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Abstract. In this paper, we study the transport of particles through a porous

structure. Experimentally, we focus our attention on the dependence of the mean

transit time on some parameters like the number of small particles injected in the

structure, and the height of the packing. We have developed a numerical model, based

on a DEM method, to simulate the experiment. This model is useful for accessing

the internal structure of the packing and for analysing precisely the influence of the

restitution coefficient and the size ratio between spheres.

1. Introduction

Transport and mixing of granular materials are central features of many industrial

processes as in food, chemical engineering, civil engineering, ceramics or pharmaceutical

industries. Nevertheless, size segregation, which is a non-random spatial distribution

of the different grain species, is often a source of important problems. A well-known

example of size segregation effect is ’Brazil nut segregation’ [1] also called the Brazil

nut effect (BNE). Mixing homogeneously granular media is important but not trivial.

One way to succeed is to make grains have a diffusive-like motion. However, in contrast

to molecular diffusion, mixing by diffusion of a granular system cannot be achieved

without an input of energy. A system that gives grains enough energy to ensure their

motion and changes their velocities randomly could be named a granular mixer. Many

kinds of mixers are used in the industrial domains previously quoted: rotating drums

[2], shakers etc. We are interested in the study of the flow of small particles due to

gravity through a packing of large spheres, that build up a sort of porous medium.

Such a system could be used for mixing particles of different sizes. But the study of

inter-particle percolation of mono-size spheres has to be performed first. When the two

grain species are very different in size (with a ratio Dlarge/Dsmall ≥ ( 2√
3
−1)−1 = 6.464...

[3]), it is possible for the smaller to drain totally through the packing. This kind of
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segregation was previously studied [4] and also more recent studies [5, 6, 7] have been

released. Nevertheless, these cases were limited to launches of one or of a small number

of particles at the same time. In this paper, we present results of our experimental

and numerical study of inter-particle percolation with large number of grains. In other

words, contrary to previous studies, the neighbourhood of spheres is going to influence

their individual behaviours. Indeed, the presence of many particles falling together

induces many additional collisions compared to the mono-particle case. In the three

following sections, we present the experimental set-up and experimental results, and

analyse the influence of the number of percolating spheres. Then, in the last section,

we present a numerical model that lets us examine in more detail the influence of the

different physical parameters.

2. Experimental set-up

The experimental set-up, shown in figure 1, is made of mono-disperse beads packed inside

a parallelepiped tank of 26 cm×26 cm×51 cm. The packing, constructed under gravity,

can be made of spheres of different sizes D. It plays the role of a porous medium with a

reproducible porosity around 0.4. Another packing made by small iron beads of diameter

foam rubber mattress

porous medium

piezoelectric 

scale

bead dispenser

collecting box

Figure 1. Schematic drawing of the experimental set-up.

d is put in a box placed on a handle, as close as possible to the upper surface. These

percolating beads are quasi-instantaneously launched in the porous structure by using a

vertical opening hatch. The detection system consists of an electronic weight scale with

a piezoelectric material. The signal, from the piezoelectric material, is amplified and

taken down by an acquisition card. In order to have reproducible results, the humidity

rate (close to 50%) and the temperature are kept constant. We also use concentric

cubes that can be inserted in the bead dispenser with the aim to maintain the launched

packing as isotropic (i.e. punctual) as possible.

We work with a ratio far from the trapping threshold in order to free ourselves from

trapping events. Indeed, as mentioned previously, a ratio of D
d
≥ 6.464 . . . [3] permits
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any particle to pass through any pores of the structure. It is convenient to estimate

the maximum interstitial volume between four spheres of diameter D in a tetrahedral

arrangement. This one is the accessible volume for percolating particles of diameter d.

If we take into account the random close packing limit (ΦRCP = 0.64), we can define

Vp = ΦRCP
D3

12
(
√
2−2Ω) as a characteristic volume of the packing of larger spheres, where

Ω = 3 arccos(1/3)− π is the solid angle of the tetrahedron. Vp is an estimation of the

accessible volume of the smallest pore of the porous medium. Instead of the number N

of particles injected in the porous structure, we can now consider the ratio Np = V/Vp,

where V = 4
3
π(d

2
)
3
N . The mean transit time is deduced from the signal gathered at the

output in the way detailed below.

3. Experimental analysis

The main phenomenon, which occurs inside the porous space, is lateral and transverse

dispersion that is classically described as a Gaussian law for a fluid passing through

a porous structure. Therefore, the evolution with time of the concentration of beads

at the output follows an erf function, which is the solution of the convection-diffusion

equation:

∂c(r,t)
∂t

+ U∇c(r, t) = D//
∂2c(r,t)
∂x2

//

+D⊥
∂2c(r,t)
∂x⊥

2

where U is the interstitial velocity of the flow and D// and D⊥ are respectively the

longitudinal and transversal diffusion coefficients [8]. Our weight scale will see the

cumulative weight of falling beads, as shown in figure 2. We can already notice the

difference with the best erf function fit drawn in the same figure. In others words, the
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Figure 2. Evolution of the normalized mass of beads gathered at the output with

normalized time for N = 70 000, N = 30 000 and N = 10 000. An adjustment with

an erf function is also represented.

transit time distribution is not exactly a normal law. Indeed, if we focus our interest on

the distribution of transit time, figure 3 demonstrates that distribution of residence time

is a normal law with a tail for longer values of transit times. This behaviour reflects
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the appearance of lateness due to ”trapping” of beads during the percolation process.

The fraction of delayed particles becomes more significant when we increase the number

of particles. This is why it is also possible to adjust our data by favouring shortest

transit times. Such adjustments are shown in figure 4, on which we also clearly see the

increase of the number of delayed particles with N . Nevertheless, as, in a first order
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Figure 3. Distribution of transit times, normalized by free-fall time of a height of D,

for different batch sizes with D = 16 mm, D/d = 16 and H/D = 10.
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Figure 4. Cumulative mass with erf adjustment by giving less importance for shorter

transit time for five values of N . D = 16 mm, D/d = 16 and H/D = 10.

analysis, we are interested in the mean transit time determination, figure 2 shows that

this Gaussian approximation can be used. Indeed, the difference in mean transit time

determination between the two methods detailed above is small.

Using an erf adjustment, we have determined the mean transit time for different

packing heights and for variable batches of small iron spheres (N between 1 and 100 000).

The porous medium is built with glass spheres of diameter D = 16 mm. As we can see

in figure 5, the residence time is proportional to the packing height even for different
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batch sizes. It can be related to previous results: for the case of a single particle falling

down either in a 3D porous medium [5], or in a 2D system [9], the percolation velocity

is constant. In fact, this is true if the size of the packing is large enough to minimize the

influence of some transition regime at the beginning of the process. This stationary state

appears for height higher than a threshold value, of the order of few large grain sizes,

below which no granular temperature equilibrium can occur. We have not reported

measurements of mean transit times for H/D smaller than three to four large bead

layers. This is for the reason described previously and because of strong differences in

the transit time due to some time fluctuations of the beads, during the entering of the

porous structure. Indeed, according to the possible presence of a pore under the opening

hatch, a difference of one diameter distance can occur. For all these reasons, it is not

possible to extrapolate the three curves to zero. Concerning figure 5, let us mention that

the three curves are not parallel, which already suggests that the percolating velocity

depends on the number of percolating particles. That is what we are going to see now,

in more detail, in the next section.
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Figure 5. Dependence of the normalized mean transit time on H/D for a launch of

N = 500, 10 000, 70 000 particles with D = 16 mm and D/d = 16.

4. Cooperative flow regime

We have performed another set of experiments in order to study the impact of the

number of percolating spheres on the mean transit time. It is evident that if only one

particle falls down through a porous structure, it can explore the complete free space

without any perturbation. However, this is no longer true if several particles fall at the

same time. In this case, all these moving particles can interact one with another and

also with the fixed ones. If we are near the critical value, which was defined previously

and corresponds to the trapping threshold, only one or two particles can pass together

through the same pore. If several particles are to transit the porous medium, they

have to pass one after another. On the other hand, if we work far from the trapping



Transport of small particles through a 3D packing of spheres 6

threshold, a large number of them can pass simultaneously through the same pore. The

mean residence time depends of the volume NpVp occupied by the batch rather than

size ratio only. So, mean transit time depends directly on the number N of percolating

particles.

We have plotted in figure 6 the evolution of the mean time with Np for a height

of H = 10D. As mentioned previously, it is reasonable to think that the percolation

velocity will decrease with the particle number due to pores jamming. In other words,

the mean transit time would increase with Np, due to the difficulty of the percolating

particles finding accessible pores. Nevertheless, figure 6 shows that the phenomenon is

more complex, and mainly we can define the existence of three flow domains.

In this study, we have two main effects of the spontaneous gravitational percolation:

a significant rebound of a falling bead on fixed spheres (due to a large restitution

coefficient) and also a large decrease of moving bead velocities due to the fact that the

falling particles collide with each other and with the packing. In the first regime, from

Np = 1 to approximately 50, the mean transit time decreases when the number of falling

particles grows. As Np increases, they lose more and more energy by collisions with their

neighbours. This implies that when Np ≈ 50 they are mainly falling down directly in the
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Figure 6. Dependence of the normalized mean transit time on Np for D = 16 mm,

D/d = 16 and H/D = 10.

lower pore structure, without bouncing around. As the number of small beads increases

further, an equilibrium between the direct falling process and the inter-particle collision

events is obtained and can be observed in a second domain from Np ≈ 50 to ≈ 200. In

this steady gravity regime, the mean percolation velocity is quite independent of Np.

So the mean transit time does not depend on N . If we continue to increase the number

of falling beads, we observe a third regime, for Np > 200. The particle velocities slow

down due to the crossing of a large number of particles simultaneously through the same

pore. In fact, this regime can be divided into two sub-regimes. Firstly, from Np ≈ 200

to ≈ 250, the dependence of the slowdown on Np is important. This behaviour reflects

a beginning of a jamming effect of pores situated in the flow zone. The jamming effect
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grows with Np and then, for Np > 250, the increase of the mean transit time with Np is

less important due to accumulation of particles in connecting pores. For such values of

Np, a pore jamming is related to the jamming of pores which are connected to it, by the

obstruction of preferential paths. We can suppose that for Np > 750 we could observe

a saturation of the mean transit time which would correspond to a total jamming of

preferential paths.

Figure 7 represents the same evolution of the mean transit time for three packing

heights. For H/D = 5, the three regimes of flow are also visible. The second domain

seems to appear for smaller number of particles than for H/D = 10.
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Figure 7. Dependence of the normalized mean transit time on Np for D/d = 16

and D = 16 mm. Three series of experiments, with different packing heights H, are

represented.

5. Numerical simulation

5.1. The numerical method

In order to analyse influences of different geometrical and mechanical parameters, we

couple experimental results with numerical simulations. We have chosen to make a

model as close as possible to the real process which occurs when we launch a set of

small particles through a pile made with larger spheres. Many algorithms exist to

build a random 3D packing of mono-size spheres [10]. We have chosen to use the

Powell’s algorithm [11], as here constructed packings are built as if under gravity. Each

sphere is placed in the lowest possible position, in contact with three spheres already

placed. This leads to six contacts on average per sphere and porosity around 0.40.

Our porous structure is made by 70 000 spheres of radius D = 20 mm inside a box of

70D× 70D× 175D respectively in the x, y and z directions. To avoid finite size effects,

the packing of larger spheres is generated with periodic boundary conditions in the x

and y directions. A small size distribution of sphere radii (5%) has been introduced in

order to avoid local ordered zones and also to reproduce the natural dispersion size of



Transport of small particles through a 3D packing of spheres 8

a bead set. We build an upper box containing another packing of spheres of diameter

d. This box is horizontally centred on top of the previous one and is almost cubic. To

simulate the motion of large numbers of small spheres through a static packing of larger

ones, we use the event-driven method [12] for the dynamic part of the simulation. In

this approach, collisions are considered as instantaneous and binary; this means that

only one collision can occur at a given time. The basic principle of this method consists

in the resolution of the trajectory equation and by sorting the events. In spite of the

periodicity of the porous medium, interactions between moving spheres do not take into

account this periodicity (i.e. only spheres in the same periodic space can collide).

At the beginning of the simulation, the program calculates for each small sphere

the shortest time interval from the present to a collision with one of its neighbours.

Then, all these time intervals are sorted and the program jumps to the shortest collision

time. Only positions of the two concerned spheres are evaluated, the event collision is

computed and the program calculates the new velocities of the two spheres involved in

this collision. After this, all the possible new collisions which could occur for these two

spheres are computed and integrated in the sorting event tree. Then, the next event is

treated and so on. The percolation process ends when all the small spheres have reached

a height equal to their radii. In other words, this means that they touch the bottom of

the packing.

In contrast to the experimental case, our simulations let us have access to the

internal porous structure and more precisely to the displacement of particles. As shown

in figure 8, we can follow the inner path of each moving bead from the entry to the

output of the structure.

Figure 8. Zoom of a particle trajectory inside the box.

5.2. Mono-sized spheres

We have simulated experiments for different numbers N of particles and so for different

values of Np. As we can observe in figure 9, the mean transit time decreases with Np

and seems to reach a constant value for Np ≈ 140. In the studied range of Np, this

behaviour is in agreement with experimental results presented previously.

In order to analyse the effect of the size ratio we have performed simulations dealing with

D/d and also with the restitution coefficient e. Figure 10 demonstrates that the mean



Transport of small particles through a 3D packing of spheres 9

transit time decreases with D/d . When the ratio D/d is close to the trapping threshold,

the residence time is quite long due to the difficulty of crossing the pore structure. A

particle has to slow down and almost stop to cross each pore. When we increase the

aspect ratio, the crossing is made easier and the mean transit time decreases. Figure 11

represents the dependence of the mean square displacement of particles, in a transversal

direction, on time for different ratios D/d. It illustrates an increase of lateral dispersion

when particles have smaller diameters. This explains why the decrease of the mean

transit time, in figure 10, is less and less important with D/d. Moreover, we should

notice that the linearity of the dependence of 〈(∆x)2〉 on time illustrates the diffusive

behaviour of the percolation process.
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Figure 9. Evolution of the normalized mean transit time with the blob size Np for

different values of size ratios D/d and H/D.

Figure 10 shows also that the mean transit time increases with e and confirms our

assumption: for higher coefficients of restitution e, bounces of falling particles are more
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Figure 10. Normalized mean transit time evolution versus the size ratio D/d for three

coefficients of restitution with N = 1000 and H/D = 172.
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important and exploration of the pore structure is made easier. The probability that a

particle can almost go back to its previous altitude is not negligible. Figure 12 shows

the linearity between the evolutions of mean variance of the position distribution in the

x direction with the mean altitude of the beads. It illustrates that dispersion is easier

for higher restitution coefficient and implies, with comparison with figure 11, that the

mean percolation velocity is constant after a transitional regime.
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Figure 12. Mean altitude reached by the batch in function of mean square

displacement in the x direction for two restitution coefficients.

5.3. Bi-disperse spheres

We have carried out a preliminary series of simulations to extrapolate these behaviours

to the case of two releases of particle batches with different diameters, in order to study

the possibility of using such a process as a granular mixer. Let d1 and d2 be the diameters

of particles of each set with d1 > d2. These two piles are laterally centred at the top
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of the packing of larger spheres of diameter D and the ratio between d1/d2 = 1.3. The

percentages of beads with diameters d1 and d2 are equal to 50%. So we have n1 = 600

particles of diameter d1, n2 = 600 of diameter d2 and N = n1 + n2 = 1200.
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Figure 13. Evolution of normalized mean transit time for smallest particles of

diameter d2 with D/d for a batch release of 1200 particles with 50% by number of

each. Results for a simple mono-size launch of 1200 particles of diameter d1 are also

represented.

Figure 13 shows the evolution of mean transit time for the smaller particles versus

the size ratio D/d2. We have also represented the evolution of mean transit time in the

case of a simple mono-size launch of 1200 particles. Figure 13 shows that particles of

diameter d2 behave almost like a set of 1200 particles made only with this size. The

smallest particles do not see the influence of intermediate ones. More complementary

investigations have to be made.

6. Conclusions

An experimental study of numerous particles flowing in a porous structure has been

realized. The steady state, which is reached during the percolation process, shows us

that vertical percolation velocity is constant. This behaviour is comparable to the case

of a mono-particle flow previously studied. But collective effects, due to the transit

of many particles in the structure, induce acceleration of the transit process and also

jamming effects with particular consequences on the flow velocity, like the existence of

flow regimes or delays compared to the fluid case. Despite these considerations, the

separation between individual effects and collective ones is not trivial. Numerical simu-

lations are performed to access the internal motion and to examine the influence of some

physical parameters on the transit process. Moreover, it allows us to simulate mixing

of particles with different physical properties, and leads us to think that the use of such

a process could be helpful to obtain, in a cheaper way, homogeneous mixtures.
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