Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control

Lucie Baudouin, Otared Kavian, Jean-Pierre Puel

To cite this version:

Lucie Baudouin, Otared Kavian, Jean-Pierre Puel. Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control. Journal of Differential Equations, 2005, 216 (1), pp.188-222. hal-00145710

HAL Id: hal-00145710
https://hal.science/hal-00145710
Submitted on 11 May 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control

Lucie Baudouin, Otared Kavian and Jean-Pierre Puel *

Abstract : We study the Schrödinger equation $i \partial_{t} u+\Delta u+V_{0} u+V_{1} u=0$ on $\mathbb{R}^{3} \times(0, T)$, where $V_{0}(x, t)=|x-a(t)|^{-1}$, with $a \in W^{2,1}\left(0, T ; \mathbb{R}^{3}\right)$, is a coulombian potential, singular at finite distance, and V_{1} is an electric potential, possibly unbounded. The initial condition $u_{0} \in H^{2}\left(\mathbb{R}^{3}\right)$ is such that $\int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)^{2}\left|u_{0}(x)\right|^{2} d x<\infty$. The potential V_{1} is also real valued and may depend on space and time variables. We prove that if V_{1} is regular enough and at most quadratic at infinity, this problem is well-posed and the regularity of the initial data is conserved for the solution. We also give an application to the bilinear optimal control of the solution through the electric potential.

Keywords : Schrödinger equation, singular potential, regularity, existence, bilinear optimal control, optimality condition.

AMS Classification : 35B65, 49J20

1 Introduction

We work in \mathbb{R}^{3} and throughout this paper, we use the following notations:

$$
\nabla v=\left(\frac{\partial v}{\partial x_{1}}, \frac{\partial v}{\partial x_{2}}, \frac{\partial v}{\partial x_{3}}\right), \quad \Delta v=\sum_{i=1}^{3} \frac{\partial^{2} v}{\partial x_{i}^{2}}, \quad \partial_{t} v=\frac{\partial v}{\partial t},
$$

Re and Im are the real and the imaginary parts of a complex number,
$\langle., .\rangle_{H}$ stands for the scalar product in the space H;
$W^{2,1}(0, T)=W^{2,1}\left(0, T ; \mathbb{R}^{3}\right)$ and for $p \geq 1, L^{p}=L^{p}\left(\mathbb{R}^{3}\right)$,
the usual Sobolev spaces are $H^{1}=H^{1}\left(\mathbb{R}^{3}\right)$ and $H^{2}=H^{2}\left(\mathbb{R}^{3}\right)$.

[^0]We also define

$$
\begin{aligned}
& H_{1}=\left\{v \in L^{2}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)|v(x)|^{2} d x<+\infty\right\} \\
& H_{2}=\left\{v \in L^{2}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)^{2}|v(x)|^{2} d x<+\infty\right\}
\end{aligned}
$$

One can notice that H_{1} and H_{2} are respectively the images of H^{1} and H^{2} under the Fourier transform.

We consider the following linear Schrödinger equation

$$
\begin{cases}i \partial_{t} u+\Delta u+\frac{u}{|x-a(t)|}+V_{1}(x, t) u=0, & (x, t) \in \mathbb{R}^{3} \times(0, T) \tag{1}\\ u(x, 0)=u_{0}(x), & x \in \mathbb{R}^{3}\end{cases}
$$

where the potential V_{1} takes its values in \mathbb{R}.
Actually, this equation could correspond to the linear modelling of a hydrogen atom subjected to an external electric field, where u is the wave function of the electron. Indeed, $V_{0}=|x-a(t)|^{-1}$ is a coulombian potential, where $a(t)$ is the position of the nucleus at instant t and V_{1} is the electric potential (which may be unbounded at infinity) such that $E(t, x)=\nabla V_{1}(x, t)$ where E is the electric field created by a laser beam.

Our main result is the following:
Theorem 1. Let $T>0$ be an arbitrary time and assume that the function $a:[0, T] \longrightarrow \mathbb{R}^{3}$ and the potential V_{1} satisfy

$$
\begin{align*}
& a \in W^{2,1}(0, T), \\
& \left(1+|x|^{2}\right)^{-1} V_{1} \in L^{\infty}\left((0, T) \times \mathbb{R}^{3}\right), \\
& \left(1+|x|^{2}\right)^{-1} \partial_{t} V_{1} \in L^{1}\left(0, T ; L^{\infty}\right) \quad \text { and } \tag{2}\\
& \left(1+|x|^{2}\right)^{-1} \nabla V_{1} \in L^{1}\left(0, T ; L^{\infty}\right) .
\end{align*}
$$

Let for some $\alpha>0$ and $\rho>0$,

$$
\begin{gathered}
\|a\|_{W^{2,1}(0, T)} \leq \alpha \text { and } \\
\left\|\left(1+|x|^{2}\right)^{-1} V_{1}\right\|_{W^{1,1}\left(0, T, L^{\infty}\right)}+\left\|\left(1+|x|^{2}\right)^{-1} \nabla V_{1}\right\|_{L^{1}\left(0, T, L^{\infty}\right)} \leq \rho .
\end{gathered}
$$

Then there exists a positive constant $C_{T, \alpha, \rho}$ depending on T, α and ρ such that for any $u_{0} \in H^{2} \cap H_{2}$, equation (1) has a unique solution u with

$$
u \in L^{\infty}\left(0, T ; H^{2} \cap H_{2}\right) \quad \text { and } \quad \partial_{t} u \in L^{\infty}\left(0, T ; L^{2}\right)
$$

which satisfies the estimate

$$
\|u\|_{L^{\infty}\left(0, T ; H^{2} \cap H_{2}\right)}+\left\|\partial_{t} u\right\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq C_{T, \alpha, \rho}\left\|u_{0}\right\|_{H^{2} \cap H_{2}} .
$$

This type of result has already been obtained in the particular case when the atom is subjected to an external uniform time-dependent electric field $I(t)$
such that in equation (1), one has $V_{1}=-I(t) \cdot x$ as in reference [4] and [7]. They both use a change of unknown function and variables (gauge transformation) to remove the electric potential from the equation such that they only have to deal with the usual Schrödinger equation with a time dependent potential like V_{0}. Of course, we cannot use this technique here because of the generality of the potential V_{1} we are considering. In the case $V_{1}=0$, K. Yajima [10] proved the $H^{2}\left(\mathbb{R}^{d}\right)$ regularity of the solution of equation (1) considered in $\mathbb{R}^{d} \times(0, T)$, using strongly T. Kato's results in reference [8]. We can also mention that K. Yajima and G. ZHANG prove in [11] a smoothing property for one dimensional time dependent Schrödinger equation with potentials superquadratic at infinity, like V_{1}.

In order to prove Theorem 1, we will first prove an existence and regularity result for the solution of equation (1) in the space $H^{1} \cap H_{1}$, actually under weaker hypothesis on V_{1} and a. In both proofs of the two theorems, we will regularize V_{0} and V_{1} by V_{0}^{ε} and V_{1}^{ε} and obtain accurate estimates, independent of ε. The key point in the proof of Theorem 1 is to find an L^{2}-estimate for the time derivative of the solution u^{ε}. Thus, we will use a change of variable $y=x-a(t)$ to get rid of the time derivative of the coulombian potential which appears in the time derivative of equation (1). We finally obtain the awaited estimate which is independent of ε.

We also prove in this paper continuity results for the solution u. Indeed, under the same hypothesis, we prove the weak continuity of the solution in $H^{2} \cap H_{2}$ and the strong continuity in $H_{1} \cap H^{1}$:

Theorem 2. Under assumption (2), the solution u to equation (1) with initial condition $u_{0} \in H^{2} \cap H_{2}$ satisfies

$$
u \in C\left([0, T] ; H_{1} \cap H^{1}\right) \text { and } u \in C_{\mathrm{w}}\left([0, T] ; H_{2} \cap H^{2}\right) .
$$

(Here $u \in C_{\mathrm{w}}\left([0, T], H^{2} \cap H_{2}\right)$ means that u is weakly continuous from $[0, T]$ into $H^{2} \cap H_{2}$).

2 Preliminary estimates

As we just explained, we are going to regularize the potential of the Schrödinger equation we consider. Therefore, we need a first classical proposition to ensure the existence of smooth solution when the potential is more regular. A first step is to show that the free Schrödinger semi-group acts continuously in the space $H^{2} \cap H_{2}$ (resp. $H^{1} \cap H_{1}$). To be more precise, consider the equation:

$$
\left\{\begin{array}{l}
i \partial_{t} u(x, t)+\Delta u(x, t)=0, \quad x \in \mathbb{R}^{3}, t \in[0, T] \tag{3}\\
u(x, 0)=u_{0}(x), \quad x \in \mathbb{R}^{3}
\end{array}\right.
$$

Lemma 3. Let us denote by $(S(t))_{t \in \mathbb{R}}$ the free Schrödinger semi-group $\mathrm{e}^{i t \Delta}$. Then for any $T>0$ there exists a positive constant C_{T} such that if $u_{0} \in$
$H^{2} \cap H_{2}$, then $u(t)=S(t) u_{0}$ is the unique solution of equation (3) and satisfies $u \in C\left([0, T] ; H^{2} \cap H_{2}\right) \cap C^{1}\left([0, T] ; L^{2}\right)$ and for all $t \in[0, T]$ we have

$$
\|u(t)\|_{H^{2} \cap H_{2}} \leq C_{T}\left\|u_{0}\right\|_{H^{2} \cap H_{2}}
$$

Proof. This is a well-known result as far as the continuity in H^{2} is concerned (see [6]), but obtaining the continuity in H_{2} is not more difficult. Indeed denoting by \widehat{u} the Fourier transform of u, it is clear that $u(t)$ satisfies equation (3) if and only if

$$
\widehat{u}(t, \xi)=\mathrm{e}^{i t|\xi|^{2}} \widehat{u}_{0}(\xi)
$$

From this relation, Parseval's identity and the fact that

$$
\|\Delta u(t)\|_{L^{2}}^{2}=\left\||\xi|^{2} \widehat{u}(t)\right\|_{L^{2}}^{2}=\left\||\xi|^{2} \widehat{u}_{0}\right\|_{L^{2}}^{2}
$$

we infer that $t \mapsto S(t) u_{0}$ is continuous on H^{2} : more precisely we have that $u \in C\left(\mathbb{R}, H^{2}\right) \cap C^{1}\left(\mathbb{R}, L^{2}\right)$ (in fact for any $s \in \mathbb{R}$ the group $S(t)$ is an isometry on $\left.H^{s}\right)$. On the other hand it is clear that

$$
\left\||x|^{2} u(t)\right\|_{L^{2}}^{2}=\|\Delta \widehat{u}(t)\|_{L^{2}}^{2}
$$

Since $u_{0} \in H^{2} \cap H_{2}$ and

$$
\Delta \widehat{u}(\xi, t)=\left[\left(6 i t-4 t^{2}|\xi|^{2}\right) \widehat{u}_{0}(\xi)+4 i t \xi \cdot \nabla \widehat{u}_{0}(\xi)+\Delta \widehat{u}_{0}(\xi)\right] \mathrm{e}^{i t|\xi|^{2}}
$$

one sees that $t \mapsto|x|^{2} u(t)$ is continuous as a mapping from \mathbb{R} into L^{2}. Therefore $u \in C\left(\mathbb{R}, H^{2} \cap H_{2}\right)$ and the lemma is proved.

Remark. The same result can be proved in the same way when $H^{2} \cap H_{2}$ is replaced by $H^{1} \cap H_{1}$.

Next we prove that when the potential $V \in L^{\infty}\left(0, T, C_{b}^{2}\left(\mathbb{R}^{3}\right)\right)$ the following result holds (here $C_{b}^{2}\left(\mathbb{R}^{3}\right)$ denotes the space of bounded C^{2} functions with bounded first and second derivatives):

Proposition 4. If $V \in L^{\infty}\left(0, T ; C_{b}^{2}\left(\mathbb{R}^{3}\right)\right)$ is real valued and if $u_{0} \in H^{2} \cap H_{2}$ then there exists a unique solution $u \in C\left([0, T] ; H^{2} \cap H_{2}\right)$ of

$$
\left\{\begin{array}{l}
i \partial_{t} u(x, t)+\Delta u(x, t)+V(x, t) u(x, t)=0, x \in \mathbb{R}^{3}, t \in(0, T) \tag{4}\\
u(x, 0)=u_{0}(x), x \in \mathbb{R}^{3} .
\end{array}\right.
$$

Let $\rho>0$ be such that $\|V\|_{L^{\infty}\left(0, T, C_{b}^{2}\left(\mathbb{R}^{3}\right)\right)} \leq \rho$. Then there exists a positive constant $C_{T, \rho}$ such that

$$
\|u\|_{C\left([0, T], H^{2} \cap H_{2}\right)} \leq C_{T, \rho}\left\|u_{0}\right\|_{H^{2} \cap H_{2}}
$$

Proof. Denote by $Y=C\left([0, T], H^{2} \cap H_{2}\right)$ endowed with the norm

$$
\|u\|_{Y}=\sup _{t \in[0, T]} \mathrm{e}^{-\lambda t}\|u(t)\|_{H^{2} \cap H_{2}}
$$

for $u \in Y$; here $\lambda>0$ is a given positive number which will be fixed hereafter. The solution of equation (4) is obtained as a mild solution, that is a solution to the integral equation

$$
u(t)=S(t) u_{0}+i \int_{0}^{t} S(t-s) V(s) u(s) d s
$$

We are going to show that this equation has a unique solution in Y, by proving that the operator Φ defined as being

$$
\Phi(u)(t)=S(t) u_{0}+i \int_{0}^{t} S(t-s) V(s) u(s) d s
$$

has a unique fixed point in a closed ball $B_{R}=\left\{u \in Y ;\|u\|_{Y} \leq R\right\}$ for R suitably chosen.

Note that if $V \in L^{\infty}\left(0, T ; C_{b}^{2}\left(\mathbb{R}^{3}\right)\right)$ with $\|V\|_{L^{\infty}\left(0, T ; C_{b}^{2}\left(\mathbb{R}^{3}\right)\right)} \leq \rho$ and $\varphi \in$ $H^{2} \cap H_{2}$, there exists a positive constant $c_{0}(\rho)$ such that

$$
\|V(t) \varphi\|_{H^{2} \cap H_{2}} \leq c_{0}(\rho)\|\varphi\|_{H^{2} \cap H_{2}}
$$

Next we choose $\lambda>2 c_{0}(\rho) C_{T}$ where C_{T} is given by Lemma 3 . Then for $u \in B_{R}$, since we have

$$
\|u(s)\|_{H^{2} \cap H_{2}} \leq \mathrm{e}^{\lambda s}\|u\|_{Y} \leq R \mathrm{e}^{\lambda s}
$$

by using twice Lemma 3 we obtain

$$
\begin{gathered}
\|\Phi(u)(t)\|_{H^{2} \cap H_{2}} \leq C_{T} \int_{0}^{t}\|V(s) u(s)\|_{H^{2} \cap H_{2}} d s+C_{T}\left\|u_{0}\right\|_{H^{2} \cap H_{2}} \\
\leq C_{T} c_{0}(\rho) R \int_{0}^{t} \mathrm{e}^{\lambda s} d s+C_{T}\left\|u_{0}\right\|_{H^{2} \cap H_{2}} .
\end{gathered}
$$

It follows that if $R>0$ is large enough so that $C_{T}\left\|u_{0}\right\|_{H^{2} \cap H_{2}} \leq \frac{R}{2}$, then

$$
\|\Phi(u)\|_{Y} \leq \frac{c_{0}(\rho) C_{T} R}{\lambda}+C_{T}\left\|u_{0}\right\|_{H^{2} \cap H_{2}} \leq R
$$

This means that Φ maps B_{R} into itself. Also for $u_{1}, u_{2} \in B_{R}$ it is clear that

$$
\begin{aligned}
&\left\|\left(\Phi\left(u_{1}\right)-\Phi\left(u_{2}\right)\right)(t)\right\|_{H^{2} \cap H_{2}} \leq C_{T} \int_{0}^{t}\left\|V(s)\left(u_{1}-u_{2}\right)(s)\right\|_{H^{2} \cap H_{2}} d s \\
& \leq C_{T} c_{0}(\rho) \int_{0}^{t} \mathrm{e}^{\lambda s} d s\left\|u_{1}-u_{2}\right\|_{Y} \\
& \leq \lambda^{-1} c_{0}(\rho) C_{T} \mathrm{e}^{\lambda t}\left\|u_{1}-u_{2}\right\|_{Y}
\end{aligned}
$$

and since λ has been appropriately chosen, this shows that Φ is a strict contraction from B_{R} into itself as

$$
\left\|\left(\Phi\left(u_{1}\right)-\Phi\left(u_{2}\right)\right)\right\|_{Y} \leq \frac{c_{0}(\rho) C_{T}}{\lambda}\left\|u_{1}-u_{2}\right\|_{Y} \leq \frac{1}{2}\left\|u_{1}-u_{2}\right\|_{Y}
$$

and therefore Φ has a unique fixed point, yielding the solution of equation (4). One can notice that uniqueness is not only true in B_{R} but also easily proved using the norm in $C\left([0, T], L^{2}\right)$.

Remarks. 1) Following the same kind of arguments and the results in reference [10] of K. Yajima, we could also consider this proposition for potentials in $C^{1}\left([0, T] ; L^{\infty}\left(\mathbb{R}^{3}\right)\right)$.
2) Again, the same result can be proved in the same way when $H^{2} \cap H_{2}$ is replaced by $H^{1} \cap H_{1}$.

3 Existence and regularity result in $H^{1} \cap H_{1}$

In this section, we will prove the following theorem, which first allows us to consider an electric potential with a growth at infinity in $\left(1+|x|^{2}\right)$.

Theorem 5. Let $T>0$ be an arbitrary time and let a and the potential V_{1} satisfy

$$
\begin{align*}
& a \in W^{1,1}(0, T), \\
& \left(1+|x|^{2}\right)^{-1} V_{1} \in L^{\infty}\left((0, T) \times \mathbb{R}^{3}\right) \text { and } \tag{5}\\
& \left(1+|x|^{2}\right)^{-1} \partial_{t} V_{1} \in L^{1}\left(0, T ; L^{\infty}\right)
\end{align*}
$$

and for some $\alpha_{0}>0$ and $\rho_{0}>0$:

$$
\begin{gathered}
\|a\|_{W^{1,1}(0, T)} \leq \alpha_{0} \quad \text { and } \\
\left\|\left(1+|x|^{2}\right)^{-1} V_{1}\right\|_{W^{1,1}\left(0, T ; L^{\infty}\right)} \leq \rho_{0}
\end{gathered}
$$

Then there exists a positive constant $C_{T, \alpha_{0}, \rho_{0}}$ depending on T, α_{0} and ρ_{0} such that for any $u_{0} \in H^{1} \cap H_{1}$ equation (1) has a unique solution

$$
u \in L^{\infty}\left(0, T ; H^{1} \cap H_{1}\right)
$$

which satisfies the estimate

$$
\|u\|_{L^{\infty}\left(0, T ; H^{1} \cap H_{1}\right)} \leq C_{T, \alpha_{0}, \rho_{0}}\left\|u_{0}\right\|_{H^{1} \cap H_{1}} .
$$

Proof. First of all, we approach the potentials V_{1} and $V_{0}=|x-a(t)|^{-1}$ by appropriate real valued potentials V_{0}^{ε} and $V_{1}^{\varepsilon} \in C\left([0, T] ; C_{b}^{2}\left(\mathbb{R}^{3}\right)\right)$. More precisely:

- on the one hand, we set $V_{0}^{\varepsilon}=\frac{1}{\left(\varepsilon^{2}+|x-a(t)|^{2}\right)^{\frac{1}{2}}}$ and we have

$$
\left|V_{0}^{\varepsilon}(x, t)\right| \leq \frac{1}{|x-a(t)|} \quad \text { and } \quad\left|\partial_{t} V_{0}^{\varepsilon}(x, t)\right| \leq\left|\frac{d a}{d t}(t)\right| \frac{1}{|x-a(t)|^{2}}
$$

- on the other hand, we choose $\varrho_{0} \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ and $\chi \in C_{c}^{\infty}(\mathbb{R})$ such that for all x in $\mathbb{R}^{3}, \varrho_{0}(x) \geq 0$, for all t in $\mathbb{R}, \chi(t) \geq 0$ and $\int_{\mathbb{R}^{3}} \varrho_{0}(x) d x=\int_{\mathbb{R}} \chi(t) d t=1$ and we define the truncation function

$$
\begin{aligned}
T_{\varepsilon}: \mathbb{R} & \longrightarrow \mathbb{R} \\
s & \longmapsto T_{\varepsilon}(s)=\frac{|s|}{s} \min \left(|s|, \frac{1}{\varepsilon}\right) .
\end{aligned}
$$

Then, we set

$$
\zeta_{\varepsilon}(x, t):=\frac{1}{\varepsilon^{4}} \chi\left(\frac{t}{\varepsilon}\right) \varrho_{0}\left(\frac{x}{\varepsilon}\right)
$$

and we define $V_{1}^{\varepsilon}:=T_{\varepsilon}\left(V_{1}\right) \star \zeta_{\varepsilon}$, where the convolution is meant in $\mathbb{R}^{3} \times \mathbb{R}$. We have actually

$$
V_{1}^{\varepsilon}(x, t)=\int_{\mathbb{R}^{3} \times \mathbb{R}} T_{\varepsilon}\left(V_{1}(x+\varepsilon y, t+\varepsilon s)\right) \chi(s) \varrho_{0}(y) d s d y
$$

and we point out that the norm of V_{1}^{ε} is bounded by the norm of V_{1} in the space where it is defined.

Next for $\varepsilon>0$, we consider the solution u_{ε} of

$$
\begin{cases}i \partial_{t} u_{\varepsilon}+\Delta u_{\varepsilon}+V_{0}^{\varepsilon} u_{\varepsilon}+V_{1}^{\varepsilon} u_{\varepsilon}=0, & \text { in } \mathbb{R}^{3} \times(0, T) \tag{6}\\ u_{\varepsilon}(0)=u_{0}, & \text { in } \mathbb{R}^{3} .\end{cases}
$$

Thanks to Proposition 4 and the remark at the end of its proof, we know that there exists a unique solution $u_{\varepsilon} \in C\left([0, T] ; H^{1} \cap H_{1}\right)$. In the sequel, $C>0$ denotes various constants which may depend on T but are independent of ε.

In order to get an H_{1}-estimate of u_{ε}, we calculate the imaginary part of the product of equation (1) by $\left(1+|x|^{2}\right) \bar{u}_{\varepsilon}(x)$, integrated on \mathbb{R}^{3}. This gives

$$
\frac{d}{d t}\left(\int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)\left|u_{\varepsilon}\right|^{2}\right) \leq \int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}\right|^{2}+\int_{\mathbb{R}^{3}}|x|^{2}\left|u_{\varepsilon}\right|^{2} .
$$

Then, we have to obtain an H^{1}-estimate of u_{ε}. On the one hand, we multiply equation (1) by $\partial_{t} \bar{u}_{\varepsilon}$, integrate on \mathbb{R}^{3} and take the real part. After an integration by parts we obtain:

$$
-\frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}\right|^{2}+\operatorname{Re} \int_{\mathbb{R}^{3}} V_{0}^{\varepsilon} u_{\varepsilon} \partial_{t} \bar{u}_{\varepsilon}+\operatorname{Re} \int_{\mathbb{R}^{3}} V_{1}^{\varepsilon} u_{\varepsilon} \partial_{t} \bar{u}_{\varepsilon}=0
$$

which is equivalent to

$$
\frac{d}{d t} \int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}\right|^{2}-\int_{\mathbb{R}^{3}}\left(V_{0}^{\varepsilon}+V_{1}^{\varepsilon}\right) \partial_{t}\left(\left|u_{\varepsilon}\right|^{2}\right)=0 .
$$

Then,

$$
\begin{array}{r}
\frac{d}{d t}\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}\right|^{2}-\int_{\mathbb{R}^{3}}\left(V_{0}^{\varepsilon}+V_{1}^{\varepsilon}\right)\left|u_{\varepsilon}\right|^{2}\right) \\
=-\int_{\mathbb{R}^{3}}\left(\partial_{t} V_{0}^{\varepsilon}+\partial_{t} V_{1}^{\varepsilon}\right)\left|u_{\varepsilon}\right|^{2} . \tag{7}
\end{array}
$$

On the other hand, since V_{1} satisfies assumption (5), we have

$$
-\int_{\mathbb{R}^{3}} \partial_{t} V_{1}^{\varepsilon}\left|u_{\varepsilon}\right|^{2} \leq C\left\|\frac{\partial_{t} V_{1}(t)}{1+|x|^{2}}\right\|_{L^{\infty}}\left\|u_{\varepsilon}(t)\right\|_{H_{1}}^{2}
$$

and from Hardy's inequality asserting that for $\varphi \in H^{1}$ and any $a \in \mathbb{R}^{3}$ we have

$$
\int_{\mathbb{R}^{3}} \frac{|\varphi(x)|^{2}}{|x-a|^{2}} d x \leq 4 \int_{\mathbb{R}^{3}}|\nabla \varphi(x)|^{2} d x,
$$

we conclude that

$$
-\int_{\mathbb{R}^{3}} \partial_{t} V_{0}^{\varepsilon}\left|u_{\varepsilon}\right|^{2} \leq \int_{\mathbb{R}^{3}}\left|\frac{d a}{d t}\right| \frac{\left|u_{\varepsilon}\right|^{2}}{|x-a|^{2}} \leq 4\left|\frac{d a}{d t}(t)\right|\left\|u_{\varepsilon}(t)\right\|_{H^{1}}^{2} .
$$

We define $E_{\lambda}^{\varepsilon}$ at time $t \in[0, T]$ by

$$
\begin{equation*}
E_{\lambda}^{\varepsilon}(t)=\int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}(t, x)\right|^{2} d x+\lambda \int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)\left|u_{\varepsilon}(t, x)\right|^{2} d x \tag{8}
\end{equation*}
$$

where λ is a positive constant to be chosen later. From now on, C denotes various positive constants, depending only on λ and T. We obviously have:

$$
\begin{aligned}
\frac{d E_{\lambda}^{\varepsilon}(t)}{d t} \leq & \frac{d}{d t}\left(\int_{\mathbb{R}^{3}}\left(V_{0}^{\varepsilon}(t)+V_{1}^{\varepsilon}(t)\right)\left|u_{\varepsilon}(t)\right|^{2}\right) \\
& +C\left(1+\left|\frac{d a}{d t}(t)\right|+\left\|\frac{\partial_{t} V_{1}(t)}{1+|x|^{2}}\right\|_{L^{\infty}}\right) E_{\lambda}^{\varepsilon}(t)
\end{aligned}
$$

and if we integrate on $(0, t)$, we obtain

$$
\begin{align*}
E_{\lambda}^{\varepsilon}(t) \leq & \int_{\mathbb{R}^{3}}\left(\left|V_{0}^{\varepsilon}(0)\right|+\left|V_{1}^{\varepsilon}(0)\right|\right)\left|u_{0}\right|^{2}+\int_{\mathbb{R}^{3}}\left(V_{0}^{\varepsilon}(t)+V_{1}^{\varepsilon}(t)\right)\left|u_{\varepsilon}(t)\right|^{2} \\
& +C \int_{0}^{t}\left(1+\left|\frac{d a}{d t}(t)\right|+\left\|\frac{\partial_{t} V_{1}(s)}{1+|x|^{2}}\right\|_{L^{\infty}}\right) E_{\lambda}^{\varepsilon}(s) d s+E_{\lambda}^{\varepsilon}(0) . \tag{9}
\end{align*}
$$

Using Cauchy-Schwarz, Hardy and Young's inequalities, and since it is easy to show the conservation of the L^{2}-norm of u_{ε}, we prove that for all $\eta>0$,

$$
\begin{align*}
\int_{\mathbb{R}^{3}}\left|V_{0}^{\varepsilon}(t) \| u_{\varepsilon}(t)\right|^{2} & \leq \int_{\mathbb{R}^{3}} \frac{\left|u_{\varepsilon}(t)\right|^{2}}{|x-a(t)|} \\
& \leq 2\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}(t)\right|^{2}\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{3}}\left|u_{\varepsilon}(t)\right|^{2}\right)^{\frac{1}{2}} \tag{10}\\
& \leq \eta\left\|\nabla u_{\varepsilon}(t)\right\|_{L^{2}}^{2}+\frac{1}{\eta}\left\|u_{0}\right\|_{L^{2}}^{2} .
\end{align*}
$$

and we have also

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} V_{1}^{\varepsilon}(t)\left|u_{\varepsilon}(t)\right|^{2} \leq C\left\|\frac{V_{1}}{1+|x|^{2}}\right\|_{L^{\infty}\left((0, T) \times \mathbb{R}^{3}\right)}\left\|u_{\varepsilon}(t)\right\|_{H_{1}}^{2} . \tag{11}
\end{equation*}
$$

Moreover, $\left(1+|x|^{2}\right)^{-1} V_{1} \in W^{1,1}\left(0, T, L^{\infty}\right)$ and $W^{1,1}(0, T) \hookrightarrow C([0, T])$, then we have $\left(1+|x|^{2}\right)^{-1} V_{1}(0) \in L^{\infty}$ and we have for the same reasons as above,

$$
\begin{align*}
\int_{\mathbb{R}^{3}}\left(\left|V_{0}^{\varepsilon}(0)\right|+\left|V_{1}^{\varepsilon}(0)\right|\right)\left|u_{0}\right|^{2} & \leq \int_{\mathbb{R}^{3}}\left(\frac{1}{|x-a(0)|}+\left\|\frac{V_{1}(0)}{1+|x|^{2}}\right\|_{L^{\infty}}\right)\left|u_{0}\right|^{2} \tag{12}\\
& \leq C_{\rho_{0}}\left\|u_{0}\right\|_{H^{1} \cap H_{1}}^{2} .
\end{align*}
$$

We also notice that clearly

$$
E_{\lambda}^{\varepsilon}(0) \leq C\left\|u_{0}\right\|_{H^{1} \cap H_{1}}^{2} .
$$

Then, if we set

$$
\eta=\frac{1}{2} \quad \text { and } \quad \lambda=\frac{1}{2}+\left\|\frac{V_{1}}{1+|x|^{2}}\right\|_{L^{\infty}\left((0, T) \times \mathbb{R}^{3}\right)},
$$

reporting the estimates (10)-(12) into (9) we get

$$
\begin{align*}
E_{\lambda}^{\varepsilon}(t) \leq & C_{\rho_{0}}\left\|u_{0}\right\|_{H^{1} \cap H_{1}}^{2}+\frac{1}{2}\left\|u_{\varepsilon}(t)\right\|_{H^{1}}^{2}+\left(\lambda-\frac{1}{2}\right)\left\|u_{\varepsilon}(t)\right\|_{H_{1}}^{2} \\
& +C \int_{0}^{t}\left(1+\left|\frac{d a}{d t}(t)\right|+\left\|\frac{\partial_{t} V_{1}(s)}{1+|x|^{2}}\right\|_{L^{\infty}}\right) E_{\lambda}^{\varepsilon}(s) d s \tag{13}
\end{align*}
$$

We define F^{ε} at time $t \in[0, T]$ by

$$
F^{\varepsilon}(t)=\int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}(t, x)\right|^{2} d x+\int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)\left|u_{\varepsilon}(t, x)\right|^{2} d x=\left\|u_{\varepsilon}(t)\right\|_{H^{1} \cap H_{1}}^{2}
$$

and it is easy to see that we have, for all t in $[0, T]$,

$$
F^{\varepsilon}(t) \leq C_{\rho_{0}}\left\|u_{0}\right\|_{H^{1} \cap H_{1}}^{2}+C \int_{0}^{t}\left(1+\left|\frac{d a}{d t}(t)\right|+\left\|\frac{\partial_{t} V_{1}(s)}{1+|x|^{2}}\right\|_{L^{\infty}}\right) F^{\varepsilon}(s) d s
$$

We obtain from Gronwall's lemma:

$$
F^{\varepsilon}(t) \leq C_{T, \rho_{0}} \exp \left(\int_{0}^{t} \beta(s) d s\right)\left\|u_{0}\right\|_{H^{1} \cap H_{1}}^{2} .
$$

where

$$
\beta=1+\left|\frac{d a}{d t}\right|+\left\|\frac{\partial_{t} V_{1}}{1+|x|^{2}}\right\|_{L^{\infty}} \in L^{1}(0, T) .
$$

Therefore, there exists a positive constant $C_{T, \alpha_{0}, \rho_{0}}$, independent of ε and depending on the time T, on α_{0} and on ρ_{0} such that for all t in $[0, T]$,

$$
\left\|u_{\varepsilon}(t)\right\|_{H^{1} \cap H_{1}}^{2} \leq C_{T, \alpha_{0}, \rho_{0}}\left\|u_{0}\right\|_{H^{1} \cap H_{1}}^{2} .
$$

Then we can make ε tend to 0 and pass to the limit in the distributions sense in equation (6). Indeed, this last estimate implies the convergence of a subsequence $\left(u_{\varepsilon^{\prime}}\right)$ in the following way:

$$
u_{\varepsilon^{\prime}} \rightharpoonup u \quad \text { in } L^{\infty}\left(0, T ; H^{1} \cap H_{1}\right) w \star .
$$

We also have these other convergences:

$$
\begin{aligned}
& V_{0}^{\varepsilon} \rightarrow \frac{1}{|x-a(t)|} \quad \text { in } L^{\infty}\left(0, T ; L^{p}+L^{\infty}\right), p \in[2,3[\\
& V_{1}^{\varepsilon} \rightarrow V_{1} \quad \text { in } L^{\infty}\left(0, T ; L_{\mathrm{loc}}^{r}\right), r>1
\end{aligned}
$$

Thus, u is the solution of equation (1) in the sense of distributions and satisfies $u \in L^{\infty}\left(0, T ; H^{1} \cap H_{1}\right)$ and we obtain

$$
\|u(t)\|_{H^{1} \cap H_{1}}^{2} \leq C_{T, \alpha_{0}, \rho_{0}}\left\|u_{0}\right\|_{H^{1} \cap H_{1}}^{2} .
$$

We will end the proof of Theorem 5 by the study of the uniqueness of the solution of equation (1).

Let u_{1} and u_{2} be two solutions of equation (1). We set $v=u_{2}-u_{1}$ and it satisfies the following :

$$
\left\{\begin{array}{l}
i \partial_{t} v+\Delta v+\frac{v}{|x-a(t)|}+V_{1}(x, t) v=0, \quad(x, t) \in \mathbb{R}^{3} \times(0, T) \tag{14}\\
v(x, 0)=0, \quad x \in \mathbb{R}^{3}
\end{array}\right.
$$

We then consider a function $\theta \in C_{c}^{\infty}(\mathbb{R}), 0 \leq \theta \leq 1$, such that for $s \in \mathbb{R}$

$$
\theta(s)= \begin{cases}1 & \text { for }|s| \leq 1 \\ 0 & \text { for }|s| \geq 2\end{cases}
$$

and we set

$$
\theta_{R}(x)=\theta\left(\frac{|x|}{R}\right)
$$

which is such that $\left|\nabla \theta_{R}(x)\right| \leq C R^{-1}$ for all x in \mathbb{R}^{3}, where C is a constant independent of R.

First, multiplying (14) by $\theta_{R}^{2}(x) \bar{v}$ we integrate over \mathbb{R}^{3} and taking the imaginary part, we obtain, using Cauchy-Schwarz inequality:

$$
\begin{aligned}
\frac{d}{d t}\left(\int_{\mathbb{R}^{3}} \theta_{R}^{2}(x)|v(x, t)|^{2} d x\right) & =-2 \operatorname{Im} \int_{\mathbb{R}^{3}} \nabla v(x, t) \nabla\left(\theta_{R}^{2}\right)(x) \bar{v}(x, t) d x \\
& \leq C \int_{\mathbb{R}^{3}}\left|\nabla v(x, t)\left\|\theta_{R}(x)\right\| \nabla \theta_{R}(x) \| v(x, t)\right| d x \\
& \leq \frac{C}{R}\|\nabla v\|_{L^{\infty}\left(0, T ; L^{2}\right)}\left(\int_{\mathbb{R}^{3}} \theta_{R}^{2}(x)|v(x, t)|^{2} d x\right)^{\frac{1}{2}}
\end{aligned}
$$

Next, as we know that $v \in L^{\infty}\left(0, T ; H^{1} \cap H_{1}\right)$, from this we get, for all $R>0$ and for all t in $(0, T)$,

$$
\int_{\mathbb{R}^{3}} \theta_{R}^{2}(x)|v(x, t)|^{2} d x \leq \frac{C}{R} \int_{0}^{t}\left(\int_{\mathbb{R}^{3}} \theta_{R}^{2}(x)|v(x, s)|^{2} d x\right)^{\frac{1}{2}} d s
$$

Thus, from Gronwall's inequality, since $v(0)=0$ we finally obtain

$$
\int_{\mathbb{R}^{3}} \theta_{R}^{2}(x)|v(x, t)|^{2} d x=0, \quad \forall t \in(0, T), \forall R>0
$$

Hence $v=0$ and the proof of Theorem 5 is complete.

4 Proof of Theorem 1

We use the same regularization as in the preceding section. Then for $\varepsilon>0$ we consider the solution u_{ε} of (6) :

$$
\begin{cases}i \partial_{t} u_{\varepsilon}+\Delta u_{\varepsilon}+V_{0}^{\varepsilon} u_{\varepsilon}+V_{1}^{\varepsilon} u_{\varepsilon}=0, & \text { in } \mathbb{R}^{3} \times(0, T) \\ u_{\varepsilon}(0)=u_{0}, & \text { in } \mathbb{R}^{3}\end{cases}
$$

Thanks to Proposition 4, we know that u_{ε} is unique in $C\left([0, T] ; H^{2} \cap H_{2}\right)$.
We also recall that $\alpha>0$ and $\rho>0$ are such that:

$$
\begin{gathered}
\|a\|_{W^{2,1}(0, T)} \leq \alpha \\
\left\|\left(1+|x|^{2}\right)^{-1} V_{1}\right\|_{W^{1,1}\left(0, T, L^{\infty}\right)}+\left\|\left(1+|x|^{2}\right)^{-1} \nabla V_{1}\right\|_{L^{1}\left(0, T, L^{\infty}\right)} \leq \rho .
\end{gathered}
$$

4.1 First Step: Energy estimates

Again here, C denotes various constants independent of ε. We first show the following estimate:

Lemma 6. Let V_{0} and V_{1} satisfy assumption (2) and let V_{0}^{ε}, V_{1}^{ε} and u_{0} be defined as above. There exists $C>0$ depending only on ρ such that the solution u_{ε} of (6) satisfies for all $t \in[0, T]$:

$$
\left\|u_{\varepsilon}(t)\right\|_{H^{2}} \leq C\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}+C\left\|u_{\varepsilon}(t)\right\|_{H_{2}}
$$

Proof. Since u_{ε} is the solution of (6), we have for all $t \in[0, T]$,

$$
\begin{align*}
&\left\|u_{\varepsilon}(t)\right\|_{H^{2}} \leq\left\|\Delta u_{\varepsilon}(t)\right\|_{L^{2}}+\left\|u_{\varepsilon}(t)\right\|_{L^{2}} \\
& \leq\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}+\left\|V_{0}^{\varepsilon}(t) u_{\varepsilon}(t)\right\|_{L^{2}} \\
&+\left\|V_{1}^{\varepsilon}(t) u_{\varepsilon}(t)\right\|_{L^{2}}+\left\|u_{\varepsilon}(t)\right\|_{L^{2}} \tag{15}
\end{align*}
$$

It is clear that

$$
\begin{equation*}
\left\|V_{1}^{\varepsilon}(t) u_{\varepsilon}(t)\right\|_{L^{2}} \leq C\left\|\frac{V_{1}(t)}{1+|x|^{2}}\right\|_{L^{\infty}}\left\|u_{\varepsilon}(t)\right\|_{H_{2}} \tag{16}
\end{equation*}
$$

Next, from Hardy's and then Young's inequalities, we can prove that for all $\eta>0$, there exists $C_{\eta}>0$ such that

$$
\begin{align*}
\left\|V_{0}^{\varepsilon}(t) u_{\varepsilon}(t)\right\|_{L^{2}} & \leq\left\|\frac{u_{\varepsilon}(t)}{|x-a(t)|}\right\|_{L^{2}} \leq 2\left\|\nabla u_{\varepsilon}(t)\right\|_{L^{2}} \\
& \leq \eta\left\|u_{\varepsilon}(t)\right\|_{H^{2}}+C_{\eta}\left\|u_{\varepsilon}(t)\right\|_{L^{2}} . \tag{17}
\end{align*}
$$

Then, reporting the estimates (16) and (17) into (15), we have

$$
\begin{aligned}
\left\|u_{\varepsilon}(t)\right\|_{H^{2}} & \leq \eta\left\|u_{\varepsilon}(t)\right\|_{H^{2}}+\left(C_{\eta}+1\right)\left\|u_{\varepsilon}(t)\right\|_{L^{2}} \\
& +\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}+C\left\|\frac{V_{1}(t)}{1+|x|^{2}}\right\|_{L^{\infty}}\left\|u_{\varepsilon}(t)\right\|_{H_{2}}
\end{aligned}
$$

and if we choose η small enough, we finally obtain that for all $t \in[0, T]$,

$$
\left\|u_{\varepsilon}(t)\right\|_{H^{2}} \leq C\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}+C_{\rho}\left\|u_{\varepsilon}(t)\right\|_{H_{2}},
$$

where C and C_{ρ} are independent of ε.

Lemma 7. With the above notations let $E_{\varepsilon}(t)$ be defined as being

$$
E_{\varepsilon}(t)=\left\|u_{\varepsilon}(t)\right\|_{H_{2}}^{2}+\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}^{2}
$$

Then there exists $C>0$ depending only on T, α and ρ such that for all $t \in[0, T]$ we have:

$$
\begin{equation*}
\left\|u_{\varepsilon}(t)\right\|_{H_{2}}^{2} \leq C\left\|u_{0}\right\|_{H_{2}}^{2}+C \int_{0}^{t} E_{\varepsilon}(s) d s \tag{18}
\end{equation*}
$$

Proof. Note that all the integrations by parts and all the calculations we are going to do are justified because of the regularity of the data we are manipulating.

Multiplying (6) by $|x|^{4} \bar{u}_{\varepsilon}(x)$, integrating by parts on \mathbb{R}^{3} and taking imaginary parts, we obtain

$$
\operatorname{Re} \int_{\mathbb{R}^{3}}|x|^{4} \bar{u}_{\varepsilon} \partial_{t} u_{\varepsilon}=\operatorname{Im} \int_{\mathbb{R}^{3}} i|x|^{4} \bar{u}_{\varepsilon} \partial_{t} u_{\varepsilon}=4 \int_{\mathbb{R}^{3}} x \cdot \nabla u_{\varepsilon}|x|^{2} \bar{u}_{\varepsilon}
$$

and we deduce that

$$
\begin{equation*}
\frac{d}{d t}\left(\int_{\mathbb{R}^{3}}|x|^{4}\left|u_{\varepsilon}\right|^{2}\right) \leq C \int_{\mathbb{R}^{3}}|x|^{2}\left|\nabla u_{\varepsilon}\right|^{2}+C \int_{\mathbb{R}^{3}}|x|^{4}\left|u_{\varepsilon}\right|^{2} . \tag{19}
\end{equation*}
$$

Besides, if we calculate the real part of equation (6) multiplied by $|x|^{2} \bar{u}_{\varepsilon}$ and integrated on \mathbb{R}^{3}, we get

$$
\begin{align*}
\int_{\mathbb{R}^{3}}|x|^{2}\left|\nabla u_{\varepsilon}\right|^{2} \leq & \int_{\mathbb{R}^{3}}|x|\left|\nabla u_{\varepsilon}\right|\left|u_{\varepsilon}\right|+\int_{\mathbb{R}^{3}}\left|V_{1}^{\varepsilon}\right||x|^{2}\left|u_{\varepsilon}\right|^{2} \\
& +\int_{\mathbb{R}^{3}}\left|V_{0}^{\varepsilon}\right||x|^{2}\left|u_{\varepsilon}\right|^{2}+\int_{\mathbb{R}^{3}}\left|\partial_{t} u_{\varepsilon}\right||x|^{2}\left|u_{\varepsilon}\right| \\
\leq & C \int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}\right|^{2}+C \int_{\mathbb{R}^{3}}\left(1+|x|^{4}\right)\left|u_{\varepsilon}\right|^{2}+C \int_{\mathbb{R}^{3}}\left|\partial_{t} u_{\varepsilon}\right|^{2} \\
& +C \int_{\mathbb{R}^{3}}\left|V_{1}^{\varepsilon}\right|^{2}\left|u_{\varepsilon}\right|^{2}+C \int_{\mathbb{R}^{3}}\left|V_{0}^{\varepsilon}\right|^{2}\left|u_{\varepsilon}\right|^{2} \tag{20}
\end{align*}
$$

Also, from (16) and Hardy's inequalities, we have

$$
\int_{\mathbb{R}^{3}}\left|V_{0}^{\varepsilon}\right|^{2}\left|u_{\varepsilon}\right|^{2}+\int_{\mathbb{R}^{3}}\left|V_{1}^{\varepsilon}\right|^{2}\left|u_{\varepsilon}\right|^{2} \leq C \int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}\right|^{2}+C_{\rho} \int_{\mathbb{R}^{3}}\left(1+|x|^{4}\right)\left|u_{\varepsilon}\right|^{2}
$$

and therefore, according to (20), we get

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}|x|^{2}\left|\nabla u_{\varepsilon}\right|^{2} \leq C \int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}\right|^{2}+C \int_{\mathbb{R}^{3}}\left|\partial_{t} u_{\varepsilon}\right|^{2}+C_{\rho} \int_{\mathbb{R}^{3}}\left(1+|x|^{4}\right)\left|u_{\varepsilon}\right|^{2} . \tag{21}
\end{equation*}
$$

Now if we calculate the real part of equation (6) multiplied by \bar{u}_{ε} and integrated on \mathbb{R}^{3}, from the same kind of arguments we used to prove (16) and (17), we have

$$
\begin{align*}
\int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}\right|^{2} & \leq C \int_{\mathbb{R}^{3}}\left|\partial_{t} u_{\varepsilon}\right|\left|u_{\varepsilon}\right|+C \int_{\mathbb{R}^{3}}\left(\left|V_{0}^{\varepsilon}\right|+\left|V_{1}^{\varepsilon}\right|\right)\left|u_{\varepsilon}\right|^{2} \\
& \leq C \int_{\mathbb{R}^{3}}\left|\partial_{t} u_{\varepsilon}\right|^{2}+C \int_{\mathbb{R}^{3}}\left|u_{\varepsilon}\right|^{2}+C \int_{\mathbb{R}^{3}}\left(\frac{\left|u_{\varepsilon}\right|^{2}}{|x-a(t)|}+\left|V_{1}^{\varepsilon}\right|\left|u_{\varepsilon}\right|^{2}\right) \\
& \leq C \int_{\mathbb{R}^{3}}\left|\partial_{t} u_{\varepsilon}\right|^{2}+\eta \int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}\right|^{2}+C_{\eta, \rho} \int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)\left|u_{\varepsilon}\right|^{2} . \tag{22}
\end{align*}
$$

Then, if we choose η small enough, we finally deduce from (22) that for all $t \in[0, T]$ we have

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left|\nabla u_{\varepsilon}\right|^{2} \leq C \int_{\mathbb{R}^{3}}\left|\partial_{t} u_{\varepsilon}\right|^{2}+C_{\rho} \int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)\left|u_{\varepsilon}\right|^{2} . \tag{23}
\end{equation*}
$$

Plugging estimates (21) and (23) into (19) we can finally conclude that there exists $C>0$, independent of ε but depending on ρ and T, such that

$$
\frac{d}{d t}\left(\int_{\mathbb{R}^{3}}|x|^{4}\left|u_{\varepsilon}\right|^{2}\right) \leq C \int_{\mathbb{R}^{3}}\left|\partial_{t} u_{\varepsilon}\right|^{2}+C \int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)^{2}\left|u_{\varepsilon}\right|^{2}
$$

and since $\frac{d}{d t}\left(\int_{\mathbb{R}^{3}}\left|u_{\varepsilon}\right|^{2}\right)=0$, we obtain $\frac{d}{d t}\left(\int_{\mathbb{R}^{3}}\left(1+|x|^{4}\right)\left|u_{\varepsilon}\right|^{2}\right) \leq C E_{\varepsilon}(t)$.
We finally integrate on $(0, t)$ and we get

$$
\int_{\mathbb{R}^{3}}\left(1+|x|^{4}\right)\left|u_{\varepsilon}\right|^{2} \leq \int_{\mathbb{R}^{3}}\left(1+|x|^{4}\right)\left|u_{0}\right|^{2}+C \int_{0}^{t} E_{\varepsilon}(s) d s
$$

which gives

$$
\left\|u_{\varepsilon}(t)\right\|_{H_{2}}^{2} \leq C\left\|u_{0}\right\|_{H_{2}}^{2}+C \int_{0}^{t} E_{\varepsilon}(s) d s
$$

we have completed the proof of (18).

4.2 Second Step: L^{2}-estimate of the time derivative

Here we obtain appropriate estimates on $\partial_{t} u_{\varepsilon}$:
Lemma 8. Let $E_{\varepsilon}(t)$ be defined as being $E_{\varepsilon}(t)=\left\|u_{\varepsilon}(t)\right\|_{H_{2}}^{2}+\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}^{2}$. There exists a constant $C>0$ depending only on T, α and ρ and a function $\gamma \in L^{1}(0, T)$ such that for all $t \in[0, T]$ we have:

$$
\begin{equation*}
\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}^{2} \leq C\left\|u_{0}\right\|_{H^{2} \cap H_{2}}^{2}+\int_{0}^{t} \gamma(s) E_{\varepsilon}(s) d s \tag{24}
\end{equation*}
$$

Proof. We make the change of variables $y=x-a(t)$ and we set

$$
u_{\varepsilon}(x, t)=v_{\varepsilon}(y, t)
$$

Then, we have

$$
\begin{equation*}
\partial_{t} v_{\varepsilon}(y, t)=\partial_{t} u_{\varepsilon}(x, t)+\frac{d a}{d t}(t) \cdot \nabla u_{\varepsilon}(x, t) \tag{25}
\end{equation*}
$$

and for all $j=1,2$ or 3 ,

$$
\frac{\partial v_{\varepsilon}}{\partial y_{j}}(y, t)=\frac{\partial u_{\varepsilon}}{\partial x_{j}}(x, t)
$$

Therefore, the equation solved by v_{ε} can be written in the following way :

$$
\begin{cases}i \partial_{t} v_{\varepsilon}+\Delta v_{\varepsilon}+\frac{v_{\varepsilon}}{|y|}+V_{1}(y+a(t), t) v_{\varepsilon}=i \frac{d a}{d t}(t) \cdot \nabla v_{\varepsilon}, & (y, t) \in \mathbb{R}^{3} \times(0, T) \\ v_{\varepsilon}(y, 0)=u_{0}(y+a(0)), & y \in \mathbb{R}^{3} .\end{cases}
$$

Now, we set $w_{\varepsilon}(y, t)=\partial_{t} v_{\varepsilon}(y, t)$ and since

$$
\partial_{t}\left[V_{1}(y+a(t), t)\right]=\partial_{t} V_{1}(y+a(t), t)+\frac{d a}{d t}(t) \cdot \nabla V_{1}(y+a(t), t),
$$

then w satisfies the equation:

$$
\left\{\begin{align*}
i \partial_{t} w_{\varepsilon}+\Delta w_{\varepsilon}+\frac{w_{\varepsilon}}{|y|}+ & V_{1}(y+a(t), t) w_{\varepsilon}=i \frac{d^{2} a}{d t^{2}}(t) \cdot \nabla v_{\varepsilon}+i \frac{d a}{d t}(t) \cdot \nabla w_{\varepsilon} \tag{26}\\
& -\partial_{t} V_{1}(y+a(t), t) v_{\varepsilon}-\frac{d a}{d t}(t) \cdot \nabla V_{1}(y+a(t), t) v_{\varepsilon} \\
w_{\varepsilon}(y, 0)=\left(i \Delta+\frac{i}{|y|}\right. & \left.+i V_{1}(y+a(0), 0)+\frac{d a}{d t}(0) \cdot \nabla\right) u_{0}(y+a(0))
\end{align*}\right.
$$

If we multiply equation (26) by \bar{w}_{ε}, integrate on \mathbb{R}^{3} and take the imaginary part we have :

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{3}}\left|w_{\varepsilon}(y, t)\right|^{2} d y \\
=\operatorname{Im} \int_{\mathbb{R}^{3}} i\left(\frac{d^{2} a}{d t^{2}}(t) \cdot \nabla v_{\varepsilon}(y, t)+\frac{d a}{d t}(t) \cdot \nabla w_{\varepsilon}(y, t)\right) \bar{w}_{\varepsilon}(y, t) d y \\
-\operatorname{Im} \int_{\mathbb{R}^{3}}\left(\partial_{t} V_{1}(y+a(t), t)+\frac{d a}{d t}(t) \cdot \nabla V_{1}(y+a(t), t)\right) v_{\varepsilon}(y, t) \bar{w}_{\varepsilon}(y, t) d y
\end{gathered}
$$

and since
$\operatorname{Im} \int_{\mathbb{R}^{3}} i \frac{d a}{d t} \cdot \nabla w_{\varepsilon} \bar{w}_{\varepsilon} d y=\int_{\mathbb{R}^{3}} \frac{d a}{d t} \cdot \operatorname{Re}\left(\bar{w}_{\varepsilon} \nabla w_{\varepsilon}\right) d y=\frac{1}{2} \int_{\mathbb{R}^{3}} \frac{d a}{d t} \cdot \nabla\left(\left|w_{\varepsilon}\right|^{2}\right) d y=0$ we obtain

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{3}}\left|w_{\varepsilon}(y, t)\right|^{2} d y \leq\left|\frac{d^{2} a}{d t^{2}}(t)\right| \int_{\mathbb{R}^{3}}\left|\nabla v_{\varepsilon}(y, t) \| w_{\varepsilon}(y, t)\right| d y \\
+\left\|\frac{\partial_{t} V_{1}(t)}{1+|x|^{2}}\right\|_{L^{\infty}} \int_{\mathbb{R}^{3}}\left(1+|y+a(t)|^{2}\right)\left|v_{\varepsilon}(y, t) \| w_{\varepsilon}(y, t)\right| d y \\
+\left\|\frac{d a}{d t}\right\|_{L^{\infty}(0, T)}\left\|\frac{\nabla V_{1}(t)}{1+|x|^{2}}\right\|_{L^{\infty}} \int_{\mathbb{R}^{3}}\left(1+|y+a(t)|^{2}\right)\left|v_{\varepsilon}(y, t) \| w_{\varepsilon}(y, t)\right| d y .
\end{gathered}
$$

Moreover one can notice that

$$
\int_{\mathbb{R}^{3}}\left(1+|y+a(t)|^{2}\right)^{2}\left|v_{\varepsilon}(y, t)\right|^{2} d y=\int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)^{2}\left|u_{\varepsilon}(x, t)\right|^{2} d x=\left\|u_{\varepsilon}(t)\right\|_{H_{2}}^{2}
$$

and after using Cauchy-Schwarz inequality and integrating in time variable on $(0, t)$ we obtain

$$
\begin{gathered}
\left\|w_{\varepsilon}(t)\right\|_{L^{2}}^{2} \leq C\left\|u_{0}\right\|_{H^{2} \cap H_{2}}^{2}+2 \int_{0}^{t}\left|\frac{d^{2} a}{d t^{2}}(s)\right|\left\|\nabla v_{\varepsilon}(s)\right\|_{L^{2}}\left\|w_{\varepsilon}(s)\right\|_{L^{2}} d s \\
+2 \int_{0}^{t}\left(\left\|\frac{\partial_{t} V_{1}(s)}{1+|x|^{2}}\right\|_{L^{\infty}}+\left\|\frac{d a}{d t}\right\|_{L^{\infty}(0, T)}\left\|\frac{\nabla V_{1}(s)}{1+|x|^{2}}\right\|_{L^{\infty}}\right)\left\|u_{\varepsilon}(s)\right\|_{H_{2}}\left\|w_{\varepsilon}(s)\right\|_{L^{2}} d s
\end{gathered}
$$

where $C>0$ is a constant independent of ε. Furthermore, using (25) and reminding Theorem 5 and the definition of ρ_{0} and α, we have

$$
\begin{aligned}
\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}^{2} & \leq 2\left\|\partial_{t} v_{\varepsilon}(t)\right\|_{L^{2}}^{2}+2\left\|\frac{d a}{d t}\right\|_{L^{\infty}(0, T)}^{2}\left\|\nabla u_{\varepsilon}(t)\right\|_{L^{2}}^{2} \\
& \leq 2\left\|\partial_{t} v_{\varepsilon}(t)\right\|_{L^{2}}^{2}+C_{T, \alpha, \rho_{0}}\left\|u_{0}\right\|_{H^{1} \cap H_{1}}^{2}
\end{aligned}
$$

Since $\partial_{t} v_{\varepsilon}=w_{\varepsilon}$ and since for all $t \in(0, T),\left\|\nabla v_{\varepsilon}(t)\right\|_{L^{2}}=\left\|\nabla u_{\varepsilon}(t)\right\|_{L^{2}}$, we get

$$
\begin{aligned}
& \left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}^{2} \leq C_{T, \alpha, \rho_{0}}\left\|u_{0}\right\|_{H^{2} \cap H_{2}}^{2}+4 \int_{0}^{t}\left|\frac{d^{2} a}{d t^{2}}(s)\right|\left\|\nabla u_{\varepsilon}(s)\right\|_{L^{2}}\left\|\partial_{t} v_{\varepsilon}(s)\right\|_{L^{2}} d s \\
& \quad+4 \int_{0}^{t}\left(\left\|\frac{\partial_{t} V_{1}(s)}{1+|x|^{2}}\right\|_{L^{\infty}}+\alpha\left\|\frac{\nabla V_{1}(s)}{1+|x|^{2}}\right\|_{L^{\infty}}\right)\left\|u_{\varepsilon}(s)\right\|_{H_{2}}\left\|\partial_{t} v_{\varepsilon}(s)\right\|_{L^{2}} d s \\
& \quad \leq C_{T, \alpha, \rho_{0}}\left\|u_{0}\right\|_{H^{2} \cap H_{2}}^{2}+2 \int_{0}^{t}\left|\frac{d^{2} a}{d t^{2}}(s)\right|\left(\left\|\nabla u_{\varepsilon}(s)\right\|_{L^{2}}^{2}+\left\|\partial_{t} v_{\varepsilon}(s)\right\|_{L^{2}}^{2}\right) d s \\
& +2 \int_{0}^{t}\left(\left\|\frac{\partial_{t} V_{1}(s)}{1+|x|^{2}}\right\|_{L^{\infty}}+\alpha\left\|\frac{\nabla V_{1}(s)}{1+|x|^{2}}\right\|_{L^{\infty}}\right)\left(\left\|u_{\varepsilon}(s)\right\|_{H_{2}}^{2}+\left\|\partial_{t} v_{\varepsilon}(s)\right\|_{L^{2}}^{2}\right) d s \\
& \quad \leq C_{T, \alpha, \rho_{0}}\left\|u_{0}\right\|_{H^{2} \cap H_{2}}^{2}+2 \int_{0}^{t} \gamma(s)\left(\left\|u_{\varepsilon}(s)\right\|_{H_{2}}^{2}+\left\|\partial_{t} v_{\varepsilon}(s)\right\|_{L^{2}}^{2}\right) d s .
\end{aligned}
$$

with

$$
\gamma=\left|\frac{d^{2} a}{d t^{2}}\right|+\left\|\frac{\partial_{t} V_{1}}{1+|x|^{2}}\right\|_{L^{\infty}}+\alpha\left\|\frac{\nabla V_{1}}{1+|x|^{2}}\right\|_{L^{\infty}} \in L^{1}(0, T) .
$$

Eventually, using (25) we also have

$$
\left\|\partial_{t} v_{\varepsilon}(t)\right\|_{L^{2}}^{2} \leq 2\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}^{2}+2\left\|\frac{d a}{d t}\right\|_{L^{\infty}(0, T)}^{2}\left\|\nabla u_{\varepsilon}(t)\right\|_{L^{2}}^{2}
$$

and for the same kind of reasons, we obtain

$$
\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}^{2} \leq C_{T, \alpha, \rho}\left\|u_{0}\right\|_{H^{2} \cap H_{2}}^{2}+C \int_{0}^{t} \gamma(s)\left(\left\|u_{\varepsilon}(s)\right\|_{H_{2}}^{2}+\left\|\partial_{t} u_{\varepsilon}(s)\right\|_{L^{2}}^{2}\right) d s
$$

where $C, C_{T, \alpha, \rho}$ and γ are independent of ε. This is precisely the claim of Lemma 8.

Remark. One can notice that as we use this change of variables to prove the regularity result, we cannot generalize to the situation where more than one single nucleus is considered.

4.3 Third Step: Convergence and conclusion

Combining the estimates of Lemmas 7 and 8 , we see that there exists a positive constant C and a function $\gamma \in L^{1}(0, T)$, depending on T, ρ and α but both independent of ε, such that for $t \in[0, T]$,

$$
\begin{aligned}
E_{\varepsilon}(t) & =\left\|u_{\varepsilon}(t)\right\|_{H_{2}}^{2}+\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}^{2} \\
& \leq C\left\|u_{0}\right\|_{H^{2} \cap H_{2}}^{2}+\int_{0}^{t} \gamma(s) E_{\varepsilon}(s) d s .
\end{aligned}
$$

We apply the Gronwall lemma and obtain that for all t in $[0, T]$,

$$
E_{\varepsilon}(t) \leq C e^{\|\gamma\|_{L^{1}(0, T)}}\left\|u_{0}\right\|_{H^{2} \cap H_{2}}^{2}
$$

This shows that that there exists $C_{T, \alpha, \rho}>0$ independent of ε such that

$$
\left\|u_{\varepsilon}(t)\right\|_{H_{2}}^{2}+\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}^{2} \leq C_{T, \alpha, \rho}\left\|u_{0}\right\|_{H^{2} \cap H_{2}}^{2}, \quad \forall t \in[0, T]
$$

Then, from Lemma 6 , we derive that for all $t \in[0, T]$,

$$
\begin{equation*}
\left\|u_{\varepsilon}(t)\right\|_{H_{2} \cap H^{2}}^{2}+\left\|\partial_{t} u_{\varepsilon}(t)\right\|_{L^{2}}^{2} \leq C_{T, \alpha, \rho}\left\|u_{0}\right\|_{H^{2} \cap H_{2}}^{2} \tag{27}
\end{equation*}
$$

and for all $\varepsilon>0$, as we already know, the unique solution u_{ε} satisfies

$$
u_{\varepsilon} \in C\left([0, T], H^{2} \cap H_{2}\right) \cap C^{1}\left([0, T], L^{2}\right) .
$$

Then we let ε tend to 0 and pass to the limit in the distributions sense in equation (6). Indeed, estimate (27), implies the convergence of a subsequence ($u_{\varepsilon^{\prime}}$) in the following way:

$$
\begin{aligned}
& u_{\varepsilon^{\prime}} \rightharpoonup u \quad \text { in } \quad L^{\infty}\left(0, T ; H^{2} \cap H_{2}\right) w \star \\
& \partial_{t} u_{\varepsilon^{\prime}} \rightharpoonup \partial_{t} u \quad \text { in } L^{\infty}\left(0, T ; L^{2}\right) w \star .
\end{aligned}
$$

We also have these other convergences:

$$
\begin{aligned}
& V_{0}^{\varepsilon} \rightarrow \frac{1}{|x-a(t)|} \text { in } L^{\infty}\left(0, T ; L^{p}+L^{\infty}\right), p \in[2,3[\\
& V_{1}^{\varepsilon} \rightarrow V_{1} \quad \text { in } L^{\infty}\left(0, T ; L_{\mathrm{loc}}^{r}\right), r>1 .
\end{aligned}
$$

Thus, u is the solution of equation (1) in the sense of distributions and satisfies $u \in L^{\infty}\left(0, T ; H^{2} \cap H_{2}\right)$ and $\partial_{t} u \in L^{\infty}\left(0, T ; L^{2}\left(\mathbb{R}^{3}\right)\right)$ and moreover

$$
\|u(t)\|_{H^{2} \cap H_{2}}^{2}+\left\|\partial_{t} u(t)\right\|_{L^{2}}^{2} \leq C_{T, \alpha, \rho}\left\|u_{0}\right\|_{H^{2} \cap H_{2}}^{2}, \quad \forall t \in[0, T] .
$$

Since the uniqueness can easily be seen in $L^{\infty}\left(0, T ; H^{2} \cap H_{2}\right)$, the proof of Theorem 1 is complete.

4.4 Continuity results

We first point out that actually, under the hypothesis of Theorem 1, we also have $u \in C_{w}\left([0, T] ; H^{2} \cap H_{2}\right)$. Indeed, we have proved that the solution u belongs to $L^{\infty}\left(0, T ; H^{2} \cap H_{2}\right)$ and since $u \in W^{1, \infty}\left(0, T ; L^{2}\right)$ we also have $u \in C\left([0, T] ; L^{2}\right)$. Hence the weak continuity result.

Another way to formulate the result of Theorem 1 is the following.
Corollary 9. Let a and V_{1} satisfy assumption (2) and $u_{0} \in H^{2} \cap H_{2}$. We define the family of Hamiltonians $\{H(t), t \in[0, T]\}$ by $H(t)=-\Delta-\frac{1}{|x-a|}-V_{1}$. Then, there exists a unique family of evolution operators $\{U(t, s), s, t \in[0, T]\}$
(also called the propagator, or the Cauchy operator, associated with $H(t)$) on $H^{2} \cap H_{2}$ such that for $u_{0} \in H^{2} \cap H_{2}$:
(i) $U(t, s) U(s, r) u_{0}=U(t, r) u_{0}$ and $U(t, t) u_{0}=u_{0}$, for all $s, t, r \in[0, T]$;
(ii) $\quad(t, s) \mapsto U(t, s) u_{0}$ is strongly continuous in L^{2} on $[0, T]^{2}$ and $U(t, s)$ is an isometry on L^{2}, that is $\left\|U(t, s) u_{0}\right\|_{L^{2}}=\left\|u_{0}\right\|_{L^{2}}$;
(iii) $U(t, s) \in \mathcal{L}\left(H^{2} \cap H_{2}\right)$ for all $(s, t) \in[0, T]^{2}$ and

$$
(t, s) \mapsto U(t, s) u_{0} \text { is weakly continuous from }[0, T]^{2} \text { into } H^{2} \cap H_{2}
$$

(iv) the equalities $i \partial_{t} U(t, s) u_{0}=H(t) U(t, s) u_{0}$ and $\quad i \partial_{s} U(t, s) u_{0}=-U(t, s) H(s) u_{0} \quad$ hold in L^{2}.

We end this section by the proof of Theorem 2: our aim is to prove that $u(s) \rightarrow u(t)$ strongly in $H^{1} \cap H_{1}$, as $s \rightarrow t$.

To this end, note that on the one hand, for any $R>0$, we have:

$$
\begin{aligned}
\|u(s)-u(t)\|_{H_{1}}^{2} \leq & \int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)|u(s)-u(t)|^{2} d x \\
\leq & \int_{|x|<R}\left(1+|x|^{2}\right)|u(s)-u(t)|^{2} d x \\
& +\int_{|x|>R}\left(1+|x|^{2}\right)|u(s)-u(t)|^{2} d x \\
\leq & \left(1+R^{2}\right)\|u(s)-u(t)\|_{L^{2}}^{2} \\
& +\frac{2}{1+R^{2}} \int_{\mathbb{R}^{3}}\left(1+|x|^{4}\right)|u(s)-u(t)|^{2} d x .
\end{aligned}
$$

On the other hand, recall that as in the proof of Lemma 6 , for all $\eta>0$, there exists a constant $C_{\eta}>0$ such that

$$
\|u(s)-u(t)\|_{H^{1}}^{2} \leq \eta\|u(s)-u(t)\|_{H^{2}}^{2}+C_{\eta}\|u(s)-u(t)\|_{L^{2}}^{2}
$$

Therefore, for a fixed $\eta>0$ we may choose $R>0$ so that $2\left(1+R^{2}\right)^{-1}<\eta$, and so

$$
\begin{align*}
\|u(s)-u(t)\|_{H^{1} \cap H_{1}}^{2} & \leq \eta\|u(s)-u(t)\|_{H^{2} \cap H_{2}}^{2}+C_{\eta}\|u(s)-u(t)\|_{L^{2}}^{2} \\
& \leq 2 \eta\|u\|_{L^{\infty}\left(0, T ; H^{2} \cap H_{2}\right)}^{2}+C_{\eta}\|u(s)-u(t)\|_{L^{2}}^{2} . \tag{28}
\end{align*}
$$

Since we have already proved that $u \in C\left([0, T] ; L^{2}\right)$, we know that $\| u(s)-$ $u(t) \|_{L^{2}}^{2} \rightarrow 0$ as $s \rightarrow t$: thus we deduce from (28) that

$$
\limsup _{s \rightarrow t}\|u(s)-u(t)\|_{H^{1} \cap H_{1}}^{2} \leq 2 \eta\|u\|_{L^{\infty}\left(0, T ; H^{2} \cap H_{2}\right)}^{2}
$$

for all $\eta>0$, that is $u \in C\left([0, T] ; H^{1} \cap H_{1}\right)$, and thus the proof of Theorem 2 is complete.

Remark. Actually, since for any $\sigma<2$, and for all $\eta>0$ there exists $C_{\eta}>0$ such that

$$
\|u\|_{H^{\sigma}} \leq \eta\|u\|_{H^{2}}+C_{\eta}\|u\|_{L^{2}},
$$

one sees that if $u_{0} \in H^{2} \cap H_{2}$, the solution u of equation (1) belongs to the space $C\left([0, T] ; H^{\sigma} \cap H_{\sigma}\right)$ for all $\sigma<2$.

5 Application to the bilinear optimal control

We still consider equation (1)

$$
\begin{cases}i \partial_{t} u+\Delta u+\frac{u}{|x-a|}+V_{1} u=0, & \text { in } \mathbb{R}^{3} \times(0, T) \\ u(0)=u_{0}, & \text { in } \mathbb{R}^{3}\end{cases}
$$

where $a \in W^{2,1}\left(0, T ; \mathbb{R}^{3}\right)$ and V_{1} now satisfies the assumption:

$$
\begin{array}{ll}
\left(1+|x|^{2}\right)^{-\frac{1}{2}} V_{1} & \in L^{\infty}\left((0, T) \times \mathbb{R}^{3}\right), \\
\left(1+|x|^{2}\right)^{-\frac{1}{2}} \partial_{t} V_{1} & \in L^{1}\left(0, T ; L^{\infty}\right) \text { and } \tag{29}\\
\left(1+|x|^{2}\right)^{-\frac{1}{2}} \nabla V_{1} & \in L^{1}\left(0, T ; L^{\infty}\right)
\end{array}
$$

On the one hand, we are concerned with the problem of proving the existence of a bilinear optimal control governed by equation (1). The electric potential V_{1} is the control, and if $u_{1} \in L^{2}$ is a given target, the problem reads:

$$
\begin{aligned}
& \text { Find a minimizer } V_{1} \in H \text { for } \\
& \text { inf }\{J(V), V \in H\}
\end{aligned}
$$

where

$$
\begin{equation*}
H:=\left\{V,\left(1+|x|^{2}\right)^{-\frac{1}{2}} V \in H^{1}(0, T ; W)\right\} \tag{30}
\end{equation*}
$$

with W an Hilbert space such that $W \hookrightarrow W^{1, \infty}$,

$$
J(V)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left|u(T)-u_{1}\right|^{2} d x+\frac{r}{2}\|V\|_{H}^{2} \text { with } r>0
$$

and where u is the solution of

$$
\begin{cases}i \partial_{t} u+\Delta u+\frac{u}{|x-a|}+V u=0, & \text { in } \mathbb{R}^{3} \times(0, T) \\ u(0)=u_{0} & \text { in } \mathbb{R}^{3},\end{cases}
$$

with $u_{0} \in H^{2} \cap H_{2}$.
On the other hand, we want to give an optimality condition for this bilinear optimal control problem. It means that if the optimal control problem described above is solved, then there exist $V_{1} \in H$ such that $J\left(V_{1}\right)=\inf \{J(V), V \in H\}$
and we will prove that V_{1} satisfies a first order optimality condition.
Remark. Since we have to prove the differentiability of the cost functionnal J, we chose the Hilbert space H that makes it possible to differentiate the norm $\|\cdot\|_{H}$ that appears in J and of course, $V_{1} \in H$ satisfies (29).

Let us now formulate the expected theorem.
Theorem 10. There exists an optimal control V_{1}^{*} satisfying (29) such that

$$
J\left(V_{1}\right)=\inf _{V_{1} \in H} J\left(V_{1}\right)
$$

where H is defined by (30) and the cost functional J is given by

$$
J(V)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left|u(T)-u_{1}\right|^{2} d x+\frac{r}{2}\left\|V_{1}\right\|_{H}^{2}
$$

and it satisfies the optimality condition:

$$
\forall \delta V \in H, \quad r\left\langle V_{1}^{*}, \delta V\right\rangle_{H}=\operatorname{Im} \int_{0}^{T} \int_{\mathbb{R}^{3}} \delta V(x, t) u(x, t) \bar{p}(x, t) d x d t
$$

with u solution of the state equation (1) and p solution of the adjoint problem

$$
\begin{cases}i \partial_{t} p+\Delta p+\frac{p}{|x-a|}+V_{1}^{*} p=0 & \text { in } \mathbb{R}^{3} \times(0, T) \tag{31}\\ p(T)=u(T)-u_{1} & \text { in } \mathbb{R}^{3}\end{cases}
$$

Remark. We would like to underline the fact that the regularity result described in Theorem 1 about the solution of equation (1) is strongly needed in the proof of this theorem.

From a physical point of view, the problem linked with this situation is the laser control of chemical reactions. We are considering a single atom; as we already said, the coulombian potential V_{0} corresponds to the attraction of the nucleus placed in $a(t)$ at instant t, u is the wave function of the electron and V_{1} is the electric potential induced by a laser beam. Actually, the atom is subjected to an external electric field, where the corresponding potential may be unbounded at infinity, and is such that $E(t, x)=\nabla V_{1}(x, t)$ where E is the field created by the laser beam.

Of course, this is a very simplified model and the lack here may be the absence of the more realistic Hartree nonlinearity

$$
F(u)=\left(|u|^{2} \star \frac{1}{|x|}\right) u .
$$

Nevertheless, the proof of the analogous theorem for the nonlinear Schrödinger equation is similar to this one and can be found in reference [2] (see also [1]). As a matter of fact, these results are a first step in order to study this kind of
optimal control problem on a coupled system of equations: namely, in such a situation, the function $a(t)$ (that is the position of the nucleus) is unknown but satsifies a classical nuclear dynamics, coupled with the nonlinear Schrödinger equation where $V_{0}=|x-a(t)|^{-1}$ and u satisfies the equation $(F(u)$ being given by the above relation)

$$
i \partial_{t} u+\Delta u+\frac{u}{|x-a(t)|}+V_{1} u=F(u) .
$$

An existence result for a bilinear optimal control, governed by a Schrödinger equation with Hartree non-linearity $F(u)$, has been given in [5], but with the special case in which the electric potential V_{1} is given by $V_{1}=-I(t) \cdot x$, whose field is homogeneous in space, while we take into account here more general electric potentials.

The next subsections are devoted to the proof of Theorem 10 and one will find in the last subsection, for a particular case, an interpretation of the optimality condition in terms of partial differential equations.

5.1 Existence of a Bilinear Optimal Control

We consider an initial data $u_{0} \in H^{2} \cap H_{2}$, the potential $V_{0}=|x-a(t)|^{-1}$ with $a \in W^{2,1}(0, T)$ and V_{1} satisfying assumption (29). Since this assumption is more restrictive and implies (2) (notice the power $-\frac{1}{2}$ in assumption (29)), we know that for any given V_{1} in this class there exists a unique solution u to equation (1) such that

$$
u \in C_{\mathrm{w}}\left([0, T] ; H^{2} \cap H_{2}\right), \quad \partial_{t} u \in L^{\infty}\left(0, T ; L^{2}\right), \quad u \in C\left([0, T] ; H_{1} \cap H^{1}\right)
$$

In this subsection we will prove the first part of Theorem 10, that is the existence of an optimal control $V_{1}^{*} \in H$ such that

$$
J\left(V_{1}^{*}\right)=\inf \left\{J\left(V_{1}\right) ; V_{1} \in H\right\}
$$

We begin with the following compactness result.
Lemma 11. The imbeddings $H^{1} \cap H_{1} \subset L^{2}$ and $H^{2} \cap H_{2} \subset H^{1} \cap H_{1}$ are compact.

Proof. Consider for instance a sequence $\left(\varphi_{n}\right)_{n}$ in $H^{2} \cap H_{2}$ converging weakly to zero in $H^{2} \cap H_{2}$ and such that

$$
\left\|\varphi_{n}\right\|_{H^{2} \cap H_{2}} \leq 1
$$

Then, for any $R>0$, using Rellich-Kondrachov theorem on the compactness of the imbedding $H^{2}(B(0, R)) \subset H^{1}(B(0, R))$, we have that $\left\|\varphi_{n}\right\|_{H^{1}(B(0, R))} \rightarrow 0$
as $n \rightarrow \infty$. And since

$$
\begin{aligned}
\left\|\varphi_{n}\right\|_{L^{2}}^{2} & =\left\|\varphi_{n}\right\|_{L^{2}(B(0, R))}^{2}+\int_{|x| \geq R}\left|\varphi_{n}\right|^{2} d x \\
& \leq\left\|\varphi_{n}\right\|_{L^{2}(B(0, R))}^{2}+\frac{1}{\left(1+R^{2}\right)^{2}}\left\|\varphi_{n}\right\|_{H_{2}}^{2}
\end{aligned}
$$

one may see that $\left\|\varphi_{n}\right\|_{L^{2}} \rightarrow 0$ as $n \rightarrow+\infty$. On the other hand since

$$
\left\|\varphi_{n}\right\|_{H^{1}}^{2} \leq C\left\|\varphi_{n}\right\|_{L^{2}}\left\|\varphi_{n}\right\|_{H^{2}} \leq C\left\|\varphi_{n}\right\|_{L^{2}}
$$

we infer that $\left\|\varphi_{n}\right\|_{H^{1}} \rightarrow 0$. Finally, noting that

$$
\begin{aligned}
\left\|\varphi_{n}\right\|_{H_{1}}^{2} & \leq\left(1+R^{2}\right)\left\|\varphi_{n}\right\|_{L^{2}(B(0, R))}^{2}+\frac{1}{1+R^{2}} \int_{|x| \geq R}\left(1+|x|^{2}\right)^{2}\left|\varphi_{n}\right|^{2} d x \\
& \leq\left(1+R^{2}\right)\left\|\varphi_{n}\right\|_{L^{2}(B(0, R))}^{2}+\frac{1}{1+R^{2}}
\end{aligned}
$$

we see that $\left\|\varphi_{n}\right\|_{H_{1}} \rightarrow 0$ as $n \rightarrow+\infty$. Summing up, we see that $\left\|\varphi_{n}\right\|_{H^{1} \cap H_{1}} \rightarrow 0$ for any sequence $\left(\varphi_{n}\right)_{n}$ in $H^{2} \cap H_{2}$ which converges weakly to zero: this shows that the imbedding $H^{2} \cap H_{2} \subset H^{1} \cap H_{1}$ is compact. The proof of the compactness of $H^{1} \cap H_{1} \subset L^{2}$ is analogous and can be omitted.

In order to prove the existence of an optimal control, consider a minimizing sequence $\left(V_{1}^{n}\right)_{n \geq 0}$ in H for the functional J. This means that

$$
\inf _{V_{1} \in H} J\left(V_{1}\right)=\lim _{n \rightarrow \infty} J\left(V_{1}^{n}\right)
$$

and thus $\left(V_{1}^{n}\right)_{n \geq+\infty}$ is bounded in H. Up to a subsequence, denoted again by $\left(V_{1}^{n}\right)_{n}$, we may find $V_{1}^{*} \in H$ such that $V_{1}^{n} \rightharpoonup V_{1}^{*}$ weakly in H and so

$$
\left\|V_{1}^{*}\right\|_{H} \leq \liminf _{n \rightarrow \infty}\left\|V_{1}^{n}\right\|_{H}
$$

Denoting by u_{n} the unique solution of equation

$$
\left\{\begin{array}{ll}
i \partial_{t} u_{n}+\Delta u_{n}+\frac{u_{n}}{|x-a|}+V_{1}^{n} u_{n}=0, & \text { in } \mathbb{R}^{3} \times(0, T) \tag{32}\\
u_{n}(0)=u_{0}, & \text { in } \mathbb{R}^{3}
\end{array},\right.
$$

and by u the solution to this equation corresponding to the potential V_{1}^{*}, we have to prove that

$$
\begin{equation*}
\left\|u(T)-u_{1}\right\|_{L^{2}}^{2} \leq \underline{\lim }\left\|u_{n}(T)-u_{1}\right\|_{L^{2}}^{2} . \tag{33}
\end{equation*}
$$

Indeed if this is done, then we have

$$
J\left(V_{1}^{*}\right) \leq \underline{\lim } J\left(V_{1}^{n}\right)=\inf _{V_{1} \in H} J\left(V_{1}\right)
$$

that is the minimum is achieved.
Although a weak convergence would be enough, we will prove that $u_{n}(T) \longrightarrow$ $u(T)$ in L^{2} (and even in $H^{1} \cap H_{1}$). From Theorem 1, we have:

$$
\left\|u_{n}\right\|_{L^{\infty}\left(H^{2} \cap H_{2}\right)}+\left\|\partial_{t} u_{n}\right\|_{L^{\infty}\left(L^{2}\right)} \leq C\left\|u_{0}\right\|_{H^{2} \cap H_{2}}
$$

where C is independent of n since $\left(V_{1}^{n}\right)_{n \geq 0}$ is bounded in H. Then $\left(u_{n}\right)_{n \geq 0}$ is bounded in $L^{\infty}\left(0, T ; H^{2} \cap H_{2}\right) \cap W^{1, \infty}\left(0, T ; L^{2}\right)$ and using the following compactness lemma (see for instance J. Simon, Theorem 5 in [9]), up to a subsequence we also have the strong convergence $u_{n} \rightarrow u$ in $C\left([0, T] ; H_{\mathrm{loc}}^{1}\right)$.

Lemma 12. Let X, B and Y be Banach spaces such that the imbeddings $X \subset B \subset Y$ are continuous and the embedding $X \subset B$. is compact. Assume that a sequence $\left(f_{n}\right)_{n \geq 1}$ is bounded in $L^{\infty}(0, T ; X)$ and is such that $\left(\partial_{t} f_{n}\right)_{n \geq 1}$ is bounded in $L^{\infty}(0, T ; Y)$. Then $\left(f_{n}\right)_{n \geq 1}$ is relatively compact in $C([0, T] ; B)$.

Using this result with (see Lemma 11)

$$
X=H^{2} \cap H_{2}, \quad B=H^{1} \cap H_{1}, \quad Y=L^{2}
$$

we conclude that the sequence $\left(u_{n}\right)_{n}$ is relatively compact in $C\left([0, T], H^{1} \cap H_{1}\right)$, and assuming that (up to a subsequence) $u_{n} \rightarrow u_{*}$ in $C\left([0, T], H^{1} \cap H_{1}\right)$, one checks that u_{*} satisfies equation (32), where V_{1}^{n} is replaced with V_{1}^{*}, in the sense of distributions: this means that one has actually $u_{*}=u$, where u is the solution of equation (32) where V_{1}^{n} is replaced with V_{1}^{*}. Thus in particular $\left\|u_{n}(T)-u(T)\right\| \rightarrow 0$ and so

$$
\left\|u(T)-u_{1}\right\|^{2}=\lim _{n \rightarrow \infty}\left\|u_{n}(T)-u_{1}\right\|^{2}
$$

and the existence of an optimal control is proved.
Remark. One can notice that we have actually prove the existence of an optimal control in the space $\left\{V,\left(1+|x|^{2}\right)^{-1} V \in W^{1,1+\varepsilon}\left(0, T ; W^{1, \infty}\right)\right\}, \varepsilon>0$. Indeed, the only important points are to ensure the existence of a solution to equation (1) and to take V_{1} in a reflexive space.

5.2 Optimality condition

In the definition of the space H, we can consider for instance

$$
W=H^{3} \oplus \operatorname{Span}\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{m}\right\}
$$

for some $m \geq 1$, and for $1 \leq j \leq m, \psi_{j} \in W^{1, \infty} \backslash H^{3}$ (indeed the case $W=H^{3}$ can be treated in the same manner). This example enables us to deal both with the particular case of [4] where $V_{1}(x, t)=I(t) \cdot x, I \in H^{1}(0, T)$ and with general electric potentials $\left(1+|x|^{2}\right)^{-\frac{1}{2}} V_{1}(t) \in H^{3}$ which are non-homogeneous in space.

Let $V_{1} \in H$ be the bilinear optimal control obtained in previously. The usual way to obtain an optimality condition in this kind of situation is to prove that J is differentiable and to write the necessary condition

$$
\begin{equation*}
D J\left(V_{1}\right)\left[\delta V_{1}\right]=0, \forall \delta V_{1} \in H \tag{34}
\end{equation*}
$$

in terms of the adjoint state. We postpone the proof of the following lemma and we recall that

$$
V_{0}(x, t)=\frac{1}{|x-a(t)|}
$$

Lemma 13. If u is the solution of equation (1), the functional

$$
\begin{aligned}
\varphi: H & \rightarrow L^{2}\left(\mathbb{R}^{3}\right) \\
V_{1} & \mapsto u(T)
\end{aligned}
$$

is differentiable. Then, if z is the solution of

$$
\begin{cases}i \partial_{t} z+\Delta z+V_{0} z+V_{1} z=-\delta V_{1} u, & \text { in } \mathbb{R}^{3} \times(0, T) \tag{35}\\ z(0)=0, & \text { in } \mathbb{R}^{3}\end{cases}
$$

we have $z \in C\left([0, T] ; L^{2}\right)$ and $D \varphi\left(V_{1}\right)\left[\delta V_{1}\right]=z(T)$.
Therefore, J is differentiable in V_{1} and since H is a Hilbert space, condition (34) now reads

$$
\begin{equation*}
\operatorname{Re} \int_{\mathbb{R}^{3}}\left(u(T)-u_{1}\right) \cdot \bar{z}(T) d x+r\left\langle V_{1}, \delta V_{1}\right\rangle_{H}=0 \tag{36}
\end{equation*}
$$

Remark. Note that we prove the differentiability of the mapping $V_{1} \mapsto u(T)$ with values in L^{2}, but we do not know whether this remains true if we consider the same mapping with values in H^{1} for example. It is not clear whether the differentiability of J is still true. Therefore, in the functional J, the first term cannot be replaced by a stronger norm of $u(T)-u_{1}$.

Consider the adjoint state equation (31) which has a unique solution $p \in$ $C\left([0, T] ; L^{2}\right)$ since $u(T)-u_{1} \in L^{2}$. We multiply equation (35) by \bar{p} (the complex conjugate of p), integrate on $\mathbb{R}^{3} \times[0, T]$ and take the imaginary part. We obtain:

$$
\operatorname{Im} \int_{0}^{T} \int_{\mathbb{R}^{3}}\left(i \partial_{t} z+\Delta z+V_{0} z+V_{1} z\right) \bar{p}=\operatorname{Im} \int_{0}^{T} \int_{\mathbb{R}^{3}}-\delta V_{1} u \bar{p} .
$$

After an integration by parts and since $z(0)=0$, we get

$$
\begin{aligned}
& \operatorname{Im} \int_{0}^{T} \int_{\mathbb{R}^{3}} z \overline{i \partial_{t} p}-\operatorname{Im} \int_{\mathbb{R}^{3}} z(T) \overline{i p(T)}+\operatorname{Im} \int_{0}^{T} \int_{\mathbb{R}^{3}} z \overline{\Delta p} \\
&+\operatorname{Im} \int_{0}^{T} \int_{\mathbb{R}^{3}} z \overline{\left(V_{0}+V_{1}\right) p}=-\operatorname{Im} \int_{0}^{T} \int_{\mathbb{R}^{3}} \delta V_{1} u \bar{p} .
\end{aligned}
$$

Since p satisfies equation (31), we then obtain

$$
\operatorname{Re} \int_{\mathbb{R}^{3}} z(T) \overline{\left(u(T)-u_{1}\right)}=-\operatorname{Im} \int_{0}^{T} \int_{\mathbb{R}^{3}} \delta V_{1} u \bar{p} .
$$

We also have (36) and we finally obtain that for all δV_{1} in H,

$$
r\left\langle V_{1}, \delta V_{1}\right\rangle_{H}=\operatorname{Im} \int_{0}^{T} \int_{\mathbb{R}^{3}} \delta V_{1}(x, t) u(x, t) \bar{p}(x, t) d x d t
$$

and the proof of the optimality condition of Theorem 10 is complete.
We now give the proof of Lemma 13. Actually, we have to prove that $z(T)$ is well defined in L^{2} when z is solution of (35) and that if w satisfies

$$
\begin{cases}i \partial_{t} w+\Delta w+V_{0} w+\left(V_{1}+\delta V_{1}\right) w=-\delta V_{1} z & \text { in } \mathbb{R}^{3} \times(0, T) \tag{37}\\ w(0)=0 & \text { in } \mathbb{R}^{3}\end{cases}
$$

then

$$
\begin{equation*}
\|w(T)\|_{L^{2}}=o\left(\left\|\delta V_{1}\right\|_{H}\right) . \tag{38}
\end{equation*}
$$

One can notice that w is actually the difference between z and δu where $\delta u+u$ is the solution of equation (1) with electric potential $\delta V_{1}+V_{1}$.

From Theorem 1, we know that $u \in L^{\infty}\left([0, T] ; H^{2} \cap H_{2}\right)$ and since we also have $\left(1+|x|^{2}\right)^{-\frac{1}{2}} \delta V_{1} \in H^{1}(0, T ; W)$ and $H^{1}(0, T ; W) \hookrightarrow C\left(0, T ; W^{1, \infty}\right)$, we obtain $\delta V_{1} u \in L^{\infty}\left(0, T ; L^{2}\right)$. It is then easy to prove, using Corollary 9 to formulate the integral equation equivalent to equation (35), and using a Picard fixed point theorem, that there exists a unique solution $z \in C\left([0, T] ; L^{2}\right)$ to equation (35). We can also specify that

$$
\|z(t)\|_{L^{2}} \leq C\left\|\delta V_{1}\right\|_{H}\|u\|_{L^{\infty}\left(H^{2} \cap H_{2}\right)}, \forall t \in[0, T] .
$$

There and until the end of this proof, C denotes a generic constant depending on T.

Now we work on the equation solved by w. We multiply equation (37) by \bar{w}, integrate in space variable and take the imaginary part, and we obtain:

$$
\begin{aligned}
\frac{d}{d t}\|w(t)\|_{L^{2}}^{2} & \leq 2\left\|\delta V_{1}\right\|_{H} \int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)^{\frac{1}{2}}|z(t) \| w(t)| d x \\
& \leq 2\left\|\delta V_{1}\right\|_{H}\|z(t)\|_{H_{1}}\|w(t)\|_{L^{2}}
\end{aligned}
$$

Applying Gronwall lemma, since $w(0)=0$ we get, $\forall t \in[0, T]$:

$$
\begin{equation*}
\|w(t)\|_{L^{2}} \leq C\left\|\delta V_{1}\right\|_{H} \max _{t \in[0, T]}\|z(t)\|_{H_{1}} . \tag{39}
\end{equation*}
$$

At this point we need to consider more closely the solution z of equation (35) in order to obtain an estimate of $\|z(t)\|_{H_{1}}$ for all $t \in[0, T]$. Actually, the
formulation of equation (35) as an integral equation allows to prove that $z \in$ $C\left([0, T] ; H^{1} \cap H_{1}\right)$ and the same kind of fixed point arguments then leads to prove that there exists a unique solution $w \in C\left([0, T] ; L^{2}\right)$ to equation (37). Usual calculations bring the following estimates :

$$
\begin{align*}
\frac{d}{d t}\left(\|z(t)\|_{L^{2}}^{2}\right) & \leq C\left\|\delta V_{1}\right\|_{H}\|u(t)\|_{H_{1}}\|z(t)\|_{L^{2}} \tag{40}\\
\frac{d}{d t}\left(\||x| z(t)\|_{L^{2}}^{2}\right) & \leq C\|\nabla z(t)\|_{L^{2}}\||x| z(t)\|_{L^{2}} \tag{41}\\
& +C\left\|\delta V_{1}\right\|_{H}\|u(t)\|_{H_{2}}\||x| z(t)\|_{L^{2}}
\end{align*}
$$

Let us now calculate $\operatorname{Re} \int_{\mathbb{R}^{3}}(35) \cdot \partial_{t} \bar{z}(x) d x$. We obtain, after some integrations by parts,

$$
\begin{aligned}
\frac{d}{d t}\left(\int_{\mathbb{R}^{3}} V_{0}|z|^{2}\right. & \left.+\int_{\mathbb{R}^{3}} V_{1}|z|^{2}-\int_{\mathbb{R}^{3}}|\nabla z|^{2}\right)=\int_{\mathbb{R}^{3}} \partial_{t} V_{0}|z|^{2}+\int_{\mathbb{R}^{3}} \partial_{t} V_{1}|z|^{2} \\
& -2 \frac{d}{d t}\left(\operatorname{Re} \int_{\mathbb{R}^{3}} \delta V_{1} u \bar{z}\right)+2 \operatorname{Re} \int_{\mathbb{R}^{3}} \partial_{t}\left(\delta V_{1}\right) u \bar{z}+2 \operatorname{Re} \int_{\mathbb{R}^{3}} \delta V_{1} \partial_{t} u \bar{z}
\end{aligned}
$$

We recall here that we have $\left|\partial_{t} V_{0}(x, t)\right|=\frac{\left|\partial_{t} a(t)\right|}{|x-a(t)|^{2}}$ and we also remind the reader of Hardy's inequality:

$$
\int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}}{|x|^{2}} \leq 4 \int_{\mathbb{R}^{3}}|\nabla u(x)|^{2} .
$$

Therefore, we obtain

$$
\begin{aligned}
\frac{d}{d t}\left(\int_{\mathbb{R}^{3}}|\nabla z|^{2}-\int_{\mathbb{R}^{3}}\left(V_{0}+V_{1}\right)|z|^{2}\right) & \leq C \int_{\mathbb{R}^{3}}|\nabla z|^{2}+2 \frac{d}{d t}\left(\operatorname{Re} \int_{\mathbb{R}^{3}} \delta V_{1} u \bar{z}\right) \\
& +C\left\|V_{1}\right\|_{H}\|z(t)\|_{H_{1}}^{2} \\
& +C\left\|\delta V_{1}\right\|_{H}\|u(t)\|_{H_{1}}\|z(t)\|_{L^{2}} \\
& +C\left\|\delta V_{1}\right\|_{H}\left\|\partial_{t} u(t)\right\|_{L^{2}}\|z(t)\|_{H_{1}}
\end{aligned}
$$

We integrate this between 0 and $t \in[0, T]$ and since $z(0)=0$, we get

$$
\begin{align*}
\int_{\mathbb{R}^{3}}|\nabla z(t)|^{2} & \leq \int_{\mathbb{R}^{3}}\left(V_{0}(t)+V_{1}(t)\right)|z(t)|^{2}+\int_{\mathbb{R}^{3}}\left|\delta V_{1}(t)\|u(t)\| z(t)\right| \tag{42}\\
& +C \int_{0}^{t} g(s)\|z(s)\|_{H_{1}} d s+C \int_{0}^{t} f(s)\left(\|z(s)\|_{H_{1}}^{2}+\|\nabla z(s)\|_{L^{2}}^{2}\right) d s
\end{align*}
$$

where we have set

$$
g(s)=\left\|\delta V_{1}\right\|_{H}\left(\|u(s)\|_{H_{2}}+\left\|\partial_{t} u(s)\right\|_{L^{2}}\right) \quad \text { and } \quad f(s)=1+\left\|V_{1}\right\|_{H}
$$

Obviously we have $f \in L^{1}(0, T), g \in L^{1}(0, T)$ and $g \rightarrow 0$ uniformly in s when $\delta V_{1} \rightarrow 0$ in H.

We set

$$
E(t)=\int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)|z(t)|^{2} d x+\int_{\mathbb{R}^{3}}|\nabla z(t)|^{2} d x .
$$

Moreover, we recall that from (40) we have

$$
\begin{equation*}
\|z(t)\|_{L^{2}}^{2} \leq C \int_{0}^{t} g(s)\|z(s)\|_{L^{2}} d s \tag{43}
\end{equation*}
$$

which implies, with the above mentioned properties of g, that $\|z(t)\|_{L^{2}} \rightarrow 0$ uniformly with respect to $t \in[0, T]$, when $\left\|\delta V_{1}\right\|_{H} \rightarrow 0$, and from (41),

$$
\begin{equation*}
\||x| z(t)\|_{L^{2}}^{2} \leq C \int_{0}^{t}\|z(s)\|_{H^{1} \cap H_{1}}^{2} d s+C \int_{0}^{t} g(s)\||x| z(s)\|_{L^{2}} d s \tag{44}
\end{equation*}
$$

Thereafter, using (42), (43) and (44) we can write that for all t in $[0, T]$,

$$
\begin{aligned}
E(t) & \leq C \int_{0}^{t} g(s) \sqrt{E(s)} d s+C \int_{0}^{t} f(s) E(s) d s \\
& +\int_{\mathbb{R}^{3}}\left(V_{0}(t)+V_{1}(t)\right)|z(t)|^{2}+C\left\|\delta V_{1}\right\|_{H}\|z(t)\|_{L^{2}}
\end{aligned}
$$

Then, we can prove that for all $\eta>0$ there exits a constant $C_{\eta}>0$ such that

$$
\int_{\mathbb{R}^{3}}\left(V_{0}(t)+V_{1}(t)\right)|z(t)|^{2} \leq C_{\eta}\|z(t)\|_{L^{2}}^{2}+\eta\|z(t)\|_{H^{1} \cap H_{1}}^{2} .
$$

Indeed, from Cauchy-Schwarz and Hardy's inequalities, we have

$$
\begin{gathered}
\int_{\mathbb{R}^{3}} V_{0}(t)|z(t)|^{2} \leq \int_{\mathbb{R}^{3}} \frac{|z(t)|^{2}}{|x-a(t)|} \leq C\|z(t)\|_{H^{1}}\|z(t)\|_{L^{2}} \\
\int_{\mathbb{R}^{3}} V_{1}(t)|z(t)|^{2} \leq\left\|V_{1}\right\|_{H} \int_{\mathbb{R}^{3}}\left(1+|x|^{2}\right)^{\frac{1}{2}}|z(t)|^{2} \leq\left\|V_{1}\right\|_{H}\|z(t)\|_{L^{2}}\|z(t)\|_{H_{1}}
\end{gathered}
$$

and we obtain the expected result from Young's inequality.
Consequently, if we set $h(t)=\left\|\delta V_{1}\right\|_{H}\|z(t)\|_{L^{2}}+\|z(t)\|_{L^{2}}^{2}$ and if we choose η small enough, we obtain

$$
\begin{equation*}
E(t) \leq C \int_{0}^{t} g(s) \sqrt{E(s)} d s+C \int_{0}^{t} f(s) E(s) d s+C h(t) \tag{45}
\end{equation*}
$$

where $g \rightarrow 0$ in $L^{1}(0, T)$ and $h \rightarrow 0$ in $L^{\infty}(0, T)$ when $\delta V_{1} \rightarrow 0$ in H.
We set $F(t)=\left(\int_{0}^{t} g(s) \sqrt{E(s)} d s+\int_{0}^{t} f(s) E(s) d s+\|h\|_{L^{\infty}}\right)^{\frac{1}{2}}$ and we have $E(t) \leq C F(t)^{2}$. We use a Gronwall inequality on F.

$$
\frac{d F(t)}{d t}=\frac{f(t) E(t)+g(t) \sqrt{E(t)}}{2 F(t)} \leq C_{1} f(t) F(t)+C_{2} g(t)
$$

Then, setting $G(t)=\int_{0}^{t} C_{1} f(s) d s$, we have G bounded in $L^{\infty}(0, T)$ and

$$
\frac{d}{d t}\left(e^{-G(t)} F(t)\right) \leq C_{2} g(t) e^{-G(t)}
$$

We obtain $F(t) \leq C\|h\|_{L^{\infty}(0, T)}^{\frac{1}{2}}+C \int_{0}^{t} g(s) d s$ and we finally can write that

$$
E(t) \leq C\left(\|h\|_{L^{\infty}}+\left|\int_{0}^{t} g(s) d s\right|^{2}\right)
$$

and when $\left\|\delta V_{1}\right\|_{H} \rightarrow 0$, we have (uniformly with respect to $t \in[0, T]$)

$$
\|h\|_{L^{\infty}}+\left|\int_{0}^{t} g(s) d s\right|^{2} \longrightarrow 0
$$

Actually, what we have proved is the following uniform convergence:

$$
\|z(t)\|_{H_{1}}+\|\nabla z(t)\|_{L^{2}} \xrightarrow{\left\|\delta V_{1}\right\|_{H} \rightarrow 0} 0 .
$$

Moreover, we have (39) and therefore, we obtain (38) and the proof of Lemma 13 is complete.

5.3 Interpretation

We can finally give an interpretation of the optimality condition in terms of partial differential equation's in the particular case when $W=H^{3}\left(\mathbb{R}^{3}\right)$:

$$
\widetilde{H}=\left\{V, \quad\left(1+|x|^{2}\right)^{-\frac{1}{2}} V \in H^{1}\left(0, T ; H^{3}\right)\right\}
$$

Indeed, by now, we have the following optimality condition:

$$
\forall \delta V \in \widetilde{H}, \quad r\left\langle V_{1}, \delta V\right\rangle_{\widetilde{H}}=\operatorname{Im} \int_{0}^{T} \int_{\mathbb{R}^{3}} \delta V u \bar{p} d x d t
$$

with u solution of the state equation (1), p solution of the adjoint state equation (31) and $V_{1} \in \widetilde{H}$ the optimal control such that

$$
J\left(V_{1}\right)=\inf \{J(V), V \in \widetilde{H}\}
$$

In this particular case, if $V \in \widetilde{H}$, there exists $X \in H^{1}\left(0, T ; H^{3}\right)$ such that $V=\left(1+|x|^{2}\right)^{\frac{1}{2}} X$. Moreover, $X=(I-\Delta)^{-1} Y$ with $Y \in H^{1}\left(0, T ; H^{1}\right)$. Therefore,

$$
\left\langle V_{1}, \delta V\right\rangle_{H}=\left\langle X_{1}, \delta X\right\rangle_{H^{1}\left(0, T ; H^{2}\right)}=\left\langle Y_{1}, \delta Y\right\rangle_{H^{1}\left(0, T ; H^{1}\right)}
$$

and on the one hand,

$$
\left\langle Y_{1}, \delta Y\right\rangle_{H^{1}\left(0, T ; L^{2}\right)}=\int_{0}^{T} \int_{\mathbb{R}^{3}}\left(I-\partial_{t}^{2}\right) Y_{1} \delta Y+\int_{\mathbb{R}^{3}}\left(\partial_{t} Y_{1}(T) \delta Y(T)-\partial_{t} Y_{1}(0) \delta Y(0)\right) .
$$

while on the other hand,

$$
\begin{aligned}
\left\langle\nabla Y_{1}, \nabla \delta Y\right\rangle_{H^{1}\left(0, T ; L^{2}\right)}= & \int_{0}^{T} \int_{\mathbb{R}^{3}}-\left(I-\partial_{t}^{2}\right) \Delta Y_{1} \delta Y \\
& +\int_{\mathbb{R}^{3}}\left(\partial_{t} \Delta Y_{1}(0) \delta Y(0)-\partial_{t} \Delta Y_{1}(T) \delta Y(T)\right)
\end{aligned}
$$

We obtain

$$
\begin{aligned}
& \left\langle Y_{1}, \delta Y\right\rangle_{H^{1}\left(0, T ; H^{1}\right)}=\int_{0}^{T} \int_{\mathbb{R}^{3}}\left(I-\partial_{t}^{2}\right)(I-\Delta) Y_{1} \delta Y \\
& +\int_{\mathbb{R}^{3}}\left(\partial_{t}\left(Y_{1}-\Delta Y_{1}\right)(T) \delta Y(T)-\partial_{t}\left(Y_{1}-\Delta Y_{1}\right)(0) \delta Y(0)\right)
\end{aligned}
$$

The optimality condition becomes:

$$
\begin{aligned}
& \forall \delta Y \in H^{1}\left(0, T ; L^{2}\right) \\
& \qquad \begin{array}{r}
r \int_{0}^{T} \int_{\mathbb{R}^{3}}\left(I-\partial_{t}^{2}\right)(I-\Delta) Y_{1} \delta Y d x d t+r \int_{\mathbb{R}^{3}} \partial_{t}\left(Y_{1}-\Delta Y_{1}\right)(T) \delta Y(T) d x \\
-r \int_{\mathbb{R}^{3}} \partial_{t}\left(Y_{1}-\Delta Y_{1}\right)(0) \delta Y(0) d x \\
\\
=\operatorname{Im} \int_{0}^{T} \int_{\mathbb{R}^{3}} u \bar{p} \sqrt{1+|x|^{2}}(I-\Delta)^{-1} \delta Y d x d t
\end{array}
\end{aligned}
$$

and after an integration by parts, we obtain for all δY in $H^{1}\left(0, T ; L^{2}\right)$,

$$
\begin{aligned}
& r \int_{0}^{T} \int_{\mathbb{R}^{3}}\left(I-\partial_{t}^{2}\right)(I-\Delta) Y_{1} \delta Y d x d t \\
& +r \int_{\mathbb{R}^{3}}\left(\partial_{t}\left(Y_{1}-\Delta Y_{1}\right)(T) \delta Y(T)-\partial_{t}\left(Y_{1}-\Delta Y_{1}\right)(0) \delta Y(0)\right) d x s \\
& =\operatorname{Im} \int_{0}^{T} \int_{\mathbb{R}^{3}} \delta Y(I-\Delta)^{-1}\left(u \bar{p} \sqrt{1+|x|^{2}}\right) d x d t
\end{aligned}
$$

It can be noticed that if the target u_{1} is in L^{2} then $p \in L^{\infty}\left(0, T ; L^{2}\right)$ and since $u \in L^{\infty}\left(0, T ; H^{2} \cap H_{2}\right)$, we have $u \bar{p} \sqrt{1+|x|^{2}} \in L^{\infty}\left(0, T ; L^{1}\right)$. Then, as we have $L^{1}\left(\mathbb{R}^{3}\right) \hookrightarrow H^{-2}\left(\mathbb{R}^{3}\right)$, we get $(I-\Delta)^{-1}\left(u \bar{p} \sqrt{1+|x|^{2}}\right) \in L^{\infty}\left(0, T ; L^{2}\right)$ and finally, the right hand side has a meaning.

Thus, the optimality condition corresponds to the system:

$$
\begin{cases}r\left(I-\partial_{t}^{2}\right)(I-\Delta) Y_{1}=(I-\Delta)^{-1}\left(\operatorname{Im}(u \bar{p}) \sqrt{1+|x|^{2}}\right) & \text { in } \mathbb{R}^{3} \times(0, T) \\ \partial_{t}\left(Y_{1}-\Delta Y_{1}\right)(T)=\partial_{t}\left(Y_{1}-\Delta Y_{1}\right)(0)=0 & \text { in } \mathbb{R}^{3}\end{cases}
$$

where

$$
V_{1}=\left(1+|x|^{2}\right)^{\frac{1}{2}}(I-\Delta)^{-1} Y_{1}
$$

Bibliography:

[1] L. Baudouin, Contributions l'étude de l'équation de Schrödinger : problème inverse en domaine borné et contrôle optimal bilinéaire d'une équation de Hartree-Fock, Thèse. http://www.math.uvsq.fr/~baudouin/Articles/Thesebaudouin.pdf
[2] L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics, submitted. http://www.math.uvsq.fr/~baudouin/Articles/COPbCbaudouin.pdf
[3] L. Baudouin, O. Kavian and J.-P. Puel, Regularity in a Schrödinger equation with a potential singular at finite distance and at infinity. C. R. Acad. Sci. Paris, 337, 11 (2003), 705-710
[4] E. Cancès and C. Le Bris, On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics, Math. Mod. and Meth. in Appl. Sci. 9 (7) (1999), 963-990.
[5] E. Cancès, C. Le Bris and M. Pilot, Contrôle optimal bilinéaire d'une equation de Schrödinger, C. R. Acad. Sci. Paris, t. 330, Série 1 (2000), 567-571.
[6] T. Cazenave, An introduction to nonlinear Schrödinger equation, Textos de Métodos Matemáticos 26, third edition (1996).
[7] R. J. Iorio and D. Marchesin On the Schrödinger equation with time dependent electric fields, Proc. Royal Soc. Edinburgh 96 (1984), 117-134.
[8] T. Kato, Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo Sect. I, 17 (1970), 241-258.
[9] J. Simon, Compact sets in the space $L^{p}(0, T ; B)$, Ann. Mat. Pura Appl. (4) 146 (1987), 65-96.
[10] K. Yajima, Existence of solutions for Schrödinger evolution equations, Com. Math. Phys. 110 (1987), 415-426.
[11] K. Yajima and G. Zhang Smoothing property for Schrödinger equations with potential superquadratic at infinity, Com. Math. Phys. 221 (2001), $n^{\circ} 3$, 573-590.

[^0]: *baudouin@math.uvsq.fr, kavian@math.uvsq.fr, jppuel@cmapx.polytechnique.fr, Laboratoire de Mathématiques Appliquées, Université de Versailles Saint-Quentin, 45 avenue des Etats Unis, 78035 Versailles Cedex, France.

