetry. The proof of the uniqueness
part of Theorem 1 is postponed to Section 5.1.

2.1 Introducing asl(2) and the odd bivector

Our first example of a Lie antialgebra is a simple Lie antialgebra of dimension 2|1. The ground
field in this section is K = C or R.

Definition 2.1. The basis of asl(2, K) is denoted by {a, b; ε} and the relations between the
elements of the basis are as follows:

]a, b[ = 1
2 ε, ]ε, a[ = 1

2 a, ]ε, b[ = 1
2 b, ]ε, ε[ = ε. (2.1)

It is easy to check that the conditions 1–4 of Definition 1.1 are satisfied. The Lie antialgebra
asl(2, K) is obviously simple.

The origin of the defined structure is related to 2|1-dimensional linear symplectic geometry.
Consider the vector space K

2|1 equipped with the standard symplectic form

ω = dp ∧ dq +
1

2
dτ ∧ dτ, (2.2)

where p and q are the usual even coordinates on K
2 and τ is the formal Grassmann variable

so that τ2 = 0. An equivalent way to define the above symplectic structure is to introduce the
Poisson bivector on K

2|1:

P =
∂

∂p
∧

∂

∂q
+

1

2

∂

∂τ
∧

∂

∂τ
. (2.3)

which is inverse to the symplectic form: P = ω−1.
The Lie superalgebra osp(1|2) is defined as the of linear transformations preserving the

symplectic structure. The bivector (2.3) is the unique (up to a multiplicative constant) even
bivector invariant with respect to the action of osp(1|2).

It turns out that there exists another, odd, osp(1|2)-invariant bivector on K
2|1.

Proposition 2.2. There exists a unique (up to a multiplicative constant) odd bivector invariant
with respect to the action of osp(1|2):

Λ =
∂

∂τ
∧ E + τ

∂

∂p
∧

∂

∂q
, (2.4)
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where

E = p
∂

∂p
+ q

∂

∂q
+ τ

∂

∂τ

is the Euler field.

Proof. The osp(1|2)-invariance of Λ is a very easy check. Note that in the next section we will
prove a much stronger statement see Theorem 2.

Let us prove the uniqueness. An arbitrary odd bivector on K
2|1 is given by

Λ =
∂

∂τ
∧A + τ F

∂

∂p
∧

∂

∂q
,

where A is an even vector field and F is an even function. Let X be an even vector field, one
has

LXΛ =
∂

∂τ
∧ [X,A] + τ X(F )

∂

∂p
∧

∂

∂q
+ τ F LX

(
∂

∂p
∧

∂

∂q

)
.

If, furthermore, X ∈ osp(1|2), then it preserves the even part ∂
∂p
∧ ∂

∂q
of the Poisson bivector.

The condition LXΛ = 0 then implies:

[X,A] = 0 and X(F ) = 0.

The even part of osp(1|2) is just the Lie algebra sl(2, K) generated by the Hamiltonian
vector fields with quadratic Hamiltonians 〈p2, pq, q2〉. It is easy to see that an even vector field
A commuting with any even element of osp(1|2) is of the form

A = c1τ
∂

∂τ
+ c2 E,

where c1 and c2 are arbitrary constants and

E = p
∂

∂p
+ q

∂

∂q
.

An even function killed by all even elements of osp(1|2) is constant: F = c3.
The odd part of osp(1|2) is spanned by the following two vector fields:

Xτp = τ
∂

∂q
+ p

∂

∂τ
, Xτq = −τ

∂

∂p
+ q

∂

∂τ
.

Applying to Λ any of the above odd elements of osp(1|2), one immediately gets c1 = c2 = c3.

The relation of the bivector Λ to the Lie antialgebra asl(2, K) is as follows. Any bivector
defines an algebraic structure on the space of functions. Consider the bracket associated with
the bivector (2.4):

]F,G[ =
1

2
〈Λ, dF ∧ dG〉, (2.5)

where F and G are arbitrary functions on K
2|1, that is, F = F0(p, q) + τ F1(p, q).

Lemma 2.3. The space of linear functions on K
2|1 equipped with the bracket (2.5) is a Lie

antialgebra isomorphic to asl(2, K).
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Proof. One checks that after the identification

{a, b; ε} ←→ {p, q; τ},

the bracket (2.1) coincides with the bracket (2.5) restricted to linear functions.

We proved that the Lie superalgebra osp(1|2) preserves the bivector Λ. Since osp(1|2) acts
on K

2|1 by linear vector fields, it also preserves the space of linear functions. It follows that

osp(1|2) = Der (asl(2, K)) ,

or, in other words, osp(1|2) is the algebra of symmetry of asl(2, K).

Remark 2.4. (i) The bivector Λ given by (2.4), and the Lie antialgebra asl(2, K) are equivalent
structures, they contain the same information. The above lemma provides the identification of
the dual space:

asl(2, K)∗ ∼= (K2|1,Λ).

The bivector Λ is the therefore analog of the Lie-Poisson structure of asl(2, K), cf. Section 4.2
for a general setting.

(ii) The similar question in the case of orthosymplectic Lie superalgebra in higher dimension,
has a negative answer: the only osp(m|2n)-invariant bivector is the standard, even, Poisson
bivector. There is no analog of the odd bivector (2.4) in this case.

2.2 Lie antialgebra asl(2, C) and a pair of symplectic structures

Consider now the complex Lie antialgebra asl(2, C) viewed as a simple 4|2-dimensional Lie
antialgebra over R. Our goal is to introduce the corresponding odd bivector, which is an analog
of the bivector (2.4), and calculate the algebra of symmetry.

Consider the vector space R
4|2 with linear coordinates (p1, q1, p2, q2; τ1, τ2). Introduce the

following odd bivector:

ΛC =
∂

∂τ1
∧ E +

∂

∂τ2
∧ J + τ1 πε + τ2 πσ, (2.6)

where E is the Euler vector field

E =
∑

i=1,2

(
pi

∂

∂pi
+ qi

∂

∂pi
+ τi

∂

∂τi

)

and

J = q2
∂

∂p1
+ p2

∂

∂q1
− q1

∂

∂p2
− p1

∂

∂q2
+ τ2

∂

∂τ1
− τ1

∂

∂τ2
. (2.7)

and where

πε =
∂

∂p1
∧

∂

∂q1
+

∂

∂p2
∧

∂

∂q2
, πσ =

∂

∂p1
∧

∂

∂p2
−

∂

∂q1
∧

∂

∂q2
.

Define the antibracket corresponding to the bivector (2.6), as in formula (2.5). One easily
checks the following

Proposition 2.5. The space of linear functions Span(p1, q1, p2, q2; τ1, τ2) form a Lie antialgebra
isomorphic to asl(2, C).
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The space (R4|2,ΛC) is thus identified with the space dual to the Lie antialgebra asl(2, C):

asl(2, C)∗ ∼= (R4|2,ΛC).

The symmetry algebra associated to asl(2, C) is, of course, osp(1|2, C). We realize it as the
Lie superalgebra of linear vector preserving the bivector ΛC .

Proposition 2.6. The subalgebra osp(1|2, C) ⊂ gl(4|2, R) preserving the bivector (2.6) is the
Lie superalgebra of linear vector fields that can be equivalently characterized in the following two
ways:

(i) it preserves the symplectic form

ωε = dp1 ∧ dq1 + dp2 ∧ dq2 +
1

2
(dτ1 ∧ dτ1 − dτ2 ∧ dτ2)

and commuting with the vector field (2.7);
(ii) this is the Lie superalgebra of linear vector fields preserving two symplectic forms: the

form ωε together with
ωσ = dp1 ∧ dp2 − dq1 ∧ dq2 + dτ1 ∧ dτ2.

Proof. The forms ωε and ωσ are the even and the odd part of the complex 2-form (2.2) with the
complex coordinates

p = p1 + iq2, q = q1 + ip2, τ = τ1 + iτ2. (2.8)

The complex Lie superalgebra preserving this 2-form is osp(1|2, C).
Since the Poisson bivector Pε is inverse to the standard symplectic form ω on R

4|2, every
symplectic vector field is Pε-Hamiltonian. Furthermore, the two symplectic structures are related
by

ωσ =
1

2
LJ (ωε), ωε = −

1

2
LJ (ωσ).

Therefore, a ωε-Hamiltonian vector field commutes with the vector field J if and only if is also
Hamiltonian with respect to the symplectic structure ωσ.

Remark 2.7. The symmetry algebra osp(1|2, C) is thus obtained as intersection of two copies
of the real symplectic Lie superalgebra:

osp(1|2, C) = ospε(1, 1 | 4) ∩ ospσ(1, 1 | 4)

corresponding to the symplectic forms ωε and ωσ, respectively.

Proposition 2.8. The bivector ΛC is the unique (up to a multiplicative constant) osp(1|2, C)-
invariant bivector.

Proof. The osp(1|2, C)-action on R
4|2 is spanned by 6 even bi-Hamiltonian vector fields corre-

sponding to the quadratic Hamiltonians
{
p2
1 − q2

2 , p2
2 − q2

1 , p1p2 + q1q2, p1q1 − p2q2, p1q2, q1p2

}

and 4 odd bi-Hamiltonian vector fields with the Hamiltonians

{p1τ1 − q2τ2, p2τ1 + q1τ2, q1τ1 − p2τ2, q2τ1 + p1τ2} .

The uniqueness can then be proved in a similar way that in Proposition 2.2.
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Remark 2.9. The above 6|4-dimensional subspace of quadratic polynomials is characterized by
the property J (J (F )) = −4F . the corresponding bi-Hamiltonian vector fields satisfy

Xε
F = −

1

2
Xσ

J (F ), Xσ
F =

1

2
Xε

J (F ),

where Xε
F and Xσ

F are the Hamiltonian vector fields with the Hamiltonian F , with respect to
ωε and ωσ.

3 Conformal Lie antialgebra AK(1)

In this section we determine the maximal space of functions on R
2|1 that form a Lie antialgebra

with respect to the bracket (2.5). We introduce a simple infinite-dimensional Lie antialgebra,
that we denote AK(1); this is a conformal version of asl(2, R). The Lie antialgebra AK(1) first
appeared in [4] in the context of supertransvectants, see [6].

We will show that the famous conformal Lie superalgebraK(1), also known as the (centerless)
Neveu-Schwarz algebra is the algebra of symmetry of AK(1); this is the maximal subalgebra of
the Poisson Lie algebra on R

2|1 that preserves the bivector (2.4).

Definition 3.1. AK(1) is the infinite-dimensional Lie antialgebra with the basis
{
ai, i ∈ Z + 1

2 ; αn, n ∈ Z
}

and the following relations
]αn, αm[ = αn+m,

]αn, ai[ = 1
2 an+i,

]ai, aj [ = 1
2 (j − i) αi+j.

(3.1)

We call AK(1) the conformal antialgebra.

Proposition 3.2. The bracket (3.1) defines a structure of a simple Lie antialgebra.

Proof. Let us first check that the defined structure is, indeed, a Lie antialgebra. The properties
(1.2) and (1.3) are evident. The invariance condition (1.4) is as follows:

]αn, ]ai, aj [[ = ]]αn, ai[ , aj [ + ]ai, ]αn, aj [[

One obtains in the left-hand-side 1
2 (j − i) αi+j+n and in the right-hand-side the sum of two

terms: 1
4 (j − (i + n))αi+j+n and 1

4 (j + n− i) αi+j+n, so that the identity (1.4) is satisfied.
Finally, the Jacobi identity reads:

]]ai, aj [ , ak[ + ]]aj , ak[ , ai[ + ]]ak, ai[ , aj [ = 0.

One has the sum of 1
4 (j − i) ai+j+n with 1

4 (k − j) ai+j+n and 1
4 (i− k) ai+j+n which is zero.

Let us now proof that the defined Lie antialgebra is simple. The commutative subalgebra
AK(1)1 is a group algebra, namely

AK(1)1 = K[Z],

(in other words, the algebra of Laurent polynomials in one variable). In particular, the element
ε = α0 is the unit of AK(1)1. Obviously, AK(1)1 has no ideal. Assume that the Lie antialgebra
AK(1) has an ideal. It follows that the odd part of the ideal is either zero or coincides with
AK(1)1. But, in the first case the whole ideal is obviously zero, while, in the second case, it
contains the unit ε and thus coincides with AK(1).
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3.1 Relation to symplectic geometry

In this section we show that the Lie antialgebra AK(1) can be obtained, as asl(2, R), from the
odd Poisson bivector (2.4).

Consider first the space of all smooth functions C∞(R2|1):

F (p, q; τ) = F0(p, q) + τ F1(p, q),

where F0(p, q) and F1(p, q) are smooth functions of two real variables and τ is a formal Grass-
mannian variable, i.e., τ2 = 0. The antibracket (2.5) defines a structure of antialgebra on
C∞(R2|1); the explicit formula is as follows:

]F,G[ =
1

2

(
∂F

∂τ
E(G) − (−1)p(F ) E(F )

∂G

∂τ
+ τ

(
∂F

∂p

∂G

∂q
−

∂F

∂q

∂G

∂p

))
. (3.2)

However, the full antialgebra of functions C∞(R2|1) equipped with this bracket is not a Lie
antialgebra.

Consider the space, denoted by Fλ, of homogeneous functions of degree λ on R
2|1 \ R

1|1,
consisting of the functions (with singularities at p = 0) satisfying the condition

E(F ) = λF,

where E is the Euler field. Homogeneous functions on R
2|1 \ R

1|1 correspond to functions on
R

1|1. Given a function
f(x, ξ) = f0(x) + ξ f1(x)

in one even and one Grassmann variable, one defines a homogeneous of degree λ function

F λ
f (p, q; τ) = pλ f

(
q
p
, τ

p

)
. (3.3)

This is of course a one-to-one correspondence:

Fλ
∼= C∞(R1|1).

Proposition 3.3. The space, F1, of homogeneous of degree 1 functions on R
2|1 \ R

1|1 is a Lie
antialgebra with respect to the antibracket (3.2) that contains AK(1).

Proof. The space of homogeneous of degree 1 functions is obviously stable with respect to the
antibracket (3.2):

F 1
]f,g[ :=

1

2

〈
Λ, dF 1

f ∧ dF 1
g

〉
. (3.4)

One then easily checks the Lie antialgebra conditions.
Choose the following Taylor basis (dense in any reasonable topology):

ai = p
(

q
p

)i+ 1

2

, αn = τ
(

q
p

)n

and substitute it into the antibracket (2.5). One obtains the commutation relations (3.1), so
that the Lie antialgebra AK(1) is a subalgebra of F1.

Remark 3.4. Geometrically speaking, the map (3.3) is an isomorphism between the space of
homogeneous of degree λ functions on R

2|1 \ {0} and tensor densities of degree −1
2λ on S1|1,

see, e.g., [5]. We do not dwell on this compactification problem and rather develop a purely
algebraic viewpoint.

10



3.2 Conformal Lie superalgebra K(1) as the algebra of symmetry

The conformal Neveu-Schwarz superalgebra K(1) is spanned by the basis

{
xn, n ∈ Z; ξi, i ∈ Z + 1

2

}

with the following commutation relations

[xi, xj ] = (j − i) xi+j,

[xi, ξj ] =
(
j − i

2

)
ξi+j ,

[ξi, ξj ] = 2xi+j .

(3.5)

This is a Lie superalgebra that contains infinitely many copies of osp(1|2) with the generators
{x−n, x0, xn; ξ−n

2

, ξn
2

}. Define the following action of K(1) on AK(1):

xn(ai) =
(
i− n

2

)
an+i,

xn(αm) = m αn+m,

ξi(aj) = (j − i) αi+j,

ξi(αn) = ai+n.

(3.6)

Remark 3.5. This formula is well-known and represents the action of the superconformal
algebra K(1) on the space of tensor densities of weight −1

2 (cf., e.g., [5]).

Proposition 3.6. The action (3.6) preserves the Lie antialgebra structure (3.1).

Proof. Let us check the most non-trivial relations; the other terms are similar. One has

ξi (]aj , αk[) = −1
2 ξi(aj+k) = −1

2 (j + k − i)αi+j+k,

together with
]ξi(aj), αk[ = (j − i) ]αi+j , αk[= (j − i)αi+j+k

and
]aj, ξi(αk)[ =]aj, ai+k[=

1
2 (i + k − j)αi+j+k.

One finally gets:
ξi (]aj , αk[) = − ]ξi(aj), αk[ − ]aj , ξi(αk)[

which is precisely the invariance condition. Note that the sign rule in the above relation is due
to the fact that the antibracket ] , [ is odd, as well as the element ξi, cf. formula (1.6).

The conformal Lie superalgebra K(1) also has a symplectic realization.

Proposition 3.7. The space F2 of homogeneous of degree 2 functions on R
2|1 \ R

1|1 is a Lie
superalgebra with respect to the Poisson bracket (2.3) that contains K(1).

11



Proof. The Poisson bracket of two homogeneous of degree 2 functions is, again, a homogeneous
of degree 2 function. Therefore, F2 is, indeed, a Lie superalgebra.

A homogeneous of degree 2 function can be written in the form (3.3) with λ = 2. Choosing
the basis of the space of all such functions:

xn = p2

2

(
q
p

)n+1
, ξi = τp

(
q
p

)i+ 1

2

and substituting it into the Poisson bracket (2.3), one immediately obtains the commutation
relations (3.5). Therefore, K(1) is a subalgebra of F2.

Remark 3.8. (a) The Lie superalgebra F2 is a “geometric version” of the superconformal
algebra K(1), which is a polynomial part of F2. Similarly, AK(1) is the polynomial part of the
Lie antialgebra F1.

(b) The action (3.6) written in terms of homogeneous functions is, again, given by the
standard Poisson bracket (2.3).

Theorem 2. The Lie superalgebra F2 is the maximal Lie superalgebra of vector fields that
preserves the bivector (2.4).

Proof. Part 1. Let us first show that K(1) preserves the bivector (2.4). Given a function H ∈ F2,
the corresponding Hamiltonian vector field is homogeneous of degree 0:

[E ,XH ] = 0. (3.7)

Consider a more general case, where P is an purely even (independent of τ) Poisson bivector
homogeneous of degree −2 with respect to a vector field E, that is

LE(P ) = −2P.

Let Λ be the odd bivector field

Λ =
∂

∂τ
∧ E + τ ∧ P,

where

E = E + τ
∂

∂τ
.

(Note that in our case E = p ∂
∂p

+ q ∂
∂q

, P = ∂
∂p
∧ ∂

∂q
.)

Let XH be a Hamiltonian (with respect to the Poisson structure P ) vector field satisfying
the homogeneity condition (3.7). The Lie derivative of Λ along XH is as follows:

LXH
Λ = LXH

(
∂
∂τ

)
∧ E + XH (τ) P + τ LXH

(P ) .

If H is even, the above expression obviously vanishes. Consider now an odd function H = τH1,
then one gets from (2.3)

XτH1
= τXH1

+ H1
∂

∂τ
.

Lemma 3.9. One has
LXτH1

(Λ) = 〈P ∧E, dH1〉 (3.8)

where d is the de Rham differential.
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Proof. Using the obvious expressions

[
XτH1

, ∂
∂τ

]
= XH1

, LXτH1
(P ) = − ∂

∂τ
∧XH1

,

one obtains:

LXτH1
(Λ) = XH1

∧ E + H1 P + τ ∂
∂τ
∧XH1

= XH1
∧ E + H1 P.

Finally, using the fact that E(H1) = H1, one obtains the expression (3.8).

The even tri-vector P ∧ E obviously vanishes on R
2|1, and so we proved that XH , indeed,

preserves the bivector (2.4).
Part 2. Conversely, one has to show that any vector field preserving the bivector (2.4) is a

Hamiltonian vector field commuting with E .
If X is a purely even vector field, i.e.,

[
X, ∂

∂τ

]
= 0 and X(τ) = 0,

then LX(Λ) = 0 implies that X commutes with E and preserves the even bivector P = ∂
∂p
∧ ∂

∂q
,

so that X is Hamiltonian.
If X is an odd vector field:

X = F0
∂

∂τ
+ τ X0,

where F0 is an even function and X0 an even vector field, then one obtains explicitly

LXΛ = (E(F0)− 1)
∂

∂τ
∧

∂

∂τ
− τ

∂

∂τ
∧ (XF0

+ [E,X0]) + (F0 P + X0 ∧ E) .

The assumption LX(Λ) = 0 implies that each of the three summands in this expression vanishes.
It follows from

E(F0)− 1 = 0,

that F0 is a homogeneous of degree 1 function. The condition

XF0
+ [E,X0] = 0

then implies that X0 is a vector field homogeneous of degree −1, since so is XF0
, and thus

X0 = XF0
. We proved that the vector field X is Hamiltonian and [E ,X] = 0.

Theorem 2 is proved.

One then readily has

Corollary 3.10. K(1) is the algebra of symmetry of AK(1), that is, K(1) = Der(AK(1)).

Indeed, the subalgebra K(1) ⊂ F2 corresponds precisely to the space of vector fields preserving
the basis of AK(1).
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3.3 Representation of AK(1) by tangent vector fields

In this section we investigate the relation of the Lie antialgebra AK(1) to contact geometry. It
turns out that, in some sense, AK(1) provides a way to “integrate” the contact structure.

The natural projection
R

2|1 \ R
1|1 −→ R

1|1,

obtained as the quotient by homotheties, equips R
1|1 with a structure of 1|1-dimensional contact

manifold. This contact structure can be defined in terms of a contact 1-form

α = dx + ξdξ,

or, equivalently, in terms of an odd vector field2

D =
1

2

(
ξ

∂

∂x
−

∂

∂ξ

)
,

since D spans the kernel of α. A vector field tangent to the contact distribution is a vector field
proportional to D, that is, X = f D for some function f(x, ξ).

Definition 3.11. We introduce the following anticommutator of tangent vector fields:

]f D, g D[ := f D ◦ g D + (−1)(p(f)+1)(p(g)+1) g D ◦ f D. (3.9)

Note that the sign in this operation is inverse to that of usual commutator of vector fields.

The space of tangent vector fields is not a Lie superalgebra since the Lie bracket of two
tangent vector fields is not a tangent vector field (this is equivalent to non-integrability of the
contact distribution). It turns out that the anticommutator of two tangent vector fields is again
a tangent vector field.

Define a map from AK(1) to the space of tangent vector fields as follows. To each homo-
geneous of degree 1 function F 1

f (p, q, τ), cf. formula (3.3), we associate a tangent vector field
by

χf = f(x, ξ)D, (3.10)

where f(x, ξ) = f0(x)− ξ f1(x).

Proposition 3.12. The map (3.10) intertwines the antibracket (2.5) on the Lie antialgebra
AK(1) and the anticommutator (3.9):

]χf , χg[ = χ]f,g[,

where ] , [ stands for the anticommutator (3.9) in the left-hand-side and for the antibracket (2.5)
in the right-hand-side.

Proof. Let us calculate the explicit formula of the anticommutator (3.9).
Let first both of the functions f = ξf1 and g = ξg1 be odd, then one has

f D ◦ g D + g D ◦ f D =
1

2
fg

∂

∂x
+ (f D(g) + g D(f)) D.

2This vector field is also known in physical literature as “SUSY-structure”.
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The first summand is zero since it contains ξ2 = 0, while the second one is equal to ξ (f1g1)D,
so that the anticommutator (3.9) on the odd functions reads

]f1, g1[ = f1g1.

This corresponds to the product of two elements of the odd part AK(1)1, see formula (3.1).
If f = ξf1 is odd and g = g0 is even, then the Leibniz rule D ◦ f = D(f)− f D implies

f D ◦ g D + g D ◦ f D = g D(f)D =
1

2
f1g0 D,

so that one gets

]f1, g0[ =
1

2
f1g0,

accordingly to the AK(1)1-action on AK(1)0, cf. (3.1).
If, finally, the both functions f = f0 and g = g0 are even, then

f D ◦ g D − g D ◦ f D = (f D(g)− g D(f))D =
1

2
ξ
(
f0g

′
0 − g0f

′
0

)
D,

gives the skew-symmetric product

]f0, g0[ =
1

2

(
f0g

′
0 − g0f

′
0

)
,

on AK(1)0 with values in AK(1)1, see formula (3.1).

Let us also stress that the map (3.10) is nothing but the bivector (2.4) contracted with the
elements of AK(1). One checks that

χf (g) =
1

2

〈
Λ, dF 1

f ∧ dF 0
g

〉
, (3.11)

where F 1
f and F 0

g are functions on R
2|1 homogeneous of degree 1 and 0, respectively, obtained as

the lift of f and g according to (3.3). It is interesting to compare the above formula with (3.4).

Remark 3.13. The relation of the conformal Lie superalgebra K(1) to contact geometry is
well-known (see [13]). More precisely, K(1) can be realized as the Lie superalgebra of contact
vector fields on S1|1. Every contact vector field on S1|1 is of the form

Xh = h(x, ξ)
∂

∂x
+ 2D (h(x, ξ)) D,

where h(x, ξ) = h0(x) + ξ h1(x) is an arbitrary function. The map h 7→ F 2
h , see (3.3), provides

then a Lie superalgebra isomorphism.

3.4 AK(1)C and K(1)C: the bi-Hamiltonian formalism

In this section we construct a realization of AK(1)C and K(1)C in terms of real rational har-
monic functions on R

4|2. This is related to the bi-Hamiltonian formalism defined by the pair of
symplectic structures ωε and ωσ from Section 2.2.
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The Lie antialgebra AK(1)C is represented by the homogeneous of degree 1 harmonic func-
tions on R

4|2 with the complex structure (2.7). The odd generators of AK(1)C are as follows

αn = 1
2n Re τ

(
q
p

)n

, βn = 1
2n Im τ

(
q
p

)n

,

and the even ones are
an = 1

2n Re p
(

q
p

)n

, bn = 1
2n Im p

(
q
p

)n

,

where p, q, τ are the complex coordinates (2.8). One then checks the relations in AK(1)C.
The conformal Lie superalgebra K(1)C is realized by homogeneous bi-Hamiltonian vector

fields on R
4|2. For each function F ∈ C∞(R4|2), denote by Xε

F and Xσ
F the Hamiltonian vector

fields on R
4|2 with respect to the symplectic form ωε and ωσ, respectively.

One checks that the following three conditions are equivalent.

1. F is a homogeneous of degree 2 harmonic function:

F = Re p2f
(

q
p
, τ

p

)
,

where f is an arbitrary function.

2. The function F satisfies the relations:

E(F ) = 2F, J (J (F )) = −4F.

3. The Hamiltonian vector fields with the Hamiltonian F commute with E and J :

[E ,Xε
F ] = [E ,Xσ

F ] = [J ,Xε
F ] = [J ,Xσ

F ] = 0

and are bi-Hamiltonian such that

Xε
F = −

1

2
Xσ

J (F ), Xσ
F =

1

2
Xε

J (F ).

This space of homogeneous harmonic bi-Hamiltonian vector fields is a Lie superalgebra iso-
morphic to K(1)C.

Proposition 3.14. The Lie superalgebra K(1)C is the maximal algebra of vector fields on R
4|2

preserving the bivector (2.6).

Proof. Theorem 2 implies that K(1)C, indeed, preserves the bivector ΛC . The proof of maxi-
mality is similar to that of Theorem 2, Part 2. We omit here the corresponding straightforward
computations.

4 Elements of the general theory

In this section we some basic notions and discuss some very general properties of Lie antial-
gebras. The most important definitions are those of representations and of the analog of the
Lie-Poisson (Berezin-Kirillov-Kostant-Souriau) structure on the dual of a Lie antialgebra. This
notion is important for several reasons: it relates Lie antialgebras to symplectic geometry and
(multi-)Hamiltonian formalism; it allows to define infinite-dimensional (conformal) analog of Lie
antialgebras and of the corresponding symmetry algebras.
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4.1 Representations and modules

In this section we discuss important notions of representation and of module over Lie antial-
gebras. We believe that these two notions (which are, usually, almost tautologically the same)
should be separated in our context.

A. Representations. Let V = V0⊕V1 be a Z2-graded vector space. Introduce the following
anticommutator on the space End(V ):

]A,B[ := AB + (−1)p(A)p(B)B A. (4.1)

Note that this operation the sign rule inverse to that of the usual Z2-graded commutator (the
sign is “−” if and only if both A and B are odd). This is, of course, not a Lie antialgebra
structure on the space End(V ).

We already considered a particular case of the anticommutator (4.1), namely the operation
(3.9) on the space of tangent vector fields.

Definition 4.1. Let a be a Lie antialgebra, an odd linear maps

χ : a→ End(V )

is called a representation of a, if
]χx, χy[ = χ]x,y[, (4.2)

for all x, y ∈ a.

Example 4.2. The map (3.10) defines a representation of the conformal Lie antialgebra AK(1)
in the space of differential operators on R

1|1.

B. Modules. Let, again, V = V0 ⊕ V1 be a Z2-graded vector space.

Definition 4.3. The space V is called an a-module if there is an odd linear maps

ρ : a→ End(V ),

such that the direct sum a⊕ V equipped with the antibracket

](x, v), (y,w)[ =
(
]x, y[ , ρxw − (−1)p(y)p(v) ρyw

)
(4.3)

is again a Lie antialgebra.

We call the Lie antialgebra structure (4.3) a semi-direct product and denote it by a ⋉ V .

Example 4.4. The “adjoint representation” ad : a → End(a) given by adx y = ]x, y[ , for all
x, y ∈ a is not a representation of a since it does not satisfy (4.2). However, a is of course a
module over itself. This follows, for instance, from the fact that the tensor product C ⊗ a of
a Lie antialgebra a with a commutative algebra C is again a Lie antialgebra. Indeed, consider
C = K[t]/(t2), then one has

C⊗ a = a ⋉ a.
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4.2 The odd Lie-Poisson bivector

In this section we introduce the notion of canonical odd bivector field on the dual space a∗ of
an arbitrary Lie antialgebra a. This is the most important ingredient of our theory that relates
Lie antialgebras to differential geometry. Our construction uses a choice of coordinates on a∗,
but we will prove that the defined bivector is independent of this choice.

Given a Lie antialgebra a, one can consider the commutative subalgebra a1 as analog of
the notion of “Cartan subalgebra” of a. This justifies the following terminology. We call the
dimension of the odd part a1 of a Lie antialgebra a the rank of a:

rk a := dim a1.

Let a be a Lie antialgebra of rank r. Fix an arbitrary basis {α1, . . . , αr} of the odd part a1.
One obtains a set of r bilinear skew-symmetric (or presymplectic) forms: {ω1, . . . , ωr} on a0 by
projecting the antibracket to each basic element:

]a, b[ =

r∑

i=1

ωi(a, b)αi. (4.4)

Changing the basis, one obtains linear changes of the corresponding set of skew-symmetric forms.
Therefore, the pencil of presymplectic forms

〈ω1, . . . , ωr〉

is well-defined.

Remark 4.5. The classification of pencils of r linear skew-symmetric forms on a vector space
is a classical problem of linear algebra already considered by Kronecker. This problem turned
out to be closely related to integrable systems, see, [7] and references therein.

We denote by (τ1, . . . , τr) the coordinates on a∗1 dual to the chosen basis. To each 2-form ωi,
one associates a bivector

πi ∈ ∧
2a∗0,

that we can understand as a constant bivector field on a∗0. Furthermore, to each element α ∈ a1,
one associates a linear operator Aα : a→ a defined by

Aα |a0
= 2adα, Aα |a1

= adα. (4.5)

We denote A1, . . . , Ar the operators corresponding to the elements of the basis {α1, . . . , αr}.
These linear operators can be, of course, viewed as linear vector fields on a∗.

Example 4.6. In the important case where a1 contains the unit element ε and the center of a

is trivial (see Theorem 3 below), one has

Aε = E ,

where E is the Euler vector field on the vector space a∗, i.e., the generator of the K
∗-action by

homotheties. Choosing arbitrary linear coordinates (x1, . . . , xn) on a∗0, one obtains:

Aε =

r∑

i=1

τi
∂

∂τi
+

n∑

j=1

xj
∂

∂xj
.
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The quotient with respect to the vector field Aε defines a natural projection to the (n − 1)|r-
dimensional projective space:

a∗ \ {0} → P
n−1|r.

This is the way contact geometry enters the picture.

Definition 4.7. We call the Lie-Poisson structure of the Lie antialgebra a the following odd
bivector on a∗:

Λa =
r∑

i=1

(
∂

∂τi

∧Ai + τi πi

)
. (4.6)

The corresponding antibracket is of the form:

]F,G[ =
1

2
〈Λa, dF ∧ dG〉 (4.7)

is defined on the space of (polynomial, smooth, etc.) functions on a∗. This antibracket is
obviously linear, i.e., the space of linear functions a∗∗ ∼= a is stable.

Proposition 4.8. The space of linear functions on a∗ is a Lie antialgebra with respect to the
bracket (4.7) which is isomorphic to a.

Proof. The antibracket of two even linear functions is precisely given by (4.4).
The odd linear functions on a∗ are linear combinations of τ1, . . . , τr. The antibracket of an

odd and an even linear functions is given by

]τi, ℓ[=
1

2
Ai(ℓ),

where ℓ ∈ a0. This corresponds precisely to the adjoint action of αi on ℓ.
Finally, the antibracket of two odd linear functions is given by

]τi, τj [=
1

2
(Ai(τj) + Aj(τi)) =

1

2

(
adαi

αj + adαj
αi

)
=]αi, αj [.

Hence the result.

Corollary 4.9. The bivector (4.6) and the antibracket (4.7) are independent of the choice of
the basis.

Proof. Any bivector is uniquely defined by its values on linear functions.

Example 4.10. The bivectors (2.4) and (2.6) that played so important role in Sections 2 and
3 are precisely the canonical bivectors associated to the Lie antialgebras asl(2, R) and asl(2, C),
respectively.
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4.3 Algebras of symmetry

In this section, we associate with any Lie antialgebra two different Lie superalgebras. The first
one is the standard derivation algebra that we already discussed in Introduction, see formula
(1.6); the second one is the (infinite-dimensional) algebra of “conformal symmetry”. Both of
these Lie superalgebras can be defined in terms of the canonical bivector (4.6).

Definition 4.11. The Lie superalgebra ga ⊂ End(a) of linear operators on a preserving the Lie
antialgebra structure is called the algebra of symmetry of a.

Example 4.12. The algebra of symmetry of asl(2, K) is the Lie superalgebra osp(1|2, K). The
algebra of symmetry of AK(1) is the conformal Lie superalgebra K(1).

The standard notation for the Lie superalgebra of symmetry is, of course,

ga = Der(a).

The Lie superalgebra ga acts on the dual space a∗ and preserves the canonical bivector (4.6).
This action is given by vector fields with linear coefficients and therefore preserves the space of
linear functions on a∗, which is nothing but the Lie antialgebra a itself, cf. Proposition 4.8.

Definition 4.13. Consider the Lie superalgebra of all (smooth, or polynomial, or analytic, etc.)
vector fields on a∗; we call the subalgebra consisting of vector fields preserving the bivector (4.6),
the conformal algebra of symmetry of a. This Lie superalgebra will be denoted by Ga.

The Lie superalgebra Ga is, in general, infinite-dimensional; it does not act on a since it does
not preserve the space of linear functions on a∗.

Example 4.14. In the case of asl(2, R) and asl(2, C), the conformal algebra of symmetry is the
conformal Lie superalgebra K(1) and K(1)C, respectively, see Section 3.

The most interesting feature of Ga is its relation to the multi-Hamiltonian formalism. Con-
sider, for simplicity, the case where a1 contains the unit element ε and introduce the following
Poisson bivector on a∗:

Pε = πε +
1

2

r∑

i=1

∂

∂τi
∧

∂

∂τi
. (4.8)

Consider also the Poisson bivectors given by the Lie derivatives

Pi = LAi
(Pε) . (4.9)

Note that all of these Poisson structures are obviously compatible, i.e., any their linear
combination is, again, a Poisson bivector. Indeed, these bivectors are with constant coefficients.

Conjecture 4.15. The Lie superalgebra of conformal symmetry Ga can be characterized in the
following two equivalent ways:

(i) Ga consists of vector fields on a∗ Hamiltonian with respect to the structure Pε and com-
muting with all of the vector fields (4.5) of the basis A1, . . . , Ar:

[X,Ai] = 0.

(ii) Ga consists of vector fields on a∗ Hamiltonian with respect to all of the structures (4.8)
and (4.9) and commuting with the Euler vector field E.
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The statement is evident if X is a purely even vector field, i.e.,
[
X, ∂

∂τi

]
= 0, X(τi) = 0.

Note also that Theorem 2 and Proposition 3.14 are particular cases.
One also easily shows that the spaces of vector fields (i) and (ii) coincide since the Poisson

structures are related by (4.9). Furthermore, a vector field Xε
F Hamiltonian with respect to

Pε with the Hamiltonian function F is Hamiltonian with respect to Pi with the Hamiltonian
function Ai(F ), namely

Xε
F = −Xi

Ai(F ).

Indeed, one has
[Ai,X

ε
F ] = 〈LAi

(Pε), dF 〉 + 〈Pε, d(Ai(F ))〉 = 0.

However, we failed to prove Conjecture 4.15 in full generality.

4.4 Central extensions

In this section we define the notion of extension of a Lie antialgebra a with coefficients in any
a-module. It will be useful for the classification result of Section 5.2. The notion of extension
should be a part of a general cohomology theory that we will not develop here.

Let a be a Lie antialgebra and V an a-module. We will consider V as a trivial (or abelian)
Lie antialgebra.

Definition 4.16. (a) An exact sequence of Lie antialgebras

0 −−−→ V −−−→ ã −−−→ a −−−→ 0 (4.10)

is called an abelian extension of the Lie antialgebra a with coefficients in V . As a vector space,
ã = a⊕ V , and the subspace V is obviously an a-module.

(b) An extension (4.10) is called non-trivial if the Lie antialgebra ã is not isomorphic to the
semi-direct sum a ⋉ V .

(c) If the subspace V belongs to the center of ã, then the extension (4.10) is called a central
extension.

Since any central extension can be obtained by iteration of one-dimensional central exten-
sions, it suffice to consider only the case of one-dimensional central extensions. One then has
two possibilities:

dimV = 1|0, or dim V = 0|1.

We then say that the one-dimensional central extension is of type I or of type II, respectively.
The general form of central extensions of type I is as follows.

Proposition 4.17. (i) A central extension of type I is defined by an odd linear map

C : a ∧ a→ K (4.11)

satisfying the following two identities:

C (α, ]β, a[) = C (β, ]α, a[) = 1
2 C (]α, β[, a)

C (]a, b[, c) + C (]b, c[, a) + C (]c, a[, b) = 0,
(4.12)
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for all α, β ∈ a1 and a, b, c ∈ a0.
(ii) A central extension is trivial if and only if there exists an even linear function f : a0 → K

such that
C(α, a) = f(]α, a[) (4.13)

for all α ∈ a1 and a ∈ a0.

Proof. Part (i). Given a map C as in (4.11), let us define an antibracket on a ⊕ K. We fix an
element z ∈ K and set:

]x, y[ = ]x, y[
a
+ C(x, y) z,

]x, z[ = 0,
(4.14)

for all x, y ∈ a. Note that, since the map C is skew-symmetric and odd, one has

C(x, y) = C (x1, y0)− C (y1, x0) . (4.15)

One then easily checks that formula (4.14) defines a structure of a Lie antialgebra if and only if
the relations (4.12) are satisfied.

Conversely, a Lie antialgebra structure on a ⊕ K such that the subspace K belongs to the
center is obviously of the form (4.14).

Part (ii). In the case where C is as in (4.13), the linear map a ⊕ K → a ⊕ K given by
(x, z) 7→ (x, z +f(x)) intertwines the structure (4.14) with the trivial direct sum structure. This
means that the central extension is trivial.

Conversely, if the extension is trivial, then there exists an intertwining map a⊕ K→ a⊕K

sending the structure (4.14) to the trivial one. This map can, again, be chosen in the form
(x, z) 7→ (x, z + f(x)), since a different choice of the embedding of K does not change the
structure.

We will call a map C satisfying (4.12) a 2-cocycle of type I. A 2-cocycle of the form (4.13)
will be called a coboundary.

Let us describe the central extensions of type II.

Proposition 4.18. (i) A central extension of type II is defined by an even linear map

C : a ∧ a→ K
0|1 (4.16)

satisfying the following two identities:

C (α, ]a, b[) = C (]α, a[, b) + C (a, ]α, b[)

C (]α, β[, γ) = C (α, ]β, γ[) ,
(4.17)

for all α, β, γ ∈ a1 and a, b ∈ a0.
(ii) The extension is trivial if and only if there exists an even linear functional f : a1 → K

0|1

such that
C(x, y) = f(]x, y[), (4.18)

for all x, y ∈ a.

Proof. The proof is similar to that of Proposition 4.17.

We will call an even map (4.16) satisfying (4.17) a 2-cocycle of type II. In the case where it
is given by (4.18), the map C is called a coboundary.
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4.5 Kernel of the presymplectic pencil

Let us now describe a “natural source” of extensions of type I.
Given an arbitrary Lie antialgebra a, consider the following space I ⊂ a0:

I =

r⋂

i=1

ker ωi,

where r = rka, the forms ωi are defined by (4.4), and where ker ω ⊂ a0 consists of elements a of
a0 such that ω(a, b) = 0 for every b ∈ a0. In other words,

I = {a ∈ a0 | ]a, b[= 0, for all b ∈ a0}.

Proposition 4.19. The subspace I is an abelian ideal of a.

Proof. By definition, I is an abelian subalgebra and the bracket of a ∈ I with any element
b ∈ a0 vanishes. One has to show that ]α, a[∈ I, for arbitrary α ∈ a1 and a ∈ I. Indeed, using
the identity (1.4), one obtains

]]α, a[ , b[ = ]α, ]a, b[[− ]a, ]α, b[[ = 0

since for a ∈ I and every b ∈ a0, one has ]a, b[= 0.

It follows that the Lie antialgebra a is an abelian extension of type I of the quotient-algebra
a/I.

Proposition 4.20. If the map ] , [: a0 ⊗ a0 → a1 is surjective, then the ideal I belongs to the
center of a.

Proof. The ideal I belongs to the center of a if and only if the action of a1 on I is trivial.
Surjectivity means that for every α ∈ a1 there are a, b ∈ a0 such that α =]a, b[. Using the Jacobi
identity (1.5), one obtains for every c ∈ I:

]α, c[ = ]]a, b[ , c[ = − ]]b, c[ , a[− ]]c, a[ , b[ = 0,

since both summands in the right-hand-side vanish.

The Lie antialgebra a is therefore a central extension of a/I (of type I).

4.6 Restrictive role of the unit

In this section we show that, in the case where the associative commutative algebra a1 contains
the unit element ε, the Lie antialgebra a has no non-trivial central extensions.

By definition, the action of ε on the odd part a1 is given by the identity map:

ad1
ε = ade|a1

= Id.

Let us consider the action of ε on the even part a0. The identity (1.3) implies the “half-projector”
relation for the operator ad0

ε = ade|a0
:

ad0
ε ◦ ad0

ε =
1

2
ad0

ε.
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Therefore, the even part a0 is split
a0 = a0, 1

2

⊕ a0,0

to a sum of 1
2 - and 0-eigenspaces of ad0

ε, respectively. That is, ade|a
0, 1

2

= 1
2Id and ade|a0,0

= 0.

Theorem 3. (i) The space a0,0 coincides with the center of a:

a0,0 = Z(a).

(ii) The Lie antialgebra a is a direct sum:

a = a⊕ Z(a), (4.19)

where a = a/Z(a).

Proof. Part (i). Let a ∈ a0,0, that is, ]ε, a[= 0. One has to show that ]x, a[= 0 for all x ∈ a.
Let first x = α be an element of a1. The identity (1.3) implies

]ε, ]α, a[[ = ]ε, ]α, a[[ + ]α, ]ε, a[[ = ]]ε, α[ , a[ = ]α, a[ .

But then ad0
ε ◦ ad0

ε = 1
2 ad0

ε implies ]α, a[ = 0.
Let now x = b be an element of a0. One has

]b, a[ = ]ε, ]b, a[[ = ]]ε, b[ , a[ + ]b, ]ε, a[[ = ]]ε, b[ , a[ .

If, furthermore, b ∈ a0
0, then the last term is zero. Finally, if b ∈ a

1

2

0 , then the last term is equal
to 1

2 ]b, a[, which again implies ]b, a[ = 0.
Part (ii). Let us show that if a1 contains the unit element ε, then a has no non-trivial central

extensions.
Let C be a 2-cocycle of type I on a. Apply the first identity (4.12) to β = ε, where ε is the

unit. One has
C(α, a)− C(α, ]ε, a[) = C(ε, ]α, a[).

If a ∈ Z(a), this formula implies C(α, a) = 0. If a is an element of the 1
2 -eigenspace a0, 1

2

of the

unit element ε, then one obtains

C(α, a) = 2C(ε, ]α, a[).

Therefore, the cocycle C is a coboundary.
Let now C be a 2-cocycle of type II. It can be decomposed into a pair (C0, C1) of maps

C0 : a0 ⊗ a0 → K
0|1, C1 : a1 ⊗ a1 → K

0|1,

where C0 is skew-symmetric and C1 is symmetric. The first condition (4.17) gives

C1(ε, ]a, b[) = C0(]ε, a[, b) + C0(a, ]ε, b[),

so that C0(a, b) = C1(ε, ]a, b[). The second condition (4.17) implies

C1(α, β) = C1(ε, ]α, β[).

Therefore, the cocycle C is, again, a coboundary.
Let us complete the proof of Theorem 3. The Lie antialgebra a is a central extension of its

quotient a = a/Z(a). We just proved that this center extension is trivial. The decomposition
(4.19) follows.
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5 Classification results

In this section we prove that the only finite-dimensional simple Lie antialgebras are asl(2, R)
and asl(2, C). More precisely, we prove the uniqueness of asl(2, R) and asl(2, C) in the real case,
while in the complex case there nothing else than asl(2, R). This means that the situation is
similar to the case of commutative algebras.

We also obtain a complete classification of finite-dimensional Lie antialgebras of rank 1, i.e.,
with dim a1 = 1. This, in particular, provides a number of examples of Lie antialgebras, other
that we already considered.

5.1 Proof of Theorem 1

We will now give a proof of Theorem 1.
Let us start with the complex case. Let a be a simple finite-dimensional Lie antialgebra. We

will first assume that the commutative algebra a1 has no nilpotent elements. As it is very well
known, see, e.g., [2], a1 is of the form

a1 = C⊕ · · · ⊕ C.

We will prove that if a is simple, then r = 1.
Choose a basis {α1, . . . , αr} in a1 such that ]αi, αj [= δij . As in Section 4.2, one associates

with each element αi a presymplectic form ωi on a0 (see formula 4.4).

Lemma 5.1. Each form ωi is of rank 2.

Proof. Choose a canonical (Darboux) basis {a1 . . . , an, b1, . . . , bn}, of ωi, so that one has

ωi(ak, bℓ) = δkℓ, ω(ak, aℓ) = ω(bk, bℓ) = 0,

where k, ℓ = 1, . . . , n. Let us show that n = 1.
Assume that n > 1. The identity (1.5) implies

]αi, aℓ[ = ]]ak, bk[ , aℓ[ = − ]]bk, aℓ[ , ak[− ]]aℓ, ak[ , bk[ = 0

for any k 6= ℓ. It follows that ]αi, a[= 0, for any a ∈ a0. Furthermore,

]α,α[ = ]α, ]ai, bi[[ = ]]α, ai[ , bi[ + ]ai ]α, bi[[ = 0,

for any i = 1, . . . , n. Therefore, αi belongs to the center of a; in particular, a cannot be simple.
This is a contradiction.

The following statement shows that, if r > 1, then the algebra a contains a non-trivial ideal.
Consider the subspace ker ω1 ⊂ a0 consisting of the elements a ∈ a0 such that, for all b one has:
]a, b[ is a combination of αi with i ≥ 2. Consider the subspace of a:

I = ker ω1 ⊕ 〈α2, · · · , αr〉.

Lemma 5.2. The space I is an ideal of a.
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Proof. One has to prove that for arbitrary α ∈ a1 and a ∈ a0 one has: (a) αI ⊂ I and (b)
aI ⊂ I.

Part (a). Let a ∈ ker ω1, by identity (1.4), one has for an arbitrary b ∈ a0:

]]α, a[, b[ = ]α, ]a, b[[ − ]a, ]α, b[[ .

The both terms in the right-hand-side are combinations of αi with i ≥ 2. Therefore, ]α, a[∈
ker ω1.

Part (b). Let α ∈ 〈α2, · · · , αr〉, then ]α1, α[= 0. Let a ∈ a0 be arbitrary, one has to prove that,
again, ]α, a[∈ ker ω1. Choose an arbitrary b ∈ a0 and consider again the expression ]]α, a[, b[.
Since this is an odd element of a, it can be written in the form:

]]α, a[, b[ =

r∑

i=1

ci αi.

One has to prove that c1 = 0. One has

]α1, ]]α, a[ , b[[ = ]]α1, ]α, a[[ , b[ + ]]α, a[ , ]α1, b[[ .

But the first summand in the right-hand-side vanishes. Indeed, by (1.3), one has

]α1, ]α, a[[ =
1

2
]]α1, α, [ , a[ = 0,

since ]α1, α[= 0. In the same way, one obtains

]α1, ]α1, ]]α, a[ , b[[[ = ]]α, a[ , ]α1, ]α1, b[[[ .

However, for the left-hand-side, one obtains using (1.2):

]α1, ]α1, ]]α, a[ , b[[[ = ]]α1, α1[ , ]]α, a[ , b[[ = ]α1, ]]α, a[ , b[[ = c1

since ]α1, α1[= α1; while, for the right-hand-side, one gets using (1.3):

]]α, a[ , ]α1, ]α1, b[[[ =
1

2
]]α, a[ , ]]α1, α1[ , b[[ =

1

2
]]α, a[ , ]α1, b[[ = ]α1, ]]α, a[ , b[[ =

1

2
c1.

Therefore, c1 = 0 and so ]α, a[∈ ker ω1. The result follows.

Lemma 5.1 and Lemma 5.2 imply Theorem 1 in the complex case, where the commutative
algebra a1 has no nilpotent elements. If now a1 = C

n
⋉N , where N is a nilpotent ideal, then

the same arguments prove that n ≤ 1 and ker ω1 ⊕ N is an ideal. Theorem 1 is proved in the
complex case.

The real case immediately follows from the complex one. Indeed, let a be a real simple Lie
antialgebra, the standard arguments show that the complexification a ⊗R C is either simple or
the direct sum of two isomorphic simple ideals.

Theorem 1 is proved.

26



5.2 Lie antialgebras of rank 1

Our next task is to classify the Lie antialgebras of rank 1. We thus assume that the commutative
algebra a1 is one-dimensional.

There exist two different one-dimensional (commutative) algebras:

1. a1 = K, with the unit element ]ε, ε[= ε;

2. a1 is nilpotent such that ]α,α[≡ 0.

Since a1 is one-dimensional, the map ] , [: a0 ⊗ a0 → a1 is characterized by one bilinear
skew-symmetric form, ω, on a0 (see Section 4.2):

]a, b[ = ω(a, b)α,

where α is a (unique up to a constant) non-zero element of a1.
Let us first construct several examples of Lie antialgebras of rank 1.

A. Consider the case where the form ω is non-degenerate.
(A1) The 2n|1-dimensional nilpotent Lie antialgebra with the basis basis {a1, b1, . . . , an, bn;α}

that appeared in the case a) of the above proof is characterized by the relations

]ai, bj [ = δij α,

]ai, aj [ = 0, ]bi, bj [ = 0,

]α, ai[ = 0, ]α, bi[ = 0,

]α,α[ = 0,

(5.1)

where i, j = 1, . . . , n. We call this Lie antialgebra the Heisenberg antialgebra and denote it by
ahn.

Remark 5.3. Notice, that the relations (5.1) are exactly as those of the standard Heisenberg Lie
algebra, but the central element α is odd. As in the usual Lie case, the Heisenberg antialgebra
ahn is a central extension of type II of the abelian Lie antialgebra K

2n.

(A2) Another interesting example is a family of Lie antialgebras of dimension 2|1. The basis
of these Lie antialgebras will be denoted by {a, b, α}; the commutation relations are

]a, b[ = α,

]α, a[ = κ b, ]α, b[ = 0,

]α,α[ = 0,

(5.2)

where κ is a constant. If κ = 0, then this is just the Heisenberg antialgebra ah1, if κ 6= 0, then
the defined Lie antialgebra is not isomorphic to ah1, and therefore one obtains a non-trivial
deformation of ah1.

It is easy to see that, in the complex case K = C, all of the Lie antialgebras (5.2) with κ 6= 0
are isomorphic to each other. We call this algebra twisted Heisenberg antialgebra and denote it
by ãh1.
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If K = R, however, the sign of κ is an invariant and one gets two different algebras ãh
+

1 and

ãh
−

1 . We thus assume:

κ = 1, if K = C, κ = ±1, if K = R.

We are ready to formulate a partial result.

Proposition 5.4. The complete list of the real Lie antialgebras of rank 1 with a non-degenerate
2-form ω is as follows:

asl(2, R), ahn, ãh
+

1 , ãh
−

1 ; (5.3)

in the complex case, the two last algebras are isomorphic.

Proof. Consider first the case where a1 is not nilpotent, i.e., ]α,α[6= 0. We already proved that,
in this case, a is of dimension 2|1, see Lemma 5.1. Therefore, a = asl(2, K).

Assume that ]α,α[= 0.
In the case where the form ω is of rank n > 1, one proves, in the same way as in Lemma 5.1,

that ]α, a[= 0 for all a, so that a = ahn.
If, finally, ω is of rank 1, then ad0

α does not necessarily vanish but the identity (1.3) implies
that this operator has to be nilpotent: (ad0

α)2 = 0. One then easily shows that any such operator
on is equivalent to ad0

α in (5.2) up to the area preserving changes of the basis. It follows that

a = ãh
+

1 or ãh
−

1 .
Hence the result.

B. Consider the case ω = 0. The Lie antialgebra a is then determined by the operator adα.
(B1) If a1 contains the unit element ε, then a is split into a direct sum (4.19). The centerless

Lie antialgebra a has the basis {a1, . . . , an; ε} with the following set of relations:

]ai, aj [ = 0, ]ε, ai[ = 1
2 ai, ]ε, ε[ = ε.

We call this Lie antialgebra the affine antialgebra and denote by aaf(n). One then has

a = aaf(n)⊕ Z,

where Z is the (even) center of a.
(B2) If ]α,α[= 0 for α ∈ a1, then ad0

α ◦ ad0
α = 0. This is a very degenerated Lie antialgebra.

The classification in this case is the classification of nilpotent (of order 2) linear operators that
we do not discuss.

Let us summarize the above considerations.

Proposition 5.5. A Lie antialgebras of rank 1 with ω = 0 is one of two classes:

a = aaf(n)⊕ Z, a is of type (B2). (5.4)

C. Consider finally the “mixed case” where 2 < rkω < dim a0.
(C1) Define a 3|1-dimensional Lie antialgebra with the basis {a, b, z;α} and the relations

]a, b[ = α, ]a, z[ = 0, ]b, z[ = 0,

]α, a[ = z, ]α, b[ = 0, ]α, z[ = 0,

]α,α[ = 0.

(5.5)
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We denote this Lie antialgebra âh1. The element z spans the center, so that this is a central
extension (of type I) of the Heisenberg antialgebra ah1.

(C2) Define a 4|1-dimensional Lie antialgebra with the basis {a, b, z1, z2;α} and the relations

]a, b[ = α, ]a, zi[ = 0, ]b, zi[ = 0,

]α, a[ = z1, ]α, b[ = z2, ]α, zi[ = 0,

]α,α[ = 0.

(5.6)

We denote this Lie antialgebra
̂̂
ah1. The center of

̂̂
ah1 is spanned by z1 and z2, so that this is a

central extension (of type I) of the above antialgebra âh1.
We are now ready to formulate the main statement of this section.

Theorem 4. A Lie antialgebra of rank 1 is of the form

a = a⊕ Z,

where a belongs either to the list (5.3), or to the list (5.4), or one of the antialgebras âh1,
̂̂
ah1.

Proof. We already proved the theorem in the following two cases: the form ω is non-degenerate,
or ω ≡ 0. It remains to consider the intermediate case where the 2-form ω is not identically zero
but with a non-trivial kernel:

I = ker ω 6= {0}.

The space I is then an abelian ideal (see Proposition 4.19) and, furthermore, belongs to the
center (see Proposition 4.20). We summarize this in a form of a

Lemma 5.6. The Lie antialgebra a is a central extension of a/I.

To complete the classification, one now has to classify the central extensions of type I of the
antialgebras with non-degenerate form ω, that is, of (5.1) and (5.2).

Lemma 5.7. The Lie antialgebras asl(2, R), ahn with n ≥ 2 and ãh1 (resp. ãh
+

1 , ãh
−

1 ) have no
non-trivial central extensions of type I.

Proof. In the case of asl(2, R) this follows from Theorem 3.
For the Lie antialgebra ahn with n ≥ 2, let C be an arbitrary 2-cocycle of type I. One has

C (α, ai) = C (]aj , bj [, ai) = −C (]bj , ai[, aj)− C (]ai, aj [, bj) = 0

(from the second identity (4.12)) for all i 6= j. Similarly, C(α, bi) = 0 for all i. Therefore, C is
identically zero.

For the Lie antialgebra ãh1 and an arbitrary 2-cocycle C of type I, one has

C (α, b) = 1
κ

C (α, ]α, a[) = 1
2κ

C (]α,α[, a) = 0.

The cocycle C is then defined by its values on α and a. Let us show that the corresponding
extension is trivial. Let C(α, a) = cz, where z is an arbitrary generator of the center and
c arbitrary constant. Set b′ = b + c

κ
z. Then in the new basis (a, b′, z;α), the cocycle C ′

vanishes.
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Lemma 5.8. The algebra ah1 has a unique non-trivial central extension of type I; the result of
this central extension is the Lie antialgebra (5.5).

Proof. Indeed, let C be a 2-cocycle of type I on ah1. It is given by the formula

C(α, a) = c1 z, C(α, b) = c2 z,

where z is an element of the center and c1 and c2 are arbitrary constants. Assume (without loss
of generality) that c1 6= 0, then choose another element of the basis: b′ = b + c2

c1
a. One obtains

C(α, b) = 0. Furthermore, taking z′ = c1z, one gets precisely the Lie antialgebra (5.5). This Lie
antialgebra is not isomorphic to ah1 so that the extension is, indeed, non-trivial.

Lemma 5.9. The algebra (5.6) has a unique non-trivial central extension of type I; the result
of this central extension is the Lie antialgebra (5.6).

Proof. It is similar to the proof of Lemma 5.8: one shows that the Lie antialgebra (5.6) is
precisely the unique (up to isomorphism) central extension of (5.5).

In the same way, one proves the following

Lemma 5.10. The Lie antialgebra (5.6) has no non-trivial central extensions of type I.

We classified all the non-trivial central extensions of the Lie antialgebras of rank 1 with
non-degenerate form ω. This completes the proof of Theorem 4.

Discussion

Let us formulate some open problems and outline a few ideas for the further development.

A. The subject of this paper is closely related to so-called invariant differential operators,
see [3]. Indeed, the simplest example of a Lie antialgebra, asl(2), is related to the bivector (2.4)
and the corresponding antibracket (2.5) that can be characterized as the unique odd bilinear
K(1)-invariant operator on a 1|1-dimensional contact manifold. This is a very classical subject
and the classification of bilinear differential operators on (super)manifolds invariant with respect
to the full diffeomorphism (super)group is well known, see [8, 10]. The operator (2.5) is invariant
only with respect to the supergroup of contact diffeomorphisms and therefore does not appear
in the known classifications. Let us mention that the operator (2.5) coincides with the first
supertransvectant, see [6].

B. The most important geometric object related to a Lie antialgebra a is the canonical odd
bivector Λa on the dual space a∗, see formula (4.7). The relation between a and Λa is exactly the
same as that between a Lie (super)algebra and the corresponding classical (even) Lie-Poisson
bivector. However, unlike a Poisson bivector, Λa does not define a Lie antialgebra structure on
the space of all functions on a∗. More precisely, the space C∞(a∗) is not a Lie antialgebra with
respect to the antibracket (4.7). It is then natural to ask the same question that in Section 3:
what is the maximal subspace of functions on a∗ which this is a Lie antialgebra with respect to
the antibracket (4.7)? In other words, we wish to define a “conformal version” of an arbitrary
Lie antialgebra a. Similarly, the full space of linear operators equipped with the anticommutator
(4.1) is not a Lie antialgebra. What is the maximal subspace that satisfies this property? These
questions are closely related to Conjecture 4.15 which is a challenging problem.
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C. The present paper makes only the very first steps towards a complete general theory of Lie
antialgebras. Among the most important problems is the problem of construction of enveloping
algebras and cohomology theory. Such a theory should, of course, include the notion of central
extension, see Section 4.4. We hope to treat this subject in a subsequent paper.

D. We think that relations between Lie antialgebras and Lie superalgebras should be better
studied. We associated with any Lie antialgebra a a Lie superalgebra of symmetry: ga = Der(a).
It is natural to formulate an inverse problem: given a (simple) Lie superalgebra g and a g-module
V , under what condition there exists a g-invariant structure of Lie antialgebra on V ? More
particularly, it would be interesting to find Lie antialgebras related to other superconformal
algebras than the simplest Neveu-Schwarz algebra, see, e.g., [11, 9].

E. It is not at all clear whether there is any notion of “group object” related to a Lie
antialgebra, in the same way as the notion of Lie (super)group is related with that of Lie
(super)algebras. Since Lie antialgebras generalize commutative algebras, such an object should
generalize the notion of spectrum.

F. Keeping in mind multiple application of the classical Lie-Poisson structures (in represen-
tation theory, integrable systems, quantization, etc.), we hope that the canonical odd bivector
(4.7) also can be useful for the same purposes. As one of possible applications, one can consider
analog of Euler equations on the dual space a∗ of a Lie antialgebra a. Such equations would
not necessarily be Hamiltonian in the usual sense, but there exists a great number of interesting
dynamical systems which cannot be realized as Hamiltonian vector fields.

G. Another intriguing problem is the relation of Lie antialgebras to contact geometry; an
example is given in Section 3.3. It would be interesting to investigate the general situation.
Given a contact (super)manifold M , consider the space TVect(M) of vector fields tangent to the
contact distribution. Of course, this space is not a Lie (super)algebra since the very definition
of a contact structure means that the Lie bracket of two tangent vector fields is almost never
a tangent vector field. Nevertheless, there are several natural algebraic structures on the space
TVect(M). To give an example, the simplest algebraic structure uses the decomposition of the
full space of vector fields on M into a direct sum of contact and tangent vector fields:

Vect(M) ∼= CVect(M)⊕ TVect(M),

see [15]. If X and Y are two tangent fields, then there is an invariant projection of the Lie
bracket [X,Y ] to TVect(M). This structure has never been studied and the properties of the
resulting algebra are unknown. This is however not the anticummutator (4.1) that we considered
in Section 3.3. We believe that the antibracket of tangent fields on S1|1 has multi-dimensional
generalizations and should be related to a multi-Hamiltonian approach. The simple Lie an-
tialgebra asl(2, C) provide an example. In this case, the a natural projection (quotient by
homotheties) defines a structure of bi-contact supermanifold on P

3|2 that corresponds to the
symplectic structures ωε and ωσ.
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