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Existence and regularity of the solution of a time

dependent Hartree-Fock equation coupled with a

classical nuclear dynamics

Lucie Baudouin ∗

Abstract : We study an Helium atom (composed of one nucleus and two
electrons) submitted to a general time dependent electric field, modeled by the
Hartree-Fock equation, whose solution is the wave function of the electrons,
coupled with the classical Newtonian dynamics, for the position of the nucleus.
We prove a result of existence and regularity for the Cauchy problem, where
the main ingredients are a preliminary study of the regularity in a nonlinear
Schrödinger equation with semi-group techniques and a Schauder fixed point
theorem.

Keywords : Hartree-Fock equation, classical dynamics, regularity, existence.

AMS Classification : 35Q40, 35Q55, 34A12.

1 Introduction, notations and main results

We are interested in the mathematical study of a simplified chemical system,
in fact an atom consisting in a nucleus and two electrons, submitted to an ex-
ternal electric field. We need very classical approximations used in quantum
chemistry to describe the chemical system in terms of partial differential equa-
tions. We choose a non-adiabatic approximation of the general time dependent
Schrödinger equation

i∂tΨ(x, t) = H(t)Ψ(x, t) − V1(x, t)Ψ(x, t)

where H is the Hamiltonian of the molecular system

Ψ its wave function, and V1 the external electric potential

which allows, even under the effect of an electric field (see [5]), to neglect the
quantum nature of the nucleus since it is much heavier than the electrons. On
the one hand, we consider the nucleus as a point particle which moves according
to the Newton dynamics in the external electric field and in the electric poten-
tial created by the electronic density (nucleus-electron attraction of Hellman-
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Feynman type). On the other hand, we obtain under the Restricted Hartree-
Fock formalism, a time dependent Hartree-Fock equation whose solution is the
wave function of the electrons.

Indeed, we consider the following coupled system :



































i∂tu+ ∆u+
u

|x− a| + V1u = (|u|2 ⋆ 1

|x| )u, in R
3 × (0, T )

u(0) = u0, in R
3

m
d2a

dt2
=

∫

R3

−|u(x)|2∇
(

1

|x− a|

)

dx−∇V1(a), in (0, T )

a(0) = a0,
da

dt
(0) = v0

(1)

where V1 is the external electric potential which takes it values in R and satisfy
the following assumptions:

(1 + |x|2)−1V1 ∈ L∞((0, T ) × R
3),

(1 + |x|2)−1∂tV1 ∈ L1(0, T ;L∞(R3)),
(1 + |x|2)−1∇V1 ∈ L1(0, T ;L∞(R3)) and

∇V1 ∈ L2
(

0, T ;W 1,∞
loc (R3)

)

.

(2)

Here, the time dependent Hartree-Fock equation is a Schrödinger equation (in
the mathematical meaning) with a coulombian potential due to the nucleus,
singular at finite distance, an electric potential corresponding to the external
electric field, singular at infinity, and a nonlinearity of Hartree type in the right
hand side. Next, the classical nuclear dynamics is the second order in time or-
dinary differential equation solved by the position a(t) of the nucleus (of mass
m and charge equal to 1) responsible of the coulombian potential.

This kind of situation has already been studied in the particular case when
the atom is subjected to a uniform external time-dependent electric field I(t)
such that in equation (1), one has V1 = −I(t) ·x as in reference [5]. The authors
remove the electric potential from the equation, using a change of unknown
function and variables (gauge transformation given in [7]). From then on, they
have to deal with the nonlinear Schrödinger equation with only a time depen-
dent coulombian potential. Of course, we cannot use this technique here because
of the generality of the potential V1 we are considering.

We work in R
3 and throughout this paper, we use the following notations:

∇v =

(

∂v

∂x1
,
∂v

∂x2
,
∂v

∂x3

)

, ∆v =
3
∑

i=1

∂2v

∂x2
i

, ∂tv =
∂v

∂t
,

Re and Im are the real and the imaginary parts of a complex number,

W 2,1(0, T ) = W 2,1(0, T ; R3), for p ≥ 1, Lp = Lp(R3) and

the usual Sobolev spaces are H1 = H1(R3) and H2 = H2(R3).
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We also define

H1 =

{

v ∈ L2(R3),

∫

R3

(1 + |x|2)|v(x)|2 dx < +∞
}

H2 =

{

v ∈ L2(R3),

∫

R3

(1 + |x|2)2|v(x)|2 dx < +∞
}

.

One can notice that H1 and H2 are respectively the images of H1 and H2 under
the Fourier transform.

The main purpose of this paper is to prove the following result.

Theorem 1. Let T be a positive arbitrary time. Under assumption (2), and
if we also assume u0 ∈ H2 ∩H2 and a0, v0 ∈ R, system (1) admits a solution

(u, a) ∈
(

L∞(0, T ;H2 ∩H2) ∩W 1,∞(0, T ;L2)
)

×W 2,1(0, T ).

The reader may notice at first sight that we do not give any uniqueness result
for this coupled system. Actually, there is a proof of existence and uniqueness
of solutions for the analogous system without electric potential in [5] (and also
with a uniform electric potential, via the gauge transformation). Of course, their
way of proving uniqueness cannot be applied here because the Marcinkiewicz
spaces they used do not suit the electric potential V1 we have. Even if one can
be convinced that the solution in this class is unique, we do not have any proof
of uniqueness yet. Nevertheless, for any solution of system (1) in the class given
in Theorem 1, the following estimate holds:

Proposition 2. Let (u, a) be a solution of the coupled system (1) under
assumption (2) in the class

W 1,∞(0, T ;L2) ∩ L∞(0, T ;H2 ∩H2) ×W 2,1(0, T ).

If ρ > 0 satisfies
∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

W 1,1(0,T,L∞)

+

∥

∥

∥

∥

∇V1

1 + |x|2
∥

∥

∥

∥

L1(0,T,L∞)

≤ ρ,

then there exists a constant R > 0 depending on ρ such that ‖a‖C([0,T ]) ≤ R and
if ρ1 > 0 is such that
∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

W 1,1(0,T,L∞)

+

∥

∥

∥

∥

∇V1

1 + |x|2
∥

∥

∥

∥

L1(0,T,L∞)

+ ‖∇V1‖L2(0,T ;W 1,∞(BR)) ≤ ρ1

then there exists a non-negative constant K0
T,ρ1

depending on the time T , on ρ1,
on ‖u0‖H2∩H2

, on |a0| and on |v0|, such that:

‖u‖L∞(0,T ;H2∩H2) + ‖∂tu‖L∞(0,T ;L2) +m

∥

∥

∥

∥

d2a

dt2

∥

∥

∥

∥

L1(0,T )

+m

∥

∥

∥

∥

da

dt

∥

∥

∥

∥

C([0,T ])

+ sup
t∈[0,T ]

(
∫

R3

(

|u(t, x)|2 ⋆ 1

|x|

)

|u(t, x)|2
)

1

2

≤ K0
T,ρ1

.
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The proof of Theorem 1 will be given in a first step in the case when the
time T is small enough (section 3). Proposition 2 will then be useful to reach
any arbitrary time T and prove Theorem 1 (section 4).

Finally, we would like to point out that the result given in Theorem 1 is a
necessary step towards the study of the optimal control linked with system (1),
the control being performed by the external electric field. This mathematical
point of view participates to the understanding of the optimal control of sim-
ple chemical reactions by means of a laser beam action. One can notice that
Theorem 1 ensures the existence of solution to the coupled equations for a large
class of control parameters since V1 satisfies (2). The optimal control problem
has been described and studied in references [2] (nonlinear Schrödinger equation
and coupled problem) and [3] (linear Schrödinger equation). One can read the
whole study in [1].

Before working on the situation described above, we will consider the position
a(t) of the nucleus as known at any time t ∈ [0, T ]. Of course, this is too
restrictive for the study of chemical reactions but the next section is only a first
step which leads to the proof of Theorem 1. We can refer to [6] for the study
of the well-posedness of the Cauchy problem for fixed nuclei, in the Hartree-
Fock approximation for the electrons. This reference precisely describes the
N-electrons situation where the position of the nucleus is known. We consider
here the 2-electrons 1-nucleus system.

2 A nonlinear Schrödinger equation

In this section, we will consider the position a of the nucleus as known at any
moment and we will prove existence, uniqueness and regularity for the solution
of the nonlinear Schrödinger equation of Hartree type which we are led to study.
Indeed, we consider the following equation :







i∂tu+ ∆u+
1

|x− a|u+ V1u = (|u|2 ⋆ 1

|x| )u, in R
3 × (0, T )

u(0) = u0, in R
3

(3)

where a and V1 are given and satisfy the following assumption:

a ∈ W 2,1(0, T ),
(1 + |x|2)−1V1 ∈ L∞((0, T ) × R

3),
(1 + |x|2)−1∂tV1 ∈ L1(0, T ;L∞),
(1 + |x|2)−1∇V1 ∈ L1(0, T ;L∞).

(4)

The study of this equation is submitted to the results known for the cor-
responding linear equation. We will use the main result given in references [3]
and [4], about existence and regularity of the solution of the linear Schrödinger
equation:

{

i∂tu+ ∆u+
u

|x− a| + V1u = 0, in R
3 × (0, T )

u(0) = u0, in R
3.
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We set ρ > 0 such that
∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

W 1,1(0,T,L∞)

+

∥

∥

∥

∥

∇V1

1 + |x|2
∥

∥

∥

∥

L1(0,T,L∞)

≤ ρ.

Theorem 3. Let u0 belong to H2∩H2, a and V1 satisfy assumption (4). We
define the family of Hamiltonians {H(t), t ∈ [0, T ]} by

H(t) = −∆ − 1

|x− a(t)| − V1(t).

Then, there exists a unique family of evolution operators {U(t, s), s, t ∈ [0, T ]}
(the so called propagator associated with H(t)) on H2 ∩ H2 such that for all
u0 ∈ H2 ∩H2:

(i) U(t, s)U(s, r)u0 = U(t, r)u0 and U(t, t)u0 = u0 for all s, t, r ∈ [0, T ];

(ii) (t, s) 7→ U(t, s)u0 is strongly continuous in L2 on [0, T ]2 and

U(t, s) is an isometry on L2 : ‖U(t, s)u0‖L2 = ‖u0‖L2 ;

(iii) U(t, s) ∈ L(H2 ∩H2) for all (s, t) ∈ [0, T ]2 and (t, s) 7→ U(t, s)u0

is weakly continuous from [0, T ]2 to H2 ∩H2; moreover, for all

α > 0, there exists MT,α,ρ > 0 such that: ∀t, s ∈ [0, T ], ∀f ∈ H2 ∩H2,

‖a‖W 2,1(0,T ) ≤ α ⇒ ‖U(t, s)f‖H2∩H2
≤MT,α,ρ‖f‖H2∩H2

.

(iv) The equalities i∂tU(t, s)u0 = H(t)U(t, s)u0

and i∂sU(t, s)u0 = −U(t, s)H(s)u0 hold in L2.

One shall notice that of course, in (iii), the constant MT,α,ρ depends on the
norm of V1 in the space where it is defined, via ρ.

We would like to underline that the main difficulty to prove this theorem
is to deal at the same time with the two potentials which have very different
properties. The main reference is a paper by K. Yajima [11] which treats the
case where V1 = 0, using strongly T. Kato’s results in reference [8]. In our situ-
ation, we first regularize V0 and V1 by V ε

0 and V ε
1 and obtain accurate estimates,

independent of ε. The key point is to find an L2-estimate of the time derivative
of the solution uε. We use a change of variable y = x − a(t) and considering
then the equation solved by the time derivative of vε(t, y) = uε(t, x) we prove
an estimate of ‖∂tu

ε(t)‖L2 . Making ε tend to 0 ends the proof of Theorem 3.

We finally give the existence result on the nonlinear Schrödinger equation (3):

Theorem 4. Let T be a positive arbitrary time. Under assumption (4),
and if we also assume u0 ∈ H2 ∩ H2, then equation (3) has a unique solution
u ∈ L∞(0, T ;H2 ∩ H2) which satisfies ∂tu ∈ L∞(0, T ;L2) and there exists a
constant CT,α,ρ > 0 depending on T , α and ρ where

∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

W 1,1(0,T,L∞)

+

∥

∥

∥

∥

∇V1

1 + |x|2
∥

∥

∥

∥

L1(0,T,L∞)

≤ ρ and

∥

∥

∥

∥

d2a

dt2

∥

∥

∥

∥

L1(0,T )

≤ α,
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such that:

‖u‖L∞(0,T ;H2∩H2) + ‖∂tu‖L∞(0,T ;L2) ≤ CT,α,ρ‖u0‖H2∩H2
.

An analogous result has already been obtained in the particular case when
the atom is subjected to an external uniform time-dependent electric field I(t)
such that in equation (3), one has V1 = −I(t) · x as in reference [5] (but for a
time T small enough) and in reference [7] (for the linear case). They both use
a gauge transformation to remove the electric potential from the two equations
such that they only have to deal with the usual difficulty corresponding to a
time dependent coulombian potential. The generality of potentials V1 we are
considering does not allow us to use this technique.

2.1 Local existence

We will begin with a local-in-time existence result for equation (3). We first
need the following lemma to deal with the Hartree nonlinearity.

Lemma 5. For u ∈ H1, we define F (u) = (|u|2 ⋆ 1

|x| )u and one has the

following estimates:
∃C > 0 such that ∀u, v ∈ H1,

‖F (u) − F (v)‖L2 ≤ C(‖u‖2
H1 + ‖v‖2

H1)‖u− v‖L2 (5)

∃CF > 0 such that ∀u, v ∈ H2 ∩H2,

‖F (u) − F (v)‖H2∩H2
≤ CF (‖u‖2

H1 + ‖v‖2
H2∩H2

)‖u− v‖H2∩H2
(6)

‖F (u)‖H2∩H2
≤ CF ‖u‖2

H1‖u‖H2∩H2
(7)

We notice that everywhere in this paper, C denotes a real non-negative
generic constant. We may put in index a precise dependence of the constant
(like CF or CT,α,ρ).

Proof. From Cauchy-Schwarz and Hardy inequalities, we have :

‖F (u) − F (v)‖L2 ≤
∥

∥

∥

∥

(|u|2 ⋆ 1

|x| )u− (|v|2 ⋆ 1

|x| )v
∥

∥

∥

∥

L2

≤
∥

∥

∥

∥

(|u|2 ⋆ 1

|x| )(u− v)

∥

∥

∥

∥

L2

+

∥

∥

∥

∥

(

(|u|2 − |v|2) ⋆ 1

|x|

)

v

∥

∥

∥

∥

L2

≤ 2‖u‖L2‖∇u‖L2‖u− v‖L2

+ 2‖v‖L2 (‖∇u‖L2 + ‖∇v‖L2) ‖u− v‖L2

≤ C(‖u‖2
H1 + ‖v‖2

H1)‖u− v‖L2

which proves (5). Now, we have to establish (6) and (7). First of all we have

‖F (u) − F (v)‖2
H2∩H2

= ‖F (u) − F (v)‖2
L2 + ‖|x|2F (u) − |x|2F (v)‖2

L2

+ ‖∆F (u) − ∆F (v)‖2
L2 . (8)

6



The first term of the right hand side is conveniently bounded in (5). We also
use the same proof as for (5) to bound the second term :

∥

∥

∥

∥

|x|2(|u|2 ⋆ 1

|x| )u− |x|2(|v|2 ⋆ 1

|x| )v
∥

∥

∥

∥

L2

≤
∥

∥

∥

∥

(|u|2 ⋆ 1

|x| )|x|
2(u− v)

∥

∥

∥

∥

L2

+

∥

∥

∥

∥

((|u|2 − |v|2) ⋆ 1

|x| )|x|
2v

∥

∥

∥

∥

L2

(9)

≤ C‖u‖L2‖∇u‖L2‖u− v‖H2
+ C‖v‖H2

(‖∇u‖L2 + ‖∇v‖L2) ‖u− v‖L2

≤ C(‖u‖2
H1 + ‖v‖2

H1∩H2
)‖u− v‖H2

Moreover

‖∆F (u) − ∆F (v)‖L2

≤
∥

∥

∥

∥

∆

[

(|u|2 ⋆ 1

|x| )(u− v)

]
∥

∥

∥

∥

L2

+

∥

∥

∥

∥

∆

[(

(|u|2 − |v|2) ⋆ 1

|x|

)

v

]
∥

∥

∥

∥

L2

≤
∥

∥

∥

∥

∆

[

(|u|2 ⋆ 1

|x| )(u− v)

]∥

∥

∥

∥

L2

+

∥

∥

∥

∥

∆

[(

(|u| + |v|)||u| − |v|| ⋆ 1

|x|

)

v

]∥

∥

∥

∥

L2

However, for any arbitrary function a, b and c ∈ H2, we have

∆

[

(ab ⋆
1

|x| )c
]

= 4πabc+ 2(b∇a ⋆ 1

|x| )∇c+ 2(a∇b ⋆ 1

|x| )∇c+ (ab ⋆
1

|x| )∆c

and we thus obtain :
∥

∥

∥

∥

∆

[

(ab ⋆
1

|x| )c
]
∥

∥

∥

∥

L2

≤ C‖a‖H1‖b‖H1‖c‖H2 .

Using that result, it is easy to conclude:

‖∆F (u) − ∆F (v)‖L2 ≤ CF

(

‖u‖2
H1 + ‖v‖2

H2

)

‖u− v‖H2 . (10)

Then, using (8), (9) et (10), we finally prove (6) and F is locally lipschitz in
H2 ∩H2. Therefore, taking v = 0, we also get (7). �

The proof of a local-in-time result is based on a Picard fixed point theorem
and Theorem 3 and Lemma 5 are the main ingredients. We begin by fixing an
arbitrary time T > 0 and considering τ ∈]0, T ]. We also consider the functional

ϕ : u 7−→ U( . , 0)u0 − i

∫ .

0

U( . , s)F (u(s)) ds,

where U is the propagator given in Theorem 3, and the set

B = {v ∈ L∞(0, τ ;H2 ∩ H2), ‖v‖L∞(0,τ ;H2∩H2) ≤ 2MT,α,ρ‖u0‖H2∩H2
}.
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If τ > 0 is small enough, the functional ϕ maps B into itself and is a strict
contraction in the Banach space L∞(0, τ ;H2 ∩H2). Indeed, on the one hand,
from estimate (7) of Lemma 5, if u ∈ B, we have for all t ∈ [0, τ ]:

‖ϕ(u)(t)‖H2∩H2
≤

∥

∥

∥

∥

U(t, 0)u0 − i

∫ t

0

U(t, s)F (u(s)) ds

∥

∥

∥

∥

H2∩H2

≤ MT,α,ρ‖u0‖H2∩H2
+ τMT,α,ρ‖F (u)‖L∞(0,τ ;H2∩H2)

≤ MT,α,ρ‖u0‖H2∩H2
+ τCFMT,α,ρ‖u‖2

L∞(0,τ ;H1)‖u‖L∞(0,τ ;H2∩H2)

≤ MT,α,ρ‖u0‖H2∩H2
+ 8τCFM

4
T,α,ρ‖u0‖3

H2∩H2
.

Then, if we choose τ > 0 such that 8τCFM
3
T,α,ρ‖u0‖2

H2∩H2
< 1 we obtain

‖ϕ(u)‖L∞(0,τ ;H2∩H2) ≤ 2MT,α,ρ‖u0‖H2∩H2
and ϕ(u) belongs to B.

On the other hand, if u ∈ B and v ∈ B, then for all t in [0, τ ] we have,

‖ϕ(u)(t) − ϕ(v)(t)‖H2∩H2
=

∥

∥

∥

∥

∫ t

0

U(t, s) (F (u(s)) − F (v(s))) ds

∥

∥

∥

∥

H2∩H2

≤ MT,α,ρ

∫ t

0

‖F (u(s)) − F (v(s))‖H2∩H2
ds

≤ CFMT,α,ρ

(

‖u‖2
L∞(0,τ ;H1) + ‖v‖2

L∞(0,τ ;H2∩H2)

)

∫ t

0

‖u(s) − v(s)‖H2∩H2
ds

≤ 8τCFM
3
T,α,ρ‖u0‖2

H2∩H2
‖u− v‖L∞(0,τ ;H2∩H2),

with 8τCFM
3
T,α,ρ‖u0‖2

H2∩H2
< 1.

Therefore, we can deduce existence and uniqueness of the solution to the
equation

u(t) = U(t, 0)u0 − i

∫ t

0

U(t, s)F (u(s)) ds (11)

in B, then in L∞(0, τ ;H2 ∩H2) for τ > 0 small enough. Moreover, ∂tu belongs
to L∞(0, τ ;L2) since from equation (3), we can write

∂tu = i∆u+ i
u

|x− a| + iV1u− iF (u).

Indeed, u ∈ L∞(0, τ ;H2 ∩ H2) brings F (u) ∈ L∞(0, τ ;H2 ∩ H2) and ∆u ∈
L∞(0, τ ;L2) and we can prove that V1u ∈ L∞(0, τ ;L2) and

u

|x− a| ∈ L∞(0, τ ;L2)

in the following way: it is clear that for all t in [0, τ ],

‖V1(t)u(t)‖L2 ≤
∥

∥

∥

∥

V1(t)

1 + |x|2
∥

∥

∥

∥

L∞

‖u(t)‖H2
,

and from Hardy’s inequality,
∥

∥

∥

∥

u(t)

|x− a(t)|

∥

∥

∥

∥

L2

≤ 2‖u(t)‖H1 .
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It is finally easy to prove that there exists a constant C > 0 depending on α, ρ,
F and T such that for all t in [0, τ ],

‖∂tu(t)‖L2 ≤ C‖u0‖H2∩H2
.

The last point to prove is the uniqueness of the solution u of (11) in the
space L∞(0, τ ;H2 ∩H2)∩W 1,∞(0, τ ;L2). Let u and v be two solutions of (11)
and w equal to u− v. Then w(0) = 0 and

i∂tw + ∆w +
w

|x− a| + V1w = F (u) − F (v). (12)

Calculating Im

∫

R

(12).w(x) dx and using Lemma 5 we obtain

d

dt
(‖w‖2

L2) ≤ C‖w‖2
L2

and uniqueness follows by Gronwall lemma.

Hence the proof of uniqueness, existence and regularity of the solution of
equation (3) in R

3 × [0, τ ] for any time τ such that 8τCFM
3
T,α,ρ‖u0‖2

H2∩H2
< 1.

2.2 A priori Energy estimate

We will prove here an a priori energy estimate of the solution of equation (3)
for any arbitrary time T . We set α0 > 0 and ρ0 > 0 such that

∥

∥

∥

∥

da

dt

∥

∥

∥

∥

L1(0,T )

≤ α0 and

∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

W 1,1(0,T,L∞)

≤ ρ0.

Proposition 6. If u is a solution of equation (3) in the space W 1,∞(0, T ;L2)∩
L∞(0, T ;H2∩H2), under assumption (4) for a and V1, then there exists a non-
negative constant C0

T,α0,ρ0
depending on the time T , on ρ0, α0 and on ‖u0‖H2∩H2

such that for all t in [0, T ],

‖u(t)‖2
H1∩H1

+

∫

R3

(

|u(t, x)|2 ⋆ 1

|x|

)

|u(t, x)|2 ≤ C0
T,α0,ρ0

.

Proof. On the one hand, we multiply equation (3) by ∂tu, integrate over R
3

and take the real part. After an integration by parts we obtain:

−1

2

d

dt

∫

R3

|∇u|2 +Re

∫

R3

u ∂tu

|x− a| +Re

∫

R3

V1u ∂tu = +Re

∫

R3

(|u|2 ⋆ 1

|x| )u ∂tu

which is equivalent to

− d

dt

∫

R3

|∇u|2 +

∫

R3

(

1

|x− a| + V1

)

∂t(|u|2) =
1

2

d

dt

∫

R3

(|u|2 ⋆ 1

|x| )|u|
2.
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Then,

d

dt

(
∫

R3

|∇u|2 +
1

2

∫

R3

(|u|2 ⋆ 1

|x| )|u|
2 −

∫

R3

(

1

|x− a| + V1

)

|u|2
)

= −
∫

R3

(

∂t

1

|x− a| + ∂tV1

)

|u|2. (13)

On the other hand, since V1 satisfies assumption (4), we have

−
∫

R3

∂tV1|u|2 ≤
∥

∥

∥

∥

∂tV1(t)

1 + |x|2
∥

∥

∥

∥

L∞

‖u(t)‖2
H1

and from Hardy’s inequality,

−
∫

R3

|u|2∂t

1

|x− a| ≤ 4

∣

∣

∣

∣

da

dt
(t)

∣

∣

∣

∣

‖u(t)‖2
H1

In order to get an H1-estimate of u, we then calculate the imaginary part of the
product of equation (3) by (1 + |x|2)u(x), integrated over R

3. This gives

d

dt

(
∫

R3

(1 + |x|2)|u|2
)

≤ C

∫

R3

|∇u|2 + C

∫

R3

|x|2|u|2.

We define E at time t of [0, T ] by

E(t) =

∫

R3

|∇u(t, x)|2 dx+ λ

∫

R3

(1 + |x|2)|u(t, x)|2 dx

+
1

2

∫

R3

(

|u(t, x)|2 ⋆ 1

|x|

)

|u(t, x)|2

where λ is a non-negative constant to be precised later. From now on, C denotes
various positive constants, independent of anything but λ. We obviously have:

dE(t)

dt
≤ d

dt

(
∫

R3

(

1

|x− a(t)| + V1(t)

)

|u(t)|2
)

+ C

(

1 +

∣

∣

∣

∣

da

dt
(t)

∣

∣

∣

∣

+

∥

∥

∥

∥

∂tV1(t)

1 + |x|2
∥

∥

∥

∥

L∞

)

E(t)

and if we integrate over (0, t), we obtain

E(t) ≤
∫

R3

(

1

|x− a(0)| + |V1(0)|
)

|u0|2 +

∫

R3

(

1

|x− a(t)| + V1(t)

)

|u(t)|2

+ C

∫ t

0

(

1 +

∣

∣

∣

∣

da

dt
(s)

∣

∣

∣

∣

+

∥

∥

∥

∥

∂tV1(s)

1 + |x|2
∥

∥

∥

∥

L∞

)

E(s) ds+ E(0)

Using Cauchy-Schwarz, Hardy and Young’s inequalities, we prove that for all
η > 0,

∫

R3

|u(t)|2
|x− a(t)| ≤ 2

(
∫

R3

|∇u(t)|2
)

1

2

(
∫

R3

|u(t)|2
)

1

2

≤ η‖∇u(t)‖2
L2 +

1

4η
‖u0‖2

L2
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since it is easy to prove the conservation of the L2-norm of u, and we also have
∫

R3

V1(t)|u(t)|2 ≤
∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

L∞((0,T )×R3)

‖u(t)‖2
H1
.

Moreover, (1 + |x|2)−1V1 ∈ W 1,1(0, T, L∞) and W 1,1(0, T ) →֒ C([0, T ]), then
(1 + |x|2)−1V1(0) ∈ L∞ and we have for the same reasons as above,

∫

R3

(

1

|x− a(0)| + |V1(0)|
)

|u0|2 ≤ Cρ‖u0‖2
H1∩H1

.

We also notice that

E(0) ≤ C‖u0‖2
H1∩H1

+ C‖u0‖H1‖u0‖3
L2 .

Then, if we set η =
1

2
and λ =

1

2
+

∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

L∞((0,T )×R3)

we get

E(t) ≤ Cρ‖u0‖2
H1∩H1

+ C‖u0‖H1‖u0‖3
L2 +

1

2
‖u(t)‖2

H1

+

(

λ− 1

2

)

‖u(t)‖2
H1

+ C

∫ t

0

(

1 +

∣

∣

∣

∣

da

dt
(s)

∣

∣

∣

∣

+

∥

∥

∥

∥

∂tV1(s)

1 + |x|2
∥

∥

∥

∥

L∞

)

E(s) ds.

We define F at time t of [0, T ] by

F (t) =

∫

R3

|∇u(t, x)|2 dx+

∫

R3

(1 + |x|2)|u(t, x)|2 dx

+

∫

R3

(

|u(t, x)|2 ⋆ 1

|x|

)

|u(t, x)|2

and it is easy to see that we have, for all t in [0, T ],

F (t) ≤ C(‖u0‖2
H1∩H1

+ ‖u0‖H1‖u0‖3
L2)

+ C

∫ t

0

(

1 +

∣

∣

∣

∣

da

dt
(s)

∣

∣

∣

∣

+

∥

∥

∥

∥

∂tV1(s)

1 + |x|2
∥

∥

∥

∥

L∞

)

F (s) ds.

We obtain from Gronwall’s lemma:

F (t) ≤ CT exp

(
∫ t

0

β(s)ds

)

(

‖u0‖2
H1∩H1

+ ‖u0‖H1‖u0‖3
L2

)

.

where β =

∥

∥

∥

∥

∂tV1

1 + |x|2
∥

∥

∥

∥

L∞

+

∣

∣

∣

∣

da

dt

∣

∣

∣

∣

∈ L1(0, T ).

Therefore, there exists a non-negative constant C0
T,α0,ρ0

depending on the
time T , on the initial data ‖u0‖H1∩H1

and on α0, ρ0 > 0, such that for all t in
[0, T ],

‖u(t)‖2
H1∩H1

+

∫

R3

(

|u(t)|2 ⋆ 1

|x|

)

|u(t)|2 ≤ C0
T,α0,ρ0

.

Hence the proof of Proposition 6. �

11



2.3 Global existence

Now, we can use Proposition 6 and equation (3) to obtain an a priori estimate
of the solution in W 1,∞(0, T ;L2)∩L∞(0, T ;H2 ∩H2) for any arbitrary time T .
Indeed, since equation (3) is equivalent to the integral equation

u(t) = U(t, 0)u0 − i

∫ t

0

U(t, s)F (u(s)) ds,

we have, from Theorem 3 and from Lemma 5,

‖u(t)‖H2∩H2
≤ MT,α,ρ ‖u0‖H2∩H2

+MT,α,ρ

∫ t

0

‖F (u(s))‖H2∩H2
ds

≤ MT,α,ρ ‖u0‖H2∩H2
+MT,α,ρ

∫ t

0

‖u(s)‖2
H1 ‖u(s)‖H2∩H2

ds

≤ C0
T,α,ρ

(

1 +

∫ t

0

‖u(s)‖H2∩H2
ds

)

where C0
T,α,ρ > 0 is a generic constant depending on the time T , on ρ, α and

on ‖u0‖H2∩H2
. We obtain from Gronwall lemma and from equation (3), that

∀t ∈ [0, T ], ‖u(t)‖H2∩H2
+ ‖∂tu(t)‖L2 ≤ C0

T,α,ρ

Now, in view of Segal’s theorem [9], the local solution we obtained previ-
ously exists globally because we have a uniform bound on the norm

‖u(t)‖H2∩H2
+ ‖∂tu(t)‖L2 .

Hence the proof of Theorem 4. �

3 Proof of Theorem 1 for a small time τ

The position of the nucleus is now unknown but solution of classical dynamics.
We recall the system we are concerned with, for τ ∈ (0, T ):



































i∂tu+ ∆u+
1

|x− a|u+ V1u = (|u|2 ⋆ 1

|x| )u, in R
3 × (0, τ)

u(0) = u0, in R
3

m
d2a

dt2
=

∫

R3

−|u(x)|2∇ 1

|x− a| dx−∇V1(a), in (0, τ)

a(0) = a0,
da

dt
(0) = v0.

We are going to choose τ small enough in this section in order to prove first
existence of solutions for this system. In the sequel we make assumption (2):

(1 + |x|2)−1V1 ∈ L∞((0, T ) × R
3),

(1 + |x|2)−1∂tV1 ∈ L1(0, T ;L∞(R3)),

(1 + |x|2)−1∇V1 ∈ L1(0, T ;L∞(R3)) and

∇V1 ∈ L2
(

0, T ;W 1,∞
loc (R3)

)

.
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3.1 Structure of the proof of local existence

Let α > 0 and ρ > 0 be such that

α = max(|v0|, 1) and
∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

W 1,1(0,T,L∞)

+

∥

∥

∥

∥

∇V1

1 + |x|2
∥

∥

∥

∥

L1(0,T,L∞)

≤ ρ.

We define the following subsets

Be =
{

u ∈ L∞(0, τ ;H2 ∩H2) ∩W 1,∞(0, τ ;L2)/

‖u‖L∞(0,τ ;H2∩H2) ≤ 2MT,α,ρ‖u0‖H2∩H2

}

and

Bn =

{

a ∈W 2,1(0, τ)/

∥

∥

∥

∥

d2a

dt2

∥

∥

∥

∥

L1(0,τ)

≤ α

}

The indexes e and n stand for “electrons” and “nucleus”, while u(x, t) cor-
respond to the wave function of the electrons and a(t) to the position of the
nucleus.

We will prove here a local-in-time existence result for system (1), using a
Schauder fixed point theorem. One can find a similar result in reference [5],
where in a first time, V1 = 0. We shall need the following lemmas, whose proofs
are postponed until the next subsections.

On the one hand, we consider the wave function of the electrons as known
and the second order differential equation which modelize the movement of the
nucleus is to be solved:

Lemma 7. Let u0 ∈ H2 ∩H2, a0, v0 ∈ R and let τ > 0 be small enough. We
set u ∈ Be and we consider the equation

m
d2z

dt2
=

∫

R3

|u(x)|2 x− z

|x− z|3 dx−∇V1(z) in (0, τ) (14)

with initial data z(0) = a0 and
dz

dt
(0) = v0. Then equation (14) has a unique

solution z ∈ C([0, τ ]) such that z ∈ Bn.

On the other hand, we know the position of the nucleus at any moment and
we use the previous section to prove:

Lemma 8. Let a0, v0 ∈ R and u0 ∈ H2 ∩H2, and let τ > 0 be small enough.
We set y ∈ Bn and we consider the equation

i∂tu+ ∆u+
u

|x− y| + V1u = (|u|2 ⋆ 1

|x| )u in R
3 × (0, τ) (15)

with initial data u(0) = u0. Then equation (15) has a unique solution u ∈
L∞(0, τ ;H2 ∩H2) ∩W 1,∞(0, τ ;L2) such that u belongs to Be.
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From Lemma 7 and 8, the following mappings are well defined:

φ : Be −→ Bn ψ : Bn −→ Be

u 7−→ z, y 7−→ u

and we finally consider the application G = φ ◦ ψ which maps Bn into itself,
where Bn is convex and bounded. We will also prove the following lemma later
on.

Lemma 9. The application G : Bn → Bn is continuous and G(Bn) is compact
in Bn.

Therefore, we will be allowed to apply the Schauder fixed point theorem and
if y ∈ Bn then, with u = ψ(y) and z = G(y), it satisfies



































i∂tu+ ∆u+
1

|x− y|u+ V1u = (|u|2 ⋆ 1

|x| )u, in R
3 × (0, τ)

u(0) = u0, in R
3

m
d2z

dt2
=

∫

R3

−|u(x)|2∇ 1

|x− z| dx−∇V1(z), in (0, τ)

z(0) = a0,
dz

dt
(0) = v0.

Then, there exists a ∈ Bn such that a = G(a). Therefore (ψ(a), a) is solution of
(1) with ψ(a) ∈ Be and a ∈ Bn. The proof of Theorem 1 for a small time τ will
then be completed with the proofs of Lemma 7, Lemma 8 and Lemma 9. �

3.2 Second order differential equation, proof of Lemma 7

We are considering an ordinary differential equation of type

d2z

dt2
= G(t, z)

with two initial conditions. In order to construct the proof of Lemma 7, we
need to prove a general lemma about existence and regularity of solution for
this type of equation and to study the right hand side

G(t, z) =

∫

R3

−|u(t, x)|2∇
(

1

|x− z|

)

dx−∇V1(t, z)

to make sure we can apply this general lemma to our situation. Although it is
a rather classical result, we give a short proof of the following result

Lemma 10. Let τ > 0. We consider the differential equation










d2ϕ

dt2
= G(t, ϕ) in (0, τ)

ϕ(0) = ϕ0,
dϕ

dt
(0) = ψ0.

(16)

If τ is small enough and if G ∈ L1
(

0, τ ;W 1,∞
loc (R3)

)

then there exists a unique

solution ϕ ∈ C([0, τ ]) to equation (16).

14



Proof : We consider the application Φ on C([0, τ ]) defined by

Φ(ϕ)(t) = ϕ0 + ψ0t+

∫ t

0

(t− s)G(s, ϕ(s)) ds, ∀t ∈ [0, τ ]. (17)

We will use a Picard fixed point theorem in the space C([0, τ ]) in order to prove
existence and uniqueness of a solution to equation (17).

Let R > 4 be such that |ϕ0| ≤
R

2
. We also assume that τ > 0 is small

enough such that we have

{

τ max(|ψ0|, 1) < 1
τ‖G‖L1(0,τ ;W 1,∞(BR)) < 1

(18)

where BR = {x ∈ R
3, |x| ≤ R}.

Let ϕ ∈ C([0, τ ]) be such that ‖ϕ‖C([0,τ ]) = supt∈[0,τ ] |ϕ(t)| ≤ R. Then, for
all t in [0, τ ] we can write

|Φ(ϕ)(t)| ≤ |ϕ0| + |ψ0t| +
∫ t

0

(t− s)|G(s, ϕ(s))| ds

≤ R

2
+ τ |ψ0| + τ

∫ τ

0

‖G(s)‖W 1,∞(BR) ds

≤ R

2
+ τ |ψ0| + τ‖G‖L1(0,τ ;W 1,∞(BR))

≤ R

2
+ 1 + 1 ≤ R

and we obtain ‖Φ(ϕ)‖C([0,τ ]) ≤ R.

We ensure here that Φ is a strict contraction in C([0, τ ]). Let ϕ1, ϕ2 ∈
C([0, τ ]) be such that ‖ϕ1‖C([0,τ ]) ≤ R and ‖ϕ2‖C([0,τ ]) ≤ R.
We have for all t in [0, τ ],

|(Φ(ϕ1) − Φ(ϕ2)) (t)| ≤
∫ t

0

(t− s) |G(s, ϕ1(s)) −G(s, ϕ2(s))| ds

≤ τ

∫ τ

0

‖G(s)‖W 1,∞(BR) |ϕ1(s) − ϕ2(s)| ds

≤ τ‖G‖L1(0,τ ;W 1,∞(BR))‖ϕ1 − ϕ2‖C([0,τ ])

and since from (18), τ > 0 is small enough such that τ‖G‖L1(0,τ ;W 1,∞(BR)) < 1,
then Φ is a strict contraction.

We apply the Picard fixed point theorem to application Φ. Thus, if τ > 0
satisfies (18), there exists a unique ϕ ∈ C([0, τ ]) such that Φ(ϕ) = ϕ. Moreover,
equation (17) is an integral equation equivalent to (16), hence the end of the
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proof of Lemma 10. �

Proof of Lemma 7:

From Lemma 10, it is easy to deduce that if the mapping

(t, z) 7→
∫

R3

|u(t, x)|2 x− z

|x− z|3 dx−∇V1(t, z)

belongs to L1(0, τ ;W 1,∞
loc ) then equation (14) of Lemma 7 has a unique so-

lution in C([0, τ ]). Since we assume from the very beginning that ∇V1 ∈
L2(0, T ;W 1,∞

loc ), we only have to work on f(t, z) =

∫

R3

|u(t, x)|2 x− z

|x− z|3 dx.

Lemma 11. We set u1, u2 ∈ H2 and g(z) =

∫

R3

u1(x)u2(x)

|x− z|3 (x− z) dx.

Then g ∈W 1,∞(R3) and there exists a real constant C > 4 such that

‖g‖L∞ ≤ C‖∇u1‖L2‖∇u2‖L2

‖Dg‖L∞ ≤ C‖u1‖H2‖u2‖H2

Proof : From Cauchy-Schwarz and Hardy’s inequality, for all z ∈ R
3 we have,

|g(z)| ≤
∫

R3

|u1(x)||u2(x)|
|x− z|2 dx

≤
(
∫

R3

|u1(x)|2
|x− z|2 dx

)

1

2
(
∫

R3

|u2(x)|2
|x− z|2 dx

)

1

2

≤ 4‖∇u1‖L2‖∇u2‖L2

Therefore, ‖g‖L∞ ≤ C‖∇u1‖L2‖∇u2‖L2 . Then we set, for all z in R
3,

h(z) =

∫

R3

u1(x) u2(x)

|x− z| dx.

The function h is well defined since |h(z)| ≤ C‖u1‖L2‖∇u2‖L2 and one can

notice that g = ∇h and h = (u1u2) ⋆
1

|x| . Then, we only have to prove that h

belongs to W 2,∞(R3) with ‖D2h‖L∞ ≤ C‖u1‖H2‖u2‖H2 . We set ∂i =
∂

∂xi

and

from Cauchy Schwarz and Hardy’s inequality, for all i, j = 1, 2, 3 we get:

‖∂ih‖L∞ ≤
∥

∥

∥

∥

∂i(u1u2) ⋆
1

|x|

∥

∥

∥

∥

L∞

≤
∥

∥

∥

∥

∫

R3

∂iu1(y)u2(y)

|x− y| dy

∥

∥

∥

∥

L∞

+

∥

∥

∥

∥

∫

R3

u1(y)∂iu2(y)

|x− y| dy

∥

∥

∥

∥

L∞

≤ 4‖∇u1‖L2‖∇u2‖L2
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and in the same way,

‖∂i∂jh‖L∞ ≤
∥

∥

∥

∥

∂i∂j(u1u2) ⋆
1

|x|

∥

∥

∥

∥

L∞

≤
∥

∥

∥

∥

∫

R3

∂i∂ju1(y)u2(y)

|x− y| dy

∥

∥

∥

∥

L∞

+

∥

∥

∥

∥

∫

R3

u1(y)∂i∂ju2(y)

|x− y| dy

∥

∥

∥

∥

L∞

+

∥

∥

∥

∥

∫

R3

∂iu1(y)∂ju2(y)

|x− y| dy

∥

∥

∥

∥

L∞

+

∥

∥

∥

∥

∫

R3

∂ju1(y)∂iu2(y)

|x− y| dy

∥

∥

∥

∥

L∞

≤ 2‖u1‖H2‖∇u2‖L2 + 2‖∇u1‖L2‖u2‖H2 + 8‖∇u1‖H1‖∇u2‖H1

≤ 12‖u1‖H2‖u2‖H2 .

Therefore, h ∈W 2,∞(R3) and g ∈W 1,∞(R3) with

‖Dg‖L∞ ≤ C‖u1‖H2‖u2‖H2 ,

hence the proof of Lemma 11. �

Thereafter, setting u(t) = u1 = u2, we get f(t, z) = g(z) and we proved that
f(t) ∈W 1,∞(R3) with ‖f(t)‖W 1,∞ ≤ C‖u(t)‖2

H2 . Then,

‖f‖L∞(0,T ;W 1,∞) ≤ C‖u‖2
L∞(0,T ;H2) ≤ 4CM2

T,α,ρ‖u0‖2
H2∩H2

and f ∈ L∞(0, T ;W 1,∞). Thus, if τ > 0 is small enough, we have proved the
existence of a unique solution z ∈ C([0, τ ]) for equation (14). More precisely,
in this particular situation of equation (16) where the initial conditions are

ϕ(0) = a0 and
dϕ

dt
(0) = v0 and the right hand side is

G : (t, ϕ) 7→ 1

m
(f(t, ϕ) −∇V1(t, ϕ)) ,

we obtain that actually, if τ > 0 is small enough such that we have






τα < 1
4C

m
τM2

T,α,ρ‖u0‖2
H2∩H2

+

√
τ

m
‖∇V1‖L2(0,T ;W 1,∞(BR)) < α,

(19)

where we recall that α = max(|v0|, 1), R ≥ max(2|a0|, 4) and C > 4, then as-
sumption (18) is satisfied.

Eventually, in order to end the proof of Lemma 7, we only have to check
that z = φ(u) belongs to Bn. We take u ∈ Be and we will prove here that

z = φ(u) ∈W 2,1(0, τ) with

∥

∥

∥

∥

d2z

dt2

∥

∥

∥

∥

L1(0,τ)

≤ α.

We already have z ∈ C([0, τ ]) and R is such that ‖z‖C([0,τ ]) ≤ R. We recall
equation (14) :

m
d2z

dt2
=

∫

R3

|u(x)|2 x− z

|x− z|3 dx−∇V1(z) = f(z) −∇V1(z)

17



and since f ∈ L∞(0, T ;W 1,∞) and ∇V1 ∈ L2(0, T ;W 1,∞
loc ), we obtain

d2z

dt2
∈

L2(0, τ), thus z ∈W 2,2(0, τ) ⊂W 2,1(0, τ). Moreover,
∣

∣

∣

∣

d2z

dt2
(t)

∣

∣

∣

∣

≤ 1

m

∫

R3

|u(x, t)|2
|x− z(t)|2 dx+

1

m
|∇V1(t, z(t))|

≤ 4

m
‖∇u‖2

L∞(0,τ ;L2) +
1

m
‖∇V1(t)‖W 1,∞(BR).

Using Cauchy-Schwarz inequality and the fact that u ∈ Be, we get
∥

∥

∥

∥

d2z

dt2

∥

∥

∥

∥

L1(0,τ)

≤ 4

m
τ‖∇u‖2

L∞(0,τ ;L2) +
1

m

∫ τ

0

‖∇V1(s)‖W 1,∞(BR) ds

≤ 4

m
τ‖∇u‖2

L∞(0,τ ;L2) +

√
τ

m
‖∇V1‖L2(0,T ;W 1,∞(BR))

≤ 16

m
τM2

T,α,ρ‖u0‖2
H2∩H2

+

√
τ

m
‖∇V1‖L2(0,T ;W 1,∞(BR))

and if we choose τ > 0 small enough to have (19), we obtain

∥

∥

∥

∥

d2z

dt2

∥

∥

∥

∥

L1(0,τ)

≤ α

which means z ∈ Bn and the proof of Lemma 7 is complete. �

3.3 Nonlinear Schrödinger equation, proof of Lemma 8

We already proved in section 2 that under assumption (4) for V1 and if a belongs
to W 2,1(0, T ), then equation (3):

i∂tu+ ∆u+
u

|x− a(t)| + V1u = (|u|2 ⋆ 1

x
)u in R

3 × (0, T )

has a unique solution

u ∈ L∞(0, T ;H2 ∩H2) ∩W 1,∞(0, T ;L2)

such that u(0) = u0 ∈ H2 ∩ H2 for any arbitrary time T > 0. The proof is
based upon an existence and regularity result for the linear equation and on a
fixed point argument. Fortunately, if y ∈ Bn then y ∈W 2,1(0, τ) and we obtain
that equation (15) with initial condition u(0) = u0 ∈ H2 ∩H2

i∂tu+ ∆u+
u

|x− y(t)| + V1u = (|u|2 ⋆ 1

x
)u in R

3 × (0, τ)

has a unique solution u ∈ L∞(0, τ ;H2 ∩H2) ∩W 1,∞(0, τ ;L2).

Following the proof of the local existence of a solution to equation (3) in
paragraph 2.1, since y ∈ Bn implies

∥

∥

∥

∥

dy

dt

∥

∥

∥

∥

L∞(0,τ)

≤ α,

18



then, as soon as 8τCFM
3
T,α,ρ‖u0‖2

H2∩H2
≤ 1, we get

‖u‖L∞(0,τ ;H2∩H2) ≤ 2MT,α,ρ‖u0‖H2∩H2
.

This means u ∈ Be if τ is small enough. Hence the proof of Lemma 8. �

3.4 Continuity and compactness, proof of Lemma 9

First step - Continuity of G.

We consider y ∈ Bn and a sequence (yn)n∈N of elements of Bn such that

yn
n→+∞−→ y in W 2,1(0, τ).

We aim at proving that

G(yn)
n→+∞−→ G(y) in W 2,1(0, τ).

We recall that G = φ ◦ ψ where

φ : Be −→ Bn ψ : Bn −→ Be

u 7−→ z, y 7−→ u

and we set

u = ψ(y),
z = G(y) = φ(u),
un = ψ(yn), ∀n ∈ N,
zn = G(yn) = φ(un), ∀n ∈ N.

Then, z and zn satisfy on (0, τ) the equations

m
d2z

dt2
=

∫

R3

−|u(x)|2∇
(

1

|x− z|

)

dx−∇V1(z), and

m
d2zn

dt2
=

∫

R3

−|un(x)|2∇
(

1

|x− zn|

)

dx−∇V1(zn),

and we will prove that zn
n→+∞−→ z in W 2,1(0, τ).

Since y and yn belong to Bn for all n ∈ N, then u and un belong to Be for all
n ∈ N. It implies that (un)n∈N is bounded in L∞(0, τ ;H2∩H2)∩W 1,∞(0, τ ;L2)
and thus, up to a subsequence, we get the strong convergence

un
n→+∞−→ u in L∞(0, τ ;H1

loc). (20)

We use here the following result of J. Simon [10] (Theorem 5):
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Lemma 12. Let X, B and Y be Banach spaces and p ∈ [1,∞].
We assume that X →֒ B →֒ Y with compact embedding X →֒ B.
If {fn, n ∈ N} is bounded in Lp(0, T ;X) and if {∂tfn, n ∈ N} is bounded
in Lp(0, T ;Y ) then {fn, n ∈ N} is relatively compact in Lp(0, T ;B) (and in
C([0, T ];B) if p = ∞).

In the same way, we have z and zn belonging to Bn for all n ∈ N (since
φ(Be) = Bn) and (zn)n∈N bounded in W 2,1(0, τ) implies, up to a subsequence,
that

zn
n→+∞−→ z in W 1,1(0, τ). (21)

We notice that zn − z satisfies

d2(zn − z)

dt2
=

1

m

∫

R3

(

|u(x)|2∇ 1

|x− z| − |un(x)|2∇ 1

|x− zn|

)

dx

+
1

m
(∇V1(z) −∇V1(zn)) .

We first remark that since ∇V1 ∈ L2(0, T ;W 1,∞
loc ), then for almost every t

in [0, τ ], ∇V1(t) is locally Lipschitz. And since there exists R > 0 such that we
have ‖z‖C([0,τ ]) ≤ R and for all n ∈ N, ‖zn‖C([0,τ ]) ≤ R (as z and zn belong to
Bn), we obtain

|∇V1(z) −∇V1(zn)| ≤ ‖∇V1(t)‖W 1,∞(BR)|zn(t) − z(t)|.
We also have

∫

R3

uu ∇ 1

|x− z| dx−
∫

R3

unun ∇ 1

|x− zn|
dx

=

∫

R3

(u− un)un ∇ 1

|x− zn|
dx−

∫

R3

uun ∇ 1

|x− zn|
dx

+

∫

R3

(u− un)u ∇ 1

|x− z| dx+

∫

R3

unu ∇ 1

|x− z| dx

=

∫

R3

(u− un)un ∇ 1

|x− zn|
dx+

∫

R3

(u− un)u ∇ 1

|x− z| dx

+

∫

R3

uun

(

∇ 1

|x− z| − ∇ 1

|x− zn|

)

dx.

On the one hand, we can prove that there exists a constant C > 0 such that
∣

∣

∣

∣

∫

R3

u(x, t)un(x, t)

(

∇ 1

|x− z(t)| − ∇ 1

|x− zn(t)|

)

dx

∣

∣

∣

∣

≤ C|zn(t) − z(t)|.

Indeed, using Lemma 11, since g is lipschitz (here, u1 = u(t) and u2 = un(t)),
we have for all t in [0, τ ],

∣

∣

∣

∣

∫

R3

u(x, t)un(x, t)

|x− zn(t)|3 (x− zn(t)) dx−
∫

R3

un(x, t)u(x, t)

|x− z(t)|3 (x− z(t)) dx

∣

∣

∣

∣

= |g(zn(t)) − g(z(t))| ≤ C‖u(t)‖H2‖un(t)‖H2 |(zn − z)(t)|,
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and since u and un belong to Be, ‖u(t)‖H2 and ‖un(t)‖H2 are bounded inde-
pendently of n.

On the other hand, we can deal with both of the two other terms in the
same way. For instance, we have in fact for any R > 0, from Hardy’s inequality,

∣

∣

∣

∣

∫

R3

(u− un)(x, t)un(x, t) ∇ 1

|x− zn(t)| dx
∣

∣

∣

∣

≤
∫

B(0,R)

|(u− un)(x, t)||un(x, t)|
|x− zn(t)|2 dx+

∫

B(0,R)C

|(u− un)(x, t)||un(x, t)|
|x− zn(t)|2 dx

≤ C‖(u− un)(t)‖H1(B(0,R))‖un(t)‖H1 +
C

R2
‖un(t)‖L2(‖un(t)‖L2 + ‖u(t)‖L2)

and since u and un belong to Be for all n ∈ N, then

∣

∣

∣

∣

∫

R3

(u− un)un ∇ 1

|x− zn|
dx

∣

∣

∣

∣

≤ C‖u− un‖L∞(0,τ ;H1(B(0,R))) +
C

R2
.

Thus, for all ε > 0, there exists R > 0 such that
C

R2
≤ ε

2
and from (20) there

exists N0 ∈ N such that

C‖u− un‖L∞(0,τ ;H1(B(0,R)) ≤
ε

2
, ∀n ≥ N0.

We get:

∀ε > 0, ∃N0 ∈ N, ∀n ≥ N0,

∣

∣

∣

∣

∫

R3

(u− un)un ∇ 1

|x− zn|
dx

∣

∣

∣

∣

≤ ε.

Eventually, we obtain that for all t in (0, τ) and for all ε > 0,

∣

∣

∣

∣

(

d2zn

dt2
− d2z

dt2

)

(t)

∣

∣

∣

∣

≤ C(1 + ‖∇V1(t)‖W 1,∞(BR))|zn(t) − z(t)| + 2ε,

then
∥

∥

∥

∥

d2zn

dt2
− d2z

dt2

∥

∥

∥

∥

L1(0,τ)

≤ Cτ (1 + ‖∇V1‖L2(0,T ;W 1,∞(BR)))‖zn − z‖L∞(0,τ) + 2ε.

Therefore, since we have the strong convergence (21) andW 1,1(0, τ) →֒ L∞(0, τ),
we obtain

d2zn

dt2
n→+∞−→ d2z

dt2
in L1(0, τ)

what means G(yn)
n→+∞−→ G(y) in W 2,1(0, τ) and G is continuous.

Second step - Compactness of G(Bn) in Bn.
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We consider a sequence (yn)n∈N of elements of Bn and we aim at proving
that zn = G(yn) is precompact in Bn. If we set

fn(t, z) =

∫

R3

|un(t, x)|2 x− z(t)

|x− z(t)|3 dx,

then we have
d2zn

dt2
(t) = fn(t, zn(t)) −∇V1(t, zn(t)).

We will first prove that f̃n : t 7→ fn(t, zn(t)) = f̃n(t) is bounded in C0, 1

2 ([0, τ ])
as soon as zn ∈ Bn. Let t, h in [0, τ ] be such that t + h ∈ [0, τ ]. Using again
Lemma 11, we can write:

∣

∣

∣
f̃n(t+ h) − f̃n(t)

∣

∣

∣
= |f(t+ h, zn(t+ h)) − f(t, zn(t))|

≤
∣

∣

∣

∣

∫

R3

(un(t+ h) − un(t))un(t+ h) ∇ 1

|x− zn(t+ h)| dx
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R3

(un(t+ h) − un(t))un(t) ∇ 1

|x− zn(t)| dx
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R3

un(t)un(t+ h)

(

∇ 1

|x− zn(t)| − ∇ 1

|x− zn(t+ h)|

)

dx

∣

∣

∣

∣

≤
∫

R3

|un(t+ h) − un(t)||un(t+ h)|
|x− zn(t+ h)|2 dx

+

∫

R3

|un(t+ h) − un(t)||un(t)|
|x− zn(t)|2 dx

+ C‖un(t)‖H2‖un(t+ h)‖H2 |(zn(t+ h) − zn(t)|
≤ C‖un‖L∞(0,τ ;H1)‖un(t+ h) − un(t)‖H1

+ C‖un‖2
L∞(0,τ ;H2)|(zn(t+ h) − zn(t)|.

Moreover, on the one hand, since (zn)n∈N belongs Bn, we have

|(zn(t+ h) − zn(t)| ≤ h

∥

∥

∥

∥

dzn

dt

∥

∥

∥

∥

L∞(0,τ)

≤ Cτ,αh
1

2

and on the other hand, using the Fourier transform, we can prove that

{

‖un(t+ h) − un(t)‖L2 ≤ h‖∂tun‖L∞(0,τ ;L2)

‖un(t+ h) − un(t)‖H2 ≤ 2‖un‖L∞(0,τ ;H2)

imply
‖un(t+ h) − un(t)‖L2 ≤ C0

τ,α,ρh
1

2

where C0
τ,α,ρ > 0 only depends on τ , ‖u0‖H2∩H2

, ρ and α. Therefore,

∣

∣

∣
f̃n(t+ h) − f̃n(t)

∣

∣

∣
≤ C0

τ,α,ρh
1

2 and f̃n ∈ C0, 1

2 ([0, τ ])

22



and we obtain (f̃n)n∈N bounded in C0, 1

2 ([0, τ ]). In addition, since (zn)n∈N is
bounded in W 2,1(0, τ) and since (un)n∈N is bounded in Be, we have, up to a
subsequence,

zn
n→+∞−→ z in W 1,1(0, τ) ∩ C([0, T ])

and
un

n→+∞−→ u in L∞(0, τ ;H1
loc).

Thereafter, the fact that we have the compact injection

C0, 1

2 (0, τ) →֒ C([0, τ ])

(from Ascoli’s theorem), implies, up to a subsequence, the strong convergence

f̃n
n→+∞−→ f̃ in C([0, τ ]) where f̃(t) =

∫

R3

|u(t, x)|2 x− z(t)

|x− z(t)|3 dx.

Finally, since ∇V1 ∈ L2(0, T ;W 1,∞
loc ) and zn

n→+∞−→ z in L∞(0, τ), we also
obtain, from

‖∇V1(zn) −∇V1(z)‖L2(0,T ) ≤ ‖∇V1(t)‖L2(0,T ;W 1,∞(B(0,α)))‖zn − z‖L∞(0,τ)

that
∇V1(zn)

n→+∞−→ ∇V1(z) in L2(0, τ).

Eventually,

(

d2zn

dt2

)

n∈N

converges in L2(0, τ) as the sum of
(

f̃n

)

n∈N

and

(∇V1(zn))n∈N
. Then, (zn = G(yn))n∈N is precompact in W 2,2(0, τ) thus in Bn.

Hence the end of the proof of Lemma 9. �

4 Global existence of solutions

We recall the coupled system (1) for an arbitrary time T :

i∂tu+ ∆u+
1

|x− a|u+ V1u = (|u|2 ⋆ 1

|x| )u, in R
3 × (0, T ) (22)

u(0) = u0, on R
3

m
d2a

dt2
=

∫

R3

−|u(x)|2∇ 1

|x− a| dx−∇V1(a), in (0, T ) (23)

a(0) = a0, ∂ta(0) = v0

and we consider a solution (u, a) in W 1,∞(0, T ;L2) ∩ L∞(0, T ;H2 ∩ H2) ×
W 2,1(0, T ). We will prove here Proposition 2.
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The global approach is the same as for the a priori estimate of the energy for
the nonlinear Schrödinger equation with a(t) known. Indeed, on the one hand,
using equation (22) we have:

d

dt

(
∫

R3

|∇u|2 +
1

2

∫

R3

(|u|2 ⋆ 1

|x| )|u|
2 −

∫

R3

(

1

|x− a| + V1

)

|u|2
)

= −
∫

R3

(

∂t

1

|x− a| + ∂tV1

)

|u|2 (24)

and on the other hand, since ∇ 1

|x− a| =
a− x

|x− a|3 , when we multiply (23) by

da

dt
we get:

m

2

d

dt

(

∣

∣

∣

∣

da

dt

∣

∣

∣

∣

2
)

=

∫

R3

|u(x)|2 da
dt

· x− a

|x− a|3 dx−∇V1(a) ·
da

dt
. (25)

Now ∂t

(

1

|x− a|

)

=
da

dt
· x− a

|x− a|3 and the sum of (24) and (25) gives:

d

dt

(

∫

R3

|∇u|2 +
m

2

∣

∣

∣

∣

da

dt

∣

∣

∣

∣

2

+
1

2

∫

R3

(|u|2 ⋆ 1

|x| )|u|
2 −

∫

R3

(

1

|x− a| + V1

)

|u|2
)

= −∇V1(a) ·
da

dt
−
∫

R3

∂tV1|u|2

= −dV1

dt
(a) + ∂tV1(a) −

∫

R3

∂tV1|u|2.

Moreover, from assumption (2), V1 satisfies
∂tV1

1 + |x|2 ∈ L1(0, T ;L∞(R3)) and we

have

∂tV1(a) −
∫

R3

∂tV1|u|2 ≤
∥

∥

∥

∥

∂tV1(t)

1 + |x|2
∥

∥

∥

∥

L∞

(1 + |a(t)|2 + ‖u(t)‖2
H1

)

and in order to get an H1-estimate of u, we then calculate the imaginary part
of the product of equation (22) by (1+ |x|2)u(x), integrated over R

3. This gives

d

dt

(
∫

R3

(1 + |x|2)|u|2
)

≤
∫

R3

|∇u|2 +

∫

R3

|x|2|u|2.

We define E at time t of [0, T ] by

E(t) =

∫

R3

|∇u(t, x)|2 dx+ λ

∫

R3

(1 + |x|2)|u(t, x)|2 dx+
m

2

∣

∣

∣

∣

da(t)

dt

∣

∣

∣

∣

2

+
1

2

∫

R3

(

|u(t, x)|2 ⋆ 1

|x|

)

|u(t, x)|2 dx

24



where λ is a non-negative constant to be precised later. We obviously have a
constant C > 0 depending on λ such that:

dE(t)

dt
≤ d

dt

(

−V1(t, a(t)) +

∫

R3

(

1

|x− a(t)| + V1(t)

)

|u(t)|2
)

+ C

(

1 +

∥

∥

∥

∥

∂tV1(t)

1 + |x|2
∥

∥

∥

∥

L∞

)

E(t) +

∥

∥

∥

∥

∂tV1(t)

1 + |x|2
∥

∥

∥

∥

L∞

(1 + |a(t)|2)

and if we set β =

∥

∥

∥

∥

∂tV1

1 + |x|2
∥

∥

∥

∥

L∞

∈ L1(0, T ) and integrate over (0, t), we obtain

E(t) ≤ E(0) + V1(0, a0) +

∫

R3

(

1

|x− a0|
+ |V1(0)|

)

|u0|2

+ |V1(t, a(t))| +
∫

R3

(

1

|x− a(t)| + V1(t)

)

|u(t)|2

+ C

∫ t

0

(1 + β(s))E(s) + β(s)(1 + |a(s)|2) ds

Then, as shown in subsection 2.2, we have

∫

R3

|u(t, x)|2
|x− a(t)| dx ≤ η‖∇u(t)‖2

L2 +
1

4η
‖u0‖2

L2 , ∀η > 0,

∫

R3

V1(t, x)|u(t, x)|2 dx ≤
∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

L∞((0,T )×R3)

‖u(t)‖2
H1
, and

∫

R3

(

1

|x− a0|
+ |V1(0, x)|

)

|u0(x)|2 dx ≤ ‖u0‖2
H1∩H1

.

Moreover, for all t in [0, T ],

|V1(t, a(t))| ≤
∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

L∞(0,T ;L∞)

(1 + |a(t)|2)

and we also notice that

E(0) ≤ C‖u0‖2
H1∩H1

+
m

2
|v0|2 + C‖u0‖H1‖u0‖3

L2 .

Then, if we set η =
1

2
and λ =

1

2
+

∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

L∞((0,T )×R3)

we get

E(t) ≤ C‖u0‖2
H1∩H1

+
m

2
|v0|2 + C‖u0‖H1‖u0‖3

L2 + C(1 + |a0|2)

+
1

2
‖u(t)‖2

H1 +

(

λ− 1

2

)

‖u(t)‖2
H1

+ C(1 + |a(t)|2) (26)

+ C

∫ t

0

(1 + β(s))E(s) + β(s)(1 + |a(s)|2) ds.
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We define F at time t of [0, T ] by

F (t) =

∫

R3

|∇u(t, x)|2 dx+

∫

R3

(1 + |x|2)|u(t, x)|2 dx+m

∣

∣

∣

∣

da

dt
(t)

∣

∣

∣

∣

2

+

∫

R3

(

|u(t, x)|2 ⋆ 1

|x|

)

|u(t, x)|2

and it is easy to deduce from (26) that we have, for all t in [0, T ],

F (t) ≤ C (1 + ‖u0‖2
H1∩H1

+ |a0|2 + |v0|2 + ‖u0‖H1‖u0‖3
L2)

+ C(1 + |a(t)|2) + C

∫ t

0

(1 + β(s))F (s) + β(s)(1 + |a(s)|2) ds.

Then, we set

Ψ(t) = (1 + |a(t)|2) +

∫ t

0

(1 + β(s))F (s) + β(s)(1 + |a(s)|2) ds

+ 1 + ‖u0‖2
H1∩H1

+ |a0|2 + |v0|2 + ‖u0‖H1‖u0‖3
L2

and we have F (t) ≤ CΨ(t), Ψ(0) = 1+‖u0‖2
H1∩H1

+|a0|2+|v0|2+‖u0‖H1‖u0‖3
L2

and since C > 0 denotes a generic constant,

dΨ

dt
(t) = 2|a(t)|

∣

∣

∣

∣

da

dt
(t)

∣

∣

∣

∣

+ (1 + β(t))F (t) + β(t)(1 + |a(t)|2)

≤ C
√

Ψ(t)
√

F (t) + C (1 + β(t))Ψ(t) + β(t)Ψ(t)

≤ C (1 + β(t))Ψ(t).

From Gronwall’s lemma, we then get:

Ψ(t) ≤ CT exp

(
∫ t

0

β(s)ds

)

Ψ(0).

Therefore, there exists a non-negative constant K0
T,ρ0

depending on the time T ,
on the initial data ‖u0‖H1∩H1

, |a0| and |v0| and on ρ0 > 0, where

∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

W 1,1(0,T,L∞)

≤ ρ0,

such that for all t in [0, T ],

‖u(t)‖H1∩H1
+m

∣

∣

∣

∣

da

dt
(t)

∣

∣

∣

∣

+

(
∫

R3

(

|u(t)|2 ⋆ 1

|x|

)

|u(t)|2
)

1

2

≤ K0
T,ρ0

. (27)

Notice that this estimate does not use any assumption on ∇V1. Of course, we
also obtain that a is bounded on [0, T ] which means that there exists R > 0, de-
pending on T , ρ0, ‖u0‖H1∩H1

, |a0| and |v0|, such that for all t in [0, T ], |a(t)| ≤ R.
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Moreover, from equation (23) and since a is bounded, we have

m

∣

∣

∣

∣

d2a

dt2
(t)

∣

∣

∣

∣

≤
∫

R3

|u(t, x)|2
|x− a(t)|2 dx+ |∇V1(t, a(t))|

≤ 4 ‖u(t)‖2
H1 + ‖∇V1(t)‖W 1,∞(BR)

and if we define ρ1 > 0 such that
∥

∥

∥

∥

V1

1 + |x|2
∥

∥

∥

∥

W 1,1(0,T,L∞)

+

∥

∥

∥

∥

∇V1

1 + |x|2
∥

∥

∥

∥

L1(0,T,L∞)

+ ‖∇V1‖L2(0,T ;W 1,∞(BR)) ≤ ρ1,

we obtain from (27) that there exists a constant K0
T,ρ1

> 0 depending on T ,
‖u0‖H1∩H1

, |a0|, |v0| and ρ1 such that

m

∥

∥

∥

∥

d2a

dt2

∥

∥

∥

∥

L1(0,T )

≤ 4T ‖u‖2
L∞(0,T ;H1) +

√
T‖∇V1‖L2(0,T ;W 1,∞(BR))

≤ 4T (K0
T,ρ0

)2 +
√
T‖∇V1‖L2(0,T ;W 1,∞(BR)) ≤ K0

T,ρ1
.

Now, we can use estimate (27) and equation (22) to obtain the estimate of
Proposition 2. Indeed, since equations (22) is equivalent to the integral equation

u(t) = U(t, 0)u0 − i

∫ t

0

U(t, s)F (u(s)) ds,

we have, from Theorem 3 and from Lemma 5,

‖u(t)‖H2∩H2
≤ MT,α,ρ ‖u0‖H2∩H2

+MT,α,ρ

∫ t

0

‖F (u(s))‖H2∩H2
ds

≤ MT,α,ρ ‖u0‖H2∩H2
+MT,α,ρ

∫ t

0

‖u(s)‖2
H1 ‖u(s)‖H2∩H2

ds

where α =
K0

T,ρ1

m
. Therefore, we can deduce from estimate (27) that there

exists a constant C0
T,ρ1

such that

‖u(t)‖H2∩H2
≤ C0

T,ρ1
‖u0‖H2∩H2

+ C0
T,ρ1

∫ t

0

‖u(s)‖H2∩H2
ds.

Eventually, from Gronwall lemma, we get

∀t ∈ [0, T ], ‖u(t)‖H2∩H2
≤ eC0

T,ρ1
T ‖u0‖H2∩H2

.

It is then easy to estimate ‖∂tu(t)‖L2 using equation (22). Hence the end of
the proof of Proposition 2. �

We will conclude here the proof of Theorem 1. We begin by setting an arbi-
trary time T > 0. We already obtained the local-in-time existence of solutions
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for the coupled problem. Indeed, by now, we have a solution (u, a) for the
system (1) in the class

L∞(0, τ ;H2 ∩H2) ∩W 1,∞(0, τ ;L2) × ∩W 2,1(0, τ)

where ‖a‖C([0,τ ]) ≤ R and τ satisfies











τα < 1
8τCFM

3
T,α‖u0‖2

H2∩H2
< 1

4C

m
τM2

T,α‖u0‖2
H2∩H2

+

√
τ

m
‖∇V1‖L2(0,T ;W 1,∞(BR)) < α

(28)

where α = max(|v0|, 1) and C > 4.

Let us consider the maximal time T0 such that (1) has a maximal solution
defined on [0, T0[ in the class mentioned above. From Proposition 2, we have a
local uniform estimate on the following norm of (u, a):

‖u(t)‖H2∩H2
+ ‖∂tu(t)‖L2 +

∥

∥

∥

∥

d2a

dt2

∥

∥

∥

∥

L1(0,T )

+

∣

∣

∣

∣

da

dt
(t)

∣

∣

∣

∣

which means that this quantity remains bounded for t less or equal to T . There-
fore, as one can read in [9], and in [5] and [6], global existence follows. Indeed,
if (u, a) is a maximal solution on [0, T0[ with T0 < T , then its norm in the
ad’hoc class has to blow up when t reaches the maximal time T0. However, if
we consider s ∈ [0, T0[ close enough to T0 and if we take T ⋆ as the largest τ
satisfying














τ max(|vs|, 1) < 1
8τCFM

3
T,|vs|

‖us‖2
H2∩H2

< 1

4C

m
τM2

T,|vs|
‖us‖2

H2∩H2
+

√
τ

m
‖∇V1‖L2(0,T ;W 1,∞(BR)) < max(|vs|, 1),

where
da

dt
(s) = vs and u(s) = us, then we can bound the norm of (u, a) for

all t in [s, s + T ⋆] which brings a contradiction since T0 ∈ [s, s + T ⋆]. The
important point is that T ⋆ only depends on the time T since ‖us‖H2∩H2

and
|vs| are bounded by the local uniform estimate of Proposition 2. Thus, for any
arbitrary time T we have a solution (u, a) to the system (1) such that

(u, a) ∈ L∞(0, T ;H2 ∩H2) ∩W 1,∞(0, T ;L2) ×W 2,1(0, T )

and the proof of Theorem 1 in then complete. �
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