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Lie antialgebras

V. Ovsienko

Natke

Abstract

We introduce a new class of algebras that we call Lie antialgebras. The structure of a Lie
antialgebra is defined by a changing parity operation on a Z2-graded space satisfying a set of
identities amazingly “opposite” to those of a Lie superalgebra. We classify Lie antialgebras
of rank 1 and consider several examples of simple Lie antialgebras. We also define an analog
of the Lie-Poisson structure on the space dual to a Lie antialgebra and study the notion of
central extensions.

1 Introduction

We call antialgebra a Z2-graded algebra a = a0 ⊕ a1 with an odd product, that is a bilinear
map from a ⊗ a to a changing the parity: if a ∈ ai and b ∈ aj with i, j ∈ {0, 1|mod2}, then
a · b ∈ ai+j+1. Such structures are known quite well. One example is the Buttin bracket (or
the “Poisson antibracket”), see, e.g., [2, 8, 9]. Another one is the usual Schouten bracket on the
space of skew-symmetric contravariant tensors in the Batalin-Vilkovisky formalism, see [7] for a
survey. All these notions are related to graded Lie superalgebras.

We introduce a class of antialgebras that seems to be new and cannot be reduced to any
known structure.

Definition 1.1. An antialgebra a is called a Lie antialgebra if its product, that we denote by
] , [: a⊗ a→ a, satisfies the following properties:

1. the operation ] , [: a1 ⊗ a1 → a1 equips the odd part a1 with a structure of a commutative
associative algebra, i.e., it satisfies two conditions: ]α, β[ = ]β, α[ for all α, β ∈ a1 and

]α, ]β, γ[[ = ]]α, β[ , γ[ (1.1)

for all α, β, γ ∈ a1;

2. the map ] , [: a1 ⊗ a0 → a0 is skew-symmetric: ]α, a[ = − ]a, α[ for α ∈ a1 and a ∈ a0 and
one has

]α, ]β, a[[ + ]β, ]α, a[[ = ]]α, β[ , a[ (1.2)

for all α, β ∈ a1 and a ∈ a0, so that the map ad0 : a1 → End(a0) given by α 7→]α, ·[,
defines an action of the commutative algebra a1 on the space a0 in the following (unusual
for commutative associative algebras) sense:

ad0
α ◦ ad0

β + ad0
β ◦ ad0

α = ad0
]α,β[;



3. the map ] , [: a0 ⊗ a0 → a1 is skew-symmetric: ]a, b[ = − ]b, a[ for all a, b ∈ a0 and satisfies
the Leibniz identity

]α, ]b, c[[ = ]]α, b[ , c[ + ]b, ]α, c[[ (1.3)

for all α ∈ a1 and b, c ∈ a0;

4. The Jacobi identity is satisfied:

]a, ]b, c[[ + ]b, ]c, a[[ + ]c, ]a, b[[ = 0 (1.4)

for all a, b, c ∈ a0.

All the vector spaces considered in this paper are defined over K = C or R.

Remark 1.2. The identity (1.3) has precisely the form of the condition of a1-invariance of
the bilinear map ] , [: a0 ⊗ a0 → a1. However, to speak of invariance, one needs to define an
action of the commutative algebra a1 on a0 ⊗ a0 which implicitly means one fixes a coproduct
∆ : a1 → a1 ⊗ a1. This is, actually, the case for the main examples of Lie antialgebras we
consider in this paper, but one does not need a-priori to impose the existence of a coproduct.

Definition 1.1 should be compared with the usual notion of a Lie superalgebra. Recall that
a Z2-graded space g = g0 ⊕ g1 is a Lie superalgebra if it is equipped with an even bilinear
operation [ , ] : g→ g such that:

1. the operation [ , ] : g0 ⊗ g0 → g0 defines a Lie algebra structure on g0;

2. the map [ , ] : g0 ⊗ g1 → g1 is a Lie algebra action of g0 on g1;

3. the map [ , ] : g1 ⊗ g1 → g0 is symmetric and g0-invariant;

4. the Jacobi identity [ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0 is satisfied for all ξ, η, ζ ∈ g1.

Note that the above definition of a Lie superalgebra is more conceptual than the usual (and
much shorter) one saying that the bracket [ , ] is skew-symmetric in the Z2-graded sense and
satisfies the Jacobi identity with the usual Z2-graded sign rule. Definition 1.1 is, of course, very
similar to the definition of a Lie superalgebra. It is even almost identical if one inverses the
parity and replaces the Lie algebra g0 by a commutative associative algebra a1.

We associate with any Lie antialgebra a the Lie superalgebra of symmetry denoted by ga.
This notion is important for us since it often allows to characterize the initial Lie antialgebra
a as the unique Lie antialgebra preserved by the ga-action. Let us stress that the ga-invariance
condition should be understood in the graded sense:

̺x ]a, b[ = −(1)p(x) ]̺xa, b[ + (1)p(x)(1+p(a)) ]a, ̺xb[ , (1.5)

where x ∈ ga, a, b ∈ a, ̺ : ga→ End(a) is the action and p is the parity function. The sign rule
in (1.5) is due to the fact that ]·, ·[ is an odd operation.

Remark 1.3. The relation (1.5) shows, in particular, that the usual functor Π : a0⊕a1 → a1⊕a0

inverting the parity does not make much sense here since it has no invariant meaning.
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The main purpose of this paper is to show that the notion of Lie antialgebra is by no means
artificial and this algebraic structure appears very naturally, for instance, in the context of
symplectic and contact geometry.

The main results of this paper are as follows.
A. We construct several examples of Lie antialgebras. The most interesting examples are

simple Lie antialgebras. Two of them are finite-dimensional (of dimension 2|1 and 4|2) and one
is infinite-dimensional. We do not know other finite-dimensional simple Lie antialgebras. We
also classify Lie antialgebras of rank 1. This, in particular, provides a number of examples of
Lie antialgebras other than simple ones.

B. We introduce the notion of canonical bivector on the dual space a∗ of a Lie antialge-
bra a. This bivector is an analog of the classical Poisson-Lie-Berezin-Kirillov-Kostant-Souriau
structure, and this is the way Lie antialgebras are related to symplectic and contact geometry.

C. We introduce the notions of central extension of Lie antialgebras. This notion should be
included into the general theory of cohomology of Lie antialgebras, a theory yet to be developed.

This paper is organized as follows.
We start in Section 2 with an example of a simple Lie antialgebra of dimension 2|1, that

we call asl(2). We show how this structure naturally appears directly from the standard 2|1-
dimensional symplectic space, as the only odd bivector preserved by the supergroup OSp(1|2)
of linear symplectic transformations. We realize the Lie superalgebra osp(1|2) as the algebra of
symmetry of asl(2). We also define the odd Lie-Poisson type bivector on the dual space asl(2)∗

that should be considered as analog of the usual Lie-Poisson structure. This first example
illustrates the nature and the origins of the very notion of Lie antialgebra.

In Section 3 we develop our general framework and introduce the basic notations and notions,
such as the rank of a Lie antialgebra. We explain the relations to symplectic geometry and to
an old problem of linear algebra: study of pencils of skew-symmetric forms.

In Section 4 we define the notion of (central) extension of a Lie antialgebra. We prove that
there are no non-trivial central extensions in the case where a0 contains the unit. The notion of
central extension will be crucial for the classification result in rank 1.

In Section 5 we obtain a complete classification of Lie antialgebras of rank 1 (i.e., with one-
dimensional odd part). We show that asl(2) is the unique simple Lie antialgebra of rank 1, we
also find a number of different examples of Lie antialgebras.

In Section 6 we define the odd Lie-Poisson type bivector on the space dual to a Lie antialgebra.
We also define the notion of symmetry superalgebra and conformal symmetry superalgebra and
relate the context to multi-Hamiltonian formalism.

In Section 7 we introduce our second example of simple Lie antialgebra. This Lie antialgebra
is of dimension 4|2 and we denote it ao(4). We calculate the symmetry Lie superalgebra of ao(4)
acting on the dual space ao(4)∗ by bi-Hamiltonian vector fields.

In Section 8 we give an example of a simple infinite-dimensional Lie antialgebra âsl(2). This
antialgebra has the superconformal Lie superalgebra K(1) as algebra of symmetry. A geometric

way to define âsl(2) is to say that this is the algebra of vector fields on S1|1 tangent to the
contact structure.

In the end of this paper, we formulate a number of open problems and suggest some further
development.
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2 The simple Lie antialgebra asl(2)

We introduce our most elementary and perhaps the most important example of a Lie antialgebra.
The algebra asl(2) is a simple Lie antialgebra of dimension 2|1.

2.1 The definition

The basis of asl(2) is denoted by {a, b; ε} and the relations between the elements of the basis
are as follows:

]a, b[ = 1
2 ε, ]ε, a[ = 1

2 a, ]ε, b[ = 1
2 b, ]ε, ε[ = ε. (2.1)

It is easy to check that the conditions 1–4 of Definition 1.1 are satisfied. The Lie antialgebra
(2.1) is obviously simple, i.e., it contains no ideal except for the trivial ideal {0} and asl(2) itself.

The reason for the notation asl(2) is the similitude of this antialgebra with the classical Lie
algebra sl(2). The next property shows, however, that asl(2) is quite different as nothing similar
occurs in the classical case.

2.2 The Lie superalgebra osp(1|2) as algebra of symmetry

The Lie antialgebra asl(2) is characterized by its invariance with respect to the action of the Lie
superalgebra osp(1|2).

Let us recall that osp(1|2) is a 3|2-dimensional Lie superalgebra with the basis

{x−1, x0, x1; ξ− 1

2

, ξ 1

2

}

and the following relations
[xi, xj ] = (j − i) xi+j,

[xi, ξj ] =
(
j − i

2

)
ξi+j ,

[ξi, ξj ] = xi+j.

(2.2)

Of course, the even part osp(1|2)0 is nothing but sl(2).
We define the vector space K2|1 in terms of the supercommutative algebra of functions

C∞(K2|1). The elements of this algebra are of the form:

F (p, q; τ) = F0(p, q) + τ F1(p, q),

where F0, F1 ∈ C∞(K2). The standard symplectic form on K2|1 is give by

ω = dp ∧ dq + dτ ∧ dτ.

The Lie superalgebra osp(1|2) is the the algebra of linear transformations of the space K2|1

preserving ω.
Considering the standard Poisson bracket {F,G} = 1

2 〈P, dF ∧ dG〉, where P is the Poisson
bivector:

P =
∂

∂p
∧

∂

∂q
+

∂

∂τ
∧

∂

∂τ
. (2.3)

The Lie superalgebra osp(1|2) is identified with the space of quadratic polynomials:

{x−1, x0, x1; ξ− 1

2

, ξ 1

2

} ←→
{
p2, pq, q2; 1

2 pτ, 1
2 qτ

}
, (2.4)
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so that the Poisson bracket corresponds precisely to the Lie bracket (2.2).
It turns out that there exists another, odd, bivector on K2|1, invariant with respect to the

osp(1|2)-action, namely,

Λ =
∂

∂τ
∧ E + τ

∂

∂p
∧

∂

∂q
, (2.5)

where

E = p
∂

∂p
+ q

∂

∂q
+ τ

∂

∂τ

is the Euler field.

Proposition 2.1. The bivector (2.5) is the unique (up to a multiplicative constant) odd bivector
invariant with respect to the action of osp(1|2).

Proof. The osp(1|2)-invariance of Λ is a very easy check. Note that we will prove a much stronger
statement in Section 8, see Proposition 8.7.

Let us prove the uniqueness. An arbitrary odd bivector on K2|1 is given by

Λ =
∂

∂τ
∧A + τ F

∂

∂p
∧

∂

∂q
,

where A is an even vector field and F is an even function. Let X be an even vector field, one
has

LXΛ =
∂

∂τ
∧ [X,A] + τ X(F )

∂

∂p
∧

∂

∂q
+ τ F LX

(
∂

∂p
∧

∂

∂q

)
.

If, furthermore, X ∈ osp(1|2), then it preserves the even part ∂
∂p
∧ ∂

∂q
of the Poisson bivector.

The condition LXΛ = 0 then implies:

[X,A] = 0 and X(F ) = 0.

It is easy to see that an even vector field A commuting with any even element of osp(1|2) is
proportional to the Euler field and an even function killed by all even elements of osp(1|2) is
constant. One has A = c1E and F = c2.

Finally, applying to Λ an odd element of osp(1|2), one immediately gets c1 = c2.

Define the following antialgebra structure on the space of functions:

]F,G[ =
1

2
〈Λ, dF ∧ dG〉.

The explicit formula is as follows:

]F,G[ =
1

2

(
∂F

∂τ
E(G) − (−1)p(F ) E(F )

∂G

∂τ
+ τ

(
∂F

∂p

∂G

∂q
−

∂F

∂q

∂G

∂p

))
. (2.6)

This is a linear antibracket in the sense that the space of linear functions on K2|1 is obviously
closed with respect to the antibracket (2.6).

Lemma 2.2. The space of linear functions on K2|1 equipped with the bracket (2.6) is a Lie
antialgebra isomorphic to asl(2).
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Proof. One checks that after the identification

{a, b; ε} ←→ {q, −p; τ}, (2.7)

the brackets (2.1) and (6.3) on linear functions coincide.

Lie superalgebra osp(1|2) acts on the space of linear functions by the Poisson bracket with
the quadratic polynomials (2.4) and, thanks to the identification (2.7), on the Lie antialgebra
asl(2). Proposition 2.1 implies that this action preserves the Lie antialgebra structure.

Remark 2.3. The bivector (2.5) (with the antibracket (2.6)) should be considered as analog of
the canonical Lie-Poisson structure on the dual space of asl(2), see Section 6 below. Proposition
2.1 shows how this bivector (and thus the structure of asl(2) itself) can be defined intrinsically
through the condition of osp(1|2)-invariance.

The bivector (2.5) and the antibracket (2.6) were found in [3].

2.3 The highest weight module structure

The Lie antialgebra asl(2) can be viewed as (the smallest) highest weight module of osp(1|2).
This module is of dimension 2|1, it is generated by the highest weight vector v and characterized
by the relations

x1 v = ξ 1

2

v = 0, x0 v = 1
2 v.

The Lie antialgebra asl(2) is identified with this osp(1|2)-module explicitly by

{a, b; ε} ←→ {v, −x−1 v, ξ− 1

2

v}.

The above highest weight module is now equipped with an osp(1|2)-invariant structure of Lie
antialgebra induced from (2.1).

Note also that formula (8.2) below provides another (explicit) expression for the osp(1|2)-
action on asl(2).

3 Basic notions

In this section we fix the notations and introduce some basic notions that we consider throughout
this paper.

3.1 Rank of a Lie antialgebra

Given a Lie antialgebra a, we consider the commutative subalgebra a1 as analog of the notion
of “Cartan subalgebra” of a. This justifies the following terminology.

Definition 3.1. We call the dimension of the odd part a1 of a Lie antialgebra a the rank of a:

rk a := dim a1.

Rank is an important characteristic of a Lie antialgebra that simplifies classification problems,
cf. Section 5.

6



3.2 The pencil of presymplectic forms

Let a be a Lie antialgebra of rank r. Fix an arbitrary basis {α1, . . . , αr} of the odd part a1.
One obtains a set of r bilinear skew-symmetric (or presymplectic) forms: {ω1, . . . , ωr} on a0 by
projecting the antibracket to each basic element:

]a, b[ =

r∑

i=1

ωi(a, b)αi. (3.1)

Changing the basis, one obtains linear changes of the corresponding set of skew-symmetric forms.
Therefore, the pencil 〈ω1, . . . , ωr〉 (e.g., the vector space spanned by the above skew-symmetric
forms) is well-defined.

Remark 3.2. The classification of pencils of r linear skew-symmetric forms on a vector space
is a classical problem of linear algebra already considered by Kronecker. This problem turned
out to be closely related to integrable systems, see, [6] and references therein.

3.3 Adjoint representation

We will use the standard notation x 7→ adx for the adjoint action ad : a→ End(a) given by

adx y = ]x, y[ , (3.2)

for all x, y ∈ a. We will also use the notations

ad0
x := adx |a0

, ad1
x := adx |a1

for the restrictions of adx to the even and odd parts of a, respectively. The following statement
is straightforward.

Proposition 3.3. The identities (1.1–1.4) are equivalent to the following three relations:

adα adβ + adβ adα = ad0
]α,β[ + 2ad1

]α,β[, (3.3)

adα ada − ada adα = ad0
]α,a[ − ad1

]α,a[, (3.4)

ada adb − adb ada = ad0
]a,b[ − ad1

]a,b[, (3.5)

where α, β ∈ a1 and a, b ∈ a0.

Example 3.4. The adjoint representation of asl(2) is given by

adε =




1

2
0 0

0 1

2
0

0 0 1


 , ada =




0 0 − 1

2

0 0 0

0 1

2
0


 , adb =




0 0 0

0 0 − 1

2

− 1

2
0 0


 .

One easily checks that the relations (2.1) together with (3.3–3.5) are satisfied.
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3.4 Representations: a general definition

The expressions in the left-hand-side of formulæ (3.3–3.5) can be written in a “unified manner”
with the help of the following antibracket on End(a):

]]A,B[[ := AB − (−1)(p(A)+1)(p(B)+1)B A. (3.6)

Indeed, the operator adx is even if x ∈ a1 and odd if x ∈ a0.
Given a Lie antialgebra a and a Z2-graded vector space V = V0 ⊕ V1, a linear map ρ : a →

End(V ) satisfying the relation

]]ρx, ρy[[ := ρ0
]x,y[ − (−2)p(x)p(y)ρ1

]x,y[, (3.7)

where ρ0 and ρ1 are restrictions of ρ to V0 and V1, respectively. is called a representation of a.
The space V is then called an a-module.

Remark 3.5. Given any Z2-graded vector space V , the antibracket (3.6) defines a structure of
an antialgebra on End(V ). This is, however, not a Lie antialgebra structure, since the identities
(1.1–1.4) are not satisfied.

3.5 Adjoint action of the unit

Assume that the associative commutative algebra a1 contains the unit element ε. By definition,

ad1
ε = Id.

Let us consider the action of ε on the even part of a. The identity (1.2) implies the “half-
projector” relation ad0

ε ◦ ad0
ε = 1

2 ad0
ε. Therefore, the even part of the Lie antialgebra a is split

to a sum of 1
2 - and 0-eigenspaces of ad0

ε:

a0 = a0, 1
2

⊕ a0,0, ad0
ε

∣∣∣a
0, 1

2

= 1
2 Id, ad0

ε

∣∣
a0,0

= 0.

Theorem 1. (i) The space a0,0 coincides with the center, Z(a), of the Lie antialgebra a.
(ii) The Lie antialgebra a is a direct sum:

a = a⊕ Z(a) (3.8)

of a subalgebra a and the abelian Lie antialgebra Z(a).

Proof. Part (i). Let a ∈ a0,0, that is, ]ε, a[= 0. One has to show that ]x, a[= 0 for all x ∈ a.
Let first x = α be an element of a1. The identity (1.2) implies

]ε, ]α, a[[ = ]ε, ]α, a[[ + ]α, ]ε, a[[ = ]]ε, α[ , a[ = ]α, a[ .

But then ad0
ε ◦ ad0

ε = 1
2 ad0

ε implies ]α, a[ = 0.
Let now x = b be an element of a0. One has

]b, a[ = ]ε, ]b, a[[ = ]]ε, b[ , a[ + ]b, ]ε, a[[ = ]]ε, b[ , a[ .

If, furthermore, b ∈ a0
0, then the last term is zero. Finally, if b ∈ a

1

2

0 , then the last term is equal
to 1

2 ]b, a[, which again implies ]b, a[ = 0.

We postpone the proof of part (ii) of the theorem to Section 4.4.
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4 Central extensions

In this section we define the notion of extension of a Lie antialgebra a with coefficients in any
a-module. It will be useful for the classification result of Section 5. The notion of extension
should be a part of a general cohomology theory that we will not develop here.

4.1 Abelian extensions

Let a be a Lie antialgebra and V an a-module. We will consider V as a trivial (or abelian) Lie
antialgebra.

Definition 4.1. An exact sequence of Lie antialgebras

0 −−−→ V −−−→ ã −−−→ a −−−→ 0 (4.1)

is called an abelian extension of the Lie antialgebra a with coefficients in V . As a vector space,
ã = a ⊕ V , and the subspace V is obviously an a-module. If the subspace V belongs to the
center of ã, then the extension (4.1) is called a central extension.

A central extension is called non-trivial if the Lie antialgebra ã is not isomorphic to the
direct sum a⊕ V .

Since any central extension can be obtained by iteration of one-dimensional central exten-
sions, it suffice to consider only the case of one-dimensional central extensions. One then has
two possibilities:

dimV = 1|0, or dim V = 0|1.

We then say that the one-dimensional central extension is of type I or of type II, respectively.

4.2 Central extensions of type I

The general form of central extensions of type I is as follows.

Proposition 4.2. (i) A central extension of type I is defined by an odd linear map

C : a ∧ a→ K (4.2)

satisfying the following two identities:

C (α, ]β, a[) + C (β, ]α, a[) − C (]α, β[, a) = 0

C (]a, b[, c) + C (]b, c[, a) + C (]c, a[, b) = 0,
(4.3)

for all α, β ∈ a1 and a, b, c ∈ a0.
(ii) A central extension is trivial if and only if there exists an even linear function f : a0 → K

such that
C(α, a) = f(]α, a[) (4.4)

for all α ∈ a1 and a ∈ a0.
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Proof. Part (i). Given a map C as in (4.2), let us define an antibracket on a ⊕ K. We fix an
element z ∈ K and set:

]x, y[ = ]x, y[
a
+ C(x, y) z,

]x, z[ = 0,
(4.5)

for all x, y ∈ a. Note that, since the map C is skew-symmetric and odd, one has

C(x, y) = C (x1, y0)− C (y1, x0) . (4.6)

One then easily checks that formula (4.5) defines a structure of a Lie antialgebra if and only if
the relations (4.3) are satisfied.

Conversely, a Lie antialgebra structure on a ⊕ K such that the subspace K belongs to the
center is obviously of the form (4.5).

Part (ii). In the case where C is as in (4.4), the linear map a ⊕ K → a ⊕ K given by
(x, z) 7→ (x, z + f(x)) intertwines the structure (4.5) with the trivial direct sum structure. This
means that the central extension is trivial.

Conversely, if the extension is trivial, then there exists an intertwining map a⊕ K→ a⊕K

sending the structure (4.5) to the trivial one. This map can, again, be chosen in the form
(x, z) 7→ (x, z + f(x)), since a different choice of the embedding of K does not change the
structure.

We will call a map C satisfying (4.3) a 2-cocycle of type I. A 2-cocycle of the form (4.4) will
be called a coboundary.

4.3 Central extensions of type II

Let us describe the central extensions of type II.

Proposition 4.3. (i) A central extension of type II is defined by an even linear map

C : a ∧ a→ K
0|1 (4.7)

satisfying the following two identities:

C (α, ]a, b[) = C (]α, a[, b) + C (a, ]α, b[)

C (]α, β[, γ) = C (α, ]β, γ[) ,
(4.8)

for all α, β, γ ∈ a1 and a, b ∈ a0.
(ii) The extension is trivial if and only if there exists an even linear functional f : a1 → K0|1

such that
C(x, y) = f(]x, y[), (4.9)

for all x, y ∈ a.

Proof. The proof is similar to that of Proposition 4.2.

We will call an even map (4.7) satisfying (4.8) a 2-cocycle of type II. In the case where it is
given by (4.9), the map C is called a coboundary.
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4.4 The role of the unit: proof of Theorem 1

Let us show that the presence of the unit element in a1 prevents a of having central extensions.

Proposition 4.4. If the commutative algebra a1 contains the unit element, then the Lie antial-
gebra a has no non-trivial central extensions.

Proof. Let C be a 2-cocycle of type I on a. Apply the first identity (4.3) to β = ε, where ε is
the unit. One has

C(α, a)− C(α, ]ε, a[) = C(ε, ]α, a[).

If a ∈ Z(a), this formula implies C(α, a) = 0. If a is an element of the 1
2 -eigenspace a0, 1

2

of the

unit element ε, then one obtains

C(α, a) = 2C(ε, ]α, a[).

Therefore, the cocycle C is a coboundary.
Let now C be a 2-cocycle of type II. It can be decomposed into a pair (C0, C1) of maps

C0 : a0 ⊗ a0 → K
0|1, C1 : a1 ⊗ a1 → K

0|1,

where C0 is skew-symmetric and C1 is symmetric. The first condition (4.8) gives

C1(ε, ]a, b[) = C0(]ε, a[, b) + C0(a, ]ε, b[),

so that C0(a, b) = C1(ε, ]a, b[). The second condition (4.8) implies

C1(α, β) = C1(ε, ]α, β[).

Therefore, the cocycle C is, again, a coboundary.

Let us complete the proof of Theorem 1. The Lie antialgebra a is a central extension of its
quotient a = a/Z(a). We just proved that this center extension is trivial. The decomposition
(3.8) follows.

Theorem 1 is proved.

4.5 Kernel of the presymplectic pencil

Let us now describe a “natural source” of extensions of type I.
Given an arbitrary Lie antialgebra a, consider the following space I ⊂ a0:

I =
r⋂

i=1

ker ωi,

where r = rka, the forms ωi are defined by (3.1), and where ker ω ⊂ a0 consists of elements a of
a0 such that ω(a, b) = 0 for every b ∈ a0. In other words,

I = {a ∈ a0 | ]a, b[= 0, for all b ∈ a0}.

Proposition 4.5. The subspace I is an abelian ideal of a.
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Proof. By definition, I is an abelian subalgebra and the bracket of a ∈ I with any element
b ∈ a0 vanishes. One has to show that ]α, a[∈ I, for arbitrary α ∈ a1 and a ∈ I. Indeed, using
the identity (1.3), one obtains

]]α, a[ , b[ = ]α, ]a, b[[− ]a, ]α, b[[ = 0

since for a ∈ I and every b ∈ a0, one has ]a, b[= 0.

It follows that the Lie antialgebra a is an abelian extension of type I of the quotient-algebra
a/I.

Proposition 4.6. If the map ] , [: a0 ⊗ a0 → a1 is surjective, then the ideal I belongs to the
center of a.

Proof. The ideal I belongs to the center of a if and only if the action of a1 on I is trivial.
Surjectivity means that for every α ∈ a1 there are a, b ∈ a0 such that α =]a, b[. Using the Jacobi
identity (1.4), one obtains for every c ∈ I:

]α, c[ = ]]a, b[ , c[ = − ]]b, c[ , a[− ]]c, a[ , b[ = 0,

since both summands in the right-hand-side vanish.

The Lie antialgebra a is therefore a central extension of a/I (of type I).

5 Lie antialgebras of rank 1

In this section we systematically study the Lie antialgebras of rank 1: we obtain a number of
examples and finally give a complete classification of these algebras.

The commutative algebra a1 is one-dimensional and therefore one has a choice between two
algebras (as shows the classification result below, both cases may occur):

1. a1 = K, with the unit element ]ε, ε[= ε;

2. a1 is nilpotent such that ]α,α[≡ 0.

Since a1 is one-dimensional, the map ] , [: a0 ⊗ a0 → a1 is characterized by one bilinear
skew-symmetric form, ω, on a0 (see Section 3.2):

]a, b[ = ω(a, b)α,

where α is a (unique up to a constant) non-zero element of a1.

5.1 Uniqueness of asl(2)

Let us start with investigation of the case of simple Lie antialgebras.

Proposition 5.1. The Lie antialgebra asl(2) is the unique simple Lie antialgebra of rank 1.
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Proof. Let a be a simple n|1-dimensional Lie antialgebra. By Proposition 4.5, the 2-form ω is
non-degenerate, i.e., ker ω = 0.

Choose a canonical basis {a1 . . . , an, b1, . . . , bn}, of a0, so that one has

ω(ai, bj) = 1, ω(ai, aj) = ω(bi, bj) = 0,

where i, j = 1, . . . , n.
(a) Case n > 1. Let us show that, in this case, the odd part a1 is the center of a; in particular,

a is nilpotent and cannot be simple. Indeed, the identity (1.4) implies

]α, aj [ = ]]ai, bi[ , aj [ = − ]]bi, aj [ , ai[− ]]aj , ai[ , bi[ = 0

for any i 6= j. Similarly, one shows that ]α, bi[= 0, for any i = 1, . . . , n. It remains to prove that
]α,α[= 0. Indeed, one has

]α,α[ = ]α, ]ai, bi[[ = ]]α, ai[ , bi[ + ]ai ]α, bi[[ = 0,

for any i = 1, . . . , n.
(b1) Consider the case n = 1, and where the one-dimensional algebra a1 is nilpotent, i.e.,

]α,α[= 0, the relation (1.2) implies ad2
α = 0 and one can choose the basis {a, b} in such a way

that ]α, a[= κ b and ]α, b[= 0. The Lie antialgebra a is reductive for κ 6= 0 and nilpotent for
κ = 0, in both cases, this antialgebra cannot be simple.

(b2) Consider finally the case n = 1, where the algebra a1 contains the unit element ε.
Theorem (1) implies ad0

ε = 1
2 Id, and on obtains precisely the algebra asl(2) in this case.

Proposition 5.1 is proved.

5.2 The (twisted) Heisenberg antialgebra and the affine antialgebra

Let us now give more examples of Lie antialgebras of rank 1.
A. Consider the case where the form ω is non-degenerate.
(A1) The 2n|1-dimensional nilpotent Lie antialgebra with the basis basis {a1, b1, . . . , an, bn;α}

that appeared in the case a) of the above proof is characterized by the relations

]ai, bj [ = δij α, ]ai, aj [ = ]bi, bj [ = 0, ]α, ai[ = ]α, bi[ = 0, ]α,α[ = 0, (5.1)

where i, j = 1, . . . , n. We call this Lie anti algebra the Heisenberg antialgebra and denote it by
ahn.

Remark 5.2. Notice, that the relations (5.1) are exactly as those of the standard Heisenberg Lie
algebra, but the central element α is odd. As in the usual Lie case, the Heisenberg antialgebra
ahn is a central extension of type II of the abelian Lie antialgebra K2n.

(A2) Another interesting example is that of a reductive 2|1-dimensional Lie antialgebras
appeared in the case (b1) of the above proof. This is a family of algebras with basis {a, b, α},
characterized by the relations

]a, b[ = α, ]α, a[= κ b, ]α, b[ = 0, ]α,α[ = 0, (5.2)

where κ is a constant. If κ = 0, then this is just the Heisenberg antialgebra ah1, if κ 6= 0, then
the defined Lie antialgebra is not isomorphic to ah1, and therefore one obtains a non-trivial
deformation of ah1.
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It is easy to see that, in the complex case K = C, all of the Lie antialgebras (5.2) with κ 6= 0
are isomorphic to each other. We call this algebra twisted Heisenberg antialgebra and denote it
by ãh1.

If K = R, however, the sign of κ is an invariant and one gets two different algebras ãh
+

1 and

ãh
−

1 . We thus assume:

κ = 1, if K = C, κ = ±1, if K = R. (5.3)

Let us summarize the above considerations and the proof of Proposition 5.1

Proposition 5.3. The Lie algebras asl(2), ahn together with ãh1 in the case K = C (or ãh
+

1

and ãh
−

1 in the case K = R) form the complete list of the Lie antialgebras of rank 1 with a
non-degenerate 2-form ω.

B. Consider another “extremal case”: ω ≡ 0. The Lie antialgebra a is then determined by
the operator adα.

(B1) If a1 contains the unit element ε, then a is split into a direct sum (3.8). The centerless
Lie antialgebra a has the basis {a1, . . . , an; ε} with the following set of relations:

]ai, aj [ = 0, ]ε, ai[ = 1
2 ai, ]ε, ε[ = ε. (5.4)

We call this Lie antialgebra the affine antialgebra and denote by aaf(n). One then has a =
aaf(n)⊕ Z, where Z is the (even) center of a.

(B2) If ]α,α[= 0 for α ∈ a1, then ad0
α ◦ ad0

α = 0. This is a very degenerated Lie antialgebra.
The classification in this case is the classification of nilpotent (of order 2) linear operators that
we do not discuss.

5.3 The classification result

We are now ready to formulate the main statement of this section.

Theorem 2. A Lie antialgebra of rank 1 is of the form a ⊕ Z where a belongs to one of the
following three classes:

a) a is one of the algebras asl(2), ãh1 over C (resp. ãh
+

1 , ãh
−

1 over R), ahn with n ≥ 2, or
aaf(n);

b) a is either the 3|1-dimensional algebra with the basis {a, b, z;α} and the relations

]a, b[ = α, ]α, a[ = z, ]α,α[ = 0 (5.5)

while z is in the center, or a is the 4|1-dimensional algebra with the basis {a, b, z1, z2;α} and the
relations

]a, b[ = α, ]α, a[ = z1, ]α, b[ = z2, ]α,α[ = 0 (5.6)

while z1, z2 are central elements.
c) a is a degenerate algebra of type (B2) above.
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Proof. We already proved the theorem in the following two cases: the form ω is non-degenerate,
or ω ≡ 0, see Sections 5.1 and 5.2. It remains to consider the intermediate case where the 2-form
ω is not identically zero but with a non-trivial kernel:

I = ker ω 6= {0}.

The space I is then an abelian ideal (see Proposition 4.5) and, furthermore, belongs to the
center (see Proposition 4.6). We summarize this in a form of a

Lemma 5.4. The Lie antialgebra a is a central extension of a/I.

To complete the classification, one now has to classify the central extensions of type I of the
antialgebras with non-degenerate form ω, that is, of (5.1) and (5.2).

Lemma 5.5. The Lie antialgebras asl(2), ahn with n ≥ 2 and ãh1 (resp. ãh
+

1 , ãh
−

1 ) have no
non-trivial central extensions of type I.

Proof. In the case of asl(2) this follows from Theorem 1.
For the Lie antialgebra ahn with n ≥ 2, let C be an arbitrary 2-cocycle of type I. One has

C (α, ai) = C (]aj , bj [, ai) = −C (]bj , ai[, aj)− C (]ai, aj [, bj) = 0

(from the second identity (4.3)) for all i 6= j. Similarly, C(α, bi) = 0 for all i. Therefore, C is
identically zero.

For the Lie antialgebra ãh1 and an arbitrary 2-cocycle C of type I, one has

C (α, b) = 1
κ

C (α, ]α, a[) = 1
2κ

C (]α,α[, a) = 0.

The cocycle C is then defined by its values on α and a. Let us show that the corresponding
extension is trivial. Let C(α, a) = cz, where z is an arbitrary generator of the center and
c arbitrary constant. Set b′ = b + c

κ
z. Then in the new basis (a, b′, z;α), the cocycle C ′

vanishes.

Lemma 5.6. The algebra ah1 has a unique non-trivial central extension of type I; the result of
this central extension is the Lie antialgebra (5.5).

Proof. Indeed, let C be a 2-cocycle of type I on ah1. It is given by the formula

C(α, a) = c1 z, C(α, b) = c2 z,

where z is an element of the center and c1 and c2 are arbitrary constants. Assume (without loss
of generality) that c1 6= 0, then choose another element of the basis: b′ = b + c2

c1
a. One obtains

C(α, b) = 0. Furthermore, taking z′ = c1z, one gets precisely the Lie antialgebra (5.5). This Lie
antialgebra is not isomorphic to ah1 so that the extension is, indeed, non-trivial.

Lemma 5.7. The algebra (5.6) has a unique non-trivial central extension of type I; the result
of this central extension is the Lie antialgebra (5.6).

Proof. It is similar to the proof of Lemma 5.6: one shows that the Lie antialgebra (5.6) is
precisely the unique (up to isomorphism) central extension of (5.5).
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In the same way, one proves the following

Lemma 5.8. The Lie antialgebra (5.6) has no non-trivial central extensions of type I.

We classified all the non-trivial central extensions of the Lie antialgebras of rank 1 with
non-degenerate form ω. This completes the proof of Theorem 2.

6 Odd Lie-Poisson structure

In this section we introduce the analog of the Lie-Poisson (Berezin-Kirillov-Kostant-Souriau)
structure on the dual of a Lie antialgebra. This notion is important for several reasons: it
relates Lie antialgebras to symplectic geometry and (multi-)Hamiltonian formalism; it allows to
define infinite-dimensional analogs of Lie antialgebras and also a conformal symmetry algebra
associated with a Lie antialgebra.

6.1 Canonical bivector on the dual of a Lie antialgebra

For the sake of simplicity, we will again fix a basis {α1, . . . , αr} of a1, but the construction will
not depend on the choice.

We denote by (τ1, . . . , τr) the coordinates on a∗1 dual to the chosen basis and by ω1, . . . , ωr

the bilinear forms on a0 defined by (3.1). Using a vector space structure, one can understand
these 2-forms as constant Poisson bivector fields on a∗0

∼= Kn that we denote by π1, . . . , πr.
We associate a linear operator Aα : a→ a with each element α ∈ a1, by

Aα |a0
= 2adα, Aα |a1

= adα, (6.1)

and denote A1, . . . , Ar the operators corresponding to the elements of the basis {α1, . . . , αr}.
These linear operators can be, of course, viewed as linear vector fields on a∗.

Definition 6.1. We call the Lie-Poisson structure of the Lie antialgebra a the following odd
bivector on a∗:

Λ =

r∑

i=1

(
∂

∂τi
∧Ai + τi πi

)
. (6.2)

The corresponding antibracket is of the form:

]F,G[ =
1

2
〈Λ, dF ∧ dG〉 (6.3)

is defined on the space of (polynomial, smooth, etc.) functions on a∗. This antibracket is
obviously linear, i.e., the space of linear functions a∗∗ ∼= a is stable.

Proposition 6.2. The space of linear functions on a∗ is a Lie antialgebra with respect to the
bracket (6.3) which is isomorphic to a.

Proof. The antibracket of two even linear functions is precisely given by (3.1). The odd linear
functions on a∗ are linear combinations of τ1, . . . , τr. The antibracket of an odd and an even
linear functions is given by

]τi, ℓ[= Ai(ℓ),
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where ℓ ∈ a0. This corresponds precisely to the adjoint action of αi on ℓ. For the antibracket of
two odd linear functions one has

]τi, τj[= Ai(τj) + Aj(τi)

that corresponds to
adαi

αj + adαj
αi =]αi, αj [.

Corollary 6.3. The bivector (6.2) and the antibracket (6.3) are independent of the choice of
the basis.

Proof. Any bivector is uniquely defined by its values on linear functions F,G.

Example 6.4. The bivector (2.5) is precisely the canonical bivector (6.2) of the Lie antialgebra
asl(2).

6.2 Algebra of symmetry

The space of linear operators End(a∗) form a Lie superalgebra isomorphic to gl(n|r).

Definition 6.5. The Lie superalgebra ga ⊂ End(a∗) of linear operators on a∗ preserving the
bivector (6.2) is called the algebra of symmetry of a.

Clearly, the Lie superalgebra ga acts on the space of linear functions on a∗ and preserves the
structure of Lie antialgebra a.

Example 6.6. In the case of asl(2), the Lie superalgebra osp(1|2) is the algebra of symmetry,
see Section 2.

6.3 Conformal algebra of symmetry and multi-Hamiltonian vector fields

Consider the Lie superalgebra Vect(a∗)(∼= Vect(Kn|r)) of all (smooth, or polynomial, etc.) vector
fields on the dual space to a Lie antialgebra a.

Definition 6.7. The Lie superalgebra Ga ⊂ Vect(a∗) of vector fields on a∗ preserving the
bivector (6.2) is called the conformal algebra of symmetry of a.

The Lie superalgebra Ga is, in general, infinite-dimensional; it does not act on the Lie
antialgebra a since it does not preserve the space of linear functions on a∗. The most interesting
feature of Ga is its relation to the multi-Hamiltonian formalism.

Consider the case where a1 contains the unit element. We introduce the following r constant
Poisson structures on a∗, namely the bivector

Pε = πε +
r∑

i=1

∂

∂τi

∧
∂

∂τi

(6.4)

together with its Lie derivatives:
Pi = LAi

(Pε) . (6.5)
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Note that these Poisson structures are compatible, i.e., any their linear combination is, again, a
Poisson bivector, since these are constant bivectors.

Let X be a vector field on a∗ which is Hamiltonian with respect to the structure Pε and
commuting with all the vector fields (6.1) of the basis A1, . . . , Ar:

[X,Ai] = 0.

Then X is a multi-Hamiltonian vector field with respect to all the structures (6.5). If, further-
more, X is purely even, i.e., it is independent of odd coordinates:

[X, ∂
∂τi

] = 0, LX(τi) = 0,

then is clear that X belongs to the Lie superalgebra Ga, since it preserves the bivector Λ. The
Lie superalgebra Ga is thus related to the Lie superalgebra of multi-Hamiltonian vector fields.

We do not know whether the above property holds for an arbitrary, not necessarily even
Hamiltonian vector field X.

6.4 The unit element and homotheties

In the important case where a1 contains the unit element ε and Z(a) = 0 (see Theorem 1), one
has

Aε = E ,

where E is the Euler vector field on the vector space a∗, i.e., the generator of the K∗-action.
Choosing arbitrary linear coordinates (x1, . . . , xn) on a∗0, one obtains:

Aε =

r∑

i=1

τi
∂

∂τi
+

n∑

j=1

xj
∂

∂xj
. (6.6)

The quotient with respect to the vector field Aε defines a natural projection to the (n−1)|r-
dimensional projective space:

a∗ \ {0} → P
n−1|r.

This is the way contact geometry enters the picture, since the Poisson structure (6.4) on Kn|r

corresponds to a contact structure after the projectivization, cf. [10].

7 Real simple Lie antialgebra of rank 2 over R

We introduce a simple Lie antialgebra over R. It is of of dimension 4|2 and is denoted by ao(4).
This is the second example after asl(2) of a simple Lie antialgebra. Let us mention that the
complexification of ao(4) splits: ao(4)C = asl(2)⊕ asl(2).

We describe the structure of ao(4) in the details, we also consider the corresponding odd
Lie-Poisson structure and the associated symmetry Lie superalgebra.
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7.1 Introducing ao(4)

The definition goes in three steps.

1. Consider the commutative algebra with the basis {ε, σ} and the relations

]ε, ε[ = ε, ]ε, σ[ = σ, ]σ, σ[ = −ε. (7.1)

2. Define an action of the above algebra on the even 4-dimensional space R4 with basis
{a0, b0, a1, b1} as follows:

ad0
ε =

1

2
Id

and
]σ, a0[ = 1

2 b1,

]σ, b0[ = 1
2 a1,

]σ, a1[ = −1
2 b0,

]σ, b1[ = −1
2 a0.

(7.2)

As in Section 6, we will use the notations Aε and Aσ for the operators defined by (6.1)
corresponding to the action of ε and σ, respectively.

3. Define the skew-symmetric bilinear map ] , [: K4 → K2 by

]a, b[ = ωε(a, b) ε + ωσ(a, b)σ. (7.3)

where ωε and ωσ are the following two symplectic forms on K4:

ωε = a∗0 ∧ b∗0 + a∗1 ∧ b∗1, ωσ = a∗0 ∧ a∗1 − b∗0 ∧ b∗1. (7.4)

Proposition 7.1. Formulæ (7.1)–(7.3) define a simple Lie antialgebra.

Proof. Let us show that the defined antialgebra satisfies all the conditions of Definition 1.1. The
identities (1.1) and (1.2) are evident.

The identity (1.3) follows from the relations

ωσ(·, ·) = 1
2 (ωε(Aσ ·, ·) + ωε(·, Aσ ·)) (7.5)

and
ωε(·, ·) = 1

2 (ωσ(Aσ·, ·) + ωσ(·, Aσ ·)) . (7.6)

Let us check the Jacobi identity (1.4). Indeed, using formulæ (7.3) and (7.2), one has

]]a0, b0[ , a1[ + ]]b0, a1[ , a0[ + ]]a1, a0[ , b0[ = ]ε, a1[− ]σ, b0[ = 1
2 a1 −

1
2 a1 = 0.

Other terms entering the Jacobi identity are similar.
Let us show that the defined Lie antialgebra is simple. Indeed, if I = I0 ⊕ I1 is an ideal,

then the odd part I1 has to be zero since ad0
α is a non-degenerate operator for any α = λε+ µσ.

But, then I0 has to belong to the space ker ωε ∩ ker ωσ = {0}.

This Lie antialgebra will be denoted by ao(4).

Remark 7.2. The matrix Aσ exchanges the symplectic blocks of ωε. Note that the pairs of the
form of the type (a∗0 ∧ b∗0, a

∗
0 ∧ a∗1) are sometimes called the Kronecker blocks, see [6].
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7.2 The canonical bivector on ao(4)∗

This section is similar to Section 2.2. We will calculate the canonical odd bivector on the dual
space ao(4) and determine the Lie superalgebra of symmetry.

Consider the 4|2-dimensional space K4|2 with coordinates (p1, q1, p2, q2; τ1, τ2). The canonical
odd bivector corresponding to the Lie antialgebra ao(4) is as follows

Λ =
∂

∂τ1
∧ E +

∂

∂τ2
∧Aσ + τ1 πε + τ2 πσ, (7.7)

where E is the Euler field (6.6) and

Aσ = q2
∂

∂p1
+ p2

∂

∂q1
− q1

∂

∂p2
− p1

∂

∂q2
+ τ2

∂

∂τ1
− τ1

∂

∂τ2
. (7.8)

and where

πε =
∂

∂p1
∧

∂

∂q1
+

∂

∂p2
∧

∂

∂q2
, πσ =

∂

∂p1
∧

∂

∂p2
−

∂

∂q1
∧

∂

∂q2
.

Indeed, the Euler field E corresponds to the action of the unit element ε (cf. Example 6.4), while
the vector field Aσ corresponds to the action of σ. The standard Poisson bivector πε and the
bivector πσ are dual to the forms (7.4) on the even part K4.

As in Section 6, define the antibracket ]F,G[ = 1
2 〈Λ, dF ∧ dG〉. It follows now from Propo-

sition 6.2 that the space of linear coordinates Span(p1, q1, p2, q2, τ1, τ2) is stable and form a Lie
antialgebra isomorphic to ao(4).

7.3 The symmetry algebra of ao(4)

The symmetry algebra of the Lie antialgebra ao(4) is, as in the asl(2)-case, much bigger than
the antialgebra itself.

Proposition 7.3. The symmetry algebra of ao(4) is the simple 6|4-dimensional Lie superalgebra
o(4|2).

Proof. The symmetry algebra is the Lie superalgebra of linear vector fields Hamiltonian with
respect to the standard Poisson structure on K4|2:

Pε =
∑

1≤i≤2

(
∂

∂pi
∧

∂

∂qi
+

∂

∂τi
∧

∂

∂τi

)
(7.9)

and commuting with the vector field Aσ. One checks that there are 6 even generators corre-
sponding to the quadratic Hamiltonians

{
p2
1 − q2

2 , p2
2 − q2

1 , p1p2 + q1q2, p1q1 − p2q2, p1q2, q1p2

}

that span the well-known action of o(4) on the 4-dimensional symplectic space. The odd gener-
ators are

{p1τ1 + q2τ2, p2τ1 − q1τ2, q1τ1 + p2τ2, q2τ1 − p1τ2} .

Recall that the Lie superalgebra o(4|2) is simple (unlike o(4) ∼= sl(2) ⊕ sl(2)).
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Remark 7.4. Note that another way to characterize the symmetry algebra of ao(4) is to say that
this is the Lie superalgebra of linear bi-Hamiltonian vector fields with respect to the standard
structure (7.9) together with the second structure Pσ = Pε ◦ Aσ:

Pσ =
∂

∂p1
∧

∂

∂p2
−

∂

∂q1
∧

∂

∂q2
+ 2

∂

∂τ1
∧

∂

∂τ2
. (7.10)

8 Conformal Lie antialgebra âsl(2)

In this section we introduce an example of a simple infinite-dimensional Lie antialgebra. This
Lie antialgebra is a conformal version of asl(2).

The Lie antialgebra âsl(2) is closely related to the famous conformal Lie superalgebra, K(1),
also known as the (centerless) Neveu-Schwarz algebra. More precisely, we show that K(1) is, on
the one hand the algebra of conformal symmetry of asl(2) and, on the other hand, the algebra

of symmetry of âsl(2).

We will also show how âsl(2) is related to contact geometry. It is given by an amazing
“antibracket” on the space of vector fields tangent to the contact structure.

8.1 The definition

Consider the infinite-dimensional vector space with the basis

{
ai, i ∈ Z + 1

2 ; αn, n ∈ Z
}

Let us stress that the even generators ai are labeled by semi-integer indices, while the odd
generators αn are labeled by integer ones.

Define the following operation:

]ai, aj [ = 1
2 (j − i)αi+j ,

]αn, ai[ = − ]ai, αn[ = 1
2 an+i,

]αn, αm[ = αn+m.

(8.1)

Proposition 8.1. The bracket (8.1) defines a structure of a simple Lie antialgebra.

Proof. The properties (1.1) and (1.2) are evident. The invariance condition (1.3) is as follows:

]αn, ]ai, aj [[ = ]]αn, ai[ , aj [ + ]ai, ]αn, aj [[

One obtains in the left-hand-side 1
2 (j − i) αi+j+n and in the right-hand-side the sum of two

terms: 1
4 (j − (i + n))αi+j+n and 1

4 (j + n− i) αi+j+n, so that the identity (1.3) is satisfied.
Finally, the Jacobi identity reads:

]]ai, aj [ , ak[ + ]]aj , ak[ , ai[ + ]]ak, ai[ , aj [ = 0.

One has the sum of 1
4 (j − i) ai+j+n with 1

4 (k − j) ai+j+n and 1
4 (i− k) ai+j+n which is zero.
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We call the defined Lie antialgebra the conformal antialgebra and denote it by âsl(2). This
example of a Lie antialgebra was defined in [3]. It is related to the notion of supertransvectants,
see [5].

Remark 8.2. It is interesting to notice that the commutative algebra âsl(2)1 is a group algebra,
namely

âsl(2)1 = K[Z].

In particular, the element ε := α0 is the unit of âsl(2)1. Note also that the antialgebra âsl(2)
contains infinitely many copies of asl(2) generated by {a−i, ai;α0}.

8.2 The action of the conformal Lie superalgebra

The conformal Lie superalgebra K(1) is spanned by
{
xn, n ∈ Z; ξi, i ∈ Z + 1

2

}

with the defining relations given by formula (2.2). One easily checks that this is, indeed, a Lie su-
peralgebra containing infinitely many copies of osp(1|2) with the generators {x−n, x0, xn; ξ−n

2

, ξn
2

}.

Define the following action of the algebra K(1) on âsl(2):

xn(ai) =
(
i + n

2

)
an+i,

xn(αm) = m αn+m,

ξi(aj) = 1
2 (j − i) αi+j,

ξi(αn) = ai+n.

(8.2)

Note that this formula is well-known in the literature and is nothing but the action of the
superconformal algebra K(1) on the space of weighted densities of weight −1

2 (cf., e.g., [4]).

Proposition 8.3. The action (8.2) preserves the Lie antialgebra structure (8.1).

Proof. The proof is, again, straightforward. Let us however give here some details in order to
better illustrate the sign rule. For instance, one has

ξi (]aj , αk[) = −1
2 ξi(aj+k) = −1

4 (j + k − i)αi+j+k,

together with
]ξi(aj), αk[ = 1

2 (j − i) ]αi+j , αk[=
1
2 (j − i)αi+j+k

and
]aj, ξi(αk)[ = 1

2 ]aj , ai+k[=
1
4 (i + k − j)αi+j+k.

One finally gets:
ξi (]aj , αk[) = − ]ξi(aj), αk[ − ]aj , ξi(αk)[

which is precisely the invariance condition.
The other terms are similar.

Remark 8.4. Note the sign rule in the above relation that is due to the fact that the antibracket
] , [ is odd, as well as the element ξi, see formula (1.5).
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8.3 âsl(2) as conformal version of asl(2)

Let us now clarify the relations of the Lie antialgebra âsl(2) with symplectic geometry. This
algebra is naturally related to the odd Poisson asl(2)-bivector (2.5) and the corresponding an-
tibracket (2.6). Instead of linear functions on K2|1, we consider the homogeneous functions of
degree 1 on K2|1 \ {0}. Recall that a function F is homogeneous of degree 1 if

E(F ) = F.

Proposition 8.5. The space of homogeneous of degree 1 functions on K2|1 \ {0} is a Lie an-
tialgebra with respect to the antibracket (2.6).

Proof. The statement can be checked directly, but let us instead relate the situation with the
Lie antialgebra (8.1). A homogeneous of degree 1 function can be written (at least locally) in
the form

Ff (p, q; τ) = p f0

(
q
p

)
+ τ f1

(
q
p

)
, (8.3)

where f0 and f1 are arbitrary functions in one even variable. Choose the following Taylor basis
(dense in any reasonable topology):

ai = p
(

q
p

)i+ 1

2

, αn = τ
(

q
p

)n

and substitute it into the antibracket (2.6). One obtains the commutation relations (8.1).

8.4 K(1) as the algebra of conformal symmetry of asl(2)

The conformal Lie superalgebra K(1) also has a nice symplectic realization.

Proposition 8.6. The space of homogeneous of degree 2 functions on K2|1 \ {0} is a Lie super-
algebra with respect to the Poisson bracket (2.3).

Proof. A homogeneous of degree 2 function can be written (at least locally) in the form

H(p, q; τ) = p2 h0

(
q
p

)
+ τp h1

(
q
p

)
,

Choose the basis

xn = p2
(

q
p

)n+1
, ξi = τ

(
q
p

)i+ 1

2

and substitute it into (2.3). One obtains the commutation relations (2.2).

Note that homogeneous of degree 2 functions correspond precisely to Hamiltonian vector
fields homogeneous of degree 0, namely,

[E ,XH ] = 0, (8.4)

where XH is the Hamiltonian vector field with Hamiltonian H. The Lie superalgebra of Hamilto-
nian vector fields satisfying (8.4) is a geometric version of the superconformal algebra. Abusing
the notations, we will also denote this Lie superalgebra by K(1).

Furthermore, the action (8.2) is, again, given by the Poisson bracket (2.3). Let us formulate
a geometric version of Proposition 8.3.
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Proposition 8.7. The Lie superalgebra K(1) is the algebra of conformal symmetry of asl(2).

Proof. Let us first show that K(1) preserves the bivector (2.5).
The Lie derivative of Λ along a Hamiltonian vector field XH satisfying the condition (8.4) is

as follows:
LXH

Λ = LXH

(
∂
∂τ

)
∧ E + XH (τ) P + τ LXH

(P ) .

If H is even, the above expression obviously vanishes. Consider now an odd function H = τH1,
then one gets from (2.3)

XτH1
= τXH1

+ H1
∂

∂τ

and so LXτH1

(
∂
∂τ

)
= XH1

and LXτH1
(P ) = − ∂

∂τ
∧XH1

. One obtains:

LXτH1
(Λ) = XH1

∧ E + H1 P + τ ∂
∂τ
∧XH1

= XH1
∧ E + H1 P,

where E = p ∂
∂p

+q ∂
∂q

is the even part of the Euler field. Finally, using the fact that E(H1) = H1,
one obtains the following nice expression

LXτH1
(Λ) = 〈P ∧E, dH1〉 (8.5)

where d is the de Rham differential. However, the even tri-vector P ∧E vanishes since the even
dimension of R2|1 is 2.

Conversely, it is clear that any vector field preserving the bivector (2.5) is a Hamiltonian
vector field commuting with E , and therefore belonging to K(1).

Note that the above statement also implies Proposition 8.3.

8.5 Vector fields tangent to the contact distribution

“Homogeneous symplectic” means “contact” and the converse is also true, see [1] (and also [10]
for a more recent discussion). The quotient

P
1|1 = (K2|1 \ {0})/E

is a 1|1-dimensional contact manifold (cf., e.g., [8] and [4]), and the Lie superalgebra K(1) of
Hamiltonian vector fields satisfying (8.4) is precisely the Lie superalgebra of contact vector fields

on P1|1. But what is the relation of the Lie antialgebra âsl(2) to contact geometry?
The contact structure on P1|1 can be defined in terms of a 1-form θ = dz + ζdζ, where z = q

p

and ζ = τ 1
p

are the affine coordinates. The 0|1-dimensional contact distribution is defined by
the odd vector field

D =
∂

∂ζ
− ζ

∂

∂z

which is the generator of ker θ. (This vector field is also known in physical literature as “SUSY-
structure”.) A tangent vector field is a vector field proportional to D. The space of tangent
vector fields is not a Lie superalgebra since the Lie bracket of two tangent vector fields is not a
tangent vector field.
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Definition 8.8. Define the following antibracket of tangent vector fields:

]f D, g D[ = f D ◦ g D + (−1)(p(f)+1)(p(g)+1) g D ◦ f D, (8.6)

where we understand the vector fields as first-order differential operators.

Notice that the operation (8.6) is similar to the anticommutator (3.6).

Proposition 8.9. The space of vector fields tangent to the contact distribution is closed with

respect to the operation (8.6) and form a Lie antialgebra isomorphic to âsl(2).

Proof. One checks that the antibracket ]f D, g D[ corresponds to Λ(dFf ∧ dFg)D, where Λ is
the bivector (2.5) and Ff and Fg are liftings of the functions f and g from S1|1 to R2|1 given by
formula (8.3).

Discussion

Let us formulate here some open problems and outline a few ideas for the further developments.
It seems that the notion of Lie antialgebra cannot be deduced from known algebraic struc-

tures. For instance, the idea to define a Lie antialgebra with the help of the anticommutator
(3.6) fails, since the space End(V ) equipped with this structure does not satisfy the required
conditions. Another idea would be to charaterize Lie antialgebra in terms the corresponding
symmetry algebra. Such an attempt also fails since there cannot be any one-to-one correspon-
dence (for instance, the weaker is the Lie antialgebra structure, the richer is its symmetry
algebra). One needs more examples of Lie antialgebras for a better understanding of this notion
and its relations to the other, known, structures.

Most of the examples of Lie antialgebras we considered in this paper are related with some Lie
superalgebras. More precisely, we introduced the notions of symmetry algebra and of conformal
symmetry algebra associated to a Lie antialgebra. Some of the Lie antialgebras we introduced
are uniquelly characterized by the corresponding symmetry algebra. We think that relations
between Lie antialgebras and Lie superlgebras should be better studied. For instance, it would be
natural to formulate an inverse problem: given a (simple) Lie superalgebra g and a highest weight
module V over g, under what condition there exists a g-invariant structure of Lie antialgebra on
V ? Perhaps, such an algebraic structure could be useful for representation theory since for any
two singular vectors v,w ∈ V , the vector ]v,w[ is also singular.

Keeping in mind multiple application of the classical Lie-Poisson structures (in representation
theory, integrable systems, quantization, etc.), we hope that the canonical odd bivector on the
dual of a Lie antialgebra defined in this paper also can be useful. As one of possible applications,
one can consider analogs of Euler equations on the dual space a∗ of a Lie antialgebra a. Such
equations would not necessarily be Hamiltonian in the usual sense, but there exists a great
number of interesting dynamical systems which cannot be realized as Hamiltonian vector fields.

Another intriguing problem is the relation of Lie antialgebras to contact geometry; an ex-
ample is given in Section 8.5. It would be interesting to investigate the general situation. Given
a contact (super)manifold M , consider the space TVect(M) of vector fields tangent to the con-
tact distribution. Of course, this space is not a Lie (super)algebra since the very definition of
a contact structure means that the Lie bracket of two tangent vector fields is almost never a
tangent vector field. Nevertheless, there are several natural algebraic structures on the space
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TVect(M). To give an example, the simplest algebraic structure uses the decomposition of the
full space of vector fields on M into a direct sum of contact and tangent vector fields:

Vect(M) ∼= CVect(M)⊕ TVect(M).

If X and Y are two tangent fields, then there is an invariant projection of the Lie bracket [X,Y ]
to TVect(M). This structure has never been studied and the properties of the resulting algebra
are unknown. This is however not the structure that we considered in Section 8.5. We believe
that the antibracket of tangent fields on S1|1 has multi-dimensional generalizations and should be
related to a multi-Hamiltonian approach. The simple Lie antialgebra ao(4) can provide another
example. In this case, there is a natural projection (quotient by homotheties) on the contact
supermanifold P3|2 with an additional structure given by the projection of the vector field Aσ.
Perhaps one should consider the tangent fields commuting with Aσ.
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